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Abstract

Massive Sargassum stranding events affect erratically numerous countries from the Gulf of Guinea to the

Gulf of Mexico. Forecasting transport and stranding of Sargassum aggregates require progress in detection

and drift modelling. Here we evaluate the role of currents and wind, i.e. windage, on Sargassum drift.

Sargassum drift is computed from automatic tracking using MODIS 1 km Sargassum detection dataset, and

compared to reference surface current and wind estimates from collocated drifters and altimetric products.

First, we confirm the strong total wind effect of ≈ 3% (≈ 2% of pure windage), but also show the existence

of a deflection angle of ≈ 10° between Sargassum drift and wind directions. Second, our results suggest

reducing the role of currents on drift to 80% of its velocity, likely because of Sargassum resistance to flow.

These results should significantly improve our understanding of the drivers of Sargassum dynamics and the

forecast of stranding events.

Keywords: Sargassum algae; Computer Vision; Regression; Tracking; Remote Sensing; Drift; Collocation;

Drifter; Tropical North Atlantic; Time series.

1. Introduction

In recent years, the extent of the Great Atlantic Sargassum Belt (GASB) has stabilized to a high level

of Sargassum biomass associated with harmful stranding events. Countries affected by stranding along their

coast are struggling to face the economical, ecological and sanitary damages (Van Tussenbroek et al., 2017;

Resiere et al., 2018; Rodríguez-Martínez et al., 2019; Chávez et al., 2020; Merle et al., 2021; de Lanay et al.,5

2022). As a consequence, strong efforts are put in monitoring Sargassum distribution (Gower & King, 2011;

Wang & Hu, 2016; Cuevas et al., 2018; Wang et al., 2019; Ody et al., 2019; Descloitres et al., 2021) and

modelling Sargassum drift and growth (Putman et al., 2018; Brooks et al., 2018; Beron-Vera & Miron, 2020;

Jouanno et al., 2021b).

As for several other surface drifting objects, most models of Sargassum drift included a windage component10

(Kwon et al., 2019; Putman et al., 2020; Berline et al., 2020; Johns et al., 2020; Jouanno et al., 2021a) to

represent the direct effect of wind and waves on drift velocity. Model results were shown to be sensitive to

windage (Kwon et al., 2019; Putman et al., 2020; Berline et al., 2020; Miron et al., 2020) and it is therefore
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key to estimate this factor accurately. Up to now, windage was tested in simulations and calibrated with

either in-situ or remote sensing data (Kwon et al., 2019; Putman et al., 2020; Berline et al., 2020; Jouanno15

et al., 2021a). However, except for Putman et al. (2020) who used a limited number of Sargassum rafts

tracked trajectories, there is currently no direct measure of windage.

Satellite imagery may allow tracking Sargassum aggregates displacement on images in order to extract

velocity and estimate windage. However, Sargassum detection from space is hampered by the high cloud

coverage and aggregates shapes change rapidly, therefore a short satellite revisit time is necessary in order20

to track aggregates. High resolution sensors (e.g., MSI, Landsat8) allow describing the fine scale structure

of aggregates (Ody et al., 2019; Descloitres et al., 2021) but their revisit time (5-8 days) precludes aggregate

tracking from one image to the next. Moderate-Resolution Imaging Spectroradiometer (MODIS), with two

daily observations separated by approximately 3 hours, is best suited for tracking Sargassum aggregates.

Here, we used successive MODIS Sargassum detection images provided by Podlejski et al. (2022) over25

the 2015-2021 period and applied computer vision tracking algorithms to compute Sargassum velocity. We

then used complex linear regressions to relate this velocity to estimates of currents and wind derived from

altimetry and velocity of collocated drifters (Lumpkin & Pazos, 2007) and to assess windage. Finally, we

propose a new model of Sargassum drift.

2. Materials and Methods30

2.1. Overview

An overview of the whole approach made to extract Sargassum drift is shown in Fig. 1. First, Sar-

gassum detections mapped at 1 km resolution from MODIS Aqua and Terra were collected from https:

//doi.org/10.12770/8fe1cdcb-f4ea-4c81-8543-50f0b39b4eca. The production process is described in

Descloitres et al. (2021) for extracting the Alternative Floating Algae Index (AFAI) and deducing Sargassum35

coverage. The filtering method developed in Podlejski et al. (2022) was used to remove the false detections

(false positive) caused by cloud, sunglint or coastal contamination. We used here filtered daily images at

1 km resolution. Among these images, we selected daily scenes with both Aqua and Terra clear Sargassum

observations. For the comparison between Sargassum and drifters velocities, the Global Drifter Program

(GDP) (Lumpkin & Pazos, 2007) data were collected and collocation cases (simultaneous presence in a range40

of 20 km) between Sargassum and drifters were extracted (Appendix A). The dataset of collocation was

split between drogued drifters and undrogued drifters.

MODIS images were analysed with computer vision algorithms to match Sargassum aggregates from suc-

cessive images and thereby derive their velocity (section 2.2). This matching process was validated manually

to ensure reliability of measurements. Then, geostrophic currents and wind were interpolated at the position45

and time of each measurement (section 2.3). Finally, a statistical analysis was performed in order to infer

the links between the velocities of Sargassum aggregates, drifters, surface current and wind, using linear

regressions in the complex space (section 2.4).
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Figure 1: Workflow of the Sargassum aggregates velocity extraction process, with data sources indicated in blue, results in green

and processes in white. W, Ud, US , UG are wind, drifter, Sargassum and geostrophic current velocities, respectively.

2.2. Images matching to derive Sargassum velocity

Based on the two daily MODIS images of selected Sargassum aggregates, a matching process was per-50

formed in order to retrieve the two successive positions of the aggregate and thereby estimate its velocity.

Two different algorithms were applied on a 100 * 100 km AFAI images subset around the collocated drifter

position (50 km range), namely Scale Invariant Feature Transform (SIFT) (Lowe, 2004) and optical flow

(OF) as implemented in Farnebäck (2003). Lucas-Kanade (Lucas et al., 1981) and Gradient Location and

Orientation Histogram (GLOH) (Mikolajczyk & Schmid, 2005) algorithms were tested on the images, but55

showed lower performances. All image processing was performed with Python 3 and the OpenCV library.

SIFT was used to extract key points for describing aggregates shape based on Terra and Aqua AFAI

images. Using these key points, the best subset of congruent linear 2D translations (no scaling, no rotation)
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was extracted, and averaged to compute the corresponding Sargassum velocity (see Appendix B). Then,

OF algorithm was applied to confirm SIFT results. Inconsistent cases between the drift directions estimated60

from SIFT and OF were rejected, i.e., when the absolute angle between the estimated directions was larger

than 25°. We retained velocity from SIFT as it was found more robust than OF.

Finally, a manual validation was performed on all remaining cases, based on an overall visual inspection

of matching cases with a focus on all matching pairs of key points to ensure they were valid.

2.3. Current and wind velocities65

As a direct estimation of the surface current, we used drifter data. The drifter data were downloaded from

the GDP website (https://www.aoml.noaa.gov/phod/gdp/, Lumpkin & Centurioni (2019)). The Surface

Velocity Program (SVP) drifters are made of a low-windage surface satellite transmitter (35 cm spherical

hull) tethered by a thin cable to a semi-rigid sea anchor (the so-called “Holey-Sock” drogue) centred at 15 m

depth. These properties allow drifters to follow reliably the 15 m depth currents. When a drifter loses its70

drogue, it tends to follow the surface current, but with a non-negligible effect of wind.

As an indirect estimation of the ocean surface current, we used the altimetry-derived geostrophic velocity

at 1/4 °daily resolution available from www.aviso.altimetry.fr. Altimetry-derived current was considered

as the local surface current not affected by wind.

As estimation of the surface wind velocity, we used the 10-metre wind from ECMWF ERA5 reanalysis at75

the 1/4 °hourly resolution (Hersbach & Dee, 2016) (from https://cds.climate.copernicus.eu/)

After extraction, both surface current and wind fields were interpolated at the position and time of each

collocated Sargassum aggregate/drifter pair.

2.4. Statistical analyses

The overall idea here is to analyse to what extent the surface current, either from geostrophic estimates or80

from collocated drifters, and the wind can explain the Sargassum aggregate velocity measured from MODIS

images.

We used the complex notation for vectors (Kundu, 1976; Poulain et al., 2009; Sutherland et al., 2020):

U = reiθ or u+ iv (1)

with U a velocity vector expressed as a complex number, r its norm, θ its argument (between −π and π,

anticlockwise) and u, v the eastward and northward components of the velocity.85

A general model of Sargassum velocity US can be written as follows (Mulet et al., 2021):

US = UG + UA + ε = UG + UT + UI + UE + USt + UW + ε (2)

where UG, UA, UT , UI , UE , USt, UW and ε are the Sargassum, the geostrophic current, the ageostrophic

current, the tidal current, the inertial current, the Ekman current, the Stokes drift, the windage and the error
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term, respectively. The tidal current is considered negligible in the offshore cases studied. At the latitudes

of interest (0 to 25°N) the Coriolis force is weak. Inspection of drifters trajectories near the collocations90

revealed only a few (<10) cases of inertial oscillations. As a consequence, we consider the inertial current

as negligible. Following Van Sebille et al. (2020), we assume that the Stokes drift and the windage can be

combined. The Ekman current is also due to the wind forcing, these three terms can therefore be combined

in a unique term depending on the wind:

US = αS
GUG + βS

GW + ε (3)

where W is the wind and αS
G and βS

G are complex parameters. The parameter αS
G represents the role95

of geostrophic current on Sargassum aggregate drift, and the parameter βS
G represents the effect of Ekman

current, Stokes drift and windage. Similarly, drifter velocity can be expressed as follows:

UD = αD
GUG + βD

GW + ε (4)

with UD the drifter velocity. Here the βD
G parameter depends largely on whether the drifter has lost its

drogue or not. We thus estimated this parameter separately for drogued and undrogued drifters.

We can also relate directly Sargassum and drifters velocities using the following models:100

US = αS
D,dUD,d + βS

D,dW + ε (5)

US = αS
D,uUD,u + βS

D,uW + ε (6)

where UD,d, UD,u are the velocities for drogued and undrogued drifters, respectively. Here the βS
D

parameter does not include the effect of UE which is included in the αS
D parameter.

For all models, we used linear regressions in the complex space to find the set of complex parameters

minimising the error ε (Appendix C).

Also, the models were tested using Ekman-corrected velocities to distinguish between Ekman component105

and windage (Appendix E). Real parameters (no angle) used in the literature were tested for comparison.

Each regression was evaluated with the coefficient of determination R2 (square of the real part of the complex

correlation coefficient). Significance tests were applied for both models (Fisher test) and parameters (Student

test). The bootstrap method was set up to estimate robust parameters, their confidence interval and the

associated coefficient of determination (see Appendix D).110

In order to further refine the regression models, outliers were isolated. Based on leave one out, the distance

(error) between observations and model predictions was computed. By looking at the largest computed

distance values, 4 cases were excluded where the Sargassum velocity direction was opposite to both wind and

geostrophic currents.
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3. Results115

Over the period 2015-2021, we found 2754 cases of a Sargassum aggregate detected in both MODIS Terra

and Aqua images and with a drifter of the Global Drifter Program passing by (see Tab. 1). Among them,

for 240 cases we managed to match the Sargassum aggregate in Terra and Aqua images and could therefore

estimate the aggregate velocity. An illustrative example of the matching process using SIFT is shown in Fig.

2. Our manual validation filtered out 48 more cases, and we ended up with 192 cases, 98 with a collocated120

drogued drifter and 94 with an undrogued drifter. This strict selection guarantees the estimates’ accuracy of

the drift velocity and a sufficient dataset for further statistical analysis.

Year 2015 2016 2017 2018 2019 2020 2021 All

Daily scenes 341 98 204 713 461 515 422 2754

Matching collocations 23 2 19 65 51 47 33 240

Valid drogued collocations 13 1 10 24 17 27 11 98

Valid undrogued collocations 3 1 9 26 26 14 16 94

Table 1: Number of collocation cases per year at different steps of the method. First after selection of the daily scenes with

detections on Terra and Aqua, second after performing matching algorithms and finally after manual validation.

Figure 2: Example of image matching of January 6th 2021 for a collocated case with SIFT key points extracted from Terra and

Aqua 100 x 100 pixels images. The five consistent matches are shown as linked pairs of points. The colorbar refers to AFAI

deviation from background (Podlejski et al., 2022), the white area is the mask. The collocated drifter is located at the centre of

each image (not shown).
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The distribution of these cases with respect to time and space is shown in Fig. 3. Fig. 4 shows the

distribution of the intensity and direction of velocities for the detected Sargassum aggregates, collocated

drifters, and interpolated geostrophic current and wind at the time and position of the collocated drifters.125

Figure 3: Collocated Sargassum/drifter pairs (n = 192) distribution in space and time, split into drogued (orange) and undrogued

(blue) drifters.
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Figure 4: Wind-rose of velocities for the detected Sargassum aggregates, collocated drifters (drogued and undrogued), and

interpolated geostrophic current and wind at the time and location of the collocated drifters. Colours indicate the speed, and

bar lengths the frequency. Note that all velocity directions are expressed in terms of vector azimuth, i.e. the direction toward

which the vectors lead.

Collocated Sargassum/drifter pairs were homogeneously distributed in the area of Sargassum presence

along the time series 2015-2021 (Fig. 3). Geostrophic currents had a rather uniform orientation distribution,

whereas Sargassum, drifter and wind velocity orientations were primarily westward (Fig. 4). The 4 variables

are correlated. The correlation coefficients (norm of the complex coefficients) for US against UD and UG

are 0.80 and 0.47, respectively. While W against UD correlation was 0.37 and W against UG correlation130

was only 0.18.

In a first set of regression models, we explored the relation of Sargassum velocity US and drifter velocity

UD against geostrophic and wind velocities UG and W (Tab. 2). We obtained statistically significant

correlations in all tested models, but with weak coefficients of determination R²(maximum of 0.47). All

parameters bootstrapped means were consistent with the direct parameter estimation (not shown) and their135
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standard deviation was approximately 10% of their value. Geostrophic current UG was projected on US and

UD with small angle values (-14°to 7°). The norm of the geostrophic current coefficient was always smaller

than 1 (0.59 to 0.85). Wind velocity was projected with an angle of 15-65 °to the right of the wind direction,

the angle estimation was weakly variable (±5°). The norm of the wind coefficient corresponded to 3-4% of its

velocity for Sargassum and undrogued drifters, whereas drogued drifters were impacted by 1% of the wind140

velocity only.

Model α β R2 Nobs

0.593± 0.065 exp(−14.0± 8.8°i) 0 -0.02 192

US = αS
GUG + βS

GW 0 0.038± 0.003 exp(−17.4± 3.5°i) 0.26 192

0.564± 0.055 exp(1.6± 5.4°i) 0.038± 0.002 exp(−21.2± 3.0°i) 0.46 192

0.778± 0.083 exp(−11.5± 8.5°i) 0 0.10 94

UD,u = αD,u
G UG + βD,u

G W 0 0.033± 0.004 exp(−14.9± 5.9°i) 0.18 94

0.659± 0.077 exp(0.6± 7.1°i) 0.031± 0.003 exp(−21.4± 5.8°i) 0.43 94

0.8± 0.073 exp(6.3± 5.2°i) 0 0.38 98

UD,d = αD,d
G UG + βD,d

G W 0 0.01± 0.003 exp(−64.2± 35.1°i) 0.02 98

0.852± 0.068 exp(6.7± 4.4°i) 0.013± 0.003 exp(−61.4± 13.7°i) 0.47 98

Table 2: Regression models between measured velocities and environmental variables. US , UD,d, UD,u, UG and W are

velocities for the detected Sargassum aggregates, collocated drogued/undrogued drifters, and interpolated geostrophic current

and wind at the time and location of the Sargassum aggregates. Variables and estimated parameters are complex numbers, here

displayed in exponential notation with angles in degrees anticlockwise. Depending on the regression model, some parameters

are forced to real values (zero). The norm and the argument are associated with a standard deviation estimated over 5000

bootstrapped datasets. All regressions were statistically significant (p < 0.01), negative R² is due to model constraint (no

intercept).

In a second set of regression models, we explored the relation of US against UD and W. (Tab. 3). We

found much higher R² values (0.55-0.78) than for the first set of regressions. R² values were smaller for

undrogued than for drogued drifters, and associated parameters were also generally more variable. The wind

coefficient given by the regressions was 2-3%, deviated to the right of the wind.145

Model α β R2 Nobs

0.957± 0.042 exp(0.6± 2.7°i) 0 0.62 94

US = αS
D,uUD,u + βS

D,uW 0.681± 0.048 exp(4.3± 4.1°i) 0.021± 0.003 exp(−23.1± 7.6°i) 0.66 94

1 0.01 0.57 94

0.889± 0.048 exp(4.9± 3.4°i) 0 0.55 98

US = αS
D,dUD,d + βS

D,dW 0.787± 0.038 exp(−2.3± 2.9°i) 0.029± 0.002 exp(−8.6± 4.2°i) 0.78 98

1 0.03 0.74 98

Table 3: Regression models for Sargassum velocity using drifters velocity as explaining variable. Same as Tab. 2

9



4. Discussion

4.1. General drift patterns

We found drifter and Sargassum velocities directed mainly westward. Indeed, most Sargassum detections

are located in the tropical Atlantic (0-20°N, Fig. 3). In this region, trade winds are westward, as are the

main surface currents (North and South Equatorial Currents and their branches). The only eastward current150

is the North Equatorial Counter Current at 7°N (Johns et al., 2020). The drifter and Sargassum velocities

range (< 0.9m s−1) is typical for offshore surface currents, with Sargassum median velocity slightly higher

than drifters (0.31 vs 0.24m s−1).

4.2. Extraction of Sargassum velocities: method limitations

In the absence of in situ validation data, we assessed the velocities US of Sargassum aggregates measured155

in MODIS successive images by comparing them with independent velocities UD of collocated surface drifters

and local geostrophic currents UG. The good correlation (0.8, p-value < 0.01) obtained for US against

UD gives us confidence in the reliability of our method for extracting Sargassum velocities. The average

Sargassum drift distance between successive images was 3.4 km. As the image’s resolution was mapped

at 1 km, the measurements have inherent uncertainty (Masuoka et al., 1998), but the redundancy between160

matching pairs of pixels used in the images (from 4 up to 20) allowed us to stand out from noise and to

ensure their robustness. Other methods to derive current velocity from satellite images (Maximum Cross

Correlation, e.g. Barton (2002), Yang et al. (2015)) used all pixels in the image with similar temporal offset

(1-4 hours) and resolution (1 km) as ours. In comparison, our sparse approach (few key points instead of all

pixels) with SIFT allows focusing only on relevant descriptors of the Sargassum shape and to easily select165

the velocity summarising the overall transport.

The distance used to consider Sargassum and drifters as collocated was set to 20 km as a compromise to

obtain a significant number of collocation cases and to support the assumption that environmental variables

(wind and currents) are the same for both objects. For the image matching process, we used a 50 km

range around the drifter in order to benefit from more key points and context. The two distance values are170

smaller than the Rossby radius of deformation, i.e., the scale of current autocovariance, estimated > 60 km

at latitudes < 20°(Chelton et al., 1998).

Given these methodological choices and the 6 year-long time series of daily data, only a limited number

(200) of Sargassum velocities were retrieved. This is mostly due to high cloud coverage (> 60% on average

for daily images) in the tropical Atlantic area that prevented matching aggregates in successive images.175

Also, significant distortion of aggregates between images and their elongated shapes (e.g., linear aggregates

provide few key points) prevented matching. Several solutions could be pursued to expand this dataset.

Manual matching could be pursued to complement velocity extraction, but with presumably small amount

of new scenes. The matching process could be extended to others collocated tracked objects, such as Fish

Aggregating Devices (Imzilen et al., 2019). We could also try to match aggregates more distant in time.180
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However, the match would hardly be automatic, because of the distortion increasing over time, but could be

performed manually for specific regions or time of interest. Using other satellite products, such as Visible

Infrared Imaging Radiometer Suite (VIIRS) or Geostationary Operational Environmental Satellite (GOES)

could also be a way to expand our dataset of Sargassum velocities. Indeed, preliminary results suggest that

VIIRS gives results analogous to MODIS (Wang & Hu, 2020) and that GOES seems promising due to its185

high temporal resolution (Minghelli et al., 2021).

4.3. Physical and statistical approximations

The Stokes drift was considered combined to wind effect. Replacing W by Stokes velocity from ECMWF

ERA5 decreased the R² values (not shown). Adding Stokes velocity as an additional explanatory variable in

the regressions was associated with non-significant p-value and negligible R² improvement, as Stokes velocity190

was highly correlated with wind velocity (r=0.83). More accurate data are needed to separate the effect of

Stokes drift and wind in the windage, similarly to Sutherland et al. (2020).

For all the models, we chose to force the regressions with no intercept (constant term) as it is hardly

interpretable physically. When an intercept was included, regressions with two variables did not show major

R² improvement nor changes of parameter values, because the intercept term was very low (<0.05m s−1).195

This validates our hypothesis of null intercept and indicates that the results were weakly biased, and the

models were linear. As the distribution of residuals is Gaussian (not shown), the remaining unexplained

variability is likely due to the uncertainty of observations. Improving the result probably lies in better data

accuracy.

4.4. Geostrophic component of Sargassum drift200

The comparison between drifter and Sargassum regression models provides good indications on how

Sargassum drift differs from drifters. First, on average, the geostrophic current component is not deviated

for Sargassum velocity (low αS
G angle), and this is also true for drifters. This confirms our hypothesis of

negligible inertial effect for these objects at the considered timescale (3 hours). This contrasts with Brooks

et al. (2019)’s result, likely because of their much larger timescale (8 days).205

Second, drifter velocity is explained by a fraction of geostrophic current velocity (αD
G=85% for drogued

drifters and 66% for undrogued drifters). This is also true when using Ekman-corrected drifter velocities

(Appendix E). This contrasts with previous studies showing that the Ekman-corrected drifter velocities were

on average 1.4 times higher than the altimeter-derived geostrophic currents (Lagerloef et al. (1999)). These

contrasting results are likely due to major progress in spatial and temporal resolutions of both altimetric210

product (1/4°daily data used here vs. 1°10-day data in Lagerloef et al. (1999) and drifter position frequency

(6-h here vs. 5-day in Lagerloef et al. (1999)). The parameter αD
G was found < 1 possibly because of the fine

scale variability of drifters velocities that are not captured by altimetry. In addition, as the αS
G parameter

was weaker than αD
G (< 56%), this suggests a flow resistance (i.e. viscosity) of Sargassum aggregates that

slows them down compared to local currents and nearby drifters.215
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4.5. Windage and Ekman component of Sargassum drift

The parameter βS
G, i.e. the wind effect on Sargassum drift, was deviated to the right of the wind direction

with an angle of 21° while βS
D,d is deviated with an angle of 9° (Tab. 2 and 3). Deviation to the right of the

wind is expected from Ekman spiral theory (Ekman, 1905). As US and UD included the Ekman current,

βS
D is a combination of Ekman current (45° at the surface) and windage (weak deflection). This is confirmed220

by regressions performed on US and UD Ekman-corrected velocities (Appendix E), where deflection angles

were lower for Sargassum, 9° comparing to UG and 4° to UD,d.

Regressing the Sargassum velocity against the geostrophic current UG and wind gives the total effect of

wind on Sargassum (Tab. 2), evaluated here at βS
G=3.8% of the wind speed. This total effect includes Ekman

current plus windage. Correcting Sargassum velocities from the Ekman currents (see Appendix E) reduces225

βS
G to 2.6%, which is pure windage. Regressing the Sargassum velocity against the drogued drifter velocities

UD,d (15 m depth current) and wind provides a total wind effect of ≈ 3% of the wind velocity, but with a

better fit (R²=0.78 against 0.46). Removing the Ekman current, estimated windage is 2.1%.

This windage (≈ 2%) is consistent with literature for undrogued SVP drifters (Brügge & Dengg, 1991;

Poulain et al., 1996; Pazan & Niiler, 2001) and for Sargassum with a windage factor that was recently230

reassessed between 1-3% (Putman et al., 2020). Similarly to our results, studies on oil spill drift modelling

highlighted the wind-induced drift corresponding to ≈ 2% of the wind speed with a deviation angle on the

right of ≈ 20 − 25° (Le Hénaff et al., 2012). The wind effect coefficient for Sargassum βS
D% may not be

constant. Indeed, regressions separating low and high wind cases gave values of 0.08 and 0.02 respectively

(not shown). This strong dependence on wind speed may result from Sargassum mixing over a deeper layer235

as wind speed increases (Woodcock, 1993; Ody et al., 2019). The Ekman component varies very little over

the first few meters, whereas windage may strongly decrease with the sinking of Sargassum.

Although the wind effect coefficient (βS
D,d) is rather small, βS

D,dW represents on average 42% of the

Sargassum drift velocity due to the high wind velocity. This result reinforces the view of a strong impact

of wind on Sargassum and highlights the importance of including wind contribution into Sargassum drift240

models.

4.6. Proposed model of Sargassum drift

Drifters velocity is a good proxy for local currents (geostrophic plus Ekman). Undrogued drifters, suppos-

edly more similar to Sargassum (Van Sebille et al., 2021), were associated with higher variability and lower

R² values than drogued drifters. Thus, the regression explaining Sargassum velocity with the drogued drifters245

and wind velocity can be exploited to better predict Sargassum drift. Considering the inferred parameters

of Tab. 3, we propose the following Sargassum drift model:

US = 0.8U + 0.03e−10°iW (7)
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Where US , U and W are the Sargassum, the total current at 15 m depth (geostrophic plus Ekman) and

the wind velocities at 10 m. On average, using this model, Sargassum velocity of 0.36m s−1 is decomposed

into the contributions of current (geostrophic plus Ekman) of 0.21m s−1 and wind of 0.15m s−1.250

Using the complex parameters proposed here allowed a gain of 4% in the R² values (Tab. 3) in comparison

to using real parameters (αS
D,d = 1 and βS

D,d = 3%) as in previous studies (Berline et al., 2020; Johns et al.,

2020; Putman et al., 2018, 2020). However, this modest improvement corresponds on average to an error

reduction of 0.13m s−1, which translates into an error reduction of 1.4 km on locations over our 3 hours

measurements. These results suggest that reducing the role of current to 80% of its velocity and using a wind255

factor of 3% deflected 10° to the right should lead to significant improvements in further drift simulations.
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Appendix A. Collocation between Sargassum and drifter

A collocation was defined as a situation where a drifter was close (< 20 km) from at least one detected

Sargassum pixel (i.e. a pixel which AFAI is above the threshold defined in Wang & Hu (2016)). More265

specifically, the process followed those steps: 1) the Aqua and Terra timestamp (20 km median filter) was

computed at every 12:00 UTC drifter position; 2) the drifter position was linearly interpolated at the average

time between Aqua and Terra; 3) The scene was considered collocated if there was a Sargassum pixel in a

box of 40 pixels around that interpolated position.

Appendix B. Matching on SIFT key points270

In order to extract the Sargassum velocity, images were matched based on aggregates’ shape. The SIFT

algorithm allowed extracting key points to describe the Sargassum shape and position. Then, an ad-hoc

algorithm was developed to search for the best 2D translation explaining the drift. The corresponding

code, inspired from the RANdom SAmple Consensus (RANSAC) approach (Derpanis, 2010), is detailed in

the pseudo-algorithm 1. All possible translations between the two sets of points were tested, and the one275

maximising the counter (thus the most likely) was retained. Images pairs with less than 4 matching points

were excluded. For remaining cases, matching pairs displacements in the scene were averaged to compute

one value of Sargassum velocity that was added to the dataset.
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Algorithm 1 Translation evaluation from SIFT key points
Require: Tpts, Apts the list of SIFT key points for Terra and Aqua images

for each Tpt ∈ Tpts, Apt ∈ Apts do

Counter ← 0

Translation← Apt − Tpt

for each Ttemp ∈ Tpts, Atemp ∈ Apts do

if Distance(Translation+ Ttemp, Atemp) ≤ 500 m then

Counter ← Counter + 1

end if

end for

end for

Appendix C. Complex linear regression

Let Z be a random complex response variable with X and Y complex regressors. We have a sample280

E = {(Xn,Yn,Zn) , 1 · · ·N} of size N of these variables. It is supposed that they are connected through a

linear model of the form:

Zn = α+ βXn + γYn + εn, n = 1 · · ·N,

where α, β and γ are complex parameters that must be estimated from the sample E and ε is a (complex)

remainder whose norm is hoped to be as small as possible. As usual in a regression problem, the parameter

estimation is done through least squares minimization of the cost function:

SSE(α, β, γ) =

N∑
n=1

(Zn − α− βXn − γYn)(Zn − α− βXn − γYn)⋆,

where X⋆ denotes the complex conjugate of X. Let construct the design matrix M = (1, X, Y ) where 1 is

the N -vector with entries 1 + i1, X = (X1, . . . ,XN )′ and Y = (Y1, . . . ,YN )′ the N -vectors of the complex

regressors. In matrix form, the cost function writes :

SSE(a) = (Z −Ma)
⋆
(Z −Ma) ,

where a = (α, β, γ)′ is the vector of parameters and Z = (Z1, . . . ,ZN )′, the vector of the response variable

and Z⋆ its transpose conjugate. Solution of the complex regression is given when solving the normal equations

for the complex regression:

â = (M⋆M)−1M⋆Z

An estimated value of Zn is then obtained with : Ẑn = α̂+ β̂Xn+ γ̂Yn. One can also compute the estimated

errors with: ε̂n = Zn − Ẑn.
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Appendix D. Bootstrapped confidence intervals for parameters285

Suppose now a complex regression achieved with sample E and residuals estimated with ε̂1, . . . , ε̂N as

above. Consider a bootstrap replicate of the initial sample denoted as EB =
{
(Xn,Yn,Z

B
n ), n = 1 · · ·N

}
such

that ZB
n = α̂+β̂Xn+γ̂Yn+εBn , where the residuals εB1 , . . . , εBN have been drawn from an estimated distribution

of the residuals that uses ε̂1, . . . , ε̂N as data. As these errors are complex numbers, this distribution is

bivariate. It can be estimated using a Gaussian density with mean parameter being the vector of real290

and imaginary parts of the empirical mean error ε = 1
N

∑
n ε̂n and variance parameter being the empirical

covariance matrix between real and imaginary parts of the ε̂n.

Use now a bootstrap sample EB to compute new estimates α̂B , β̂B and γ̂B . As this procedure can be

repeated at wish, one can estimate boundaries of a 95%-confidence intervals as the quantiles of the empirical

distribution for both real and imaginary parts of α̂, β̂ and γ̂.295

Error values are simulated using bootstrapped errors obtained by sampling an estimated distribution

function of the errors in place of its real unknown distribution. Bootstrapped samples of the data are then

constructed and confidence intervals can be estimated for α̂, β̂ and γ̂ considered as true coefficients of the

regression instead of α, β and γ.

Appendix E. Regressions using Ekman-corrected currents300

We used formulas and constants from Cushman-Roisin & Beckers (2011) for computing Ekman current.

The eddy viscosity νE was 1 × 10−2 m2 s−1, the drag coefficient Cd was 1.5 × 10−3, the air density ρa was

1.20 kgm−3 and the water density ρ0 was 1×103 kgm−3. Considering that undrogued drifters and Sargassum

aggregates drift in the surface layer of the ocean, the Ekman current estimated at z = 0 m was removed from

US and UD,u. The Ekman current estimated at z = 15 m was removed from UD,d because of their drogue305

centred at 15 m depth.
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Model α β R2 Nobs

0.602± 0.062 exp(−8.6± 7.1°i) 0 0.11 192

US = αS
GUG + βS

GW 0 0.026± 0.003 exp(−3.2± 5.5°i) 0.14 192

0.567± 0.057 exp(1.0± 5.6°i) 0.026± 0.002 exp(−9.0± 4.8°i) 0.35 192

0.757± 0.081 exp(−4.9± 7.2°i) 0 0.22 94

UD,u = αD,u
G UG + βD,u

G W 0 0.022± 0.004 exp(2.8± 9.2°i) 0.08 94

0.666± 0.078 exp(1.1± 7.2°i) 0.019± 0.003 exp(−5.7± 10.5°i) 0.35 94

0.828± 0.07 exp(5.5± 4.7°i) 0 0.42 98

UD,d = αD,d
G UG + βD,d

G W 0 0.005± 0.003 exp(32.2± 108.9°i) -0.01∗ 98

0.844± 0.071 exp(6.0± 4.4°i) 0.005± 0.002 exp(−38.0± 68.6°i) 0.44 98

US = αS
D,uUD,u + βS

D,uW 0.875± 0.046 exp(−0.7± 3.3°i) 0 0.57 94

0.699± 0.047 exp(4.2± 4.0°i) 0.017± 0.002 exp(−16.1± 8.7°i) 0.62 94

US = αS
D,dUD,d + βS

D,dW 0.81± 0.044 exp(−2.3± 3.3°i) 0 0.57 98

0.793± 0.039 exp(−1.6± 2.8°i) 0.021± 0.002 exp(−4.0± 6.0°i) 0.74 98

Table Appendix E.1: Same as table 2 except that the velocities US ,UD,d and UD,u are corrected from Ekman current at either

0 or 15 meter depth.
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