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Abstract

Graph models are standard for representing mutual relationships between sets of entities.

Often, graphs deal with a large number of entities with a small number of connections (e.g.

social media relationships, infectious disease spread). The distances or similarities between

such large graphs are known to be well established by the Graphlet Correlation Distance

(GCD). This paper deals with small graphs (with potentially high densities of connections)

that have been somewhat neglected in the literature but that concern important fora like

sociology, ecology and fisheries, to mention some examples. First, based on numerical

experiments, we study the conditions under which Erdős-Rényi, Fitness Scale-Free, Watts-

Strogatz small-world and geometric graphs can be distinguished by a specific GCD mea-

sure based on 11 orbits, the GCD11. This is done with respect to the density and the order

(i.e. the number of nodes) of the graphs when comparing graphs with the same and different

orders. Second, we develop a randomization statistical test based on the GCD11 to compare

empirical graphs to the four possible null models used in this analysis and apply it to a fishing

case study where graphs represent pairwise proximity between fishing vessels. The statisti-

cal test rules out independent pairing within the fleet studied which is a standard assumption

in fisheries. It also illustrates the difficulty to identify similarities between real-world small

graphs and graph models.

Introduction

In ecology, the science of biological interactions, understanding the functioning of a group of

individuals, be it a group of humans, animals, cells, etc, requires understanding the interac-

tions between them [1]. For many years now, graphs and graph theory have been used to

describe and study the organisation of groups of individuals [2, 3]. The simplest graphs allow

for representing the presence of interactions within a group of individuals. The interactions

are then, graphically, the edges between the nodes of the graph (one node is equal to one indi-

vidual). Mathematically, a graph is formalised by an adjacency matrix [4], with a number of

columns and rows equal to the number of individuals, and elements taking a value equal to 1 if

there is an interaction between the individuals and 0 otherwise. While such binary graphs are
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simplistic representations of relational structure, they can provide an essential and formal

representation of various complex phenomena from diverse scientific fields such as protein-

protein interaction [5] in biology or the interaction between social animals [6] in ecology.

Comparing graphs can therefore allow us to compare groups with respect to the interactions

they exhibit. There is abundant literature in graph theory aimed at comparing graphs [7–10].

This comparison is often done in a descriptive and qualitative way by comparing syn-

thetic indicators of graph topology i.e. the configuration by which the individuals of a graph

are connected [11]. For example, by comparing the distribution of the number of links that

each individual has (i.e. degree distribution [12]) or the occurrences of certain motifs of

links (i.e. subgraphs formed from a subset of nodes and edges [13]) between bundles of indi-

viduals (i.e. motif distribution [13]). These descriptive approaches were first performed in

domains such as sociology [14], chemistry [15] and physics in the’90s, and more recently in

neuroscience to compare brain graphs [16], in genomics to compare molecular graphs from

different species [17] and in behavioral ecology [18–22] to compare the structure of social

relationships.

The shift to quantitative graph comparisons with the introduction of similarity or distance

measures [23] has resulted in the development of plenty of distances (see [9] for a recent

review). Amongst these, the Graphlet Correlation Distance (GCD) was shown to not only out-

perform the others but also to be robust to order (i.e. number of nodes [24]) and density (i.e.

ratio of the number of edges with respect to the maximum number of possible edges [25]) dif-

ferences between the graphs compared [26, 27]. Graphlets are small connected induced sub-

graphs (formed from a subset of the vertices of the graph and all of the edges in that subset)

[28, 29] of a graph defined up to isomorphism [30] (meaning that two isomorphic induced

subgraphs are considered two occurrences of the same graphlet). They emerged as an accurate

mining tool to provide topological information that is not exclusively local [31]. Graphlets gen-

eralise the degree distribution of a graph to the distribution of subgraphs connected to a node

that is assigned a particular role (called orbit) [8, 32]. Yaveroğlu et al [27] showed that eleven

orbits were sufficient to exhaustively describe a graph so that the topology of the graph can be

summarised by the correlation matrix between these eleven vectors of orbits’ degrees, called

the Graphlet Correlation Matrix (GCM) [27]. The GCD11 was thus defined as the Euclidean

distance between the GCM of the graphs [27].

To go beyond the comparison of simple descriptors of interactions between individuals, it

is appealing to test functional hypotheses about these interactions [23]. One possible approach

is to test whether a graph can be considered as an outcome of a specific random graph (null

model). For example, Erdös-Rényi [33] is a graph model where the links between individuals

are mutually independent. It can therefore be used as a null model to test the absence of

correlation between the interactions of individuals. Some studies based on different graph

comparison methods identified the similarities between empirical graphs and the outcomes of

some random graph models [32, 34]. However, to the best of our knowledge, none of these

approaches involved GCD measures.

Most of the studies available in the literature focus on graphs with large numbers of nodes

(several hundred or thousands) and very low edge densities (� 0.1) [35]. However, large

graphs are not the only real-world graphs. In sociology, for example, the classical examples of

Zachary’s (1997) karate club network [36] and Sampson’s (1968) monks’ network [37] contain

34 and 18 nodes respectively. In ecology, food webs can be studied at the level of trophic

groups rather than at the level of species or individuals [38] with a number of entities from 25

to 172. In fisheries, fleets may consist of only ten or a few dozen interacting fishing vessels

[39]. Thus, there are multiple cases of small-size graph applications that deserve dedicated

methodological development.
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This work deals with two main gaps in the literature. First, we assess the ability of GCD11 to

correctly distinguish small simulated graphs from known model types (Erdős-Rényi [33], Fit-

ness Scale-Free [40], Watts-Strogatz small-world [41] and geometric [42]) by a clustering

approach [27, 43] using numerical experiments. We simulated graphs of different order and

density, fluctuating the order from 10 to 100 to mimic the range encountered in some real small

graphs [36–38], while the density range is completely covered from 0 to 1. We study the power

of the GCD11 to discriminate graphs with equal density and order and graphs that differ in den-

sity and order. Then, we perform a sensitivity analysis of the GCD11 discrimination power to the

values of density and order. This allows defining a domain of separability, i.e. an envelope of

orders and densities for which the GCD11 allows distinguishing between graphs. Second, we pro-

pose a statistical test based on the GCD11 to evaluate whether an empirical graph can be consid-

ered as an outcome of a particular random graph. Finally, we illustrate the use of the GCD11 to

analyse small graphs characterising pairwise links between fishing vessels at sea. We test if these

graphs can be outcomes of an Erdős-Rényi random graph model which would be indicative of

vessels that cross independently at sea, an implicit assumption frequently made in fisheries.

Materials and methods

Graphlet Correlation Distance (GCD11)

Yaveroğlu et al [27] recently proposed to compare graphs on the basis of the first eleven non-

redundant orbits graphlets of up to four nodes. Considering a graph G of order N, they first

compute the N × 11 matrix which contains for each node their orbits’ degree i.e. the number

of times the node is presented in each of the eleven orbits. The columns are called Graphlet

Degree Distributions (GDD) [32] and the first column is the standard vector of degree values.

Then, the Spearman’s Correlation coefficient [44] is computed between all columns of the

GDD matrix to build an 11 × 11 matrix called the Graphlet Correlation Matrix (GCM). In this

framework, the topology of a given graph G is summarised by its Graphlet Correlation Matrix

denoted GCMG. The GCD11 between two graphs G1 and G2 is then defined as the Euclidean

distance between the upper triangular parts of their respective GCM:

GCD11ðG1;G2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X11

i¼1

X11

j¼iþ1

ðGCMG1
ði; jÞ � GCMG2

ði; jÞÞ2
v
u
u
t ð1Þ

GCD11 on small synthetic graphs

The performance of the GCD11 to identify similarities between small graphs is assessed with a

numerical experiment using four different models of random graphs, namely the Erdős-Rényi

(ER) [33], the Fitness Scale-Free (SF) [40], the Watts-Strogatz small-world (SW) [41] and the

Geometric (GO) [42] models.

The Erdős-Rényi model is the simplest and most common uncorrelated random graph

model. An Erdős-Rényi graph ER(N, d) of order N and edge density d = 2m/(N(N − 1)) gets m
edges that are randomly and uniformly chosen among the N

2

� �
possible edges [33]. This simple

configuration results in an uncorrelated graph i.e., with a zero assortativity [45] meaning that

there is no preferential attachment among nodes. In other words, the Erdős-Rényi random

model generates graphs where edges are statistically independent of each other.

Fitness Scale-Free models SF(N, d, γ) are derived [46] from Scale-Free Barbási-Albert mod-

els [47]. A graph is deemed scale-free when its node degree distribution p(k) follows a power

law p(k)� k−γ whose power γ is generally observed empirically between 2 and 3 [48]. As a
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compromise, we set γ = 2.5 in this study. In scale-free graphs, few nodes have high connectivity

with respect to the average degree leading to the emergence of hubs as observed (or supposedly

observed [49]) in some real-world graphs [50]. Fitness models are based on the attractiveness

of each node [40]. When this follows a power law, the degree distribution also follows a power

law as a scale-free graph [51].

The Watts-Strogatz small-world model was developed to address the lack of realism of the

random graph model (Erdős-Rényi) by relying on the notion of “small-world” phenomenon

[52] also known as six degrees of separation [53]. The Watts-Strogatz small-world model is an

intermediate model between a regular graph [54] and an Erdős-Rényi graph allowing to recon-

cile local properties of one and global properties of the other [55]. A Watts-Strogatz small-

world graph SW(N, k, p) is generated from a ring lattice graph of order N, where each node is

connected to its 2k nearest neighbours. Then, each edge is kept with probability 1 − p or recon-

nected to a randomly chosen node (without loop or multiple edges) with a probability p. The

parameter p thus controls the coexistence of “short-range” (from the ring lattice) and “long-

range” (from the random reconnection) connections [55]. As the edge density is d ¼ 2k
N� 1

, it

does not span all the possible values on the [0, 1] interval. In the numerical experiment below,

we randomly added or removed some edges (between 10 and 50 depending on the order N) to

reach the desired edge density when necessary. Some of the simulated graphs were thus no lon-

ger Watts-Strogatz small-world strictly speaking but remained highly similar to it. To bring

out the small world property [56], we set p = 0.05.

The Geometric model allows to generate spatial graphs where the condition of existence of

an edge between two nodes depends on their proximity [57]. A Geometric graph GO(N, l, r) is

generated by placing N independent nodes uniformly at random in Rl
and by connecting pairs

whose distance is smaller than r [42]. In this study, the distance threshold r was chosen to

obtain the desired density d. Geometric graphs are dominated by local interactions [58] lead-

ing to the emergence of community structure.

For each model M 2 {ER, SF, SW, GO} and for a given order N and a given edge density d
we generate 100 graphs Gi

MðN; dÞ with i = 1, . . ., 100. For M 2 {ER, SF, SW} we use the R 4.1.3

[59] package igraph (v1.2.1) [60] to generate graphs (see Data Availability statement).

Comparing graphs with the same order and edge density. We define a set of 51 possible

values of order N describing two gradual incremental steps as N 2 {10, 11, . . ., 48, 49, 50, 55,

60, . . .90, 95, 100} and a set of 101 possible values of edge density d regularly spaced as d 2 {0,

0.01, . . ., 0.99, 1}. According to these two sets of order and density, for a given order N, and a

given edge density d, for each couple of models (M1, M2)2{ER, SF, SW, GO}2 with M1 6¼M2,

we computed all the pairwise GCD11 between their 100 respective generated graphs to con-

struct a 200 × 200 block symmetric distance matrix D ¼
DM1 ;M1

DM1 ;M2

DM2 ;M1
DM2 ;M2

" #

. The discriminat-

ing power of GCD11 is assessed by the Area Under the Precision-Recall (AUPR) curve [43]

computed as follows. For each distance threshold �k, k = 1, . . ., 100, regularly spanning the

range of distance values of D, we compute:

• the true positives TP, as the number of distances between graphs from the same model

smaller than �k;

• the true negatives TN, as the number of distances between graphs from two different models

greater or equal to �k;

• the false negatives FN, as the number of distances between graphs from the same model

greater or equal to �k;
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• and the false positives, FP, as the number of distances between graphs from two different

models smaller than �k.

Precision (P) and recall (R) are then defined as:

Pð�Þ ¼
TPð�Þ

TPð�Þ þ FPð�Þ
ð2Þ

Rð�Þ ¼
TPð�Þ

TPð�Þ þ FNð�Þ
ð3Þ

The diagonals of DM1 ;M1
and DM2 ;M2

are trivial (null distance between a graph and itself) and

are thus excluded from these calculations. We also removed the diagonals of DM2 ;M1
and DM1 ;M2

when computing the area under the precision-recall curve to guarantee the same number of

intra-model distances DM1 ;M1
and DM2 ;M2

and inter-model distances DM2 ;M1
and DM1 ;M2

. The

area under the curve of the precision given the recall curve (AUPR) is defined as:

AUPRM1 ;M2
ðN; dÞ ¼

X100

k¼2

Pð�kÞDRð�kÞ ð4Þ

where ΔR(�k) is the change in recall from rank k − 1 to k. For each combination of order N and

edge density d, the resultant AUPRM1 ;M2
ðN; dÞ is used to fill an |N| × |d| matrix AM1 ;M2

. The dis-

criminating power of the GCD11 amongst the four tested models is set to the minimum value

obtained over all possible comparisons. From the 4

2

� �
pairs of models, we thus finally fill a

|N| × |d| matrix A as:

AðN; dÞ ¼ mini6¼jðAMi ;Mj
ðN; dÞÞ ð5Þ

An AUPR score of 1 means a perfect distinction between M1 and M2 (i.e. two clusters without

overlapping) whereas an AUPR score of 0.5 is the expected score of a random classifier. An

AUPR score of 0 occurs when graph topologies are all identical. We arbitrarily consider that

an AUPR larger than 0.9 allows discrimination between two models amongst the four that are

used and defined the domain of separability as the set of orders and densities providing an

AUPR larger than 0.9. In the domain of separability, the GCD11 is small (resp. large) between

graphs coming from the same (resp. different) models amongst the four models used in the

study. In other words, the domain of separability reflects the ability of the GCD11 to discrimi-

nate graphs of two different models into two weakly or non-overlapping clusters.

Comparing graphs with different orders and edge densities. For each couple (M1, M2)

2 {ER, SF, SW, GO}2 with M1 6¼M2, and for all possible pairs of combinations of orders and

densities (N, d) × (N0, d0) we also build the three following 100 × 100 GCD11 matrices using the

already simulated graphs:

DM1ðN;dÞ;M1ðN0 ;d0Þ
½i; j� ¼ GCD11ðGi

M1
ðN; dÞ;Gj

M1
ðN 0; d0ÞÞ ð6Þ

DM2ðN;dÞ;M2ðN0 ;d0Þ
½i; j� ¼ GCD11ðGi

M2
ðN; dÞ;Gj

M2
ðN 0; d0ÞÞ ð7Þ

DM1ðN;dÞ;M2ðN0 ;d0Þ
½i; j� ¼ GCD11ðGi

M1
ðN; dÞ;Gj

M2
ðN 0; d0ÞÞ ð8Þ

for i, j = 1, . . ., 100. We then computed the proportion of cases where the inter-model

distance DM1ðN;dÞ;M2ðN0 ;d0Þ
was larger than the two intra-model distances DM1ðN;dÞ;M1ðN0 ;d0Þ

and
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DM2ðN;dÞ;M2ðN0 ;d0Þ
. We consider this proportion as the probability that the GCD11 assigns a smaller

distance between two graphs from the same model than between two graphs from different

models. A probability of 1 means that all intra-model distances are smaller than all inter-

model distances. This probability is used to fill an (|N| × |d|) × (|N0| × |d0|) asymmetric matrix

of probability BM1 ;M2
ððN; dÞ; ðN 0; d0ÞÞ. As in the previous section, all the possible comparisons

were combined into a (|N| × |d|) × (|N0| × |d0|) synthetic matrix of probability as:

BððN; dÞ; ðN 0; d0ÞÞ ¼ mink6¼lðBMk;Ml
ððN; dÞ; ðN 0; d0ÞÞÞ ð9Þ

We arbitrarily consider that a probability larger than 0.9 allows discrimination between two

models amongst the four that are used and allows us to define the domain of separability. We

also defined the surface of the domain of separability as the proportion of cells in the matrix of

probability where the value is larger than 0.9. To limit the computing time and because the

outputs change slowly with the order values, the number of possible values for the order and

density are reduced so that (N, d) 2 {10, 20, . . ., 100} × {0, 0.02, . . ., 1}.

To visualize distances between graphs we use a principal component analysis (PCA) [61]

where each observation (graph) is described by 55 variables (the 55 graphlet correlation

coefficients in the GCM). Since PCA is based on the Euclidean distance as the GCD11, to

preserve the properties of the GCD, the PCA is computed on the 55 centered variables with-

out scaling.

Statistical test

In order to test if an empirical graph G(N,d) is an outcome of an M(N,d) random graph model

(H0) with M 2 {ER, SF, SW, GO}, we build the following randomization statistical test. First,

we simulate 1000 independent outcomes Mk (k = 1, . . ., K = 1000) of each possible reference

model M. Second, we compute their Graphlet Correlation Matrices GCM(Mk) and their aver-

age:

GCMM ¼
1

K

XK

k¼1

GCMðMkÞ ð10Þ

where GCMM denotes the average Graphlet Correlation Matrix of M. Third, we compute the

Graphlet Correlation Distance dMk
between GCM(Mk) and GCMM and the Graphlet Correla-

tion Distance δG between GCMG and GCMM:

dMk
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X11

i¼1

X11

j¼iþ1

�
GCMMði; jÞ � GCMðMkÞði; jÞ

�2

v
u
u
t ð11Þ

dG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X11

i¼1

X11

j¼iþ1

�
GCMMði; jÞ � GCMGði; jÞ

�2

v
u
u
t ð12Þ

Under H0, PðdG < dÞ ¼ PðdMk
< dÞ with d 2 Rþ, and the p-value for testing H0 is calculated

as PðdMk
> dGÞ. We computed η as the number of times the distance δG between GCMG

and GCMM is smaller or equal than the distance dMk
. The p-value is then defined by p̂ ¼

ðZþ 1Þ=ðK þ 1Þ [62]; the larger the p-value, the less evidence against H0. To account for the

difference in variability between the correlation coefficients of each pair of orbits, we also

investigated the use of a standardised distance which provided very similar outcomes (S1 Eq).
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Empirical graphs

The developments proposed in this paper are illustrated on small graphs based on fisheries

data. Joo et al [39] identified pairwise relationships between vessels of some fishing fleets

(groups of vessels sharing the same technical characteristics) based on joint-movement analy-

sis [63] of their GPS-tracks at sea. On the basis of this previous work, we derive a set of twenty

graphs describing the relationships (the edges) between a set of trips (the nodes) within a fleet

of French trawlers with unknown topological properties and of unknown types.

Results and discussion

Same orders and densities

The domain of separability between different models amongst {ER, SF, SW, GO} is globally

parabolic with regards to the order and the density. The range of edge densities allowing clear

discrimination increases with the graphs’ order. For instance, when comparing graphs coming

from Erdős-Rényi (ER) and Fitness Scale-Free (SF) models (Fig 1a), for orders of 25 and 50,

the domain of separability respectively spans a range of edge densities approximately from 0.3

to 0.6 and from 0.1 to 0.95, respectively. Furthermore, a perfect discrimination (AUPR = 1) is

gradually reached for graphs with more than 50 nodes, more and more irrespective of the edge

density.

The parabolic shapes of the surfaces of the domain of separability described by the AUPR

isolines are qualitatively similar but not identical regardless of which pair of models are com-

pared (S1a–S1e Fig), with the exception of the Erdős-Rényi (ER) vs. the Geometric (GO)

model (S1a Fig), where the domain of separability exhibits a strong asymmetrical surface with

regards to the density.

The combination of all domains of separability (Fig 1b) appears as a mixture of all the

domains of separability of each pair of models. The asymmetrical domain of separability

between Erdős-Rényi and Geometric model (S1a Fig) is easily recognisable between the densi-

ties from 0.1 to 0.2, as well as the one between Erdős-Rényi and Watts-Strogatz small-world

model (S1b Fig) for densities from 0.7 to 0.9.

The effect of the order and the density on the performance of the GCD11 are related to

the response of the different graphlet correlation coefficients to changes in order and density

(Fig 2).

For a given density, the variability of each graphlet correlation coefficient is very high for

small orders (lower triangle on Fig 2) leading to a small difference between the graphlet corre-

lation coefficients of the four different models which are strongly overlapping. With increasing

order (upper triangle on Fig 2), the variability of the graphlet correlation coefficients decreases

leading to better discrimination (the domain of separability) between the four different models

notably for some pairs of orbits in ramified graphlets of order 4 from O6 to O11, (except O7 ×
O11). In other words, the increase in order allows to stabilise the graphlet correlation coeffi-

cients. Two reasons could explain this phenomenon. On one hand, the increase in order allows

the emergence of complex topologies signing the topological properties of the model [64]. And

finally, Spearman’s Correlation coefficient becomes more accurate when computed on a larger

number of nodes [65].

For a given pair of orbits, the “starting point” from an empty graph (density d = 0) and the

“ending point” at a complete graph (density d = 1) are at the same values of correlation coeffi-

cient regardless the graph model (isomorphic graphs [30], black crosses Fig 1). The graphlet

correlation coefficients are thus strongly similar amongst models when the density approaches

those two extremes.
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Different orders and densities

When dealing with different orders and densities, the domain of separability of the GCD11

turns out to depend first on the order. For instance, when comparing graphs coming from

Erdős-Rényi (ER) and Fitness Scale-Free (SF) models (Fig 3a), for equal orders (Fig 3b, block

diagrams on the first bisector), the surface of the domain of separability increases from 0.045

Fig 1. Quality of the discrimination between models (AUPR). (a) Diagram of the matrix of AUPR Erdős-Rényi vs Fitness Scale-Free (AER, SF), (b)

Diagram of the synthetic matrix of AUPR (A(N, d)). For each pair of models, and for each order (from 10 to 100) and edge density (from 0 to 1)

combination, the quality of clustering between 100 graphs of each of the two types of models is assessed by the Area Under the Precision-Recall curve

(AUPR). A maximum value of 1 corresponds to perfect discrimination. Black crosses represent zero AUPR. Empirical graphs (red squares) are

projected according to their features (order and edge density).

https://doi.org/10.1371/journal.pone.0281646.g001
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to 0.19 when the order increases from 30 to 100. As with the same orders and densities, this

means that due to reduced variability of the graphlet correlation coefficients, the edge density

difference allowing clear discrimination between ER and SF is larger for “large” graphs. How-

ever, even for graphs with the same order, the difference in edge density allowing clear dis-

crimination remains limited (Fig 3a).

This can be further detailed by principal component analyses (PCA) computed for a few

cases taken as examples. Erdős-Rényi and Fitness Scale-Free graphs of order N = 100 and

Fig 2. Evolution of the 55 graphlet correlation coefficients. Erdős-Rényi (ER, in dark purple), Fitness Scale-Free (SF, in blue), Watts-Strogatz small-

world (SW, in green) and Geometric (GO, in yellow) models. For two different order values N = 20 (lower triangle figures) and N = 100 (upper triangle

figures), the graphlet correlation coefficients are computed for 100 graphs of the four models and for edges densities ranging from 0 to 1.

https://doi.org/10.1371/journal.pone.0281646.g002
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density d = 0.2 are compared with similar graphs of order N = 100 and densities in d0 = {0.4,

0.6, 0.8}. In each case, we consider the matrix 400 × 55 whose lines are the 55 graphlet correla-

tion coefficients (upper or lower triangle of the GCM) for each of the 100 simulated graphs

of each type and of each density. Over the three cases considered, the first two principal

Fig 3. Probability of correctly distinguishing two random graph models with different order and/or edge density. Each block (i,
j) concerns the comparison of an M1 of order N and a M2 of order N’, with edge density d and d’ respectively ranging from 0 to 1

(grey gradient from white to black on the top and right side) with (M1, M2) 2 {ER, SF, SW, GO}2 and M1 6¼M2. Dashed lines in each

block highlight comparison when d = d’. (a) Probability matrix BM1 ;M2
that DM1ðN;dÞ;M2ðN0 ;d0 Þ

> maxðDM1ðN;dÞ;M1ðN0 ;d0 Þ
;DM2ðN;dÞ;M2ðN0 ;d0 Þ

Þ

with M1 = SF and M2 = ER. (b) Proportion of cells with a probability P� 0.9 in the triangle under or above the diagonal (cells

covered by diagonals are not counted). Their mean quantifies the surface of the domain of separability of the GCD11. (c) Synthetic

matrix of probability matrix B((N, d), (N0, d0)) according to each pair tested (M1, M2)2{ER, SF, SW, GO}2. (d) Proportion of cells in

the synthetic matrix of probability with a probability P� 0.9.

https://doi.org/10.1371/journal.pone.0281646.g003

PLOS ONE Graphlet correlation distance to compare small graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0281646 February 15, 2023 10 / 20

https://doi.org/10.1371/journal.pone.0281646.g003
https://doi.org/10.1371/journal.pone.0281646


components explain at least 96% of the input variability (Fig 4). There are two orthogonal lin-

ear combinations of the graphlet correlation coefficients that represent the same amount of

information as the 55 coefficients. Given that the 2D space of the two principal components

contains nearly 100% of the initial variability, the euclidean distance in this 2D space is a

Fig 4. PCA between Erdős-Rényi and Fitness Scale-Free graphs of order N = 100 and different edge density. (b) (d = 0.2, d0 = 0.4), (c) (d = 0.2, d0 =

0.6), (d) (d = 0.2 d0 = 0.8). For each density, 100 graphs of each model are projected according to their 55 graphlet correlation coefficients (upper or

lower triangle of the GCM). (a) The two probabilities P associated with each comparison in the matrix of probability BER, SF are respectively P1 for BER

(100, d), SF(100, d0) and P2 for BER(100, d0), SF(100, d). With increasing edge density differences (b),(c) and (d) the two groups of dense graphs gradually become

more and more similar.

https://doi.org/10.1371/journal.pone.0281646.g004
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suitable proxy for the GCD11. Even a small difference in density (Fig 4b) leads to the division

of the graphs into four groups, discriminating first the model and secondly the density. As the

density discrepancy increases (Fig 4c and 4d), the denser graphs of the two different models

are closer than the less dense ones. This increasing similarity is explained by the growing simi-

larity between the graphlets correlation coefficients with the density (Fig 2). The distances

between the graphs associated with two different densities for a given model are larger than

those between the two different models. In other words, the GCD11 does not discriminate

graphs from different models with different densities because their topological differences do

not depart more than the topologies of the same graph for different densities.

Let us consider the reference comparison cases where the two graphs are of the same order

(block diagrams on the first bisector in Fig 3b). Increasing the order for one of the two models

by ten leads systematically to larger domains of separability and this increase is amplified

when increasing the order of the ER model. For instance, starting with the comparison

between ER(30, .) and SF(30, .) the domain of separability equal to 0.045, then, the domain of

separability expands from 0.045 to 0.11 when the order of the ER graph increases (in columns),

while it flattens around 0.07 when the increase of order concerns the SF graph (in rows).

The domain of separability is also systematically asymmetric favouring situations where the

edge density of the SF graph is larger than the edge density of the ER graph it is compared to,

whatever their respective orders (Fig 3a). The exhibited asymmetry of the domain is, however,

dependent on the edge densities. As a matter of fact, when the orders increase, the domain of

separability acquires a “violin” shape consisting of a body for the lower half range of edge den-

sity, a head for high or very high density, and a neck that appears as a transition between the

body and the head.

While the comparison between the ER and SF model produces a domain of separability

with a violin shape, the other model comparisons produce domains of separability with other

shapes (S2 Fig) and surface. The largest separability domain is obtained when comparing Fit-

ness Scale-Free and Watt-Strogratz small-world models (S2c Fig) with a strong asymmetrical

shape favouring a situation where the edge density of the SF graph is larger than that of the

SW. These results differ from those of the same order and density (Fig 1 and S1 Fig) where the

diagrams of different pairs of models were quite similar. Due to this strong variability, the syn-

thetic domain of separability B((N, d), (N0, d0)) (Fig 3c) obtained by crossing all of the two-by-

two probability matrices BM1 ;M2
is symmetric, very small and concentrated around the same

density comparisons. Based on these results, the use of the GCD11 seems relevant only when

the densities are very close. Furthermore, at least an order of N = 50 is required to obtain a

domain of separability.

Empirical graphs comparison

Empirical graphs features. The empirical graphs used in this study are characterised by

small orders ranging from 30 to 41 nodes and large edge densities ranging from 0.22 to 0.57

(Table 1). These empirical graphs (Fig 5a) show multiple dense components as a graph of com-

munities. Despite the short observation time (1 week), these graphs are sensitive to finer-scale

temporal variations with some trips occurring at the beginning of the week and others at the

end prohibiting an encounter between them.

The GCM of empirical graphs (Fig 5b) exhibits a standard shape [27] with strong positive

and negative correlations between the first eleven non-redundant orbits. These contrasted cor-

relations capture heterogeneity in the role of trips (nodes) in the graph. For instance, the nega-

tive correlations between orbits {4, 6, 9} and orbits {0, 2, 5, 7, 8, 10, 11} indicates the existence

of peripheral nodes [27] such as nodes {1, 6, 8, 14} which could reflect the solitary behaviour of
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some vessels. Conversely, the strong positive correlations between orbits {0, 2, 5, 7} reflect the

existence of a hub such as node 20 [27] which could reflect a strong sociability behaviour.

Testing model type. Due to their small orders, some of the empirical graphs (Graph

{02;03;04}, red squares in Fig 1b) are out of the synthetic domain of separability. However,

being outside the domain of separability does not preclude the use of the test. Being outside of

the domain of separability means that it is difficult to systematically separate graphs coming

from different models. However, the rejection of the null hypothesis, which reflects the strong

dissimilarity between the empirical graph and the null model, remains valid.

Table 1. Main features of empirical graphs: Order (number of nodes), size (number of edges), and edge density

(ratio between the size and the graph maximum size).

Graph Order (N) Size (S) Density (d)

Graph 01 30 164 0.38

Graph 02 30 101 0.23

Graph 03 30 95 0.22

Graph 04 30 129 0.3

Graph 05 31 205 0.44

Graph 06 32 221 0.45

Graph 07 32 198 0.4

Graph 08 36 271 0.43

Graph 09 40 400 0.51

Graph 10 41 464 0.57

Mean 33.2 224.8 0.39

Range [30; 41] [95; 464] [0.22; 0.57]

https://doi.org/10.1371/journal.pone.0281646.t001

Fig 5. Illustration of an empirical graph and its Graphlet Correlation Matrix. (a) Example of an empirical graph (Graph 08) and (b) its Graphlet

Correlation Matrix (GCM). The 11 non-redundant orbits are grouped according to their role, orbit {0} represents the familiar degree, {2, 5, 7} represent

node in chain, {8, 10, 11} represent node in cycle, and {6, 9, 4, 1} represent terminal node. Cell colours correspond to the value of the correlation

coefficient between the 11 non-redundant orbits from 1 (yellow) to −1 (dark purple).

https://doi.org/10.1371/journal.pone.0281646.g005
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According to our statistical test, none of the empirical graphs present any similarity with

the same order and density graphs coming from Erdős-Rényi, Fitness Scale-Free and Watt-

Strogratz small-world models (Table 2).

In terms of graphlet correlation coefficients, while there are similarities between the empiri-

cal GCM and the GCMs of the null model, for instance, Erdős-Rényi (Fig 6b), some empirical

graphlet correlations are very different from those of the Erdős-Rényi. Interestingly these

strong differences occur in orbits of high-order graphlets and specifically in the pair of orbits

which contain the orbit O10, for instance, (O9, O10), (O4, O10), (O1, O10), (O2, O10), or (O10,

O11). A deep investigation of the role of orbit O10 could help to understand the topological dif-

ferences of these graphs.

The comparison between the empirical graphs and graphs coming from the Geometric

model leads to more contrasting results. While empirical graphs {04, 06, 07, 08, 09} are signifi-

cantly not similar to Geometric graphs, the test does not reject that empirical graphs {01, 02,

03, 05, 10} can be considered as outcomes of a Geometric graph mode. However, empirical

graphs 02 and 03 are out of the domain of separability which does not allow us to conclude

that these graphs are geometric graphs. For empirical graphs 01 and 05 which are in the

domain of separability, the small p-values (0.051 and 0.154), one being just above the threshold

for rejection, can be interpreted in relation to the definition of the domain of separability.

Indeed, the AUPR larger than 0.9 associated with features of Graphs 01 and 05 (Fig 1b) implies

a small, however not null, overlap between graphs coming from different models in {ER, SF,

SW, GO}. This does not exclude the existence of “extreme” graphs from these models which

might present some similarities. The largest p-value associated with Graph 10 suggests a strong

similarity with Geometric graphs. Indeed, there is a strong similarity between most of the

graphlet correlation coefficients of the empirical GCM of the graph 10 and the GCMs of Geo-

metric graphs (Fig 6a). This suggests that this empirical graph and Geometric graphs share

similar topological properties.

To account for the contrasting variabilities of the correlation coefficients of each pair of

orbits (boxplots in Fig 6), we also built a statistical test based on the standardised distance

between GCM(Mk) and GCMM (S1 Eq). This second test leads to similar conclusions (S1

Table) but rejects more clearly the null hypothesis. These results suggest that the standardised

distance provides a more stringent test.

Table 2. Estimated p-values. Each empirical graph is associated with an estimated p-value ðp̂Þ of being an outcome of an Erdős-Rényi, Fitness scale-free model, a Watts-

Strogatz small word or a Geometric model. As in Table 1, empirical graphs are sorted according to their order.

p-value

Graph Erdős-Rényi Scale-Free Watts-Strogatz Geometric

Graph 01 0.001��� 0.001��� 0.001��� 0.051

Graph 02 0.002�� 0.001��� 0.002�� 0.122

Graph 03 0.001��� 0.001��� 0.001��� 0.088

Graph 04 0.008�� 0.032� 0.001��� 0.029�

Graph 05 0.001��� 0.001��� 0.001��� 0.154

Graph 06 0.001��� 0.001��� 0.001��� 0.002��

Graph 07 0.001��� 0.001��� 0.001��� 0.002��

Graph 08 0.001��� 0.001��� 0.001��� 0.009��

Graph 09 0.001��� 0.001��� 0.001��� 0.011�

Graph 10 0.001��� 0.001��� 0.001��� 0.337

(p̂� < 0:05, p̂�� < 0:01 and p̂��� � 0:001).

https://doi.org/10.1371/journal.pone.0281646.t002
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Conclusion

This work extends the use of the graphlet correlation distance (GCD11) originally proposed for

large real-world graphs to small real-world graphs. Through a numerical benchmark study

based on four contrasted and commonly encountered random graph models, the Erdős-Rényi,

Fitness scale-free, the Watts-Strogatz small world, and the Geometric graph models, we define

the order × density domain within which the Graphlet Correlation Distance (GCD11) clearly

separate graphs with the same order and the same density configuration. While the perfor-

mance of the GCD11 is convincing to compare small graphs with the same order and the same

density, when the orders and/or the densities differ, the performance of the GCD11 deteriorates

quickly and exhibits a high variability depending on the pair of models compared. Therefore,

it seems essential to systematically check the applicability of the GCD11 before comparing

graphs of a different order and/or density to ensure the relevance and interpretability of its

results.

For the four models used in this study, we show that the behaviours of the graphlets correla-

tion coefficient in response to a change in density remain qualitatively similar. Furthermore,

Fig 6. Comparison between graphlet correlation coefficient of empirical and random graph model. (a) Graph 10 and Geometric model (b) Graph

10 and Erdős-Rényi model. For each pair of orbits, the graphlet correlation coefficients of 1000 Erdős-Rényi or Geometric graphs are presented as a

boxplot with the mean value (blue asterisk) and the empirical value (red triangle). The correlation coefficients are mostly different from Erdős-Rényi

graphlet correlation coefficients. Conversely, there is a strong similarity between graphlet correlation coefficients from Geometric graphs.

https://doi.org/10.1371/journal.pone.0281646.g006
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the proposed experimental design and numerical analysis can be directly used with other ran-

dom graph models to explore new properties of the GCD11 and deeper investigate its domain

of separability or to investigate other orbit combinations.

The statistical test and its standardised version proposed in this study to test the similarity

between empirical graphs and graph models regardless of order and edge density can be

applied without restriction on the size of the graphs. Some limitations of the GCD11 are

highlighted on the basis of numerical evidence presented here.

The application to fisheries data originally intends to test whether certain fishing behav-

iours can be considered independent. This property is generally required to apply statistical

inference methods and more particularly when estimating population biomass in marine eco-

systems. However, our results suggest that the graphs issued from the GPS tracks are not simi-

lar to Erdős-Rényi graphs. Some of them are rather Geometric.

Finally, in the context of an application of the GCD on small graphs, the present work is

also an opportunity to question the relevance of the choice of the 11 selected orbits for the con-

struction of the GCM. Indeed, we have shown that there is a strong redundancy of the infor-

mation provided by the different coefficients of graphlet correlations between pairs of orbits.

Moreover, it seems that the information carried out by the correlation matrices (GCM) can be

almost completely described in a two-dimensional space. We encourage further studies using

a smaller number of not redundant orbits that could potentially improve the performance of

GCD.

Supporting information

S1 Fig. Quality of clustering (AUPR) for pairs of models. Diagram of the matrix of AUPR

(AM1 ;M2
) (a) Erdős-Rényi vs Geometric (b) Erdős-Rényi vs Watts-Strogatz small-world (c) Fit-

ness Scale-Free vs Geometric (d) Geometric vs Watts-Strogatz small-world (e) Fitness Scale-Free

vs Watts-Strogatz small-world. For each pair of models, and for each order (from 10 to 100) and

edge density (from 0 to 1) combination, the quality of clustering between 100 graphs of each of

the two types of models is assessed by the Area Under the Precision-Recall curve (AUPR). A

maximum value of 1 corresponds to perfect discrimination. Black crosses represent zero AUPR.

(TIF)

S2 Fig. Probability of correctly distinguishing two random graph models. with different

order and/or edge density. Each block (i, j) concerns the comparison of an M1 of order N and

a M2 of order N’, with edge density d and d’ respectively ranging from 0 to 1 (grey gradient

from white to black on the top and right side) with (M1, M2)2{ER, SF, SW, GO}2 and M1 6¼

M2. Dashed lines in each block highlight comparison when d = d’. (a) Probability matrix

BM1 ;M2
that DM1ðN;dÞ;M2ðN0 ;d0Þ

> maxðDM1ðN;dÞ;M1ðN0;d0Þ
;DM2ðN;dÞ;M2ðN0;d0Þ

Þ with M1 = SF and M2 = GO.

(b) BER, SW, (c) BSF, GO, (d) BGO, SW, (e) BSF, SW.

(TIF)

S1 Eq. To account for the difference in variability between the correlation coefficients of

each pair of orbits, we also computed the following standardised distance δstd;Mk
between

GCM(Mk) and GCMM where σ(i, j) is the standard deviation of the correlation coefficients

of the pair of orbits (i, j) under H0. We built the test by computing η the number of times the

standardised distance between GCMG and GCMM is smaller or equal to the distance dstd;Mk
.

The p-value [50] is defined by p̂ ¼ ðZþ 1Þ=ðK þ 1Þ. The larger the p-value, the less evidence

against H0.

(PDF)
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S1 Table. Estimated p-values (std). Each empirical graph is associated with an estimated p-

value ðp̂Þ of being an outcome of an Erdős-Rényi, Fitness scale-free model, a Watts-Strogatz

small word or a Geometric model. As in Table 1, empirical graphs are sorted according to

their order. (p̂� < 0:05, p̂�� < 0:01 and p̂��� � 0:001)

(PDF)
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