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Abstract : 

Mobile genetic elements (MGEs), such as viruses and plasmids, drive the evolution and adaptation of 
their cellular hosts from all three domains of life. This includes microorganisms thriving in the most extreme 
environments, like deep-sea hydrothermal vents. However, our knowledge about MGEs still remains 
relatively sparse in these abyssal ecosystems. Here we report the isolation, sequencing, assembly, and 
functional annotation of pMO1, a 28.2 kbp plasmid associated with the reference strain Marinitoga 
okinawensis. Carrying restriction/modification and chemotaxis protein-encoding genes, pMO1 likely 
affects its host’s phenotype and represents the first non-cryptic plasmid described among the phylum 
Thermotogota. 
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Introduction 50 

 51 

Mobile genetic elements (MGEs, collectively referred as the mobilome) impact on prokaryotic 52 

communities from all environments on Earth, including the most extreme such as deep-sea 53 

hydrothermal vents [1]. Deep-sea archaea from the phylum Euryarcheota were reported to 54 

harbor a panel of MGEs, including viruses and plasmids that are prone to interactions [2, 3]. 55 

Compared to the plethora of MGEs that have been characterized in Bacteria elsewhere, our 56 

knowledge about the deep marine vent bacterial mobilome is still limited [1]. A bacterial 57 

lineage broadly represented in hot environments, and deep-sea hydrothermal vents in particular, 58 

is the phylum Thermotogota, which is mostly composed of thermophilic, anaerobic, chemo-59 

organotrophic and sulfur-reducing bacteria [4]. Within this phylum, evidence of lysogeny was 60 

originally reported in the order Petrotogales with the characterization of three Marinitoga 61 

inducible temperate siphoviruses [5, 6]. MPV1 lysogenises Marinitoga piezophila whereas 62 

MCV1 and MCV2 infect two Marinitoga camini strains. Even if the host organisms come from 63 

geographically distant deep-sea hydrothermal sites, MPV1 shares numerous sequence 64 

similarities with MCV1 and MCV2. Related proviral regions were recently reported in other 65 

species of Marinitoga [7, 8] as well as in deep-sea vent Thermosipho isolates from the order 66 

Thermotogales [8]. This may illustrate ancient virus host interactions within these deep marine 67 

vent bacteria.  68 

First discovered among these (pro)viruses, MPV1 shares its host with a 13.3 kbp 69 

plasmid; pMP1. This plasmid acts as a potential bacteriovirus hijacker, being preferentially 70 

packaged into the viral capsids of MPV1 following its lytic cycle induction in M. piezophila 71 

[5]. pMP1 carries no recognizable genes for functions beside its replication and transfer, and is 72 

therefore likely a cryptic plasmid. Only four other cryptic miniplasmids were previously 73 

described within Thermotogota and none were associated with deep-sea hydrothermal vents. 74 
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 4 

These are the negatively supercoiled, and rolling circle replicated, small miniplasmid pRQ7 75 

(846 bp) from Thermotoga sp. RQ7 and its very close relatives, pMC24 and pRKU-1, from 76 

Thermotoga maritima and Thermotoga petrophila [9-12], as well as a miniplasmid pTHEBA.01 77 

(1.724 kbp) identified in Mesotoga prima [13]. Here we describe the isolation, sequencing, and 78 

annotation of a new 28.2 kbp-length plasmid isolated from the deep-sea vent reference strain 79 

Marinitoga okinawensis [14]. This plasmid, named pMO1, contains 21 coding sequences 80 

(CDSs) where 14 were assigned a putative function. Functions not directly associated with 81 

replication and transmission were identified, e.g. a restriction/modification (RM) system and 82 

chemotaxis proteins, making this the first non-cryptic plasmid reported within the phylum 83 

Thermotogota. 84 

 85 

 86 
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 5 

Material and methods 100 

 101 

The circular covalently closed DNA (cccDNA) was isolated following the screening of 102 

Thermotogota strains for MGEs described in [5]. pMO1 was identified in the reference strain 103 

M. okinawensis TFS10-5T, which was recovered from a deep-sea hydrothermal vent chimney 104 

sample located on the Yonaguni Knoll IV field in Southern Okinawa Trough (latitude, 105 

24°50,938’N; longitude, 122°40,020’E; depth, 1365 m [14]). M. okinawensis was cultured at 106 

55°C in 100 milliliters modified Ravot medium [15] with minor modifications as described in 107 

[5]. cccDNA was extracted from the culture in log growth phase by alkaline lysis method [16]. 108 

This extra-chromosomal element was sequenced on an Illumina Miseq sequencer as detailed in 109 

[6]. The reads were assembled using the CLC Genomics Workbench 6.5.1 110 

(http://www.clcbio.com) with trimming default settings, and Spades v3.2.1 [17]. Assemblies 111 

were compared and consolidated in Geneious R10, which was also used to identify CDSs in 112 

combination with prokka 1.11 (VBC | Victorian Bioinformatics Consortium). Homologue of 113 

each predicted protein was extracted from the NCBI nr protein database using BlastP as in [5]. 114 

Matches with the highest identity and percent coverage were retained as best blast hit (BBH), 115 

while only considering matches spanning ≥ 50% cover and sharing ≥ 30% identity with queries. 116 

Additional analysis was performed on HHPred as described in [8] by only considering 117 

biological function predictions with a probability ≥ 98%. CDSs were finally assigned to gene 118 

superfamilies/domains using Superfamily and Conserved Domains databases as in [5]. The 119 

genomic data for this study have been deposited in the European Nucleotide Archive (ENA) at 120 

EMBL-EBI under accession number PRJEB54960. The assembled and annotated pMO1 121 

plasmid sequence was deposited under the accession number OX370180. pMO1 replication 122 

origin ori was predicted using the default parameters of Ori-Finder 2022, which uses repeat 123 

sequence analyses, homologous bacterial replication origin (oriC) searches, strand-biased 124 
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analyses, and regulatory protein annotation to predict oriC [18].  A map of pMO1 plasmid was 125 

drawn using mummer2circos (https://github.com/metagenlab/mummer2circos). 126 
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Results and discussion 150 

 151 

Sequencing and assembly of cccDNA extracted from M. okinawensis resulted in a circular 152 

genome of 28.242 bp with an average GC content of 24.4%. The genome sequence has no 153 

detectable homologs in nr/nt database and contains 21 predicted CDSs (Figure 1). Fourteen in 154 

silico translated CDSs had homologues in Genbank and/or HHPred with a putative function, 12 155 

of them could be assigned to gene superfamilies and/or conserved protein domains (Table 1). 156 

Based on these predictions, and given that no known structural genes involved in virion 157 

formation were identified, we concluded the cccDNA, pMO1, corresponded to a plasmid. 158 

pMO1 replication origin ori was predicted to be between position 28007 and 160, the start of 159 

the genome was therefore set between the two CDS in this region. The 396 bps-long ori was 160 

predicted to contain an AT-rich region and a dnaA box that are features found in many origins 161 

of theta-replicating plasmids [19]. A binding site for a factor for inversion stimulation (Fis), 162 

frequently found at the replication origin of plasmids using the theta mechanism [19], was also 163 

detected in the ori sequence. However, further investigations are needed to determine the 164 

specific mode of pMO1 replication. 165 

Nine of the 14 protein-coding pMO1 genes with putative functions were predicted to be 166 

involved in DNA interactions (Table 1). PMO1_20 is homologous to ParA proteins and 167 

probably involved in plasmid partitioning, whereas PMO1_02, 07, 08, 12 and 19 could ensure 168 

diverse DNA regulation activities. PMO1_11 encodes a putative site-specific serine 169 

recombinase, which is homologous to Steptomyces phage phiC31 integrase following HHPred 170 

(Table 1). A CD-search confirmed that PMO1_11 protein had a resolvase/invertase catalytic 171 

domain in the N-terminal end, but apparently only a partial recombinase domain in the C-172 

terminal end (Table 1). A possible function of the PMO1_11 encoded site-specific serine 173 
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 8 

recombinase in plasmid integration (as an integrase) or in its monomeric state maintenance 174 

(simply as a resolvase) remains to be investigated.  175 

Interestingly, the best matches of PMO1_12 and 19 are DNA-binding proteins involved 176 

in lytic cycle anti-repression of temperate bacterioviruses. Comparisons using HHPred revealed 177 

that PMO1_12 is homologous to the Cox multifunctional protein from E. coli P2 virus, which 178 

acts as an excisionase and repressor of the lysogenic operon, as well as transcriptional activator 179 

of the satellite provirus P4 replication [20]. The same HHPred match was obtained for 180 

MARPI_RS10485 on pMP1 from M. piezophila (Genbank accession no, NC_016748). This 181 

may indicate that pMO1 is involved in a molecular piracy relationship similar to that observed 182 

for pMP1 and MPV1 [5]. The putative integrative capacity of pMO1, provided by PMO1_11, 183 

could be a common feature shared with the pirates pMP1 and plasmid/satellite virus P4, which 184 

both encode integrases from the site-specific tyrosine recombinase superfamily. However, we 185 

note that this activity has only been demonstrated for P4 to date [5, 20].   186 

Finally, PMO1_04 and 05 were annotated as RM system subunits. RM systems confer 187 

prokaryotic immunity against exogenous foreign DNA via two major enzymatic activities [19]. 188 

The restriction endonuclease cleaves invading DNA at a specific recognized sequence and the 189 

methyltransferase prevents cleavage of host DNA by methylation, ensuring discrimination 190 

between self and non-self DNA. PMO1_04 encodes the Type I RM system, restriction subunit 191 

R (Table 1) while PMO1_05 putatively encodes a type I RM system methyltransferase subunit 192 

(Table 1). Despite their function in prokaryotic defense, RM systems tend also to be seen as 193 

mobile selfish elements ensuring their survival by propagating and increasing their frequency 194 

in host genomes [21, 22]. Several works have demonstrated that plasmid-encoded RM systems 195 

contribute to host cell addiction and in turn plasmid stabilization [21, 22]. This type of 196 

association could be advantageous for both RM system and plasmid, facilitating their 197 

maintenance and propagation into bacterial hosts exposed to invasive MGEs. Although 198 
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 9 

methylation has been reported for some Thermosipho genomes [23], no evidence has been 199 

provided concerning Marinitoga genus. Further investigations will be required to clarify if 200 

PMO1_04 and 05 indeed confer a line of defense for M. okinawensis and at the same time 201 

ensure the maintenance of pMO1. BBH for PMO1_04 and 05 were found in bacterial genomes 202 

of a Candidatus latescibacteria and an Anaerolinae sp, respectively. These genomes were 203 

obtained from deep-sea hydrothermal sediments [24] and a deep subsurface thermal aquifer 204 

[25] metagenome samples. Therefore, these genes might represent horizontal gene transfer 205 

(HGT) events between thermophilic bacteria belonging to distinct phyla; evolutionary studies 206 

suggest RM genes have indeed sustained extensive HGT between different groups of 207 

prokaryotes [22].  208 

Contrary to pMP1, where all proteins with predicted functions and/or superfamily 209 

assignments (7/13), likely corresponded to DNA interaction proteins, pMO1 may impact its 210 

host phenotype more directly. In addition to the two RM subunit genes, five CDSs likely encode 211 

key proteins involved in the chemotaxis signal transduction pathway that allows prokaryotes to 212 

sense and navigate according to their chemical environment [26]. PMO1_14 and 15 were 213 

annotated as methyl-accepting chemotaxis proteins (MCPs) while PMO1_17 encodes a putative 214 

chemotaxis signal transduction protein CheW. MCPs are transmembrane receptors that monitor 215 

a concentration of attractant or repellent to direct the cells flagellar locomotion by regulating 216 

the histidine kinase CheA [26]. MCP and CheA form cytoplasmic signaling complexes with 217 

CheW that couples CheA activity to receptor control [26]. PMO1_13 and 16 were annotated as 218 

GGDEF and HD domain-containing diguanylate cyclase and phosphodiesterase, respectively 219 

(Table 1). These domains, often in the same protein, control the turnover of C-di-GMP by 220 

ensuring its synthesis and hydrolysis respectively [27]. C-di-GMP is a ubiquitous bacterial 221 

second messenger that regulates several functions including extracellular polysaccharides 222 

production, biofilm formation and motility, and is an important chemotaxis regulator [27]. Data 223 

Jo
urn

al 
Pre-

pro
of



 10 

on chemotaxis remains scarce in Thermotogota, being mostly focused on phylogenetic analyses 224 

of the chemotaxis machineries across prokaryotes [28]. While M. okinawensis has been 225 

described as motile with a polar flagellum [14], we currently have no information about M. 226 

okinawensis genome and its chromosomal chemotaxis genes cluster(s). It is therefore difficult 227 

to assess the exact contribution of pMO1 chemotaxis genes and a M. okinawensis plasmidic-228 

dependent motility. However, chemotaxis genes have been shown to be frequently acquired by 229 

HGT in other Thermotogota [13, 29], and finding these genes on a MGE may provide a vehicle 230 

for such transfer. In agreement with this, the pMO1 chemotaxis genes are homologous to 231 

chromosomal versions found in species of the genus Marinitoga, Kosmotoga or 232 

Fervidobacterium (Table 1).  233 

  Further analysis will be needed to establish the extent to which pMO1 provides traits 234 

(RM or chemotaxis components) to its host and thus participate in bacterial defense or motility 235 

mechanisms, as well as if this plasmid could drive HGT within the phylum Thermotogota. 236 

Extensive and comparative studies of a growing panel of abyssal MGEs, with their intricate 237 

network of interactions, will help us to better understand dynamics of the deep-sea vent 238 

prokaryotic communities. 239 

 240 
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Legend to figure and table 421 

 422 

Figure 1: Map of the pMO1 plasmid. Only informative CDS annotations are shown. The inner 423 

blue and green circle shows the GC content variation compared to mean GC, the red and blue 424 

circle shows the GC-skew of the plasmid. CDSs on the leading strand are shown in blue and on 425 

the lagging strand in red. The figure was produced using mummer2circos 426 

(https://github.com/metagenlab/mummer2circos). 427 

 428 

Table 1: Functional prediction of pMO1 protein-encoding genes. pMO1 plasmid sequence is 429 

available under the accession number OX370180. *translational initiation region where 430 

putative manually predicted RBS sequences are underlined and the start codons are in bold. 431 

AAA=ATPases associated with diverse cellular activities; HsdR, M, and S= type I restriction-432 

modification system restriction, methylase and specificity subunits; HNH =homing 433 

endonuclease with a consensus sequence including two pairs of conserved His and one Asp; 434 

DUF=domain of unknown function; _N=N-terminal domain, HTH=helix turn helix domain; 435 

GGDEF= conserved domain named after its amino acid motif Gly-Gly-Asp-Glu-Phe; 436 

MCP=methyl-accepting chemotaxis protein; MA= methyl-accepting chemotaxis-like domain; 437 

HD=conserved domain named after its His and/or Asp (D) residues; c-di-GMP= Bis-(3′-5′)-438 

cyclic dimeric guanosine monophosphate; RpfG=response regulator c-di-GMP 439 

phosphodiesterase; Bscq=cellulose biosynthesis protein. 440 
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CDS Lenght (bp); TIR* Protein_id
 Predicted function Protein_id

 Best blasP match in nr (% identity; % cover) PDB_id Best HHPred homology (% probability) Superfamily database 

*Conserved domain database 

PMO1_01 267;  AAATTGCAGGTGATAATGTG CAI4093953.1 Hypothetical protein     

PMO1_02 1533; CTCAAGATGGAGGCGAAATG 

 

CAI4093954.1
 ATPase 

WP_205100982.1 AAA-like domain-containing protein  

Marinitoga litoralis (81%; 99%) 

2QEN Walker-type ATPase  

Pyrococcus abyssi (99.8%) 

P-loop containing nucleoside 

triphosphate hydrolases  

 

PMO1_03 177; AAATGTAACAATAAAAAATG CAI4093955.1
 Hypothetical protein    

 

PMO1_04 

 

2235;  ATATAGGGGGATTAATTATG 

CAI4093956.1 Type I restriction 

modification system, restriction 

subunit R 

RKY72093.1 Restriction endonuclease subunit R  

Candidatus latescibacteria bacterium (74%; 100%) 

3H1T Type I restriction-modification system 

restriction subunit  

Vibrio vulnificus YJ016 (100%) 

P-loop containing nucleoside 

triphosphate hydrolases  

*HSDR 

 

PMO1_05 

 

2685;  TTAAGGAGGAATAATATATG 

CAI4093957.1 Type I restriction 

modification system, DNA 

methyltransferase subunit M and 

specificity subunit S 

MBW2979628.1 N-6 DNA methylase  

Candidatus Woesearcheota archeon (63%; 99%) 

 

7EEW Type I restriction restriction-modification 

system methyltransferase subunit 

 Vibrio vulnificus YJ016 (100%) 

S-adenosyl-L-methionine-

dependent methyltransferases and 

DNA methylase specificity domain 

* HSDM and HSDS 

PMO1_06 1236; AAAAGAGGTGTTTGCGATTG CAI4093958.1
 Hypothetical protein    

PMO1_07 192; AAATGGAGGTAAATATTATG CAI4093959.1
 HNH endonuclease  1U3E HNH homing endonuclease 

Bacillus virus SPO1 (99.1%) 

 

PMO1_08 954; AAGGATGGGGTGACTCTATG CAI4093960.1
 Putative endonuclease WP_244859573.1 DUF4268 domain-containing protein  

Tepid anaerobacter acetatoxydans  

(68%; 85%) 

2VLD Endonuclease NucS  

Pyrococcus abyssi (99.3%) 

 

PMO1_09 1014;  TATAGGAGGATATTATTATG CAI4093961.1
 Hypothetical protein    

PMO1_10 162; AAAACGTAATCTCTGAAATG 

 

CAI4093962.1
 Hypothetical protein    

PMO1_11 678; TTTAAGGGGGATTCATTATG 

 

CAI4093963.1
 Site-specific serine 

recombinase 

 

MBU0581305.1 Recombinase family protein 

Candidatus Margulisbacteria bacterium (62%; 97%) 

4BQQ Integrase, serine recombinase  

Streptomyces phage phiC31 (100%) 

Resolvase-like 

*Resolvase_N 

*Recombinase (partial) 

PMO1_12 258; AGGGAGTTGGCATTAAGATG CAI4093964.1
 DNA-binding protein WP_246051367.1 Helix-turn-helix domain-containing protein  

Balnearium lithotrophicum (41%; 64%) 

4LHF Regulatory protein Cox 

Enterobacteria phage P2 (98.8%) 

Putative DNA-binding domain 

*HTH 

PMO1_13 1608; TTAGTGGAGAATTAAATATG 

 

CAI4093965.1
 GGDEF domain–

containing  diguanylate cyclase 

WP_011993259.1 GGDEF domain-containing protein 

 Fervidobacterium nodosum (51%; 96%) 

3EZU GGDEF domain-containing protein  

Geobacter sulfurreducens (99.5%) 

Nucleotidyl_cyclase 

*GGDEF 

PMO1_14 1578; AAAAAGGGGGGAGTTCAGTG 

 

CAI4093966.1
 Methyl-accepting 

chemotaxis protein 

WP_014296321.1 HAMP domain-containing methyl-accepting chemotaxis 

protein Marinitoga piezophila KA3 (54%; 82%) 

6S1K Methyl-accepting chemotaxis protein  

Escherichia coli (99.9%) 

MCP signaling domain 

*MA 

PMO1_15 1980; ATAAGGGGGAAGGATATATG CAI4093967.1
 Methyl-accepting 

chemotaxis protein 

WP_047266480.1 Methyl-accepting chemotaxis protein  

Marinitoga sp1155 (76%; 100%) 

6S1K Methyl-accepting chemotaxis protein 

Escherichia coli (100%) 

MCP signaling domain 

*MA 

PMO1_16 1788; TATTAGGAGTTGAAAAAATG 

 

CAI4093968.1
 HD domain-containing 

  c-di-GMP phosphodiesterase 

WP_063728003.1 HD domain-containing protein  

Kosmotoga sp DU53  (41%; 63%) 

4MCW c-di-GMP phosphodiesterase 

Persephonella marina EX-H1 (99.9%) 

HD-domain/PDEases-like 

*RpfG family 

PMO1_17 1308; TGAGTTAGGTTGGTGATATG CAI4093969.1
 Chemotaxis signal 

transduction protein CheW 

WP_047266840.1 Chemotaxis protein CheW  

Marinitoga sp1155 (63%; 99%) 

2QDL Chemotaxis signal transduction protein 

Thermoanaerobacter tengcongensis (99.6%) 

CheW_like 

* CheW 

PMO1_18 852; GTTAAGGAGGGGATAATATG 

 

CAI4093970.1
 Hypothetical protein WP_205097826.1 DUF4382 domain-containing protein  

Marinitoga litoralis (60%; 100%) 

 Carboxypeptidase regulatory 

domain-like 

PMO1_19 297; AAAGAGATGGAGATATAATG CAI4093971.1 DNA-binding protein MCI1750911.1 Phage antirepressor KilAC domain-containing protein  

Megasphaera cerevisiae (67%; 95%) 

 *BRO_N 

PMO1_20 810; AAACAGGAGGGATAAATATG   CAI4093972.1 Plasmid partitioning 

protein ParA 

MBP6820249.1 ParA family protein  

Acidobacteria bacterium (33%; 97%) 

3EZ2 Plasmid partition protein ParA 

Escherichia coli (99.9%) 

P-loop containing nucleoside 

triphosphate hydrolases 

*Bcsq/ParA_family 

PMO1_21 1368; AGAAGGTGGCGTATAAAATG CAI4093973.1 Hypothetical protein    
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