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Abstract : 

Functional morphology investigates the relationships between morphological characters and external 
factors, such as environmental, physical and ecological features. Here, we evaluate the functional 
relationships between body shape and trophic ecology of a tropical demersal marine fish community using 
geometric morphometrics techniques and modelling, hypothesizing that shape variables could partially 
explain fish trophic level. Fish were collected over the continental shelf of Northeast Brazil (4˗9°S). 
Analysed fish were distributed into 14 orders, 34 families and 72 species. Each individual was 
photographed in lateral view, and 18 landmarks were distributed along the body. A PCA applied on 
morphometric indices revealed that fish body elongation and fin base shape were the main axes of 
variation explaining the morphology. Low trophic levels (herbivore and omnivore) are characterised by 
deep bodies, and longer dorsal and anal fin bases, while predators present elongated bodies and narrow 
fin bases. Fin position (dorsal and anal fins) on the fish body is another important factor contributing to (i) 
body stability at high velocity (top predators) or (ii) manoeuvrability (low trophic levels). Using multiple 
linear regression, we verified that 46% of trophic level variability could be explained by morphometric 
variables, with trophic level increasing with body elongation and size. Interestingly, intermediate trophic 
categories (e.g., low predators) presented morphological divergence for a given trophic level. Our results, 
which can likely be expanded to other tropical and non-tropical systems, show that morphometric 
approaches can provide important insights into fish functional characteristics, especially in trophic 
ecology. 
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1. INTRODUCTION 

From a community perspective, trophic ecology has been related to a variety of features 

of fish biology and behaviour, such as resource use and overlapping food niches (Aguilar-

Medrano et al., 2019; Carrassón & Cartes, 2002; Pusey & Bradshaw, 1996), seasonality 

and changes in dietary habits (Dantas et al., 2015; Novakowski et al., 2008), habitat use 

(Gibran, 2007; Souza et al., 2011), functional relationships with fishing activity (Freire 

& Pauly, 2010; Pauly et al., 1998), and individual functional morphology (López-

Fernández et al., 2012). This last approach investigates the relationships between 

morphology and functionality, highlighting changes in the function and performance of 

organisms caused by morphological variation and how this influences the use of their 

environment (Kirchheim & Goulart, 2010; Zelditch et al., 2004).  

Fish functional morphology is related, among other, to swimming performance 

(Liao, 2002; Webb, 1984a), trophic relationships such as predation and common resource 

use (Burns et al., 2009; Farré et al., 2016), habitat (Foster et al., 2015; Yamada et al., 

2009), physical environmental factors (Langerhans, 2008; Sfakianakis et al., 2011), 

phylogeny, and evolution (Claverie & Wainwright, 2014; Ward & Brainerd, 2007). 

Specifically, works studying body shape as a function of trophic ecology have related 

individual body characteristics to dietary content (López-Fernández et al., 2012; Pessanha 

et al., 2015), phylogenetic variations of trophic morphology (Linde et al., 2004; Muschick 

et al., 2012), morphological relations between prey and predator (Akin & Winemiller, 

2008). A strong correlation between morphology and feeding behaviour has been 

observed in several fish species (Brandl & Bellwood, 2013, 2014). Body shape 

relationships to trophic level have been developed but only for two fish families, Sparidae 

(Antonucci et al., 2009; Costa & Cataudella, 2007; Ventura et al., 2017) and Cichlidae 

(López-Fernández et al., 2012), a community approach is therefore still lacking.  
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Geometric morphometrics (GM) is a relevant tool to achieve such a goal. This 

collection of methods allows studying morphological variations of individuals, preserving 

the geometrical proprieties contained in the data (Zelditch et al., 2004). Indeed, the effects 

of size, position and rotation are removed before analysis, which is an advantage over 

traditional methods (i.e., linear morphometry) (Aguirre & Prado, 2018; Zelditch et al., 

2004). Besides the conservation of geometric properties, GM offers a variety of visual 

resources facilitating the interpretation of the results (Klingenberg, 2013; Mitteroecker & 

Gunz, 2009; Zelditch et al., 2004). 

To extend the such analysis from one family to communities, we use the 

continental shelf of northeast Brazil, a typical tropical region that has a high demersal fish 

diversity (Eduardo et al., 2018), as a model ecosystem. We took advantage of a fish 

collection including 72 species from 34 families of demersal fish to propose a community 

perspective. Our main goal was to apply a GM approach to quantify the relationships 

between fish body shape and food chain position, hypothesizing that shape variables 

could partially explain fish trophic level. We show that factors such as locomotion, 

predation and habitat access serve as a basis to elucidate a functional relationship between 

body shape and trophic ecology. Using multiple linear regression, we also show that the 

geometric shape representation combined with the maximum fish size can be used as a 

proxy for estimating the trophic level. 

2. MATERIALS AND METHODS 

2.1 Study area and Sampling  

The study area encompassed the Northeast Brazilian coast, from Rio Grande do Norte to 

Alagoas states (4˗9oS). In this region the continental shelf is relatively narrow (~40 km 

wide). It is a western boundary current system under the influence of the North Brazil 
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Undercurrent (Dossa et al., 2021) characterized by a rather low stratification and deep 

thermocline (from ∼70 m to ∼170 m) with warm (typically 26-29°C) and saline (typically 

36.5-37.5) waters in the mixed-layer (Assunção et al., 2020). This oligotrophic region 

(Farias et al., 2022) is characterized by a relatively high biodiversity (Eduardo et al., 

2018; Giachini-Tosetto et al., 2022). 

 Fish were collected during the Acoustics along the Brazilian coast 2 (ABRACOS 

2; Bertrand, 2017) survey in May-April 2017, aboard the R/V Antea, along the continental 

shelf of Northeast Brazil (4º˗9ºS) (Figure 1). At each sampling station (19), fish were 

captured using a bottom trawl (body mesh: 40 mm, cod-end mesh: 25 mm and horizontal 

x vertical mouth dimensions: 28 x 10 m), at depths ranging from 10 to 60 m. Individuals 

were tagged and frozen for posterior analysis. For more details on the sampling process, 

see Eduardo et al. (2018).  

2.2 Images acquisition and obtaining the landmarks 

Each individual was identified to species level in the laboratory and photographed after 

unfreezing using a digital camera (CANON SX520, 16 Megapixels). Up to three adult 

individuals from each species were photographed in lateral view, with the head positioned 

to the left and the dorsal region upwards, following the methodology from Muir et al. 

(2012). To reduce errors in morphometric analyses, the camera lens was positioned 

parallel to the side surface of the fish using a tripod with a water level attached as a 

stabilizer, with the same illumination pattern and equipment adjustment. We also used 

some images obtained from FishBase (Froese & Pauly, 2022) for species with a sample 

size of less than three (Supporting Information Table S1), following the same criteria: 

adult individuals and visible structures (i.e., fins, caudal peduncle, eye, among others) 

easy to identify in the images. 
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Based on structures found in all specimens we defined 18 landmarks (12 true 

landmarks, 2 semi-landmarks, and 3 projected semi-landmarks) distributed along the 

body of the individuals (Figure 2). Semi-landmarks were used to overcome the lack of 

homology among species due to the large fish diversity of the present work. The projected 

semi-landmarks were allocated from known landmarks with the help of three lines drawn 

along the body of each individual (see details in Figure 2). The first line was traced from 

the end of the upper lip to the middle of the caudal peduncle. The second line 

corresponded to a perpendicular intersection of the first line, passing through the centre 

of the eye and upper (landmark 2) and lower body (landmark 13) extremities. Finally, the 

third line was drawn perpendicularly to the first line passing through the lower base of 

the lateral fin to the lower body extremity (landmark 12). For the allocation of landmarks 

3, 4, and 5, we used as a criterion the region/perimeter covered by fins, regardless of the 

quantity or type of dorsal fin (i.e. with spines or soft rays). Thus, landmarks were allocated 

at the beginning of the dorsal fin perimeter (landmark 3) and at the end (landmark 5, when 

the entire region covered by the dorsal fin effectively ends), permitting the inclusion of 

species with one or two dorsal fins, or that have spiny fins, soft rays, among others (Figure 

2). The TPS family programs (tpsUtil64 and tpsDig232) (Rohlf, 2015) were used to obtain 

the landmark and semi-landmark coordinates (x, y). The 18 landmarks were obtained by 

a single operator to minimize errors. To estimate this error, the digitalization was repeated 

by the same operator three months later on images of a 15% random subsample (30 

individuals from different species). The repeatability coefficient was calculated using the 

inter (individual variation) and intragroup (repeated measurements) components of 

variance calculated from the mean square values of the Analysis of Variance (ANOVA, 

Supporting Information Table S2) (Fruciano, 2016). 

2.3 Trophic level  
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The trophic level (TL) expresses the position of a species within the food chain. It is 

estimated from the diet composition by assessing the dietary content of individuals (Costa 

& Cautadella, 2007; Pauly & Palomares, 2000; Stergiou & Karpouzi, 2002). The TL of 

each species is calculated by adding 1 to the sum of the trophic level of the prey items 

based on their contribution to the fish diet, where TLj is the trophic level of prey item j, 

DCij is the proportion of item j in the diet of species i and G is the number of prey items 

consumed, as a result we have the following equation: 𝑇𝑇𝑇𝑇 = 1 +  ∑ 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 × 𝑇𝑇𝑇𝑇𝑗𝑗𝐺𝐺
𝑗𝑗=1  (Pauly 

& Palomares, 2000). The TL typically ranges from 2.0 to ~5.0 for fish. It is conventionally 

partitioned into five trophic categories: herbivore, with TL between 2.0-2.2 (consuming 

preferentially ≥80% of vegetable matter); omnivore, with TL between 2.2-2.8 

(consuming 20% to 80% of herbivory animals); and predator with TL >2.8 (consuming 

preferentially 80% of animals of the omnivore TL). The last category can be subdivided 

into low predator (TL between 2.8-3.8), mid predator (TL between 3.8-4.2) and top 

predator (TL >4.2) (Antonucci et al., 2009; Pauly & Palomares, 2000). TLs were obtained 

for each species from FishBase (Froese & Pauly, 2022), and these values were estimated 

from a number of food items using a randomized resampling routine. When no TL was 

available for a species, its expected TL was estimated from the mean of the values 

observed for species of the same genus collected in this study (see Supporting Information 

Table S1). Subsequently, we classified each species within one of the five established 

trophic categories (herbivore, omnivore, low predator, mid predator, or top predator). We 

also obtained the maximum total length (Lmax, cm) for each species from FishBase 

(Froese & Pauly, 2022), from the ABRACOS surveys (Bertrand, 2015, 2017), or other 

scientific papers (Supporting Information Table S1). 

2.4 Data analysis 
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All analyses were performed in R version 3.6.1 (R Development Core Team, 2019). To 

extract the shape information of the individuals, we applied the Generalized Procrustes 

Analysis (GPA) to the matrix of landmark and semi-landmarks coordinates (x, y) of all 

specimens, using the ‘gpagen’ function from the 'geomorph' package version 3.1.3 

(Adams et al., 2019). The GPA is a procedure that translates all individuals to the same 

origin using a unit centroid scale through a least-squares criterion, making all the 

coordinates of the corresponding points align as closely as possible (Rohlf & Slice, 1990, 

Zelditch et al., 2004). The matrix of Procrustes shape variables resulting from this 

analysis, which represents the shape of each specimen, is invariant to size, position and 

rotation effects (Zelditch et al., 2004).  

 A Principal Component Analysis (PCA) was applied on the matrix of Procrustes 

variables to identify and characterise the main variations in fish shapes. The number of 

principal components (PCs) retained was determined from a segmented regression 

between the components and the variation explained by each, using the ‘segmented’ 

function from the 'segmented' package version 0.5-3.0 (Muggeo, 2008). The regression 

breakpoint was then used as a reference to determine the number of retained components 

and reduce the subjectivity of the scree plot criterion (Jackson, 1993). The body 

elongation was calculated for each species individually using the ‘coo_elongation’ 

function from the ‘Momocs’ package version 1.4.0 (Bonhomme et al., 2014). This index 

calculates the elongation based on the following formula: �(µ20 −  µ02)2 + 4µ112 /(µ20 +

 µ02), where µ20, µ02, and µ11 are the central moments of the ellipse circumscribed to the 

analysed shape (i.e., the fish body) (Roisin, 2005). As a result, this index informs the fish 

elongation, ranging from 0 to 1: closer to 1 - more elongated shape; or closer to 0 - deeper 

shape. This index was calculated to verify if any significant PCs explained the body 

elongation of the analysed species. 
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  The matrix of average PC scores by species was then used as input data to a 

Canonical Variate Analysis (CVA) to verify the degree of separation between trophic 

categories, that is, how similar or different the trophic categories are, using the ‘CVA’ 

function from the 'Morpho' package version 2.7 (Schlager et al., 2019). Subsequently, a 

MANOVA (overall and pairwise between trophic categories) was applied under the 

scores of the CVA to check the difference in shape between trophic categories (Zelditch 

et al., 2004).  

 A Multiple Linear Regression (MLR) was finally used to quantitatively assess the 

extent to which the TL can be estimated from shape variables (mean scores of the 

principal components retained for each species) and fish size. The order in which the 

explanatory variables were included in the model was defined based on the highest fit 

(R²) found in simple linear regressions between TL and the shape variables and Lmax. The 

relationship between trophic level and Lmax for fish is already known from several studies 

showing that the trophic level is positively related to fish size, where larger fish consume 

larger prey (i.e., of higher trophic levels) (Akin & Winemiller, 2008; Froese et al., 2004; 

Keppeler et al., 2020; Romanuk et al., 2011; Stergiou & Karpouzi, 2002). Body size is 

indeed a key variable influencing trophic interactions and the structure of the aquatic food 

chain, known as a good predictor of fish trophic levels (Akin & Winemiller, 2008). 

Beyond the facts presented above, Lmax is a specie parameter available in several sources: 

scientific articles, FishBase, and the sampling data of the study. Thus, a model for TL that 

uses only shape variables (obtained with geometric morphometric techniques) and the 

maximum size of the species was proposed in this study. The final model was chosen 

according to the lowest value for the Akaike Information Criterion (AIC) (Bozdogan, 

1987). All analyses were performed with a significance level of 5%. 

2.5 Ethics statement 
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The authors confirm that all methods were approved and carried out in accordance with 

relevant guidelines and regulations of the Brazilian Ministry of Environment (SISBIO; 

authorization number: 47270–5). 

3. RESULTS 

 We analysed 204 adult fish individuals distributed over 14 orders, 34 families and 

72 species (see Supporting Information Table S1). The digitalization of the landmarks 

was responsible for only 0.5% of the data variation (the repeatability coefficient was equal 

to 99.5%), confirming the reliability of the landmark allocation (see Supporting 

Information Table S2).  

Only the first three principal components of the PCA, explaining 78.6% of the fish 

shape variation, were retained for posterior analyses (Figure 3a, b). PC1 (46.8% of the 

total variance) was related to the body elongation (Pearson correlation coefficient 

between PC1 and body elongation: 0.89) of individuals and the shape of the bases of the 

dorsal and anal fins. Fish with deeper bodies and longer dorsal and anal fin bases in the 

anterior-posterior dimension presented extreme negative values, while species with the 

highest body elongation rate and narrower fins presented positive values (Figure 3c). PC2 

(20.4% of the total variance) was related to the anterior region height of the body (i.e., 

head region) and the position of the dorsal fin. Individuals with the narrowest height (i.e., 

a fusiform body) and widest dorsal fin, positioned more anteriorly on the body (positive 

values in PC2) were opposed to the tallest individuals with the dorsal fin positioned in 

the posterior region of the body (more aligned with the anal fin) (Figure 3c). Finally, PC3 

(11.4% of the total variance) was related, more weakly, to the alignment of the dorsal and 

anal fins. Fish with fins aligned (negative values in PC2) were opposed to those presenting 

less aligned dorsal and anal fins (Figure 3c). Species representative of the extremes of 
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each PC were: Acanthurus coeruleus (-PC1), Fistularia tabacaria and F. petimba (+PC1), 

Ostraciidae and Monacanthidae families (+PC2), Scomberomorus brasiliensis (-PC2), 

Echeneis naucrates (-PC3), and Bagre marinus (+PC3) (Figure 3c). 

 The morphospace occupied by the species on the biplot of average scores of the 

three PCs facilitated the interpretation of the data at the species level (Figure 4) and by 

trophic category (Figure 5a,b). Lower trophic categories (herbivore and omnivore) were 

restricted to negative values of PC1, and the intermediary category (e.g., low predator) 

had greater amplitude for all PCs. In contrast, top predators occupied only positive values 

of PC1 (Figure 5a,b). According to the trophic category, the deformation of fish shape 

from the general average clearly reveals that body elongation increases with the trophic 

category; lower trophic categories present a deeper body shape (Figure 5c). The 

MANOVA revealed a significant difference between fish shapes by trophic category 

(Wilk's Lambda=0.014; df=4, 16; F=36.9; p<0.001). The pairwise MANOVA indicated 

differences between all trophic categories, except between herbivores and omnivorous 

(Table 1).  

 The results of simple and multiple linear regressions are presented in Table 2. 

Individually, PC1 was the variable that most explained fish TL variability (R2 = 0.34). 

The positive angular coefficient of this regression indicates that the more elongated the 

body, and the narrower the base of dorsal and anal fins, the higher the trophic position. 

Other variables, such as maximum total length (Lmax) and PC2, influenced to a lesser 

extent, emphasising the Lmax, which individually explained 25% of data variation and 

presented a positive relationship with TL. The PC3 did not show any relationship with 

TL, so it was not included in the final model. The model with the lowest AIC value was 

the full model (without PC3), which explained approximately 46% of the fish TL (Table 
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2). This indicates that morphometric characteristics can be considered variable indicators 

of the fish trophic level. 

4. DISCUSSION 

Body elongation rate was the most significant source of morphological variation among 

fish species. This result confirms previous studies (Astudillo-Clavijo et al., 2015; Caillon 

et al., 2018; Claverie & Wainwright, 2014; López-Fernández et al., 2012) and generalises 

this perspective to a community-scale encompassing a broad range of species (14 orders, 

34 families and 72 species). Evolutionarily, a more elongated body in fish is related to 

the segmentation and number of vertebrae of the vertebral column and to the increased 

length of the head (Ward & Mehta, 2010), a characteristic previously depicted in 

Actinopterygii in general (Ward & Brainerd, 2007), Gobiidae family (genus Luciogobius) 

(Yamada et al., 2009), and Elopomorpha species (Mehta et al., 2010).  

 Webb (1984a) proposed three main fish body morphotypes that influence 

swimming performance: the first characterized by a deep body (manoeuvring specialist), 

and the last two for fish with a more elongated body shape; one for species with a narrow 

caudal peduncle (cruising specialist) and another with a deep caudal peduncle 

(acceleration specialist) (Webb, 1984a). Swimming is also intrinsically related to the 

more pointed head shape, allowing for better hydrodynamics of the fish (Liao, 2002). The 

body shape in conjunction with the base shape of the fins, another key characteristic 

depicted in our results, acts directly on fish locomotion (Webb, 1984a,b). The fins 

evaluated in the present study were the dorsal and anal fins, which, together with the 

caudal fin, are called 'median fins' (Lauder & Drucker, 2004). The dorsal fin acts mainly 

in the execution of manoeuvres and helps the caudal fin in propulsion, while the anal fin 
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helps the dorsal fin to maintain the fish body stability in the water (Lauder & Drucker, 

2004), all these characteristics act together during locomotion. 

 Body maintenance within the water column is a primary factor in the foraging 

behaviour of many fish species. For instance, the deep body shape (which reduces vertical 

turning during manoeuvres, Webb, 1984a) and longer dorsal and anal fin bases of 

Acanthuridae and Chaetodontidae families permit the execution of precise movements in 

resource exploration (Brandl & Bellwood, 2013, 2014), mainly in structured 

environments such as coral reefs where these species usually inhabit (Dias et al., 2008). 

Our results (i.e. PC1) opposed fish with a deep body and longer fin bases to those 

presenting more elongated body shapes. The first group corresponds to low TL species, 

typically herbivores, omnivorous, and some low predators (Figure 5a,b). This 

morphology allows precise movements enabling access to structured environments 

according to their ecological niche. In turn, the TL increases with the body-shape 

elongation. Similar results were found in Sparidae (Antonucci et al., 2009; Costa & 

Cataudella, 2007) and Cichlidae (López-Fernández et al., 2012). An elongated fish shape 

increases the success of prey capture for active predators, especially during the search for 

dispersed prey (Costa & Cataudella, 2007; Webb, 1984b; Winemiller, 1991), by 

permitting quick acceleration and high speed during the hunt (Blake, 2004). Besides, 

several other factors act on the success of prey capture, including mouth morphology, 

teeth, jaw strength, and capture tactics (Wainwright & Bellwood, 2002). Sphyraena 

barracuda (TL=4.50 and positive PC1 axis) is a large predator that has a strong bite and 

uses the rapid acceleration of its body to capture its prey (Grubich et al., 2008). Similar 

behaviour has been observed in hunting and capture tactics in trumpetfish (order 

Syngnathiformes, TL=4.43-4.50) (Auster, 2008; Tegge et al., 2020).  
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 Our analysis discriminated high TL species, with narrower fin bases (positive PC1 

axis), from lower TL ones with longer fin bases. In addition, the position of the dorsal 

and anal fins plays an important role in balancing the fish’s body by acting together 

(Breda et al., 2005; Lauder & Drucker, 2004). The asymmetry of the dorsal fin with anal 

fins (negative PC2 axis) serves as a stabilising rudder during propulsion and high speeds, 

preventing the fish from rotating around its longitudinal axis (Breda et al., 2005). Species 

that presented this characteristic, such as the spanish mackerel (Scomberomorus 

brasiliensis) or the great barracuda (Sphyraena barracuda) are top predatory and highly 

migratory species that can travel long distances (Batista & Fabré, 2001; O’Toole et al., 

2011). This can also be observed in large tuna migrators (Itoh et al., 2003).  

 On the other hand, symmetrical fins allow a synchronised movement of dorsal and 

anal fins, together with the caudal fin, providing stability. Such motion is often used in 

body braking, allowing precise manoeuvres (Breda et al., 2005). Reef species such as 

Ostraciidae (box-fish) and Monacanthidae (Eduardo et al., 2020) present such 

characteristics (Figures 3c and 4). They inhabit a structured environment, where 

locomotion is not characterised by high speeds but by manoeuvres. Box-fish are indeed 

known to use strategic movements of their fins and body to enhance swimming ability in 

complex environments (Van Wassenbergh et al., 2015). 

 As much as 46% of trophic level variability could be explained by morphometric 

variables. These results are the first ones using multiple regression, considering a set of 

morphometric and size variables, to understand trophic level in a quantitative approach. 

We also found a significant positive relationship between body size and fish TL; the 

greater Lmax, the greater their trophic position (Table 2). This pattern was classically 

observed (Akin & Winemiller, 2008; Froese et al., 2004; Keppeler et al., 2020; Romanuk 

et al., 2011; Stergiou & Karpouzi, 2002), with Lmax being a good predictor of fish trophic 
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levels. Many studies also have associated the maximum fish size with the extension of 

the habitats they live in (Nash et al., 2015; Welsh & Bellwood, 2014), for example, in 

reef fish, larger fish live in wider habitats (Nash et al., 2015). The trophic position of an 

individual or its morphological aspects is the result of many factors’ interaction and 

finding the final equation of complex natural processes involves the analysis and 

knowledge of the individual relationships between those factors. 

 Other factors are also related to the fish body shape. A classic example is the water 

flow where fish inhabit. The need to break the physical barrier imposed by the water 

speed (high flow) selects an elongated body shape (Foster et al., 2015; Langerhans, 2008; 

Liao, 2002). On the opposite, species with a deep body (better manoeuvres) flourish in a 

structured environment such as coral reefs and rocky bottoms, presenting natural barriers 

that decrease water dynamics and velocity (Bejarano et al., 2017; Johansen, 2014). 

 Low predators were characterised by a high morphological amplitude, occupying 

several positions within the morphospace (Figure 5a,b). Such wide large morphological 

space for a given trophic level may be related to a set of niches and external factors, which 

also influence different degrees of the fish shape besides morphology and trophic ecology 

(Portner et al., 2010). Indeed, a variety of other factors are known to influence fish body 

shape, such as predator-prey relationships (Burns et al., 2009; Price et al., 2015), 

physicochemical conditions (Farré et al., 2016; Georgakopoulou et al., 2007; Sfakianakis 

et al., 2011) or genetic (Marcil et al., 2006). Phenotypic variation in body shape can act 

on how individuals will use the resources around them and may also limit their feeding 

range due to specialisation (Collar et al., 2009; López-Fernández et al., 2012). 

Conversely, morphological specialisation (i.e., a highly specialised shape in one function) 

does not always follow a parallel path with feeding specialisation, as verified in reef fish 

(Brandl et al., 2015). Therefore, it is evident that the low predators from the same trophic 
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position (TL: 2.8-3.8) may present a wide range of morphological features; that is, even 

though they are feeding on prey from the same TL they present very diversified body 

shapes. Despite the high diversity of the species analysed in the present study, the trophic 

categories do not have equally balanced diversity as a matter of sampling (e.g., herbivores 

with only four species belonging to two genera). This makes it difficult to account for 

phylogenetic effects within trophic categories. Therefore, we recommend that future 

studies take this into consideration by encompassing a greater diversity of species within 

different trophic levels. 

5. CONCLUSIONS 

Here we present the first quantitative relationship between fish morphology and trophic 

ecology at a community level. Our results which may likely be expanded to other tropical 

and non-tropical systems show that fish with elongated body shapes had a high TL, while 

those with deep body shapes had a low TL. The shape of the base of the dorsal and anal 

fins also contributed to explaining the TL. Top predators were characterised by narrow 

fin bases while herbivores and omnivorous presented longer fins related. Between these 

extremes, the intermediate trophic category (low predator) shows morphological 

divergence as a function of TL.  

From a broader perspective, the geometric morphometric and regression analyses 

allowed us to infer more precisely the contribution of the morphological aspects of the 

fish body in their trophic ecology. Body elongation and fin characteristics were the main 

explanatory variables for fish TL. Combined with maximum fish size (Lmax), they 

explained 46% of the TL variability and can be considered an excellent proxy to represent 

the trophic pattern of fish species. Fish morphology is, therefore, a key factor in the 

ecological study of communities, especially in trophic ecology.  
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FIGURE CAPTIONS 

Figure 1. Study area off Northeast Brazil Shelf. 

Figure 2. Landmarks, semi-landmarks, and projected semi-landmarks used in this study. 

Image adapted from Froese and Pauly (2021). (1) Tip of the upper lip of mouth; (2) 

Uppermost point of the body touched by the perpendicular line passing through the center 

of the eye; (3) Anterior beginning of dorsal perimeter covered by fins; (4) Middle point 

of dorsal surface covered by fins; (5) Posterior end of dorsal perimeter covered by fins; 

(6) Upper point of greatest concavity of the caudal peduncle; (7) Lateral midpoint of the 

caudal peduncle before the caudal fin begins; (8) Lower point of greatest concavity of the 

caudal peduncle; (9) Posterior point of anal fin; (10) Midpoint of anal fin; (11) Anterior 

point of anal fin; (12) Lower extremity of the body touched by the perpendicular line 

passing through the lower base of the lateral fin; (13) Lowermost point of the body 

touched by the perpendicular line passing through the centre of the eye; (14) Upper end 

of eye diameter; (15) Middle point of eye diameter; (16) Lower end of eye diameter; (17) 

Upper base of lateral fin; (18) Lower base of the lateral fin. Red lines: Line 1: 1-7, Line 

2: 2-13 and perpendicular to line 1, Line 3: 18-12 and perpendicular to line 1. 

Figure 3. The variance explained by the first ten principal components (PC) (a), and scree 

plot of the segmented regression indicating the first three significant PCs: PC1 (46.8%), 

PC2 (20.4%) and PC3 (11.4%) (b). Fish body shape variation as a function of the degree 

of deformation concerning the general average shape, at the extreme values (negative and 

positive) in the three first principal components (PCs) (c). The codes and respective 

species names are described in Supporting Information Table S1. Red dotted lines 

represent the base variation in dorsal and anal fins. Black arrows on extreme shapes 
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indicate deformation direction compared to the average shape. Source of fish drawings: 

Carpenter (2002a,b). 

Figure 4. Average PCs for the 72 fish species analysed in this study, plotted for PC1 vs 

PC2 (a) and PC1 vs PC3 (b). The codes and respective species names can be seen in 

Supporting Information Table S1. Source of fish drawings: Carpenter (2002a,b). 

Figure 5. PCs scores for the 72 fish species analysed, discriminated by trophic category, 

plotted for PC1 vs PC2 (a) and PC1 vs PC3 (b). Evolution of the average fish shape 

according to the trophic level (c) - black arrows in each trophic category indicate the 

direction of deformation compared to the overall average shape.  
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Table 1. MANOVA results between trophic categories of the analysed fish. Values 
represents F statistics and p-value (in parenthesis) for pairwise MANOVA between 
trophic categories. 

Trophic category Herbivore Omnivore Low predator Mid predator 

Omnivore 2.3 (p=0.189*)    

Low predator 28.9 (p<0.001) 17.5 (p<0.001)   

Mid predator 10.7 (p<0.001) 23.1 (p<0.001) 29.9 (p<0.001)  

Top predator 138.2 (p<0.001) 26.9 (p<0.001) 71.9 (p<0.001) 22.7 (p<0.001) 

* p>0.05, no statistically different. 
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Table 2. Coefficients of the evaluated models (simple and multiple) of the relationships 
between trophic level (a numerical representation of the trophic category), the shape 
variables (PC1, PC2, and PC3) and maximum total length (Lmax) of the analysed tropical 
marine fish. AIC = Akaike Information Criterion. R² = Multiple determination 
coefficients. 

Model Intercept PC1 Lmax PC2 PC3 F test AIC R² 

 Simple models 

NULL 3.5103 — — — —  121.15  

1 3.5047 2.3299 — — — 35.4 93.72 0.340 

2 3.1438 — 0.0065 — — 23.8 102.11 0.253 

3 3.5132 — — 1.3545 — 4.6 119.47 0.050 

4 3.5103 — — — 0.0264 0.0007* 123.15 1.0×10-5 

 Multiple models 

5 3.2951 1.7613 0.0037 — — 23.0 88.43 0.399 

6 (final model) 3.2971 1.7860 0.0038 1.4640 — 19.1 83.11 0.460 
* p>0.05, not statistically significant. ‘—’ represents that the variable was not included in 
the model. 
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