S1 Eq To account for the difference in variability between the correlation coefficients of each pair of orbits, we also computed the following standardised distance $\delta_{s t d, M_{k}}$ between $G C M\left(M_{k}\right)$ and $\overline{G C M}_{M}$ where $\sigma(i, j)$ is the standard deviation of the correlation coefficients of the pair of orbits (i, j) under H_{0}. We built the test by computing η the number of times the standardised distance between $G C M_{G}$ and $\overline{G C M}_{M}$ is smaller or equal to the distance $\delta_{s t d, M_{k}}$. The p-value [50] is defined by $\hat{p}=(\eta+1) /(K+1)$. The larger the p-value, the less evidence against H_{0}.

$$
\begin{equation*}
\delta_{s t d, M_{k}}=\sqrt{\sum_{i=1}^{11} \sum_{j=i+1}^{11}\left(\frac{\overline{G C M}_{M}(i, j)-G C M\left(M_{k}\right)(i, j)}{\sigma(i, j)}\right)^{2}} \tag{1}
\end{equation*}
$$

