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Artificial intelligence for fish
behavior recognition may unlock
fishing gear selectivity

Alexa Sugpatan Abangan, Dorothée Kopp and Robin Faillettaz*

Laboratoire de Technologie et de Biologie Halieutique, Institut Agro, Dynamique et durabilité des
écosystèmes (DECOD) (Ecosystem Dynamics and Sustainability), L'Institut français de recherche
pour l'exploitation de la mer (IFREMER), l'Institut National de Recherche pour l'Agriculture, l'Alimentation
et l'Environnement (INRAE), Lorient, France
Through the advancement of observation systems, our vision has far extended its

reach into the world of fishes, and how they interact with fishing gears—breaking

through physical boundaries and visually adapting to challenging conditions in marine

environments. As marine sciences step into the era of artificial intelligence (AI), deep

learning models now provide tools for researchers to process a large amount of

imagery data (i.e., image sequence, video) on fish behavior in amore time-efficient and

cost-effective manner. The latest AI models to detect fish and categorize species are

now reaching human-like accuracy. Nevertheless, robust tools to track fish

movements in situ are under development and primarily focused on tropical

species. Data to accurately interpret fish interactions with fishing gears is still

lacking, especially for temperate fishes. At the same time, this is an essential step for

selectivity studies to advance and integrate AI methods in assessing the effectiveness

of modified gears. We here conduct a bibliometric analysis to review the recent

advances and applications of AI in automated tools for fish tracking, classification, and

behavior recognition, highlighting how they may ultimately help improve gear

selectivity. We further show how transforming external stimuli that influence fish

behavior, such as sensory cues and gears as background, into interpretable features

that models learn to distinguish remains challenging. By presenting the recent

advances in AI on fish behavior applied to fishing gear improvements (e.g., Long

Short-Term Memory (LSTM), Generative Adversarial Network (GAN), coupled

networks), we discuss the advances, potential and limits of AI to help meet the

demands of fishing policies and sustainable goals, as scientists and developers

continue to collaborate in building the database needed to train deep learningmodels.

KEYWORDS

fisheries, gear technology, underwater observation systems, deep learning, fish
behavior tracking
1 Introduction

In observing fishes, the human eye can efficiently distinguish swimming movements,

where the fish is, how it is swimming, how it is interacting with other fishes and its

environment (He, 2010). For ethologists, interpreting behaviors from visual observations

come almost instantaneously. As developments of non-invasive and autonomous underwater
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video cameras continue to advance (Graham et al., 2004; Moustahfid

et al., 2020), behavioral observations can now be derived from a

plethora of high-resolution marine imagery and videos (Logares et al.,

2021). The reach of human vision continues to extend as cameras can

be used in most conditions (Shafait et al., 2016; Christensen et al.,

2018; Jalal et al., 2020), such as light, dark and muddy underwater

conditions, and can go to greater depth and longer periods (Torres

et al., 2020; Bilodeau et al., 2022; Xia et al., 2022). Cameras can now

provide vision in 2D or 3D into how fishes interact with fishing gears

used to capture marine species (e.g., pots, lines, trawls and nets) where

behavior can be recorded by an observation system. It allowed direct

vision on how gear components affect catches and escapements

(Graham, 2003; Nian et al., 2013; Rosen et al., 2013; Williams et al.,

2016; Langlois et al., 2020; Sokolova et al., 2021; Lomeli et al., 2021)

and has opened windows to observe behaviors of fishes in any kind of

environmental condition (Robert et al., 2020; Cuende et al., 2022).

This marked an important step to capture finer details in the

process of fishing gear selectivity (i.e., the gear’s ability to retain only

targeted species, while avoiding bycatch of vulnerable, unwanted

species or undersized individuals). Innovations in gear selectivity

continue to bring in new types of selection and bycatch reduction

devices added to gear designs (e.g., for review of selective and bycatch

reductions devices, see Vogel, 2016; Matt et al., 2021; for grid, see

Brinkhof et al., 2020, for mesh size: Kim et al., 2008; Aydin and

Tosunòlu, 2010; Cuende et al., 2020b; Cuende et al., 2022, for panels:

Bullough et al., 2007; Ferro et al., 2007). By observing the influence of

these modifications, finer selectivity patterns have been unraveled,

highlighting how the visual, hearing and tactile cues that species are

sensitive to are key in the capture process of fishes (Arimoto et al.,

2010; Yan et al., 2010). As studies in fish vision show differences in

behavior across species in relation to their spectral sensitivity

(Goldsmith and Fernandez, 1968; Carleton et al., 2020), gears

continue to be developed with visual components, such as light and

color, that aim to make them more or less detectable (Ellis and

Stadler, 2005; Sarriá et al., 2009; Underwood et al., 2021). Mesh and

panel configurations affect tactile cues and herding behavior that can

differ among species (Ryer et al., 2006). Thus, they are continually

being tested across different fishing zones (Ferro et al., 2007; Cuende

et al., 2020a) as environmental conditions such as depth and light

penetration change fish behavior (Blaxter, 1988). Observations of how

visual, acoustic, or mechanosensory stimuli elicit fish movement have

been extensively studied (e.g., Forlim and Pinto, 2014; Popper and

Hawkins, 2019; Xu et al., 2022). Quantifying reactions of fishes to

stimuli or gear modifications requires an assessment of their

swimming patterns that are highly variable and nonlinear as they

are under stress, in constant locomotion (Kim andWardle, 2003; Kim

and Wardle, 2005) and are affected by several environmental factors

(Schwarz, 1985; Baatrup, 2009; Yu et al., 2021; Xu et al., 2022).

Moreover, their movement often differ between individual and group

behavior (Viscido et al., 2004; Stienessen and Parrish, 2013; Harpaz

et al., 2017; Schaerf et al., 2017).

As of today, automated tools in fish recognition have been mostly

driven by economical frameworks such as in monitoring their welfare

on fish farms. (Zhou et al., 2017; Muñoz-Benavent et al., 2018; Cheng

et al., 2019; Måløy et al., 2019; Bekkozhayeva et al., 2021; X. Yang
Frontiers in Marine Science 02
et al., 2020), in directing migratory trajectories in river passageways

(Stuart et al., 2008; Cooke et al., 2020; Eickholt et al., 2020; Jones and

Hale, 2020) and stock assessments (Mellody, 2015; Myrum et al.,

2019; Connolly et al., 2021; Ovchinnikova et al., 2021). Artificial

Intelligence (AI) has thus become a multi-purpose data processing

tool in marine science that is integrated in model simulations,

predictions of physical and ecological events (Chen et al., 2013) and

imagery data processing from large-scale to fine-scale observations

(Beyan and Browman, 2020). Yet, observations are often focused on

the temporal aspects of swimming behavior on a 2D-scale (Lee et al.,

2004; G. Wang et al., 2021) with lack of spatial depth and 3D

components of the real world, providing only a narrow window of

their actual behavior as a whole. These movements and their

complexity need to be transformed into meaningful metrics derived

from video observations (Aguzzi et al., 2015; Pereira et al., 2020). This

requires a tremendous amount of time, focus, effort and is subject to

error and incomplete manual observations (Huang et al., 2015; Guidi

et al., 2020). This is where AI methods enter (Packard et al., 2021): the

principle is to translate what the human eye sees and what the brain

interprets into computer vision (or machine vision) and artificial

neural networks (van Gerven and Bohte, 2017; Boyun et al., 2019).

For computer vision, images of fishes and their corresponding

features (temporal and spatial) must therefore be translated to

numerical units that the computer can understand (Aguzzi

et al., 2015).

Studies and innovations on fish observations over the past decade

have successfully generated models that can automatically see fishes

on videos, identify taxa and follow their swimming direction with

considerable accuracy (Hsiao et al., 2014; Nasreddine and Benzinou,

2015; Ravanbakhsh et al., 2015; Boudhane and Nsiri, 2016; Qin et al.,

2016; Marini et al., 2018; Xu and Matzner, 2018; Salman et al., 2019;

Cai et al., 2020; Cui et al., 2020; Jalal et al., 2020; Raza and Hong, 2020;

Yuan et al., 2020; Ben Tamou et al., 2021; Cao et al., 2021; Crescitelli

et al., 2021; Li et al., 2021; Lopez-Marcano et al., 2021; Knausgård

et al., 2021). Despite recent advancements, it remains challenging to

train existing AI models (e.g., Convolutional Neural Network, CNN;

Faster Recurrent CNN, Faster RCNN; Residual Network, ResNet;

Long Short-Term Memory, LSTM; Convolutional 3-dimensional

network, C3D, etc.) that could recognize fish behaviors from their

swimming movements in 3D (Li et al., 2022) given the myriad of

variability occurring at sea (Christensen et al., 2018). Artificial

Intelligence may help to further improve the sustainability of

fishing as the classical selective studies are reaching a plateau due to

bottleneck in data collection inherent to the challenge of obtaining

direct, in situ observations.

This paper addresses common stimuli that trigger fish reactions

from selective devices in fishing gears and how these behavioral

responses are transformable into quantifiable metrics with

selectivity modeling and classification methods that can be

pipelined in AI methods (Section 2). Section 3 presents current

state and limitations of AI applied to fish gear interactions through

a bibliometric analysis and the recent developments in automatic

behavior recognition. The fourth section addresses the hurdles of

observing interactions of fishes across fishing gear selectivity studies

and how AI methods may help face these challenges.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1010761
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Abangan et al. 10.3389/fmars.2023.1010761
2 Observing stimuli-response in fishing
gears: The teaching base of AI models
for behavior recognition

“Researchers now realised that, like the rest of the vertebrate

kingdom, fishes exhibit a rich array of sophisticated behaviour and

that learning plays a pivotal role in behavioural development of fishes.

Gone, or at least redundant, are the days where fishes were looked

down upon as pea-brained machines whose only behavioural flexibility

was severely curtailed by their infamous 3-second memory” (Brown

et al., 2006)
2.1 Observations of fish behavior in
fishing gears

Early testing, through manual counting, size measurement, and

quantification of catches/retention, has paved the way for selective

devices and gear modifications to be integrated in the design of

commercial fishing gear. Mesh modifications were suggested through

empirical approaches by studying catch retention (e.g., catch

comparison or covered codend methods) (Dealteris and Reifsteck,

1993; Ordines et al., 2006; Aydin and Tosunòlu, 2010b; Anders et al.,

2017b), tank experiments for manual observations of fish passing

through meshes (Glass et al., 1993; Glass et al., 1995) and even

numerical approaches which estimates catches a posteriori (e.g.,

SELECT; Fonseca et al., 2005). Optic and sonar imaging rapidly

came into play to directly estimate catches during capture (Silicon

Intensified Target, SIT camera system, Krag et al., 2009; acoustic

imaging, Ferro et al., 2007), then applied to observe species behavior

in gears (Mortensen et al., 2017). Over the years, observing fishes

became achievable in various conditions with the breadth of available

technology that can be autonomously deployed for ecological and

fisheries monitoring (Durden et al., 2016; Moustahfid et al., 2020).
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Example of technological solution to observe behavior in real world

condition are presented in Table 1.

Interesting behaviors from fishes have since been unearthed such

as anti-predatory responses (Rieucau et al., 2014), encounters of fish

with nets (Jones et al., 2008; Rudstam et al., 2011), differences in

swimming speed (He, 1993; Breen et al., 2004; Spangler and Collins,

2011), avoidance (de Robertis and Handegard, 2013), exhaustion

(Krag et al., 2009), orientation (Odling-Smee and Braithwaite, 2003;

Holbrook and Perera, 2009; Haro et al., 2020), escapement (Glass

et al., 1993; Mandralis et al., 2021), herding behavior (Ryer et al.,

2006), and unique social behaviors (Anders et al., 2017a) from which

selectivity studies in gears are based on. Knowledge of fish reaction

and escape behavior has thus grown, leading to the development of

novel gears with more open meshes, careful placement of sorting

grids, and other devices to improve both size and species selectivity

(Stewart, 2001; Watson and Kerstetter, 2006; Vogel, 2016; O’Neill

et al., 2019). Gear selectivity might also be improved by triggering

active species responses, using light, sound, and physical stimuli

(O’Neill and Mutch, 2017).
2.2 Current observations of fish
stimuli-response

2.2.1 Responses to light and color stimuli
Fish responses to light has been mainly studied in controlled

environments and in aquaculture. It is challenging to observe light

responses at sea as light attenuation limits the direct observations of

fish behavior. The response to light—i.e., phototaxis—can improve

gear selectivity as fishes greatly depend on vision for sensory

information (Guthrie, 1986). Depending on the species and the

development stage (Kunz, 2006), fishes can exhibit either positive

(swimming towards light source) or negative phototaxis (swimming

away) to different wavelength and intensities of light (Raymond and

Widder, 2007; Underwood et al., 2021). Thus, artificial illumination is
TABLE 1 Example of technological solution to observe behavior in varying conditions.

Condition of observation Technological Solutions Limitation Examples

High Turbidity High spatial acuity cameras, laser-imaging, Cameras with polarized
filters or light sources

High cost (Lu et al., 2017)

Backscatter of natural light

Dark environment
Far-red illumination (680 nm LED), near-infrared illumination Less features in images;

narrow range of view
(Chidami et al., 2007; Shcherbakov
et al., 2012)

Species-level recognition
High-definition cameras High cost, limited to RGB

cameras
(Crescitelli et al., 2021; Murugaiyan
et al., 2021)

Abrupt changes in animal
orientation, fast-swimming
species

High shutter speed (> 200 frames per second) High cost (Catania et al., 2008)

Continuous recordings of species
distribution

Long-battery/low-energy/cabled cameras Limited spatial range (Rosen and Holst, 2013; DeCelles
et al., 2017)

Collective behavior, capturing
large elements or objects

Stage-wide cameras/multiple set-up cameras, far-range sonars,
hydroacoustic

High cost; logistically
demanding

(Wei et al., 2022)

Capture depth/3D features
3D/holographic/stereo cameras, cameras with distance-
compensated structured lighting, Optical-Acoustic Hybrid Imaging

Heavy computational cost;
logistically demanding

(Sawada et al., 2004;
Negahdaripour, 2005; Pautsina
et al., 2015)

Small compartments/space Compact/micro cameras Low image resolution (Duecker et al., 2020)
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taking considerable attention for behavioral guidance of fishes to

dissuade fishes from entering the gear (Larsen et al., 2017), or to help

them escape from within (Southworth et al., 2020). Illumination in

gears take either the form of LED light installments (e.g., illuminated

escape rings for non-targeted species, Watson, 2013; illuminated

separation grids for ground fishes, O’Neill et al., 2018b) or with

glow-in-the-dark netting material (Karlsen et al., 2021). In dark

environments, near-infrared light or red light is usually used to

observe the behaviors of fishes instead of white light that may

disrupt behaviors of fishes (Widder et al., 2005; Raymond and

Widder, 2007; Underwood et al., 2021).

Responses of fish to color also play an important part as most

bony fishes are tetrachromatic, allowing them to see colors more

vividly than humans (Bowmaker and Kunz, 1987). Some fishes may

be more visually sensitive to certain kinds of light wavelength and

intensity (Lomeli and Wakefield, 2019), other may be non-responsive

(Underwood et al., 2021). Researchers thus use these species-selective

traits to install light devices (LED lights, infrared light, laser beams)

on gears or change the color of the fishing nets (white, transparent,

black) depending on the selected species (Simon et al., 2020; Méhault

et al., 2022)

2.2.2 Responses to acoustic stimuli
Sound has been long used by fishers to scare fishes and gather

them for bottom trawling. Yet, the response to sound—i.e.,

phonotaxis—can also be used for selectivity as hearing species are

generally sensitive to specific frequencies (Dijkgraaf, 1960). Selectivity

studies typically observe negative phonotaxis (i.e., avoidance)

triggered by low-frequency sound (Schwarz and Greer, 2011),

which can be displayed by fishes in different ways (Popper and

Carlson, 1998; de Robertis and Handegard, 2013). Similar to light

responses, some fishes tend to be more sensitive to certain sound

frequencies, some are called “hearing specialists” such as Atlantic

herring and cod (Chapman and Hawkins, 1973; Doksæter et al., 2012;

Pieniazek et al., 2020). O’Neill et al. (2019) also suggested that passive

acoustic approaches with sound reflectors can be designed with gears

to make them more detectable for echo-locating species (He, 2010).

Mainly, sound and light added to fishing gears can help attract the

targeted species and help deter vulnerable or harmful animals such as

mammals or fish predators (Putland and Mensinger, 2019; Lucas and

Berggren, 2022). Although fishing techniques with sound have been

in practice since a while (He, 2010), exploration for species selective

sound devices are still at its early stages.

2.2.3 Responses to physical stimuli
The response to physical contact—i.e., thigmotaxis—shows the

tendency of fishes to remain close to the seabed, or the lateral

structure of gears (Millot et al., 2009). This behavior can be utilized

to modify mechanical structures and panels in gears. Physical stimuli

can play an important role for allowing fishes to escape (Mandralis

et al., 2021) or be sorted (Larsen and Larsen, 1993; Brinkhof et al.,

2020). These are usually installed in or on the gears after a series of

behavioral trials on fish responses to different configurations (Santos

et al., 2016). Physical stimuli are thus often drawn from the species-

specific behavior (Ferro et al., 2007; Cuende et al., 2020a).

Fishes tend to orient themselves to face the water flow to hold a

stationary position and lower the amount of energy they spend; this is
Frontiers in Marine Science 04
called rheotaxis (Painter, 2021). The directional behavior due to water

flow may be used to improve selectivity in trawls. For example, veil

nets on shrimp fishery can modify the flow within gears, directing

fishes to selective grids and net structures (Graham, 2003) and water

jets projecting downward of forward can elicit early avoidance from

fishes about to enter the gear (Jordan et al., 2013).

2.2.4 Other stimuli and combination of stimuli
Other stimuli relating to chemical responses (chemotaxis;

Løkkeborg, 1990) and electrosensory responses (i.e., electrotaxis;

Sharber et al., 1994; O’Connell et al., 2014) in fishes still need to

undergo trials. Chemotaxis, which fishes use for foraging, may help

fishes acquire information from greater distances (Weissburg, 2016)

and are used in baited fisheries (Rose et al., 2005). Electrotaxis that

elasmobranchs use to detect weak electromagnetic signals is exploited

in longline fishing to reduce bycatch with electropositive metals and

magnets (Kaimmer and Stoner, 2008; Robbins et al., 2011; O’Connell

et al., 2014). Combination of multiple stimuli such as acoustic and

visual signals also promote different responses from fishes, enhancing

or impeding the responses to other cues (Lukas et al., 2021). Overall,

understanding multi-sensory modalities of marine animals may help

adjust selective devices, reducing bycatch and focusing catches to

targeted species (Walsh et al., 2004; Jordan et al., 2013).
2.3 AI application to fish stimuli

Studying fish responses to stimuli require empirical studies, which

are often limited in terms of replicates due to logistical constraints and

temporal demand to collect and process raw data. Stimuli have thus

been studied manually, since automatization remains difficult to apply

to in situ conditions due to heterogeneous, moving background and

environmental conditions. Manual observations of stimuli response

currently provide the reference point for behavior recognition which

now faces more and more data to process from continued

observations at sea. Applying AI models may ease the data

processing and enable to exploit larger amount of data. As opposed

to traditional tracking method applicable to controlled experiments

(e.g., background subtraction and Kalman filters, Simon et al., 2020),

deep learning models are less sensitive and may be applied to harsher

conditions (Sokolova et al., 2021). Computer vision can also be

improved by selecting the observation system the most appropriate

to produce imagery data for the fishing gear used; the variety of

systems and data processing approaches for stimuli is presented

in Table 2.
3 Artificial Intelligence for fish
behavior applications

3.1 Bibliometric analysis

3.1.1 Bibliometric analysis methods
A bibliographic research was done in February 2022 on SCOPUS

for scientific journals on 2 sets of 5 queries (Figure 1). Each of the

query of the first set (256 articles) included AI-related keywords. The

queries linked to the AI keywords were selected to obtain studies that
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focus on fish behavior, underwater observations, fishing gears, and in

ecological studies. The second set had the same keywords as the first

set but included keywords for both saltwater and freshwater

ecosystems to exclude automatic detection and classification of fish

species done onboard fishing vessels with the use of keywords in all

the 5 queries. This narrowed down the number of extracted

publications to 138 articles (Figure 1). However, both sets of

publications still included studies not relevant to the topic, so a

manual screening was undertaken. The screening was done one by

one among the extracted studies to keep only the relevant studies

which were cross analyzed with other pertinent studies that have not

been included in the SCOPUS results but are mentioned in this

review. The studies that were removed from the list focused on

topology mapping, stock assessment, climatological studies,

biochemical studies, and automatic identification for other marine

fauna and flora such as sea cucumber and algae. A final list of 384
Frontiers in Marine Science 05
relevant studies was collected and reviewed to extract the studies with

automated fish detection, counting, species classification, motion

tracking and behavior recognition with deep learning models in

underwater systems.

3.1.2 Bibliometric analysis results

The gathered studies show that the automation of tasks such as

fish detection, species classification, fish counting, fish tracking, and

behavior recognition is progressively materializing in the 21st century

(Figure 2). The onset of ecological studies of fishes based on AI and

computer vision has surfaced in the past 10 years (87 publications in

relation to fish detection and classification; 36 in relation to fish

behavior recognition extracted from bibliography search in

SCOPUS). Developments are still on their early stages but are

gaining attention rapidly, particularly for automatic detection and
TABLE 2 Examples of fish behavior studies exploring species’ responses to stimuli using AI and their application on fisheries.

Stimuli

Behavioral studies Data Processing Fishery Potential Application

Taxi
(Response)

Short-
term

Behavior

Current
Observation
Systems

(Computer
vision)

Behavioral
Data Pro-
cessing

AI application

Advantage/
Limitation of
Computer
Vision

Fishing
gears

Selective
Device/
Method

Chemical Chemotaxis Attraction,
repulsion,
feeding,
herding

Baited Remote
Underwater
Videos (BRUV),
Optical (RGB) or
Infrared) and
Hydroacoustic
camera

Automated Cascade Faster R-CNN
(Méhault et al., 2022),
C3D Model (G. Wang
et al., 2021), Dual
Stream Recurrent
Network (Måløy et al.,
2019)

Zero to low
visibility of
chemical
diffusion in water
that can be seen
by computer
vision

Baited gears
(fish pots,
hook-and-line,
longline,
gillnets,
trawling)

Natural or artificial
baits

Light Phototaxis Attraction,
repulsion,
herding

Optical cameras,
Hydroacoustic
camera

Automated C3D Model (G. Wang
et al., 2021), YOLOv2
+ behavioral metric
pipeline (Barreiros
et al., 2021)

Light attenuation
in water

Any type of
gears (Pots,
longline,
Gillnet,
Surrounding
nets, Lift nets,
Seine, Trawl,
Dredge)

LED lights, laser
beams

Sound Phonotaxis Attraction
or repulsion

Optical cameras
(RGB or
Infrared),
Hydroacoustic
camera

Automated C3D Model (G.
Wanget al., 2021),
YOLOv2 + behavioral
metric pipeline
(Barreiros et al., 2021)

Sound diffusion
can only be
detected with
acoustic cameras,
stimuli origin not
visible to optical
cameras

Gillnet, Purse
Seine

Acoustic beams
(Gan et al., 2012),
pingers/sonar
reflectors, fish
calling devices
(donburi, payao)
(Yan et al., 2010)

Water
current

Rheotaxis Change in
orientation,
herding, or
speed

Optical cameras
(RGB or
Infrared),
Hydroacoustic
camera

Manual Particle image
velocimetry (PIV)
(Oteiza et al., 2017)

Requires
additional
measurement for
speed of current

Any type of
gears (Pots,
longline,
Gillnet,
Surrounding
nets, Lift nets,
Seine, Trawl,
Dredge)

Bait diffusion from
source, Water jets,
gear panels

Physical
barriers/
touch

Thigmotaxis Herding,
sheltering
behavior

Optical cameras
(RGB or
Infrared),
Hydroacoustic
camera

Automated Motion influence map
+ RNN (Zhao et al.,
2018)

Requires wide
angles of video
recording and
image capture

Any type of
gears (Pots,
longline,
Gillnet,
Surrounding
nets, Lift nets,
Seine, Trawl,
Dredge)

Panels, mesh size
and shape, netting
grids
For comprehensive summary of fishing gears, see (He et al., 2021).
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classification techniques thanks to the rise of deep learning (LeCun

et al., 2015). Studies are fewer for automatic motion tracking of fishes

and behavior recognition compared to detection and classification

studies as they build on the AI methods of the latter and require more

complex processing. While fish detection is being widely applied in

marine habitats for several years (Fisher et al., 2016), automatic

tracking and behavior recognition of fishes during capture process

has yet to be applied. The following sections expand the results from

the bibliometric analysis and give a brief explanation of AI and

examples on the current applications of behavior recognition that can

be transferred to selectivity studies.
3.2 Introduction to Artificial Intelligence

As current observations of fish behaviors in fishing gears now step

into the era of AI and deep learning along with other domains in

marine science (Malde et al., 2020; Logares et al., 2021; Packard et al.,
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2021), Internet of Underwater Things (IoUT) and Big Data coupled to

AI will inevitably revolutionize the field (Jahanbakht et al., 2021).

Today, behavioral studies in fisheries science stand on top of highly

evolving tools to automatize analysis and processing of data. They are

curated from interdisciplinary fields among marine science, computer

science, neuroscience, and mechanical science among many other

disciplines that are now coagulating because of AI (Xu et al., 2021).

Some useful references for AI in marine science and reviews can be

found in Beyan and Browman (2020); Malde et al. (2020) and

Goodwin et al. (2021).

In marine sciences, neural networks used for object detection are

usually “supervised” (Cunningham et al., 2008), meaning that they are

trained using ground-truth objects, manually located in images, and

classified into pre-defined classes. These objects, defined using the

four coordinates of their bounding boxes and their associated classes

(see Figure 3 for examples of bounding boxes), are then used to train

the model to localize and classify these target objects within new

images. Indeed, objects are assigned to one or several categories based

on the probability of belonging to each of the classes used to train the

model (Pang et al., 2017; Ciaparrone et al., 2020). Once object

detection is done on different frames (Figure 4E, F), the tracking

model pairs the bounding boxes among frames to reconstruct the

track of each object through time and space (Belmouhcine et al., 2021;

Park et al., 2021). During the training, if the model can predict classes

and bounding boxes that match the groundtruth validation data with

a minor error, depending on the given parameters, it can be

considered an accurate model. However, if the model has poor

predictive performances, then the learning continues.

Broadly speaking, images are streamlined into computer

algorithms to extract information. These algorithms contain

artificial neural networks that apply a sequence of mathematical

operations (convolution, pooling, etc.) to perform object detection.

Those operations are linked together to orchestrate a pipeline, so that

image processing is not interrupted (Figure 4G). The operations can

detect objects because they determine patterns in pixels (i.e., binary

trait of computers; Shaw, 2004; Pietikäinen et al., 2011) from the input

images that define features (Blum and Langley, 1997). Features are
FIGURE 2

Number of publications between 1989 and 2022 for the 3 categories.
The number of publications in all categories is from the cross-analysis
between bibliographic search in SCOPUS and manual search in both
Google Scholar and Web of Science. The final list includes 388
relevant articles reviewed one by one and categorized by the authors
according to the methods included in each study.
FIGURE 1

Visualization of bibliographic search. Top photo: Set of queries in SCOPUS and number of resulting articles. Fish*W/2 ecology keyword was used to
focus the search on ecologically-based studies. Bottom photo: Bibliometric landscape of topics from articles (Linkage of keywords, occurrence > 5).
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measurable variables that can be interpreted from images, such as

shapes and textures of objects (Chandrashekar and Sahin, 2014).

Algorithms trained to detect patterns from features automatically are

called detection models. Before training the model, images are

preprocessed to be enhanced (i.e., neutralize discriminations and

scale dimensions) so that models can learn better (Nawi et al.,

2013; Calmon et al., 2017), since data are generally noisy when

captured in the real-world conditions. Recent artificial neural

networks contain attention modules (Vaswani et al., 2017; Gupta

et al., 2021) to capture long-range dependencies and understand what

is going on in an image globally (Grauman and Leibe, 2011).

Current deep learning methods are mostly “black boxes” since

humans cannot see how individual neurons work together to compute

the final output (e.g., why a fish in an image has been detected or not),

so improving the accuracy of models relies on better inputs and

comparison of trainings (LeCun et al., 2015). However, unsupervised

learning is gaining more interest as it allows the transition from

recognition to cognition (Forbus and Hinrichs, 2006; Xu et al., 2021).

This means that innovations in the AI domain are now making

interpretable models that can figure out why and how they localize

and classify objects on a scene (Ribeiro et al., 2016; Hoffman et al.,

2018; Gilpin et al., 2019). Among unsupervised learning models,

Generative Adversarial Neural Networks (GAN) are composed of two

networks: a generator that generates synthetic data and a

discriminator that classify the data as real or fake. The generator

learns how to fool the discriminator by learning the real data

distribution and generating synthetic data that follow this

distribution. The discriminator should not be able to distinguish

real from synthetic data. Thus, object detection models can now be

coupled to a GAN and learn by themselves, in a semi-supervised
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manner, by artificially generating new sets of images (from the

generator model) that feed through another model: the object

detector (e.g., generator model produces synthetic images of fishes

for another model to detect them; Creswell et al., 2018). Applying

these AI methods to fish interactions with fishing gears would enable

us to decipher which behaviors lead to the catch and escapement of

fish at more significant scales than what could be reached until today.

For a comprehensive review on available deep learning-based

architectures, see Aziz et al. (2020).
3.3 AI for fish behavior

Tools for automatic behavior recognition are being developed

mainly in aquaculture (Valletta et al., 2017; Niu et al., 2018) and in

coastal fish communities (e.g., Kim, 2003; Fisher et al., 2016;

Capoccioni et al., 2019; Lopez-Marcano et al., 2021; Ditria et al.,

2021a). Over the last decade, there has been an emergence of

automatic fish detection, species classification, combined with

tracking innovations, and this has contributed to a robust

foundation for behavioral recognition. Behavioral studies of fishes

in aquaculture looked at feeding behavior to monitor appetite and

abnormal behaviors in intensive farming conditions (Kadri et al.,

1991; Zhou et al., 2017; Niu et al., 2018; Måløy et al., 2019; Pylatiuk

et al., 2019; Li et al., 2020). Behaviors that were automatically detected

include: feeding movements at individual and school level, feeding

intensity (Zhou et al., 2019), abnormal behaviors due to lack of

oxygen or stress response (J. Wang et al., 2020), and curiosity by

showing inspection behaviors when interacting with bait or objects in

experimental set-up (Papadakis et al., 2012).
FIGURE 3

Examples of bounding boxes of fishes. Top panel: Tracking of fishes on the open-source VIAME platform for image and video analysis (Dawkins et al.,
2017). Bottom left: multiple trajectories of black seabreams around a fixed bait. Bottom right: In situ detections of sardines and horse mackerel inside a
gear (Game of Trawls Project).
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In laboratory experiments, goal-directed behaviors of fishes have

also been recognized by computer vision and are automatically

detected (Long et al., 2020) such as construction of spawning nests

by cichlid fishes that either form mounds or burrow in the sand. This
Frontiers in Marine Science 08
type of complex behavior can be distilled into recognizable patterns

such as manipulation of their physical environment (cichlid fish use

its mouth and fins to move sand) and distinct fish movements such as

quivering (usual mating movement observed from cichlid fishes).
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FIGURE 4

General process from in situ observations to behavior classification. (A), Representation of a section of an active gear (i.e., pelagic net) with a white-
colored material that act as a clear background for video capture. (B), Representation of a passive gear (i.e., baited gear)-baitfish prototype fixed on the
seafloor with a remote underwater video set-up. (C), Field of vision of a camera secured attached on one side of the pelagic net section. (D), Field of
vision of a camera facing the bait. (E, F), Frames from video footage of the underwater observation systems. (G), General workflow for deep learning
model application on object detection. (H, I), Sample of fish detections with bounding boxes and fish tracking with bounding boxes and line trails (Game
of Trawls and Baitfish)., (J) Representation of behavior classification labels inside active gear. The “region of interest” labels the section of the gear near
the exit and “escaping” labels the fishes that are exiting. (K), Representation of behavior classification labels with passive gear. The “region of interest”
labels the area in proximity of the bait and “approaching” labels the fish within this proximity. 3D model of baited gear credit to BAITFISH project and
image of fishes inside the pelagic net credit to Game of Trawls project.
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Automatically recognizing these behavior patterns contributes to

systematic analysis of these traits across taxa (York et al., 2015) and

can be an effective metric for measuring natural variations (Long

et al., 2020).

Artificial Intelligence methods trained to recognize fish behavior

have multiple components that are all connected in branching

streams of mathematical and statistical operations. From a video of

swimming schools of fishes, the attributes of what is happening in the

scene would be broken down into features of the fishes, their

appearance in terms of shape, texture, or color, and their reaction

to different types of stimuli translated into quantifiable metrics. Some

additional examples of applications can be found in Spampinato et al.

(2010); Fouad et al. (2014); Hernández-Serna and Jiménez-Segura

(2014); Iqbal et al. (2021) and Lopez-Marcano et al. (2021).

3.3.1 AI-based automatic behavior recognition
for fishes

Fish detection by AI models is when individuals or species are

recognized on a single image (Sung et al., 2017). An algorithm is

trained to identify features of fishes and localize regions in a scene.

The YOLO (You Only Look Once; Redmon et al., 2016) object

detection framework has been frequently used for fish detection

and species classification on 2D images (Cai et al., 2020; Jalal et al.,

2020; McIntosh et al., 2020; Raza and Hong, 2020; Bonofiglio et al.,

2022; Knausgård et al., 2021). The YOLO algorithm and its different

versions are widely used since its detecting speed on an entire image

are faster and more accurate than classic object detectors (for

technical specifications, see: Redmon et al., 2016). A trained

detection model can thus differentiate targeted and non-targeted

species, and identify differences between their morphology (i.e.,

round vs flat fish). Moreover, a cluster of individual detections can

also illustrate herding behavior from crowd movements.

Identifying different swimming patterns between targeted and

non-targeted species, however, requires tracking the spatial

alignments of trajectories inside gears and directions of swimming

through time, i.e., tracking. Fish tracking is done using motion

algorithms based on successions of images with multiple or

individual fish until they are no longer seen on the footage (Li

et al., 2021). To track fishes, algorithms are thus trained as a single

network or are coupled into a pipeline of networks for more complex

behavior interpretations (Table 3). Different implementations of deep

learning-based tracking have been used across studies, depending on

their tracking objectives or available resources (for object detection:

Faster R-CNN, for instance segmentation: Mask R-CNN, for tracking

based on loss: Minimum Output Sum of Squared Error (MOSSE), for

tracking based on comparing similarity among masks (similarity

learning): Siamese Mask (SiamMask), and for tracking based on

Non-Maximum Suppression (NMS) applied to sequences: Seq-

NMS). Their differences lie on the way they compute detections

from frame to frame and associate them to new or existing tracks of

detected fishes (Lopez-Marcano et al., 2021). Coupled networks in AI

pipelines are thus used for tracking to interpret finer details in

behavior (Table 3).

To decipher underlying behavioral patterns of fishes from manual

or automatically generated fish tracks, repeated patterns can be

translated into sets of labelled classes (i.e., n number of trajectory

moving in an x, y direction = escaping to upper panel), representing
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one or several specific behaviors. In AI, classes that can be labelled

and quantified (i.e., fish passing a mesh) can be learned by a deep

learning model so manual behavior classification can then be

automated. In aquaculture, swimming behavior have been manually

classified and fed through an algorithm that learns how to recognize

the behavioral classes from computer vision (Long et al., 2020; J.

Wang et al., 2020; Yu et al., 2021) . In commercial fishing, the

challenge lies in deciphering these patterns as fishes interact with

different structure of gears, modified parts, and selective devices. To

have AI models classify these types of interactions, a systematic

approach may thus be needed first in controlled environment, such

as fish tanks or behavioral chambers. This would allow stimuli to be

restricted and localized (Skinner, 2010) rather than being enhanced or

inhibited by spatiotemporal conditions (Ryer and Olla, 2000; Owen

et al., 2010; Maia and Volpato, 2013; Heydarnejad et al., 2017; Lomeli

et al., 2021).

Recurrent AI models based on LSTM architecture targeting fish

tracking are getting more attention since they are designed to give more

weight to significant movement patterns among chaotic ones as they

are trained. This adds a more cognitive ability to the learning of AI

models. For instance, Gupta et al. (2021) investigated different vision-

based object-tracking algorithms for multiple fishes in underwater

scenes both in controlled and uncontrolled environments. They

combined an object tracker designed with two complex networks (a

siamese network and a recurrent network) named DFTNet (for Deep

Fish Tracking Network). The first network used two identical neural

networks to reidentify fish, and the second network is an LSTM that

allows the AI model to learn from the fish’s chaotic motions.

In fishing activities, AI architecture with attention and memory is

thus particularly important to address the chaotic patterns seen among

species during capture process. Tracks can show swimming angles or

abrupt changes in movement that measure distance from gear structures

(Santos et al., 2020), mean trajectory in relation to the stimuli source

(Peterson, 2022), selective device placement or difference in position of

group or individual trajectories within gears. The visual features from

automatic detection (i.e., color, texture, shape among species, group, or

individual level) and the spatiotemporal features from tracking (i.e.,

swimming direction, angle, speed) (Figure 4H, I) can then be combined

to define the behavior classification (Figure 4J, K).

3.3.2 Behavioral classes tailored with
AI architecture

Fish behavior recognition is when a model can recognize a behavior

based on tracking features identified as events. An event is a scene

(Figure 4A, B) directly observed from videos, for example, when a

group of fish swims out from fishing gear. The combination of fish

detections and tracks (swimming patterns) can be categorized as a class

“escapement”, and behavioral metrics can be derived from such events

(see Figure 4J). Automatic behavior recognition is thus trained from

classified sets of tracking features and is the final step in synthesizing

chaotic fish swimming into distinguished sets of behaviors.

Classes of behaviors are defined by scientists and are used to label

an image sequence or a video clip that shows a defined behavior. For

example, a class label of escapement behavior can be defined from a

clip of a fish passing through a mesh. This can be defined as when the

detected body of the fish overlaps or touches the mesh. A behavior

class of a fish not escaping is when the detected trajectory of the fish
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TABLE 3 Summary of AI pipelines for fish behavior recognition in different underwater environments.

AI & Pipelines Application Results
Behavior
classes Scene

Light
source

Underwater
Observation

System
Database
Source Reference

YOLOv3 + dense
optical flow method
+ trajectory image
compression with
VGG19 + data
augmentation
generative sampling
+ binary behavior
classification

Response of
zebrafish
(Danio rerio) to
odorants

Best accuracy achieved
among tested
classifiers of 0.867
with data
augmentation and
decision tree classifier

Olfactory
response

Lab Low-
light
intensity

Infrared video
camera

Own dataset +
PASCAL VOC
and MS-COCO

Banerjee
et al., 2021

Pre-trained ResNet50
+ Motion estimation
algorithm for optical
flow data

Grazing
behavior of
free-swimming
luderick (Girella
tricuspidata) on
sea grass
patches

Recall, precision and
F1 score between 0.73
and 0.79 (without
spatiotemporal
filtering); Recall,
precision, F1 score
between 0.84 and 0.87
(with spatiotemporal
filtering)

Grazing/non
grazing

In situ open
water

Natural
light

Action cameras
(Haldex Sports
Action Cam HD
1080p)

Own dataset
(RGB videos)

Ditria et al.,
2021b

YOLOv3 +
MobileNetv2
backbone +
improved detection
method with
pyramid pooling
block and multiscale
feature extraction
technique

Quantify
feeding and
stress behavior
of carps
(Carassius
auratus) and
catfish
(Pelteobagrus
fulvidraco)

Precision of 0.897, a
recall of 0.884, an
intersection over
union of 0.892

Separate
feeding and
hypoxia
experimental
conditions

Fish tank 120
light-
emitting
diodes

Go-pro Hero 7
Black

Own dataset
(RGB videos)

Hu et al.,
2021

Idtracker.ai hybrid
system (Gaussian
mixture model +
greedy acceleration
minimization
principle)

Characterized
mutual motor
coordination
and multi-
functional
maneuvers in
zebrafish
(Dania rerio)

Identification accuracy
of 0.98

Fighting
behavior

Lab light
intensity
of 200–
300 lx at
the water
surface

Video camera –
not specified

Own dataset Laan et al.,
2018

3D Residual
Networks

Behavior of
cichlids
(foraging,
construction,
and social
behavior)

Accuracy for behavior
recognition of
construction behavior
of 0.76

Construction,
feeding,
mating

Lab Artificial
light
source

RaspberryPi
camera v2

Own dataset
(RGB videos)

Long et al.,
2020

Mask RCNN + 3
different trackers
(MOSSE, Seq-NMS,
SiamMask)

Characterizing
movement
behavior of
yellowfin
seabreams
(Acanthopagrus
australis)

Detection F1 score of
0.91, 120 of 169
individuals correctly
identified, 0.78
tracking accuracy
(MOSSE and
SiamMask) and 0.84
(Seq-NMS)

Tracking
angles:

In situ rocky
(rocky reefs
and seagrass
meadows)

Natural
light

Action cameras
(1080p Haldex
Sports Action
Cam HD)

Own dataset
(RGB videos)

Lopez-
Marcano
et al., 2021

Dual-Stream
Recurrent Network
(DSRN) (Spatial
Network + 3D CNN
+ LSTM)

Tracking if
feeding
behavior of
salmon (Salmo
salar)

Behavior prediction of
0.80

Feeding/Non
feeding

Breeding
cages at sea

Natural
light

Video camera
(not specified)

Own dataset
(RGB videos)

Måløy et al.,
2019

YOLOv3 + LSTM
networks

Identifying
startle behavior
in sablefish
(Anoplopoma
fimbria)

Average precision of
0.85

Startle/non-
startle event
on video clips

In situ, open
water,
tropical

Natural
light

Fixed in situ
camera

Own dataset
(RGB videos)

McIntosh
et al., 2020

(Continued)
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stays within the mesh barrier, or a class can consequently show it has

escaped if the tracked fish is detected outside the gear. The option to

label whether a fish has escaped is a detail that depends on the study’s

classification decisions (i.e., either when the fish’s body is entirely

outside the gear or as the fish passes through the mesh). Classes can

also be separated into action, and non-action classes (see Table 3),

where a defined behavior present in a video clip is labeled as the action

class, and another clip presenting unchanged or normal fish

movement is labeled with the non-action class. McIntosh et al.

(2020) defined four features that translate the startling behavior of

sablefish from their trajectories into measurable metrics: direction of

travel, speed, aspect ratio, and Local Momentary Change metric. They

combined the four features into a form suited to train an AI-based

classifier with an LSTM architecture (i.e., tensor data). Like applying

LSTM for tracking, an AI behavior recognizer with LSTM remembers
Frontiers in Marine Science 11
important features efficiently to classify swimming movements (Niu

et al., 2018; L. Yang et al., 2021). Behavior classes have been defined in

selectivity studies as events classified in empirical models (Santos

et al., 2016, Santos et al., 2020) or video tracking software (Noldus

et al., 2001). J. Wang et al. (2020) proposed a method for real-world

detections of anomalous behavior for multiple fish under high stress

with a 3-stage pipeline. Examples of AI pipelines are summarized in

Table 3, with the underwater scene, light source, and type of

underwater observation system used included for comparison.

3.3.3 The problem of occlusion emphasized in the
crowded scenes of fishing

The occlusion problem is when fishes overlap or swim behind one

another, leading to a loss of fish detections and fragmentation of

tracks (Gupta et al., 2021). Multiple objects tracking on videos is
TABLE 3 Continued

AI & Pipelines Application Results
Behavior
classes Scene

Light
source

Underwater
Observation

System
Database
Source Reference

Built-in algorithms in
LabView software +
Vision Development
Module

Detection of
gilthead
seabream
(Sparus aurata)
changes in
speed and
position

Less than 21 frames,
equivalent to 2.3 s,
were lost from a total
number of 778,378
recorded frames per
day

Net inspection
and net biting

Lab Artificial
light

Charge coupled
device (CDD)
cameras

Own dataset Papadakis
et al., 2012

2 converging streams
of event classifier
with SVM +
trajectory-based
algorithms

Influence of
typhoons on
mixed coral reef
fish behavior in
tropical
underwater
scenes

Accuracy of 0.80 for
fish detection, 0.95 for
tracking, 0.97 for event
detection

Typhoon/non
typhoon
videos

In situ Natural
light

GoPro cameras Fish4Knowledge
dataset

Spampinato
et al., 2014

Dual-stream 3D
convolutional
network with State
Definition +
Tracking Encoding +
Decoding by
Directed Cycle Graph
(DSC3D)

Behavior of
spotted knifejaw
(Oplegnathus
punctatus) in
high stress
environments

Mean correct behavior
recognition of 0.950

5 behavioral
states:
Feeding,
Hypoxia,
Hypothermia,
Frightening,
Normal

Lab Artificial
light
source

HD digital
camera
(HikvisionDS-
2CD2T87E(D)
WD-L)

Own dataset
(RGB and
optical flow
videos)

G. Wang
et al., 2021

Motion influence
map + RNN

Detection,
localization,
recognition of
unusual local
behavior in
tilapia
(Oreochromis
niloticus)

Accuracy for detection
(0.98), location (0.92),
recognition (0.90)

Unusual (3
behavioral
subcategories
of sudden
movements)

Aquaculture
tank

Artificial
light

Charge coupled
device (CDD)
cameras (DS-
2CD6233F-SDI,
Hikvisio)

Own dataset
(RGB images)

Zhao et al.,
2018

Clustering index with
near-infrared images

Analyze of
feeding
behavior of
carps (Cyprinus
carpio var.
specularis)

Accuracy of 0.945 Temporal
feeding states
before, during
and after (t=5,
15,30,60 s)

Aquaculture Near-
infrared
light
source

Industrial
camera (Mako
G-223B NIR)

Own dataset
(infrared
images)

Zhou et al.,
2017

LeNet5 7 layered
CNN structure

Assessing fish
appetite of
tilapia
(Oreochromis
niloticus)

Accuracy of 0.90 Fish appetite
(none, strong,
medium,
weak)

Aquaculture Near-
infrared
light

Industrial
camera (Mako
G-223B NIR)

Own dataset
(infrared
images)

Zhou et al.,
2019
f

Full terms of included abbreviations, LSTM, Long Short-Term Memory; CNN, Convolutional Neural Network; MOSSE, Minimum Output Sum of Squared Error; RNN/RCNN, Recurrent Neural
Network/Recurrent Convolutional Neural Network; Seq-NMS, Sequential Non-Maximum Suppression; SiamMask, Siamese Mask; SVM, Support Vector Machine; YOLO/v3, You Only Look Once
version 3.
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challenging since overlaps are flattened in a 2D view (See Figure 4C,

D, F). This problem occurs when studying behaviors in crowded

scenes of fishing. In 2D images and videos, training models to

recognize the body parts of fish can help to overcome occlusion. In

general, if a detector fails to locate an entire fish, a tracker can still

follow the movement according to other features of the fish (i.e.,

fisheye, fins, tail). For example, Liu et al. (2019) simultaneously track

the fish head and its center body so the head can be detected even

when the center body is hidden. Therefore, trackers can maintain fish

identity after occlusion happens if more appearance features are

learned by the model (Qian et al., 2014). Fish heads have relatively

fixed shapes and colors, so tracking them from frame to frame can still

be done even after frequent occlusions (L. Yang et al., 2021). The

darker color intensity of the head behind another and its elliptical

shape can be characterized as a blob and still be tracked.

Three-dimensional tracking from stereo cameras or multiple

camera systems where 3D components can be triangulated can help

address occlusion problems. By reconstructing trajectories on a 3D

view, fish trajectories are seen with depth, improving reidentifying a

fish after an occlusion (Cachat et al., 2011; Huang et al., 2021) .

However, AI models trained to recognize 3D trajectories demand

computationally intensive algorithms to associate the deconstructed

features together (L. Yang et al., 2021).

3.3.4 Transfer learning for
data-deficient environments

We have shown that assessing fish behavior relies on analyzing

trajectories. Considering tracks instead of detections generates even

larger amounts of data than single detections of fishes on frames.

Thousands to millions of such fish trajectories have likely been

generated worldwide. These data may now be used to train models

to detect fishes, at species level or as generic fish, in unseen

environments. We provide a few examples of available published

datasets that have been used to train models (Table 4).

For tropical fishes, Fish4Knowledge (F4K; Fisher et al., 2016), a

project that started in 2010, garnered millions of images from GoPro

cameras that were set-up in coral reef areas of Taiwan. The project

resulted to 87K hours of video (95 TB) and 145 million fish

identifications. It has then made the successfully curated database

available to the rest of the world and most of the developments in

automatic classification and identification tools for fishes have used

the database to train deep learning models (see in Table 4 uses of F4K:

Spampinato et al., 2010; Palazzo and Murabito, 2014; Shafait et al.,

2016; Jalal et al., 2020; Murugaiyan et al., 2021). For temperate fishes,

only a few commercial species can be automatically identified by

existing models but are nonetheless gaining more recognition.

Bonofiglio et al. (2022) trained an AI pipeline to detect and track

sablefish, Anoplopoma fimbria, in an underwater canyon in North

America on ~650 hours of video recording with ~9000 manual

annotations. Due to growing fish databases and application of

image processing techniques, AI models can now detect fishes with

human-like accuracy in some species such as Scythe butterfly fish

(Benson et al., 2013), some tropical species (Spampinato et al., 2010),

and mesopelagic species (Allken et al., 2021a).

Studying fish-gear interactions is particularly difficult due to the

unique and challenging conditions often met at sea. Pipelines of

automatic detections have applied transfer learning and data
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augmentation techniques to cope with the lack of available data.

For example, Knausgård et al. (2021) applied transfer learning to train

an AI system to identify temperate fishes that are commercially

valuable, such as wrasses (Ctenolabrus rupestris, C. exoletus and

Sympohodus melops) and gadoids (Gadus morhua, Pollachius virens,

P. pollachius, Molva molva, and Melanogrammus aeglefinus). Using

models pre-trained on available public datasets (see Table 4, e.g.,

Fish4Knowledge and ImageNet), they obtained high accuracies in

object detection and classification using their fine-tuned models

(86.96% and 99.27%, respectively). Transfer learning from pre-

existing object detection algorithms coupled with existing data from

other environments can thus be a promising approach for the

automatic analysis of fish species even from environments that still

lack data (Fisher et al., 2016; Siddiqui et al., 2018; Knausgård et al.,

2021), additional augmentation methods, such as generating synthetic

datasets, may help overcome the insufficiency of small datasets for

training models (Allken et al., 2019; Villon et al., 2021).
4 Discussion

4.1 Insights from AI applications for behavior
recognition from other domains

Automated behavior recognition has been applied to several

domains outside of fisheries. Dynamic systems of fish schools, just

as any large groups of moving individuals such as birds or insects

(Chapman et al., 2010; Altshuler and Srinivasan, 2018), will produce a

bundle of condensed and interloping trajectories when tracked.

Directional patterns of behavior (i.e., individual or collective) can

be interpreted from them (Sinhuber et al., 2019), but visual details of

targets can be lost in footages due to occlusions or motion blur (Liu

et al., 2016). Conveniently, apart from data enhancement methods,

there are already available algorithms and AI methods that

particularly addresses this challenge in natural systems of humans,

social animals and insects (i.e., Swarm Intelligence; Ahmed and

Glasgow, 2012, Boids algorithms; Alaliyat et al., 2014). Algorithms

to track behavior in congested human crowds have been developed

based on motion capture and optical flow techniques (Krausz and

Bauckhage, 2011). Different types of human behavior can now be

recognized by AI in all sorts of environment due to the considerable

attention in the domain and since high performing models learn from

a gigantic amount of training database of diverse human behavior

(Popoola and Wang, 2012; Vinicius et al., 2013).

Three-dimensional motion capture techniques can also provide

more information such as depth and detailed tracking of animal paths

(Wu et al., 2009). Moreover, 3D trajectories can provide the analytics

(i.e., positions, velocities, accelerations) to study cohesive and unique

behaviors (Sinhuber et al., 2019). For instance, Liu et al. (2016)

proposed an automatic tracking system that can reconstruct 3D

trajectories of fruit flies using three high-speed cameras that can be

generally adapted to large swarms of moving object. Dollár et al.

(2012) made use of features of human pedestrians to geometrically

quantify their overlaps and distances on a 2D scale. The AI models

that recognize facial features and postures of humans or other animals

therefore have the algorithmic backbone to extract behavior. Since

algorithms can be scalable and adaptable (see Section 3.3.4 on transfer
frontiersin.org
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TABLE 4 Summary of public datasets of fish images and videos for AI model training merged from open access database, from collection of generic image datasets (with other objects not focused on fishes) and
from Ditria et al. (2020); Saleh et al. (2020) and Pedersen et al. (2021).
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Dataset Access Size Included Fishes Labels Loca

BYU (Brigham
Young
University) Fish
dataset

http://roboticvision.groups.et.byu.
net/Machine_Vision/BYUFish/
BYU_Fish.html

12 labelled species (2.5 GB) 90 Asian Carp, 110 Crucian Carp, 74
Predatory Carp, and 89 Colossoma and
four non-invasive species (120 Cottids,
137 Speckled Dace, 172 Whitefish, and
240 Yellowstone Cutthroat image)

Species Not speci

Croatian Fish
Dataset

http://www.inf-cv.uni-jena.de/fine_
grained_recognition.html#datasets
(currently not accessible)

~700 images of 12 different fish
species in real life conditions
(120 images in training set and
674 in testing set)

Mixed Species Adriatic S
Croatia

DeepFish https://github.com/alzayats/
DeepFish

~40,000 annotated classification
labels, collected from 20
different habitats

Mixed in situ Fish/no
fish

Coastal m
environm
Australia

Deep Vision
Fish Dataset

http://metadata.nmdc.no/metadata-
api/landingpage/
01d102345aef4639f063a13ea20cd3f3

Two surveys 2017 to 2019 from
Deep Vision system

Blue whiting, Atlantic herring, Atlantic
herring, other mesopelagic fishes

Species In situ fro
surveys +
synthetic

FathomNET http://fathomnet.org ~80,000 images of marine
animals, 106 000 localizations,
26 000 h videos, 6.8 million
annotations, 4 349 terms

Mixed Mixed Worldwid

Fish4Knowledge
(F4K)

http://www.perceivelab.com/
datasets

3.5k bounding fishes/700k 10-
minute video clips

Species of tropical fishes Fish/no
fish

Taiwan c
reefs

FishNet https://www.fishnet.ai/ 406,463 bounding boxes in
86,029 images from 73 different
electronic monitoring cameras

Majority of species detected tuna species
(albacore, yellowfin, Skippack, bigeye)

Species From lon
tuna vess
western a
central P

Fish-Pak https://data.mendeley.com/datasets/
n3ydw29sbz/3

915 images of carps with
different orientation, position,
mouth

Ctenopharyngodon idella, Cyprinus
carpio, Cirrhinus mrigala, Labeo rohita,
Hypophthalmichthys molitrix, and Catla
catla.

Species Pakistan,
farms, an
systems

HabCam
(Habitat
Mapping
Camera System)

https://habcam.whoi.edu/ 2,500,000 images Mixed marine vertebrates and
invertebrates

Species Not speci
t

o

e

a

http://roboticvision.groups.et.byu.net/Machine_Vision/BYUFish/BYU_Fish.html
http://roboticvision.groups.et.byu.net/Machine_Vision/BYUFish/BYU_Fish.html
http://roboticvision.groups.et.byu.net/Machine_Vision/BYUFish/BYU_Fish.html
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http://www.inf-cv.uni-jena.de/fine_grained_recognition.html#datasets
https://github.com/alzayats/DeepFish
https://github.com/alzayats/DeepFish
http://metadata.nmdc.no/metadata-api/landingpage/01d102345aef4639f063a13ea20cd3f3
http://metadata.nmdc.no/metadata-api/landingpage/01d102345aef4639f063a13ea20cd3f3
http://metadata.nmdc.no/metadata-api/landingpage/01d102345aef4639f063a13ea20cd3f3
http://fathomnet.org
http://www.perceivelab.com/datasets
http://www.perceivelab.com/datasets
https://www.fishnet.ai/
https://data.mendeley.com/datasets/n3ydw29sbz/3
https://data.mendeley.com/datasets/n3ydw29sbz/3
https://habcam.whoi.edu/
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ral Joly et al.,
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Hossain et al., 2016; Salman et al.,
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et al., 2020; Ben Tamou et al., 2021

Videos
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r wild

Pedersen and
Mohammed,
2021

Albawi et al., 2017; Myrum et al.,
2019

Videos
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ng
ro 4,5
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of

Crescitelli
et al., 2021

Crescitelli et al., 2021 Images

orth
Bonofiglio
et al., 2022

Fier et al., 2015; Bonofiglio et al.,
2022

Videos

UVS Australian
Institute of
Marine
Science
(AIMS), 2019

Ditria et al., 2021b Images

x situ
u

Anantharajah
et al., 2014

Qiu et al., 2018; Guo et al., 2020;
Pang et al., 2022

Images

Bight
-2012

Cutter et al.,
2015

Cutter et al., 2015 Images and
Videos

The Nature
Conservancy
Fisheries

Pelletier et al., 2018 Images
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Dataset Access Size Included Fishes Labels Loca

J-EDI JAMSTEC
E-library of
Deep-sea
Images)

https://www.godac.jamstec.go.jp/
jedi/e/

1,500,000 images Deep sea species Species Not spec

LifeCLEF 2015/
FISHCLEF/
SeaCLEF

https://www.imageclef.org/2014/
lifeclef/fish

73 annotated videos Species of tropical fishes Species Taiwan c
reefs

NINA204 Not retrievable 204 video clips (101 stocked fish
and 103 wild fish)

Brown trout species No fish/
stocked
fish/
wild
fish

Stocked fi

freshwate
species in
Norway

NorFisk https://dataverse.no/dataset.xhtml?
persistentId=doi:10.18710/H5G3K5

12514 annotated images
(timestamp 2021 as it is
expected to grow from 2020
recorded footages) 3027
annotated images of saithe, 9487
of salmonids

Saithe and salmonids Species Norwegia
farms us
GoPro h
and 8 ca
(49 hour
video)

ONC Video
Data

https://github.com/bonorico/
analysis-of-ONC-video-data

9772 video clips, 9205 annotated
sablefish individuals

Sablefish Species Berkeley
Canyon,
America

OzFish https://github.com/open-AIMS/
ozfish

80k labeled crop images, 45k
bounding box annotations, 507
species of fish

Mixed (e.g,. Scarids, Chlorurus,
Capistratoides sp).

Species/
no
species,
fish/no
fish

Stereo BR

QUT Fish
Dataset

https://www.dropbox.com/s/
e2xya1pzr2tm9xr/QUT_fish_data.
zip?dl=0

∼4000 classification images, 486
species

Mixed in situ Species Varying
and in si
habitats

RockFish/
Labeled fishes in
the wild

https://swfscdata.nmfs.noaa.gov/
labeled-fishes-in-the-wild/

929 images with 1005 marked
fish, 17 videos at 10min long,
rate of 5 fps, ∼1k bounding
boxes (fish)

Ground fishes Fish/no
fish

Southern
Californi
from 200
surveys

The Nature
Conservancy
Fisheries
Monitoring
Database

https://www.kaggle.com/
competitions/the-nature-
conservancy-fisheries-monitoring/
data

Unspecified Albacore tuna, Bigeye tuna, Yellowfin
tuna, Mahi mahi, Opah, Sharks

Species Mixed
t

i

o

i
e
m
s

N

e
t

a
0

https://www.godac.jamstec.go.jp/jedi/e/
https://www.godac.jamstec.go.jp/jedi/e/
https://www.imageclef.org/2014/lifeclef/fish
https://www.imageclef.org/2014/lifeclef/fish
https://dataverse.no/dataset.xhtml?persistentId=doi:10.18710/H5G3K5
https://dataverse.no/dataset.xhtml?persistentId=doi:10.18710/H5G3K5
https://github.com/bonorico/analysis-of-ONC-video-data
https://github.com/bonorico/analysis-of-ONC-video-data
https://github.com/open-AIMS/ozfish
https://github.com/open-AIMS/ozfish
https://www.dropbox.com/s/e2xya1pzr2tm9xr/QUT_fish_data.zip?dl=0
https://www.dropbox.com/s/e2xya1pzr2tm9xr/QUT_fish_data.zip?dl=0
https://www.dropbox.com/s/e2xya1pzr2tm9xr/QUT_fish_data.zip?dl=0
https://swfscdata.nmfs.noaa.gov/labeled-fishes-in-the-wild/
https://swfscdata.nmfs.noaa.gov/labeled-fishes-in-the-wild/
https://www.kaggle.com/competitions/the-nature-conservancy-fisheries-monitoring/data
https://www.kaggle.com/competitions/the-nature-conservancy-fisheries-monitoring/data
https://www.kaggle.com/competitions/the-nature-conservancy-fisheries-monitoring/data
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learning), such Al models may now be adapted to fish features

and postures.
4.2 Towards smart fishing

The way we fish is constantly evolving. The more we understand

the impact of fishing, the more we look for ways to make our fishing

gears more selective. We are not just modifying the components of

gears anymore but also adding devices and camera systems to them to

create intelligent fishing gears. This turns fishing operations into

interactive, fine-scale observations platforms rather than catch-then-

see operations (Rosen et al., 2013; Kyllingstad et al., 2022).

Performances of modified fishing gears can almost be assessed real-

time which can elevate the plateau of gear selectivity studies by

exploring fish-gear interactions at finer scales. The challenge now

lies on obtaining consistent findings from these direct observations. In

highly stimulating, crowded, and stressful scenes in fishing activities,

subtle movements of fishes may turn into sharp and chaotic escapes

where learned behavior and predispositions are overcome by survival

instincts (Manière and Coureaud, 2020). Large volumes of fishes can

also be influenced by herding behavior and individuals may tend to

follow swimming routes of the group (Måløy et al., 2019). Addressing

this herding constrain currently relies on applying complex pipelines,

often coupled with stereovision (Rosen et al., 2013; Kyllingstad et al.,

2022). Handling such data in real-time is one of the current

bottlenecks because it has to be processed within embedded AI

systems. To equip fishing gears, these embedded systems have to

remain as light as possible, with controlled size, memory and power

consumption. These issues will be partially solved as the algorithms

presented above (see Section 3.3: The problem of occlusion emphasized

in the crowded scenes of fishing and Table 3) keep improving in

handling the occlusion problem, and as the observation systems keep

improve to meet the image quality required for AI applications (see

Section 2.1 Observations of fish behavior in fishing gears and Table 1).

In the meantime, AI may already facilitate the assessment of

fishing gear modification. When a fishing gear is designed with a new

stimulus (e.g., Southworth et al., 2020; Ruokonen et al., 2021) or when

its parts are modified (e.g., Feekings et al., 2019), the certainty that

they dominantly cause a change in behavior of fishes leading to

escapes or retention is impossible to single out due the large

variability in external and internal factors affecting the fishes’

responses. It is also unlikely that the exact movements by the same

community of fishes can be observed upon two successive occasions

(Ryer and Barnett, 2006; Ryer et al., 2010; Lomeli and Wakefield,

2019). Applying automatic behavior recognition in such situations

would enable to process much larger amount of data on fine-scale

differences than what could be done manually, even if it comes with

some levels of errors inherent to using any fully automatic recognition

algorithm (Faillettaz et al., 2016; Villon et al., 2021). Complementary

laboratory studies may also help collect consistent findings (Hannah

and Jones, 2012), which are needed to gather a database of

automatically classifiable behaviors. For example, the influence of

light intensity on juvenile walleye pollock Theragra chalcogramma

were studied in laboratory conditions and in situ and showed that

juveniles either struck the nets more often or swam closer to them in

darkness than at the highest illumination (Olla et al., 2000). Such
T
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systematic behavioral responses could thus be used to train an AI

model which could then be used to automatically analyze replicates of

additional trials. Similarly, AI applications would enable to amplify

the number of replicates of sea or laboratory trials, for example when

assessing how changes in the positions of stimuli influences species

behaviors (Larsen et al., 2017; Yochum et al., 2021).
4.3 Sharing and collaboration for the
sake of fishes

Transferred learning of adaptable deep learning models from

other behavioral studies and sceneries is key for automated fish

behavior recognition, but technically executing this requires

collaboration among the scientific community. The advances of fish

behavior recognition in aquaculture and in situ environments often

stem out of joint efforts between ecologists and computer scientists.

AI practitioners mostly have the knowledge on which algorithm or AI

network can be appropriated to specific study cases, while marine

scientists provide the underlying ecological question and the inherent

parameters (i.e., classification of fish behaviors, metrics for

quantification) to fine-tune the algorithms. Automated behavior

recognition models that are successful have benefited from huge

streams of imagery data and unprecedented fundings in terms of

technological specifications. Existing and previous data mining and

collection practices included outsourcing efforts. Fish4Knowledge

branched out to volunteers, subprojects, and gamifying techniques

(Fisher et al., 2016). Popular datasets such as ImageNet and COCO

used Amazon Analytics to crowdsource annotations of objects

(Gauen et al., 2017). McClure et al. (2020) discussed that citizen

science is beneficial for AI applied in ecological monitoring as it can

fast track data collection since AI is now within reach because of

integration in mobile devices and user-friendly platforms. The

phytoplankton world is benefitting from citizen science as online

portals are used by volunteers to do simple classification tasks that has

led to millions of plankton ID’s to be verified (Robinson et al., 2017).

Moreover, scientists are adapting FAIR (Findability, Accessibility,

Interoperability, and Reuse) data principles to realize the full value of

fish behavior data and to carefully curate a unifying database (Guidi

et al., 2020; Bilodeau et al., 2022).

Bridging the gap between computer and marine sciences can

accelerate the development of powerful tools for automated fish

monitoring (Goodwin et al., 2021). User-friendly software platforms

for image processing and analysis of animal tracks and events are

publicly accessible and designed for non-AI experts (Dawkins et al.,

2017). So even if observations of fish-gear interactions are more

demanding in terms of observation requirements that can produce

small sizes of data and are distinctly case-specific, training models can

still be aided by means of data transfer, open-access databases, and

participatory platforms. This will be beneficial for everyone as end-

tools that grow in performance will also grow in scalability thanks to

shared data. If there are enough collaborations across domains,

extensive engagement with fish ethologists to construct behavioral

classifiers, consistent sharing of reproducible, understandable, and

scalable data then it might become possible to quantify, in near

completeness, what a fish is doing or how it is interacting with its

environment in any conditions.
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4.4 Limitation of AI: A critical view

AI-adapted electronic fishing is still fairly new to fisheries so

practical applications to improve selectivity of fishing gears may not

be seen directly. AI models are dependent on the quality of the

training data and imagery is still currently lacking. Contrary to

fisheries-based observation, land- and air-based behavior studies

have more opportunity to use AI for automatic behavior

recognition as aerial and terrestrial devices can be smaller and

lighter than underwater camera systems (e.g., Rosen and Holst

(2013) for an underwater example; Liu et al. (2016) for a

land example).

The environmental impact of these developing hardware and

software systems in fisheries must not also be taken for granted. They

may reduce operational energy consumption with automation but if

intelligent tools are eventually applied in a commercial level, this may

imply significant extraction of heavy metals to manufacture the

hardware and increase in the carbon footprint of storage servers

(Gupta et al., 2022). Scientists should be cautious to not be swept away

by the promise of intelligent fishing without also seeking the

environmental cost of making and maintaining it. AI application

may tip the scale in favor offishes but the integration of AI to fisheries

must be accompanied by environmental impact assessments and an

active search for alternative materials for machines.

Furthermore, our perception of animal behavior can be

anthropomorphic, and this bias may be transferred to artificial

tools. Researchers have consistently indicated the possible transfer

of human bias into artificial intelligence that can be worsened by

training models with limited data (Horowitz and Bekoff, 2015). As of

today, human still need to be cautious in identifying behavioral both

in manual and automatic methods; unsupervised learning may help

get rid of anthropomorphic biases (Sengupta et al., 2018).

Another critical view of the use of AI in fisheries sustains the

reality that it can be a double edge sword. On one hand, it may help

scientists understand fish behavior and reduce bycatch (e.g.,

Knausgård et al., 2021; Sokolova et al., 2021). On the other hand, it

may help the fishing industry to increase their catch with the use of

automated tools (Walsh et al., 2002). As with any other technological

advancement, the practical nature of it stems on how humans decide

to use them (Bostrom and Yudkowsky, 2018). It is therefore in the

hands of stakeholders to discuss among one another, to stress both the

negative and positive impacts of AI, and to lay down ethical practices

to prevent mishandling of this new technology. Debates in using AI

tools in fisheries arise but if we go forward with the intention to help

address ecological problems and emphasize its use for selectivity, then

it may build the tools for a sustainable use of our resources.
4.5 Navigating a rapidly evolving field
of research

The main challenge of studying fish-gear interactions is not of

lack but of abundance. The growing data in fish behavior and existing

footages of their interactions with gears carry with them the vital

information for better gears waiting to be synthesized. Automating

the methods of data collection and process not only unlatches the

time and effort given by scientists from laborious practices but also
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liberates the focus unto deeper scientific and creative endeavors. User-

friendly platforms that translate complex AI algorithms into software

tools can encourage interest even from non-practitioners to

participate in model training and fish tracking.

As we write this review, powerful and cognitive AI models in the

field of computer science are advancing in an unparalleled speed. This

will inevitably pour into the development of models for fisheries. AI

applied in other sectors have cognitive understanding allowing

machines to have higher level of ability of induction, reasoning and

acquisition of knowledge. The evolution of future AI models for

automatic recognition of fish-gear interactions now depends on

multiple factors:
Fron
- First is the careful and accurate classification of fish trajectories

that considers 3D components in a moving world.

- Second is the adaptation and re-training of pre-trained models

from different human and animal behavioral studies.

- Third is the production of scalable and adaptable models for

different case studies in gears and the shareability of fish

behavior data among scientists.

- Fourth is the reliance on a continued and harmonious

engagement of both marine scientists and AI practitioners

to develop cognitive AI for fish-gear interaction systems.
There is no magic gear that completely selects targeted species,

allow all unwanted species to escape, and has no economic and

biological losses. However, equipping fishing gear with state-of-the-

art technologies may help address ecological problems, understand

overlooked species’ behavior and make our fishing practices more

sustainable, laying the right track as we step into a technological era.
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Hernández-Serna, A., and Jiménez-Segura, L. F. (2014). Automatic identification of
species with neural networks. PeerJ. 2, p.e563. doi: 10.7717/peerj.563

Heydarnejad, M. S., Fattollahi, M., and Khoshkam, M. (2017). Influence of light colours
on growth and stress response of pearl gourami trichopodus leerii under laboratory
conditions. J. Ichthyology 6 (57), 908–912. doi: 10.1134/S0032945217060054

Hoffman, R. R., Mueller, S. T., Klein, G., and Litman, J. (2018). Metrics for explainable
AI: Challenges and prospects. arXiv preprint arXiv: 2007.00114. doi: 10.48550/
arxiv.1812.04608

Holbrook, R. I., and Burt de Perera, T. (2009). Separate encoding of vertical and
horizontal components of space during orientation in fish. Anim. Behav. 78, 241–245.
doi: 10.1016/j.anbehav.2009.03.021

Horowitz, A. C., and Bekoff, M. (2015). Naturalizing anthropomorphism: Behavioral
prompts to our humanizing of animals. Anthrozoös 20(1), 20, 23–35. doi: 10.2752/
089279307780216650
frontiersin.org

https://doi.org/10.1109/WACVW.2015.11
https://doi.org/10.1109/WACV.2017.105
https://doi.org/10.1080/00028487.2017.1282888
https://doi.org/10.1080/00028487.2017.1282888
https://doi.org/10.1093/icesjms/fss155
https://doi.org/10.1093/icesjms/fss155
https://doi.org/10.1098/RSPB.1960.0022
https://doi.org/10.3389/fmars.2021.629485
https://doi.org/10.1016/j.anbehav.2021.04.018
https://doi.org/10.1007/s10661-020-08653-z
https://doi.org/10.1121/1.3675944
https://doi.org/10.1109/TPAMI.2011.155
https://doi.org/10.1109/AUV50043.2020.9267890
https://doi.org/10.1109/AUV50043.2020.9267890
https://doi.org/10.1201/9781315368597
https://doi.org/10.1201/9781315368597
https://doi.org/10.1093/icesjms/fsaa150
http://www.pascalnetwork.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascalnetwork.org/challenges/VOC/voc2012/workshop/index.html
https://doi.org/10.1016/j.mio.2016.04.003
https://doi.org/10.1111/FME.12379
https://doi.org/10.1093/ICESJMS/FSM099
https://doi.org/10.1109/OCEANS.2014.7003118
https://doi.org/10.1007/978-3-319-30208-9
https://doi.org/10.1016/j.fishres.2005.01.015
https://doi.org/10.1609/AIMAG.V27I2.1882
https://doi.org/10.1371/journal.pone.0084885
https://doi.org/10.1109/HIS.2013.6920477
https://doi.org/10.1016/J.APACOUST.2012.04.001
https://doi.org/10.1109/IRI.2017.59
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1016/0165-7836(94)00330-Y
https://doi.org/10.1007/BF00878449
http://arxiv.org/abs/2109.14737
https://doi.org/10.1016/S0165-7836(02)00015-2
https://doi.org/10.1016/j.icesjms.2004.06.006
https://doi.org/10.2200/S00332ED1V01Y201103AIM011
https://doi.org/10.5281/ZENODO.3755793
https://doi.org/10.1109/IEEECONF38699.2020.9389005
https://doi.org/10.1109/MM.2022.3163226
https://doi.org/10.1109/TIM.2021.3109731
https://doi.org/10.1007/978-1-4684-8261-4_4
https://doi.org/10.1016/J.FISHRES.2012.07.010
https://doi.org/10.1002/tafs.10261
https://doi.org/10.1073/PNAS.1703817114
https://doi.org/10.4060/cb4966en
https://doi.org/10.7717/peerj.563
https://doi.org/10.1134/S0032945217060054
https://doi.org/10.48550/arxiv.1812.04608
https://doi.org/10.48550/arxiv.1812.04608
https://doi.org/10.1016/j.anbehav.2009.03.021
https://doi.org/10.2752/089279307780216650
https://doi.org/10.2752/089279307780216650
https://doi.org/10.3389/fmars.2023.1010761
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Abangan et al. 10.3389/fmars.2023.1010761
Hossain, E., Alam, S. M. S., Ali, A. A., and Amin, M. A. (2016). “Fish activity tracking
and species identification in underwater video,” in 2016 5th International Conference on
Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh. 62–66. doi: 10.1109/
ICIEV.2016.7760189

Hsiao, Y. H., Chen, C. C., Lin, S. I., and Lin, F. P. (2014). Real-world underwater fish
recognition and identification, using sparse representation. Ecol. Inform 23, 13–21.
doi: 10.1016/j.ecoinf.2013.10.002

Huang, K., Han, Y., Chen, K., Pan, H., Zhao, G., Yi, W., et al. (2021). A hierarchical 3D-
motion learning framework for animal spontaneous behavior mapping. Nat. Commun. 1
(12), 1–14. doi: 10.1038/s41467-021-22970-y

Huang, D., Zhao, D., Wei, L., Wang, Z., and Du, Y. (2015). Modeling and analysis in
marine big data: Advances and challenges. Math Probl Eng. 2015, pp. 1–13. doi: 10.1155/
2015/384742

Hu, J., Zhao, D., Zhang, Y., Zhou, C., and Chen, W. (2021). Real-time nondestructive
fish behavior detecting in mixed polyculture system using deep-learning and low-cost
devices. Expert Syst. Appl. 178, 115051. doi: 10.1016/j.eswa.2021.115051

Iqbal, M. A., Wang, Z., Ali, Z. A., and Riaz, S. (2021). Automatic fish species
classification using deep convolutional neural networks. Wirel Pers. Commun. 116,
1043–1053. doi: 10.1007/s11277-019-06634-1

Jäger, J., Simon, M., Jaeger, J., Denzler, J., Wolff, V., Fricke-Neuderth, K., et al. (2015).
Croatian Fish dataset: Fine-grained classification of fish species in their natural habitat, in
T. Amaral, S. Matthews, T. Plötz, S. McKenna and R. Fisher (eds.), Proceedings of the
Machine Vision of Animals and their Behaviour (MVAB), pp. 6.1-6.7. doi: 10.5244/
C.29.MVAB.6

Jahanbakht, M., Xiang, W., Hanzo, L., and Azghadi, M. R. (2021). Internet Of
underwater things and big marine data analytics - a comprehensive survey. IEEE
Commun. Surveys Tutorials 23, 904–956. doi: 10.1109/COMST.2021.3053118

Jalal, A., Salman, A., Mian, A., Shortis, M., and Shafait, F. (2020). Fish detection and
species classification in underwater environments using deep learning with temporal
information. Ecol. Inform 57, 101088. doi: 10.1016/j.ecoinf.2020.101088

Joly, A., Goëau, H., Glotin, H., Spampinato, C., Bonnet, P., Vellinga, W.-P., et al.
(2016). LifeCLEF 2016: Multimedia life species identification challenges. In Proceedings of
the 2016 International Conference of the Cross-Language Evaluation Forum for European
Languages (CLEF), Evora, Portugal. 286–310. doi: 10.1007/978-3-319-44564-9_26ï

Jones, M. J., and Hale, R. (2020). Using knowledge of behaviour and optic physiology to
improve fish passage through culverts. Fish Fisheries 21, 557–569. doi: 10.1111/faf.12446

Jones, E. G., Summerbell, K., and O’Neill, F. (2008). The influence of towing speed and
fish density on the behaviour of haddock in a trawl cod-end. Fish Res. 94, 166–174.
doi: 10.1016/j.fishres.2008.06.010

Jordan, L. K., Mandelman, J. W., McComb, D. M., Fordham, S., Carlson, J. K., and
Werner, T. B. (2013). Linking sensory biology and fisheries bycatch reduction in
elasmobranch fishes: a review with new directions for research. Conserv. Physiol. 1, 1–
20. doi: 10.1093/CONPHYS/COT002

Kadri, S., Metcalfe, N. B., Huntingford, F. A., and Thorpe, J. E. (1991). Daily feeding
rhythms in Atlantic salmon in sea cages. Aquaculture 92, 219–224. doi: 10.1016/0044-
8486(91)90023-Z

Kaimmer, S., and Stoner, A. W. (2008). Field investigation of rare-earth metal as a
deterrent to spiny dogfish in the pacific halibut fishery. Fish Res. 94, 43–47. doi: 10.1016/
J.FISHRES.2008.06.015

Karlsen, J. D., Melli, V., and Krag, L. A. (2021). Exploring new netting material for
fishing: The low light level of a luminous netting negatively influences species separation
in trawls. ICES J. Mar. Sci. 78, 2818–2829. doi: 10.1093/icesjms/fsab160

Katija, K., Orenstein, E., Schlining, B., Lundsten, L., Barnard, K., Sainz, G., et al.
(2021a). FathomNet: A global image database for enabling artificial intelligence in the
ocean. arXiv preprint doi: 10.48550/arxiv.2109.14646

Katija, K., Roberts, P., Daniels, J., Lapides, A., Barnard, K., Risi, M., et al. (2021b).
Visual tracking of deepwater animals using machine learning-controlled robotic
underwater vehicles. In Proceedings of the IEEE/CVF winter conference on applications
of computer vision, 860–869.

Kay, J., and Merrifield, M. (2021). The fishnet open images database: A dataset for fish
detection and fine-grained categorization in fisheries. arXiv preprint arXiv:2106.09178.
doi: 10.48550/arxiv.2106.09178

Kim, Y.-H. (2003). Numerical modeling of chaotic behavior for small-scale movements
of demersal fishes in coastal water. Fisheries Sci. 69, 535–546. doi: 10.1046/j.0919-
9268.2003.00654.x

Kim, Y.-H., and Wardle, C. S. (2003). Optomotor response and erratic response:
quantitative analysis of fish reaction to towed fishing gears. Fisheries Research 60, 455–
470. doi: 1016/S0165-7836(02)00114-5

Kim, Y. H., and Wardle, C. S. (2005). Basic modelling of fish behaviour in a towed trawl
based on chaos in decision-making. Fish Res. 73, 217–229. doi: 10.1016/j.fishres.2004.12.003

Kim, Y. H., Wardle, C. S., and An, Y. S. (2008). Herding and escaping responses of
juvenile roundfish to square mesh window in a trawl cod end. Fisheries Sci. 74, 1–7.
doi: 10.1111/j.1444-2906.2007.01490.x

Knausgård, K. M., Wiklund, A., Sørdalen, T. K., Halvorsen, K. T., Kleiven, A. R., Jiao,
L., et al. (2021). Temperate fish detection and classification: a deep learning based
approach. Appl. Intell. 52(6), 6988–7001. doi: 10.1007/s10489-020-02154-9

Krag, L. A., Madsen, N., and Karlsen, J. D. (2009). A study of fish behaviour in the
extension of a demersal trawl using a multi-compartment separator frame and SIT camera
system. Fish Res. 98, 62–66. doi: 10.1016/J.FISHRES.2009.03.012
Frontiers in Marine Science 20
Krausz, B., and Bauckhage, C. (2011). “Analyzing pedestrian behavior in crowds for
automatic detection of congestions,” in 2011 IEEE International Conference on Computer
Vision Workshops (ICCV Workshops), Barcelona, Spain. 144–149. doi: 10.1109/
ICCVW.2011.6130236

Kunz, Y. W. (2006). Review of development and aging in the eye of teleost fish.
Neuroembryology Aging 4, 31–60. doi: 10.1159/000103451

Kyllingstad, L. T., Reite, K.-J., Haugen, J., and Ladstein, J. (2022) SMARTFISH H2020
D5.3: FishData analysis (Open access revision) (SINTEF Ocean). Available at: https://
sintef.brage.unit.no/sintef-xmlui/handle/11250/3013186 (Accessed January 11, 2023).

Løkkeborg, S. (1990). Rate of release of potential feeding attractants from natural and
artificial bait. Fish Res. 8, 253–261. doi: 10.1016/0165-7836(90)90026-R

Laan, A., Iglesias-Julios, M., and de Polavieja, G. G. (2018). Zebrafish aggression on the
sub-second time scale: evidence for mutual motor coordination and multi-functional
attack manoeuvres. R Soc. Open Sci. 5, 180679. doi: 10.1098/RSOS.180679

Langlois, T., Goetze, J., Bond, T., Monk, J., Abesamis, R. A., Asher, J., et al. (2020). A
field and video annotation guide for baited remote underwater stereo-video surveys of
demersal fish assemblages. Methods Ecol. Evol. 11, 1401–1409. doi: 10.1111/2041-
210X.13470

Laradji, I., Saleh, A., Rodriguez, P., Nowrouzezahrai, D., Azghadi, M. R., and Vazquez,
D. (2020). Affinity LCFCN: Learning to segment fish with weak supervision. arXiv
preprint arXiv:2011.03149. doi: 10.48550/arxiv.2011.03149

Larsen, R. B., Herrmann, B., Sistiaga, M., Brinkhof, J., Tatone, I., and Langård, L.
(2017). Performance of the Nordmøre grid in shrimp trawling and potential effects of
guiding funnel length and light stimulation. Mar. Coast. Fisheries. 9(1), 479–492.
doi: 10.1080/19425120.2017.1360421

Larsen, R. B., and Larsen, I. (1993). Size selectivity of rigid sorting grids in bottom
trawls for Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). ICES
Mar Sci Symp 196, 178–182.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 7553 (521), 436–
444. doi: 10.1038/nature14539

Lee, D.-J., Schoenberger, R. B., Shiozawa, D., Xu, X., and Zhan, P. (2004). Contour
matching for a fish recognition and migration-monitoring system. Two-and Three-
Dimensional Vision Systems for Inspection, Control, and Metrology II, 5606, 37–48.
doi: 10.1117/12.571789

Lillywhite, K. D., and Lee, D. J. (2013) Robotic vision lab (Brigham Young University,
Fish dataset). Available at: http://roboticvision.groups.et.byu.net/Machine_Vision/
BYUFish/BYU_Fish.html (Accessed August 1, 2022).

Liu, Y., Wang, S., and Chen, Y. Q. (2016). Automatic 3D tracking system for large swarm of
moving objects. Pattern Recognit 52, 384–396. doi: 10.1016/J.PATCOG.2015.11.014

Liu, X., Yue, Y., Shi, M., and Qian, Z. M. (2019). 3-d video tracking of multiple fish in a
water tank. IEEE Access 7, 145049–145059. doi: 10.1109/ACCESS.2019.2945606

Li, D., Wang, G., Du, L., Zheng, Y., and Wang, Z. (2022). Recent advances in intelligent
recognition methods for fish stress behavior. Aquac Eng. 96, 102222. doi: 10.1016/
J.AQUAENG.2021.102222

Li, D., Wang, Z., Wu, S., Miao, Z., Du, L., and Duan, Y. (2020). Automatic recognition
methods of fish feeding behavior in aquaculture: A review. Aquaculture 528. doi: 10.1016/
j.aquaculture.2020.735508

Li, J., Zhu, K., Wang, F., and Jiang, F. (2021). Deep neural network-based real time fish
detection method in the scene of marine fishing supervision. J. Intelligent Fuzzy Syst. 41,
4527–4532. doi: 10.3233/JIFS-189713

Logares, R., Alos, J., Catalan, I., Solana, A. C., and Javier del Ocampo, F. (2021).
“Oceans of big data and artificial intelligence,” Oceans. CSIC scientific challenges towards
2030. 163–179. Available at: https://hal.archives-ouvertes.fr/hal-03372264/.

Lomeli, M. J. M., and Wakefield, W. W. (2019). The effect of artificial illumination on
Chinook salmon behavior and their escapement out of a midwater trawl bycatch
reduction device. Fish Res. 218, 112–119. doi: 10.1016/j.fishres.2019.04.013

Lomeli, M. J. M., Wakefield, W. W., Herrmann, B., Dykstra, C. L., Simeon, A., Rudy, D. M.,
et al. (2021). Use of artificial illumination to reduce pacific halibut bycatch in a U.S. West coast
groundfish bottom trawl. Fish Res. 233, 105737. doi: 10.1016/j.fishres.2020.105737

Long, L., Johnson, Z. V., Li, J., Lancaster, T. J., Aljapur, V., Streelman, J. T., et al. (2020).
Automatic classification of cichlid behaviors using 3D convolutional residual networks.
iScience 23, 101591. doi: 10.1016/j.isci.2020.101591

Lopez-Marcano, S. ,. L., Jinks, E., Buelow, C. A., Brown, C. J., Wang, D., Kusy, B., et al.
(2021). Automatic detection of fish and tracking of movement for ecology. Ecol. Evol. 11,
8254–8263. doi: 10.1002/ece3.7656

Lucas, S., and Berggren, P. (2022). A systematic review of sensory deterrents for
bycatch mitigation of marine megafauna. Rev. Fish Biol. Fisheries 2022, 1–33.
doi: 10.1007/S11160-022-09736-5

Lukas, J., Romanczuk, P., Klenz, H., Klamser, P., Arias Rodriguez, L., Krause, J., et al.
(2021). Acoustic and visual stimuli combined promote stronger responses to aerial
predation in fish. Behav. Ecol. 32, 1094–1102. doi: 10.1093/BEHECO/ARAB043

Lu, H., Li, Y., Zhang, Y., Chen, M., Serikawa, S., and Kim, H. (2017). Underwater
optical image processing: a comprehensive review.Mobile Networks Appl. 22, 1204–1211.
doi: 10.1007/s11036-017-0863-4

Maia, C. M., and Volpato, G. L. (2013). Environmental light color affects the stress
response of Nile tilapia. Zoology 116, 64–66. doi: 10.1016/J.ZOOL.2012.08.001

Måløy, H., Aamodt, A., andMisimi, E. (2019). A spatio-temporal recurrent network for
salmon feeding action recognition from underwater videos in aquaculture. Comput.
Electron Agric. 167, 105087. doi: 10.1016/j.compag.2019.105087
frontiersin.org

https://doi.org/10.1109/ICIEV.2016.7760189
https://doi.org/10.1109/ICIEV.2016.7760189
https://doi.org/10.1016/j.ecoinf.2013.10.002
https://doi.org/10.1038/s41467-021-22970-y
https://doi.org/10.1155/2015/384742
https://doi.org/10.1155/2015/384742
https://doi.org/10.1016/j.eswa.2021.115051
https://doi.org/10.1007/s11277-019-06634-1
https://doi.org/10.5244/C.29.MVAB.6
https://doi.org/10.5244/C.29.MVAB.6
https://doi.org/10.1109/COMST.2021.3053118
https://doi.org/10.1016/j.ecoinf.2020.101088
https://doi.org/10.1007/978-3-319-44564-9_26&iuml;
https://doi.org/10.1111/faf.12446
https://doi.org/10.1016/j.fishres.2008.06.010
https://doi.org/10.1093/CONPHYS/COT002
https://doi.org/10.1016/0044-8486(91)90023-Z
https://doi.org/10.1016/0044-8486(91)90023-Z
https://doi.org/10.1016/J.FISHRES.2008.06.015
https://doi.org/10.1016/J.FISHRES.2008.06.015
https://doi.org/10.1093/icesjms/fsab160
https://doi.org/10.48550/arxiv.2109.14646
https://doi.org/10.48550/arxiv.2106.09178
https://doi.org/10.1046/j.0919-9268.2003.00654.x
https://doi.org/10.1046/j.0919-9268.2003.00654.x
https://doi.org/1016/S0165-7836(02)00114-5
https://doi.org/10.1016/j.fishres.2004.12.003
https://doi.org/10.1111/j.1444-2906.2007.01490.x
https://doi.org/10.1007/s10489-020-02154-9
https://doi.org/10.1016/J.FISHRES.2009.03.012
https://doi.org/10.1109/ICCVW.2011.6130236
https://doi.org/10.1109/ICCVW.2011.6130236
https://doi.org/10.1159/000103451
https://sintef.brage.unit.no/sintef-xmlui/handle/11250/3013186
https://sintef.brage.unit.no/sintef-xmlui/handle/11250/3013186
https://doi.org/10.1016/0165-7836(90)90026-R
https://doi.org/10.1098/RSOS.180679
https://doi.org/10.1111/2041-210X.13470
https://doi.org/10.1111/2041-210X.13470
https://doi.org/10.48550/arxiv.2011.03149
https://doi.org/10.1080/19425120.2017.1360421
https://doi.org/10.1038/nature14539
https://doi.org/10.1117/12.571789
http://roboticvision.groups.et.byu.net/Machine_Vision/BYUFish/BYU_Fish.html
http://roboticvision.groups.et.byu.net/Machine_Vision/BYUFish/BYU_Fish.html
https://doi.org/10.1016/J.PATCOG.2015.11.014
https://doi.org/10.1109/ACCESS.2019.2945606
https://doi.org/10.1016/J.AQUAENG.2021.102222
https://doi.org/10.1016/J.AQUAENG.2021.102222
https://doi.org/10.1016/j.aquaculture.2020.735508
https://doi.org/10.1016/j.aquaculture.2020.735508
https://doi.org/10.3233/JIFS-189713
https://hal.archives-ouvertes.fr/hal-03372264/
https://doi.org/10.1016/j.fishres.2019.04.013
https://doi.org/10.1016/j.fishres.2020.105737
https://doi.org/10.1016/j.isci.2020.101591
https://doi.org/10.1002/ece3.7656
https://doi.org/10.1007/S11160-022-09736-5
https://doi.org/10.1093/BEHECO/ARAB043
https://doi.org/10.1007/s11036-017-0863-4
https://doi.org/10.1016/J.ZOOL.2012.08.001
https://doi.org/10.1016/j.compag.2019.105087
https://doi.org/10.3389/fmars.2023.1010761
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Abangan et al. 10.3389/fmars.2023.1010761
Malde, K., Handegard, N. O., Eikvil, L., and Salberg, A. B. (2020). Machine intelligence
and the data-driven future of marine science. ICES J. Mar. Sci. 77, 1274–1285.
doi: 10.1093/icesjms/fsz057

Mandralis, I., Weber, P., Novati, G., and Koumoutsakos, P. (2021). Learning swimming
escape patterns for larval fish under energy constraints. Phys. Rev. Fluids 6, 093101.
doi: 10.1103/PhysRevFluids.6.093101

Manière, G., and Coureaud, G. (2020). Editorial: From stimulus to behavioral decision-
making. Frontiers in Behavioral Neuroscience 13, 274. doi: 10.3389/fnbeh.2019.00274

Marini, S., Fanelli, E., Sbragaglia, V., Azzurro, E., del Rio Fernandez, J., and Aguzzi, J.
(20182018). Tracking fish abundance by underwater image recognition. Sci. Rep. 1 (8), 1–
12. doi: 10.1038/s41598-018-32089-8

Matt, S. J. K., Broadhurst, K., Kennelly, S. J., and Broadhurst, M. K. (2021). A review of
bycatch reduction in demersal fish trawls. Rev. Fish Biol. Fisheries 2 (31), 289–318.
doi: 10.1007/s11160-021-09644-0

McClure, E. C., Sievers, M., Brown, C. J., Buelow, C. A., Ditria, E. M., Hayes, M. A.,
et al. (2020). Artificial intelligence meets citizen science to supercharge ecological
monitoring. Patterns. 1 (7), 100109. doi: 10.1016/j.patter.2020.100109

McIntosh, D., Marques, T. P., Albu, A. B., Rountree, R., and de Leo, F. (2020).
Movement tracks for the automatic detection of fish behavior in videos. arXiv preprint
arXiv:2011.14070. doi: 10.48550/arXiv.2011.14070
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