
1  

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive 
publisher-authenticated version is available on the publisher Web site.  

 
Molecular Ecology Resources 
Article In Press 
Acceptation date : 2023  
https://doi.org/10.1111/1755-0998.13778 
https://archimer.ifremer.fr/doc/00822/93394/ 

Archimer 
https://archimer.ifremer.fr 

Estimating resistance surfaces using gradient forest and 
allelic frequencies 

Vanhove Mathieu 1, *, Launey Sophie 1 

 
1 DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France 

* Corresponding author : Mathieu Vanhove, email address : mathieu.vanhove@gmail.com  
 

Abstract :   
 
Understanding landscape connectivity has become a global priority for mitigating the impact of landscape 
fragmentation on biodiversity. Connectivity methods that use link-based methods traditionally rely on 
relating pairwise genetic distance between individuals or demes to their landscape distance (e.g., 
geographic distance, cost distance). In this study, we present an alternative to conventional statistical 
approaches to refine cost surfaces by adapting the gradient forest approach to produce a resistance 
surface. Used in community ecology, gradient forest is an extension of random forest, and has been 
implemented in genomic studies to model species genetic offset under future climatic scenarios. By 
design, this adapted method, resGF, has the ability to handle multiple environmental predicators and is 
not subjected to traditional assumptions of linear models such as independence, normality and linearity. 
Using genetic simulations, resistance Gradient Forest (resGF) performance was compared to other 
published methods (maximum likelihood population effects model, random forest-based least-cost 
transect analysis and species distribution model). In univariate scenarios, resGF was able to distinguish 
the true surface contributing to genetic diversity among competing surfaces better than the compared 
methods. In multivariate scenarios, the gradient forest approach performed similarly to the other random 
forest-based approach using least-cost transect analysis but outperformed MLPE-based methods. 
Additionally, two worked examples are provided using two previously published datasets. This machine 
learning algorithm has the potential to improve our understanding of landscape connectivity and inform 
long-term biodiversity conservation strategies. 
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1 Introduction 

Assessing connectivity has become a global conservation priority to respond to habitat 

fragmentation. The increasing anthropogenic pressures threaten natural populations and the 

need to maintain connectivity among the remaining habitats appears central for biodiversity 

(McClure et al. 2016). At the species level, landscape constraints affect dispersal, causing 

range shifts, fitness reduction and pushing species to the brink of extinction (Steffen et al. 

2015). These deleterious effects to wildlife could only be mitigated if these challenges can be 

efficiently assessed.  

Introduced in 2003, this field of landscape genetics has strengthened our understanding on 

species ability to move through heterogeneous landscapes (Manel et al. 2003). The term 

“functional connectivity” has been defined as “the degree to which the landscape facilitates or 

impedes movement among resource patches” (Taylor et al., 1993). Measuring connectivity by 

estimating the degree of gene flow between individuals represents a method of interest to 

tackle habitat fragmentation, especially in areas where direct observation is complicated or 

impossible. Gene flow influences evolutionary trajectories of populations due to the 

modification of allelic frequencies, and “genetic connectivity” refers to the degree to which 

gene flow affects evolutionary processes within natural subpopulations. Genetic connectivity 

depends on several criteria including sufficient gene flow in order to avoid harmful effects of 

local inbreeding (inbreeding connectivity), to maintain equal allele frequencies (drift 

connectivity) or to allow potential advantageous alleles to spread across species range 

(adaptive connectivity) (Lowe & Allendorf 2010).  

In the absence of direct observation of species movement, resistance estimations are used 

to fill the gap and provide a quantitative estimation of how environmental space is affecting 

dispersal. Resistance describes the willingness of individuals to move through their 

environment and the physiological costs associated to movement (Zeller et al. 2012). 
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Resistance surfaces are driven by a combination of movement and successful reproduction 

(Pflüger & Balkenhol 2014). High resistance values reveal restricted movement or barriers 

impeding gene flow, whereas low values translate into an ease of movement. In an ‘isolation-

by-distance’ framework, the degree of genetic isolation is a sole function of Euclidean 

distances between populations (or individuals), while in ‘isolation-by-resistance’ (IBR) 

scenarios (McRae 2006), landscape variables (e.g. temperature gradient, roads, or topography) 

are used where each variable is characterized by a maximum resistance (RMAX) and a 

functional form relating the environmental/anthropogenic predicator to resistance values 

(Shirk et al. 2018).  

To date, no consensus has been established on the parametrization of resistance surfaces. 

Initially, resistance design relied on expert opinions (Stevens et al. 2006) but expert-based 

methods presented arbitrary costs with no consensus about resistance values (Spear & Storfer 

2010). To avoid subjectivity in assigning resistance values, other approaches have been 

deployed like the use of telemetry (Driezen et al. 2007; Zeller et al. 2017) or habitat 

suitability models (Wang et al. 2008). The latter can provide different information than 

genetic connectivity models. However, a major drawback of habitat suitability models is their 

inability to move beyond the species level and assess the intraspecific variation due to local 

adaptation (Jay et al. 2012). Therefore, several studies have suggested that resistance 

parametrization should include genetic data to estimate gene flow, as the most basic level of 

biological diversity remains genetic variation (Khimoun et al. 2017; Peterman 2018). 

Exhaustive search approaches based on genetic distance data have been developed to 

optimize resistance values  (Wang et al. 2009). Grid search approaches were first introduced, 

where a constrained parameter space can be explored, limiting the number of models being 

assessed (Graves et al., 2013). Another stepping-stone in the development of unbiased 

resistance surface was the use a machine learning (i.e., genetic) algorithm to maximise 
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pairwise genetic distances and effective resistance distances correlations as implemented by 

Peterman et al., (2014). Their subsequent R packages ResistanceGA (Peterman 2018) and 

Radish (Peterman & Pope 2021) can evaluate simultaneously multiple surfaces and a wide 

range of cost values. The algorithm relies on pairwise genetic distances (e.g., FST or Da) and 

performs data transformation using monomolecular and Ricker functions. However, the 

optimization procedure requires high computer power to explore parameter space, which 

limits the choice of predicator variables to be optimized at the same time. Corridor or 

transect-based approaches have also been implemented where corridors are presumed to be 

the favoured paths between locations across the landscape. In this least-cost transect analysis 

(LCTA), landscape features are calculated along straight lines (or using a least cost path 

approach) between locations, with buffers of various widths (Emaresi et al. 2011; Van Strien 

et al. 2012). A movement model is then applied to the obtained resistance surfaces to 

calculate effective distances between sample points. Different modelling frameworks can be 

implemented to obtain these measures of landscape connectivity including least-cost path 

(LCP) modelling hypothesis where the organism is hypothesised to follow an ideal path 

(Adriaensen et al. 2003) or circuit-based modelling  approaches which include all possible 

paths into the final measure of resistance (McRae 2006). Fletcher et. al (2019) introduced the 

spatial absorbing Markov chain (SAMC) framework to interpret matrix resistance and discern 

between movement behaviour and mortality. For additional methods to infer resistance-based 

connectivity, please refer to the review by Dutta et al. (2022). 

An interesting alternative to conventional statistical approaches to parameterize resistance-

surfaces (and its inverse: connectivity) is the use of machine learning techniques (Etherington 

2016). These methods have been developed to predict models for complex and non-linear data 

which by design have the potential to avoid violations of assumptions of independence, 

linearity and normality (Balkenhol et al. 2009). Machine learning techniques have rarely been 
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used in landscape genetics but have been recently gaining momentum (Hether & Hoffman 

2012; Sylvester et al. 2018). In 2010, Murphy et al. used a random forest approach to assess 

the ecological processes limiting Bufo boreas connectivity in Yellowstone National Park. 

Recently, Pless et al., (2021) implemented the first application of LCTA since Van Strien et 

al. (2012). The method combined a random forest framework with a LCP iterative 

optimization process to map the genetic connectivity of Aedes aegypti in North America and 

was subsequently used to understand the connectivity of tsetse flies (Glossina pallidies) in 

Kenya (Bishop et al. 2021). Convolutional neural networks (CNNs) have also been 

introduced to the field using image data to predict spatial patterns of genetic variation 

(Kittlein et al. 2022). 

Another promising ensemble learning method is gradient forest (GF), an extension of 

random forest that uses regression trees to fit a model of associations between individual 

responses variables (e.g. single-nucleotide polymorphisms (SNP)) to predicator variables (e.g. 

climate variables). Initially developed in community ecology to model species turnover (Ellis 

et al. 2012), this regression tree-based method has been successfully used to map turnover of 

allele frequencies along environmental gradients (Fitzpatrick & Keller 2015). The GF 

approach is becoming increasingly implemented in landscape genomics and conservations 

studies (Gugger et al. 2018; Martins et al. 2018; Ingvarsson & Bernhardsson 2020; Vanhove 

et al. 2021). Once trained, GF models are used to predict continuous distribution of allelic 

turnover across the species range to estimate species maladaptation (i.e. genetic offset) when 

projected in time according to future climate scenarios (reviewed in Capblancq et al. 2020; 

Rellstab et al. 2021). The present study aims to investigate the potential of the gradient forest 

approach to generate landscape resistance surfaces (resGF) as an alternative to traditional 

link-based linear models which are subjected to normality, independence and linearity 

(Balkenhol et al. 2009).  
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Moving along environmental gradients, few changes in allelic frequencies might be 

observed while in some places large changes might occur. In the GF approach, partition of the 

data is distributed on either side of a split produced in the random forest. Split values are 

obtained from the ensemble of regression models and explain changes in allelic frequencies 

across each environmental predicator. The amount of variations, known as the ‘raw split 

importance’ (Fitzpatrick & Keller 2015), is cumulatively added in a step-wise manner and a 

compositional frequency curve,  is computed. Similarly, as building a staircase, the 

importance values are cumulatively summed and each step strength is proportional to the 

importance split at that location. The predictive performance for each SNP is quantified using 

the out-of-bag proportion (R2) which provides a cross-validated estimate of the generalization 

error (Ellis et al. 2012). These goodness-of-fit R2 estimates allow to assess the relative 

contribution of each environmental variables in explaining changes in allelic frequencies. 

Lastly, the accuracy importance of predicators is determined as the decrease in performance 

when a predictor is randomly permuted. 

In our proposed method, these large steps along the gradient observed on the compositional 

frequency curve  are considered as evidence of resistance impeding gene flow whereas 

flatter regions represent regions where gene flow is facilitated. Therefore, resGF approach 

uses the derivative , known as the compositional turnover rate of , as a specialised 

transformation function to convert raster values into resistance values (Fig. 1). This 

transformation function acts similarly as the monomolecular or Ricker functions in 

ResistanceGA but appears specific to the examined predicator. Additionally, gradients which 

are strongly associated with biological variations will have larger steps and will reach a 

greater overall importance than other gradients. Therefore, each environmental predicator can 

be weighted by its R2-weighted importance to build a multilayer resistance surface. In the 

present study, we evaluated ability of the gradient forest approach to generate resistance 
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surfaces. Regression models rely on genetic distance (i.e. FST or DPS) whereas GF methods 

use individual genotypes which makes this method a good candidate to potentially generate 

resistance surface. Through landscape and genetic simulations, we first assess the ability to 

recover the true resistance among alternative resistance surfaces. The ability of resGF to 

handle multiple environmental predicators is then assessed and its performance is compared 

to other published methods using previously published datasets. 

 

2 Materials and Methods 

A simulation approach was undertaken to assess the performance of gradient forest in 

generating a landscape surface. This framework aimed to compare resGF to methods 

commonly used in landscape genetics: Least-cost Transect Analysis, ResistanceGA and 

Species Distribution Model.  

 

2.1 Methods to estimate functional connectivity  

2.1.1 Least-cost Transect Analysis (LCTA) 

1) The least-cost Transect Analysis (LCTA) method was first introduced by Van Strien et 

al. (2012). The method was first applied by Pless et al. (2021) to generate resistance surface 

of Aedes aegypti in North America. 2) LCTA has the potential to handle multiple variables. 

Briefly, the mean across straight lines between population pairs is calculated for each 

environmental predicator and a measure of genetic distance (1 - DPS) is used as a response 

variable in a random forest (RF) model. The genetic distance for each pixel is predicted 

resulting in a resistance surface. In each iteration, the mean least cost path values are 

calculated through the previous iteration’s connectivity surface (i.e.  the inverse of the 

resulting resistance surface). 3) To account for spatial autocorrelation, a point kernel density 
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surface is implemented as described in the original method (Pless et al. 2021). The latter is 

then used to weight the RF bootstrapping to allow lower-density point to be more frequently 

sampled (Shen et al. 2020). 4) The method is assessed by selecting the surface from the 

optimal iteration (i.e. the iteration which displayed the lowest root-mean-square error). A 

leave-one-out cross-validation (loocv) can also be implemented to improve the robustness of 

the RSME values. 

 
2.1.2 Optimisation of surface resistance with ResistanceGA 

1) Peterman et al. (2014) were the first to maximise pairwise genetic distance and effective 

resistance distances using a genetic algorithm combined with linear mixed-effects models. 2) 

The ResistanceGA v4.1 package (Peterman 2018) optimizes landscape resistance surface 

using a genetic algorithm (R package GA v3.2; Scrucca, 2013). The genetic algorithm uses a 

unique combination of parameters to transform raster layer into a resistance surface seeking to 

maximize the relationship between pairwise landscape resistances (or least-cost distances) and 

pairwise genetic distances. Pairwise least-cost distances were calculated with the costDistance 

function as performed by Flores‐Manzanero et al., (2019) using the R package gdistance v1.3 

(Van Etten 2017). All these processes were performed while allowing an exploration of 

resistance values up to 2,500 and using an eight-neighbour connection scheme. 3) However, 

the method does not account for spatial autocorrelation. 4) To assess the resulting surface, an 

objective function was selected during optimization (i.e. Akaike information criteria (AIC)). It 

was determined from linear mixed-effects models using the maximum-likelihood population 

effects (MLPE) parameterization. The model fit with pairwise genetic distance (1 – DPS) as 

dependent variable and commute distance between individual pairs as predicator variable. The 

maximum-likelihood population effects (MPLE) parameterization (Clarke et al. 2002; Van 

Strien et al. 2012) implemented in the R package LME4 v1.1 (Bates et al. 2014) accounted for 

the non-independence among the pairwise genetic and ecological distances. Additionally, 
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MLPE models have been found to performed better than regression models in landscape 

genetic model selection (Shirk et al. 2018). The support of the optimized resistance surfaces 

was assessed using the AICc (Akaike information criteria corrected for small sample; Akaike, 

1974). 

 

2.1.3 Species Distribution Model 

1) Habitat suitability model have been first used to assess landscape connectivity by Wang 

et al. (2008). 2) Resistance surfaces were derived from Species distribution model (SDM). 

These modelling approach do not include a genetic component and are based on 

environmental characteristics of sample locations. The resultant habitat suitability map can be 

incorporated into least-cost path analyses. We included resistance surface generated using the 

package rmaxent v0.8.5 (Baumgartner et al. 2017). Habitat suitability values were generated 

for each pixel across the landscape, normalise between 0 and 1 and converted to resistance 

values (1 – suitability value following Spear et al. (2010)). 3) However, spatial 

autocorrelation remains a largely unresolved problem in species distribution modelling. 4)  

The method was assessed using area under a receiver operating characteristic (ROC) curve 

(AUC) and withholding 50% of the data. An iteration was included in the final analysis when 

AUC > 0.70. 

 
 
2.1.4 Resistance Gradient Forest - resGF  

1) The Gradient forest (GF) approach was initially developed in community ecology to 

model species turnover (Ellis et al. 2012) before successfully used to map turnover of allele 

frequencies along environmental gradients (Fitzpatrick & Keller 2015). The present study 

aims to test GF ability to generate resistance surfaces. 
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2) GF models compositional turnover in allele frequencies using monotonic non-linear 

functions along environmental gradients. These turnover functions transform environmental 

variables into a common biological scale of compositional turnover allowing the conversion 

of multidimensional environmental space to multidimensional genetic space while 

considering the weight of the selected variables which best describe genetic variation (Ellis et 

al. 2012; Capblancq et al. 2020). The gradientForest v0.1 package first produces a random 

forest model for each of the input SNP using the R package extendedForest v1.6.1 (Liaw & 

Wiener 2002). In the random forest models, regression or classification tree models describe 

the relationship between an individual SNP and environmental variables (Breiman 2001).  

Each random forest is composed of an ensemble of regression trees which recursively 

partition the data. At each split, the partitioning is performed to obtain the smallest total 

impurity, defined as the sum of squared deviations about the group mean. The partition is 

repeated until a minimum number of sites is attained and the last partition becomes the 

terminal node. Each node in the decision tree is characterised by its split importance which is 

the reduction in impurity of the node created by the split. This split hold information 

regarding the sensitivity of a set SNP along a gradient as it measures the degree of variation 

explained by the partitioning. If a certain SNP is absent under a specific threshold, the split is 

likely to uncover this specific threshold.   

The predictive power of random forest models is assessed using i) the goodness-of-fit  

for each SNP f which is the proportion of out-of-bag variance explained, ii) the accuracy 

importance  for a predictor  within the forest as well as iii) the raw importance  for a 

predictor  at a split value  in a particular tree  (Ellis et al. 2012). Random forest uses out-

of-bag (OOB) estimates as cross-validated estimate of error by comparing the expected 

variance of the OOB samples to the variance of the observations. The proportion of the 

variance explained R2f   can be used as a measure of the information of a SNP provided by a 
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particular predicator. The goodness-of-fit R2f is partitioned among the predicator in proportion 

to their accuracy importance ( ) yielding , the predictive accuracy of the SNP f for the 

predictor p. The cumulative turnover function,  is compiled along each environmental 

gradient using an aggregate of the tree splits values from the random forest models for all 

species’ models, ), which display a positive fit ( ) (see Ellis et al., 2012 for 

details). 

 3) To account for spatial autocorrelation, Ellis et al., (2012) introduced the scaled density. 

In the original paper, the derivative  of  is defined as the compositional turnover 

rate at a predicator value  where  would be equal to the expected value of observed 

importance density, , if sampling was uniformed. To account for non-uniformity of 

sampling  the density of the observed splits distributed across the gradient are scaled over the 

observed range. A combined importance density  is computed for each predicator value 

 and  can be estimated as  where  if the scaled density 

of the predicator values over the observed range , normalized to satisfy . 

The scaled density is computed using Gaussian kernel with bandwidth given by Silverman’s 

rule-of-thumb and “whitened” as descried in Ellis et al. (2012). 

4) In the classical use of the gradient forest approach, model selection is implicit in the 

fitting process. The shape of these turnover functions describes the rate of compositional 

change along environmental gradients. Species with higher predictive random forest models 

(high values) contributing more than those with low predictive power. Steep parts of the 

turnover function indicate rapid turnover of allelic frequencies (or species assemblage), 

whereas flatter regions of the curve describe more homogenous parts (Pitcher et al., 2012). 

The resGF package uses the derivative  of the compositional turnover function  as 

a transformation function to convert raster values into resistance values (Fig. 1). The 

monotonic turnover function for each predicator ranges from 0 to  and the rationale behind 
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resGF is that steep parts of the turnover function represent barriers to gene flow whereas 

flatter regions facilitate connectivity. When using multiple environmental layers, each 

predictor variable is weighted by its accuracy importance to generate a multilayer resistance 

surface. Each  function allows for the transformation from arbitrary scales to common 

biological units of compositional turnover. Then, these multidimensional environment spaces 

can be weighted and transformed into a multidimensional biological space (Ellis et al. 2012; 

Fitzpatrick & Keller 2015). 

2.2 Simulations and method comparisons 

To evaluate the robustness of each model and optimization procedure given different 

combination of samples, multiple tests were performed. Landscape genetics data were 

simulated using 1) an univariate framework to validate resGF ability to generate a resistance 

surface and was compared to other published methods (ResistanceGA, LCTA and SDM). The 

ability of each method to identify a true resistance surface among a competing set of surfaces. 

The SDM method serves as a non-genetic-based method to contrast the results. Correlations 

between resulting surfaces using resistanceGA, resGF, LCTA and SDM were recorded at 

each iteration. 2) A multilayer resistance surface approach investigated the ability of each of 

the three genetic methods to correctly weight the contribution of each landscape. 3) Finally, 

resGF was compared with the LCTA optimization method and Estimated Effective Migration 

Surface (EEMS) (Petkova et al. 2016) using on a previously published datasets.  

 

2.2.1 Univariate scenarios 

In our univariate scenario, we aimed to represent populations which were naturally 

distributed along a gradient (Script: sim_single_cont_surface.R). For each simulation, we 

used the same neutral landscape surface (100x100 cells) as described in Peterman & Pope, 

(2021). We generated a spatially correlated Gaussian random field (“gaus”) with an 
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autocorrelation range of seven and a magnitude of variation of 25; a fractional Brownian 

motion (“fbm”) with a fractal dimension of 0.5 using NLMR v1.0 R package (Sciaini et al. 

2018) as well a composite surface (“composite_surface”) combining the two surfaces using 

the Combine_Surfaces function in ResistanceGA which allowed to obtain a landscape 

correlated to the other two surfaces. The resulting rasters cover a gradient and resemble the 

temperature and precipitation variables commonly used in habitat modelling (Fig. 2 and Fig. 

S1). In this univariate scenario, we aimed at maximising the effects of isolation by 

environment and minimizing the effects due to distance to investigate the power of resGF and 

ResistanceGA to identify the true surface. The different surfaces served alternatively as our 

true surface (only surface influencing movement). An artificial gradient of 200 SNPs for 

10,000 individuals was generated using the R package coenocliner v0.2 (Simpson 2016) with 

the coenocline function and the Gaussian response model and Bernoulli countModel options. 

The resulting count matrix was converted into a genind object and subsampled to retain 50 

individuals and 200 biallelic SNPs. The 50 final individuals were mapped to the closest value 

on the true raster (Fig. 2). Mapping the genotypes to their closest value onto the true raster 

allowed to obtain individuals which where spatially structured according to the gradient 

generated with coenocliner. Our gene flow estimate (calculated as 1 - pairwise proportion of 

shared alleles (DPS)) were calculated in adegenet v2.1.3 (Jombart 2008). Simulated genetic 

diversity estimates were summarised on Fig.1 and Fig. 2 using Principal Component Analysis 

(PCA) computed in ade4 v1.7-18 (Dray & Dufour 2007). Although the species movement was 

not explicitly modelled, this framework allowed to obtain individuals structured according to 

our simulated environmental variable which allowed to generate resistance surfaces under the 

tested methods. To incorporate spatial components, principal coordinates of neighbour 

matrices (PCNMs) were computed in vegan v2.5-7 R package and the first half of the positive 

PCNMs were retained for the gradient forest models as previously suggested (Manel et al. 
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2010). This set of orthonormal variables are computed calculated through eigenvalue 

decomposition of a spatial weighting matrix (x–y-coordinates) (Dray et al. 2006). An example 

of the residuals is provided on Fig. S7.  

Five hundred trees were run per iterations using default parameters and including a 

correlation threshold of 0.5 (Strobl et al. 2008). The resulting GF object was passed into the 

resGF function to obtain our final resistance surface (https://github.com/MVan35/resGF). 

For each iteration of 100 iterations performed, three resistance surfaces (“gaus”, “fbm” and 

“composite_surface”) were generated and the best model according to the different 

performance metrics were recorded. The true surface was alternatively the “gaus” variable for 

100 iterations, the “fbm” variable and finally the composite surface. The correlation between 

the true resistance surfaces obtained from the different models (ResistanceGA, LCTA, resGF 

and SDM) were calculated for each iteration as well as the correlation between landscape 

distance and our gene flow estimate. 

To evaluate the robustness of the assessed methods given the different combination of 

samples, we examined the effects of the resistance surfaces by refitting a maximum likelihood 

population effects model (MLPE; Clarke et al., (2002)), implemented in the R package 

ecodist v2.0.5 (Goslee & Urban 2007). Euclidian distances were computed into a distance 

matrix and effective resistance distance were obtained using a movement model (least-cost 

path) implemented in the R package gdistance v1.3 (Van Etten 2017). All MLPE models 

were fit using the mlpe_rga function in ResistanceGA (Peterman 2018).  Each scenario was 

assessed using a model selection approach with different performance metrics: AIC, BIC, 

conditional and marginal  were computed in the R package performance v0.7 (Lüdecke et 

al. 2020), AICc was calculated in AICcmodavg v2.3 (Mazerolle & Mazerolle 2017). The 

accuracy importance of the GF model was also recorded to capture the ability of the model to 

identify the true model.  
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To investigate the ability of the different methods to generate resistance surfaces from 

categorical variables, we repeated the same simulation with the rasters described above, but 

the surfaces were transformed into categorical surfaces following the procedure described by 

Savary et al., (2021) (script: sim_single_cat_surface.R). Five categories were obtained for 

each surface (proportion: category 1 - 30%; category 2 – 30%; category 3 – 15%; category 4 – 

15% and category 5 – 20%). 

Finally, the resulting habitat suitability map obtained for each iteration was integrated in an 

individual-based model (details provided in Supplementary Information (SI)). These 

simulations using the R package RangeShiftR v1.0.4 (Malchow et al. 2021), an individual-

based model which allows to incorporate ecological and evolutionary processes as well as 

population dynamics (demography, emigration, transfer and mortality). This modelling 

framework extended the simulation performed in coenocliner where an artificial gradient of 

200 SNP over the landscape was generated. The individual-based model yielded allelic 

frequencies simulated across 400 years and allowed for populations to evolve in a landscape 

habitat map (generated under the SDM model under the univariate scenario) using a 

correlated random walk. From the resulting allelic frequencies outputted by the individual-

based model at year 400, resistance surfaces were obtained using the tested methods using 

500 individuals across 50 populations randomly selected. Correlations between the initial 

SDM input and the resulting resistance surfaces and were recorded (See Supplementary 

Information). 

 

2.2.2 Multivariate scenarios 

Simulations were performed using either one, three, five or ten landscapes generated using 

the NLMR package (Script: sim_multi_surface.R – 20 iterations). As described above an 

artificial gradient was created for each raster resulting in 200 SNPs and 50 individuals. To 
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investigate the ability of each method to account for individual surfaces in a multivariate 

scenario, a number of individuals were selected from each individual surface and pooled 

together into a final genind object using the repool function in adegenet. In our three variables 

scenario, raster 1 contributed to 70% of the allelic frequencies, raster 2 contributed 30% with 

no contribution from raster 3. Similarly, in the five variables scenario, only raster 1 (50%), 

raster2 (30%) and raster 3 (20%) contributed to the final surface.  

In the ten variables approach, rasters which had an impact on the final generated resistance 

surface varied (Fig. S9). In the first scenario, the expected contribution of each raster was as 

followed: raster 1 (35%), raster 2 (25%), raster 3 (15%), raster 4 (10%), raster 5 (10%) and 

raster 6 (5%). In the second scenario, only the first four rasters contributed to gene flow: 

raster 1 (40%), raster 2 (30%), raster 3 (20%), raster 4 (10%), and in the third scenario, the 

four first rasters contributed: raster 1 (25%), raster 2 (25%), raster 3 (25%), raster 4 (25%). 

To produce a multiple resistance surface using ResistanceGA, a composite surface was 

generated using the Combine_Surfaces function. However, the relative contribution of each 

raster cannot be accounted for without adequate parametrization. Therefore, to compare the 

result obtained from multisurface scenarios, we compare resGF to the least-cost transect 

analysis (LCTA) implemented as described above. 

 

2.2.3 Comparison using published datasets 

To compare the two methods, a previously published dataset of Andropadus virens, an 

African tropical bird, was obtained on Dryad (Zhen et al. 2017). In this study, 15 populations 

(182 individuals) were sequenced using RADseq resulting in 47,482 SNPs using a minimum 

allelic frequency of 0.02. Twenty-three environmental variables were used to estimate the 

resistance surface of Andropadus virens (See Supplementary Information).  
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Additionally, the microsatellites dataset used in the original publication of the LCTA 

method (Pless et al. 2021) was also investigated (Fig. 5 and Fig. S4). Microsatellite datasets 

were included as this type of markers remains widely used and the ability of the gradient 

forest approach has not been tested using a limited set of markers. For this dataset, iterative 

random forest approach was performed without using the leave-one-out cross-validation. 

To compare the resulting resistance surfaces, Estimating Effective Migration Surfaces 

(EEMS) were generated (Petkova et al. 2016). EEMS was developed to visualise non-

homogeneous gene-flow on geographic map. This method explores patterns of isolation by 

distance (IBD) and uses effective migration to investigate the relationship between genetic 

distance and geography. Regions with low effective migration are associated with reduced 

gene-flow over time, whereas regions with relatively high effective migration can be 

interpreted as evidence of elevated gene-flow.  

 

3 Results 

3.1 Univariate simulations 

For the continuous variable, the “fbm” and “gaus” rasters showed no sign of correlation 

(Pearson’s ρ = -0.047, SD = 0.259) whereas the “gaus” and “composite surface” were strongly 

correlated (ρ = 0.648, SD = 0.136). The average correlation between Euclidean distance and 

genetic distance (1 – DPS) was 0.443 indicating that simulations of patterns of isolation by 

distance was successful. For the different genetic-based models which were investigated 

(resGF, ResistanceGA and LCTA), the correlation between genetic distance and the effective 

resistance distance was on average 0.486 for resGF, 0.477 for ResistanceGA, 0.412 LCTA. 

One iteration is provided as an example in Fig. S1 with the resulting R2 weighted importance 
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for the GF method (Fig. S8). The SDM approach achieved an average pattern of isolation by 

resistance of 0.415 (average AUC = 0.734).  

The MLPE regressions on our independent variables using the resGF approach were 

accurate (67.0% with AIC) while ResistanceGA identified the true model in 47.0% of cases 

and 26.0% for LCTA. ResGF and ResistanceGA were generally successful in identifying the 

true surface. Their performance metrics yielded similar inferences (Table 1) whereas the 

LCTA approach was not able to robustly detect the true surface under the MLPE evaluation 

approach. In the gradient forest models, the accuracy importance was able to consistently 

identify the true surface (100% of iterations). When using the “gaus” raster as true surface, 

the average contribution was 42.1% with an average of 86 SNPs (42.8% of all SNPs) with a 

positive R2 signalling that model correctly identified the contribution of landscape predicator 

as a driver of genetic differentiation. The contribution of the two other variables in their 

respective single layer gradient forest model was 4.1% for the “fbm” surface and 23.0% for 

the “composite surface”. The resulting resistance surfaces for the two models appeared 

reasonably correlated (ρ = 0.299, Table S8). The resGF approach achieved on average the 

highest correlation with the other methods tested reaching ρ = 0.669 with the LCTA approach 

and ρ = 0.319 with ResistanceGA (Table 2). Resistance surfaces obtained using the GF-based 

method appeared most strongly correlated with the ones produced by the non-genetic-based 

method (SDM) with a Pearson correlation of 0.570. Fig. 2 depicts the resulting resistance/cost 

surfaces for two iterations obtained for each of the methods investigated.  

When running our univariate simulations on a local computer, the resGF approach took on 

average 1.63 min, LCTA 13.43 min and 1h55 for ResistanceGA. The computation time for 

resGF increased as the number of individuals and number of loci used in the analysis (Table 

S2). Using different subsets of a large SNPs dataset (10,000 SNPs and 1,000 individuals) and 

comparing the resulting surfaces from each subset dataset yielded correlated results (average 
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Pearson’s correlation > 0.497 using 50 individuals and > 0.748 using 100 individuals; Table 

S3). 

Regarding simulations for categorical variables, the accuracy importance of the gradient 

forest appeared as the most reliable metric. The gradient forest approach identified the true 

surface 85% of the time (Fig. S2). When fitting a MLPE model, the different metrics 

performed unevenly (Table S1). AIC values for LCTA approach were the most consistent at 

finding the true surface although the RSME value for LCTA identified the correct surface in 

35% of cases. For conditional and marginal , resGF was the most supported method.  

Additionally, in the individual-based simulations (presented in SI), the average surface 

correlations across the different iterations resulted in resGF being the genetic-based method 

which appeared the most strongly correlated with the initial surface (ρ = 0.233), followed by 

resistanceGA (ρ = 0.192) and LCTA (ρ = -0.040). 

 

3.2 Multivariate simulations 

The multivariate approach aimed to examine the ability of gradient forest to correctly 

account for the contribution of each surface. For the scenario using three surfaces, resGF 

approached the expected contribution of each raster (Table 3). For raster 1, the average 

contribution of resGF was 61% (expected value = 70%), 29% for raster 2 (expected value = 

30%) and 10% for raster 3 (expected value = 0%). The LCTA approach achieved 48%, 31% 

and 21% for the 3-surfaces scenario. Since the multisurface layers for ResistanceGA is based 

on a composite surface, the relative contributions for this method were different than the 

expected values. 

The correlation of the resistance surfaces across the different methods was the highest 

between resGF and LCTA (ρ = 0.246). Similarly, the two RF-based approaches were able to 

identify the relative contribution of each raster using five variables (Table S4). For the 5-
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surfaces scenario, resGF and LCTA achieved respectively 43% and 31% for raster 1 

(expected 50%), 24% and 21% for raster 2 (expected 30%) and 19% and 22% for raster 3 

(expected 20%). However, the correlation achieved between the two methods was equal to 

0.109 in the 5-surfaces scenario. In the 10-surfaces approach, the correlation between the two 

RF methods reached 0.106. In each of the three different scenarios (Table S4-7), the 

contribution of single surface to the overall model for each method (resGF and LCTA) was 

similar.  

 

3.3 Comparison using published datasets 

A total of 47,482 SNPs (MAF > 0.2) were included in the analyses of the Andropadus 

virens dataset. The migration map estimated using Estimating Effective Migration Surface 

(EEMS) (where blue indicates relative high migration and red indicates lower migration) 

revealed elevated historical gene flow in the northern and eastern parts of the distribution with 

an area of reduced gene flow western Cameroon (Fig. 3A). The gradient forest approach 

resulted in 4,469 SNPs with a R2 > 0 which summed to around 10% of the dataset. Regarding 

the iterative random forest optimization, the present result was performed using the leave-one-

out cross-validation procedure. The third iteration obtained the lowest root-mean-square error 

(RSME = 0.0091; with a nodesize = 2 and Mtry = 8) with a Pearson correlation coefficient of 

0.528 between predicted and observed genetic distance (Fig. S3). The two methods produced 

a Pearson’s correlation between the two resulting surfaces of 0.474 (Fig. 3).  

The contribution of the different surfaces between the two approaches differed. In our 

gradient forest analysis, spatial predicators contributed the most to the model (Fig. 4) and the 

combined R2 for the remaining environmental predicators was 41.0 %. In the GF analysis, 

precipitation variables contributed strongly to the model. Among environmental variables, 

precipitation in the warmest quarter was the variable contributed the most (3.05%) followed 
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by precipitation of the wettest month (2.83%) and temperature seasonality (2.38%). However, 

in the iterative random forest optimization approach, only precipitations in the warmest 

quarter appeared among the top ten variables. Maximum and Minimum temperatures 

followed by NDVI and altitude were the predicators contributing more strongly to the model. 

The two methods were further tested by removing the Bioko island population and comparing 

the resulting surfaces in order to investigate the robustness of the different approaches (Fig. 

S5). In this process, the leave-one-out cross-validation procedure for LCTA was compared to 

the full method. The resGF method appeared the most consistent with a correlation of 0.895 

with and without the Bioko island population while the correlation among the LCTA methods 

varied from 0.051 to 0.880. 

When investigating the distribution of Ae. aegypti in the United States using the 

microsatellites dataset published by Pless et al. (2021), the migration surface revealed the 

highest migration in Florida and some parts of central Mexico. Reduced migration rates were 

inferred in the center east of the distribution, specifically in Louisiana. The two connectivity 

surfaces generated using resGF and LCTA had a correlation of 0.461 (Fig. 5). The two 

methods identified similar areas as regions of high connectivity: in Florida, in central United 

States and in Western United States (Fig. 5). Variable contribution varied between the two 

methods, where barren land cover was ranked eighth most important predicator for the LCTA 

method but its contribution as well as the contribution of snow or flood in the GF model was 

null. Both human density and urban land cover contributed to the GF model but urban land 

cover was the least contributing variable in LCTA while human density was fourth (Fig. S4). 
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4 Discussion 

To understand animal movement, it is crucial to develop effective landscape-level 

conservation approaches (Zeller et al. 2012). Resistance surfaces represent the interaction 

between gene flow and landscape variables and therefore appear as adequate candidates for 

conservation prioritization analyses (Spear & Storfer 2010; Hanson et al. 2019). The resGF 

method is derived from the gradient forest approach (Ellis et al. 2012) which models allelic 

changes over the landscape. In the present study, we tested this approach with other methods 

designed to generate map of gene flow. Our resGF method was able to generate resistance 

surfaces and to assemble multisurface resistance layers using the R2-weighted importance as a 

weighting factor.  

4.1 Univariate and multivariate Simulations 

In our univariate simulation studies, the average correlation between geographic and 

genetic distances was 0.443 indicating that the simulation framework was able to generate 

patterns of isolation-by-distance. Our simulation framework relied on generating individuals 

with SNPs associated with a gradient using coenocliner package and these individuals were 

subsequently mapped onto a raster. On average, 42.8% of the 200 simulated SNPs were found 

to have a positive R2 in gradient forest analyses indicating that this simulation approach 

succeeded in modelling SNP responding to environmental gradients. We first aimed to 

recover the true surface from competing raster layers, replicating the framework described by 

Peterman & Pope (2021). This testing approach relied on obtaining pairwise effective distance 

across individuals using a least-cost path algorithm and to perform model selection on the 

resulting distance matrices by fitting a MLPE model. The different metrics used in model 

selection did not vary, but we referred to AIC as suggested by Row et al. (2017). The 

investigated methods were able to achieved an overall robust correlation between cost and 
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genetic distance (resGF = 0.477; ResistanceGA = 0.486, LCTA = 0.412 and SDM = 0.411 - 

Fig. S1-2). 

 The ability of ResistanceGA to recover patterns of isolation-by-distance is due to its 

genetic algorithm which by design aims to maximise the pairwise relationship between 

genetic and cost distances. On the other hand, resGF algorithm maps changed in allelic 

frequencies over the landscape and the GF algorithm was also able to correctly capture the 

overall patterns of isolation-by-distance when present. The resGF method performed slightly 

better than ResistanceGA in recovering the true resistance surface from competing surfaces 

(Table 1 & S1). In our continuous scenario, we examined the accuracy importance of the 

different surfaces for the GF analyses and resGF always correctly identified the true surface. 

In the categorical scenario, the studied methods performed unevenly (Table S1), but the 

accuracy importance of the gradient forest appeared as the most consistent metric. However, it 

is worth noting that the different methods performed better using continuous variables.  

Among the different methods tested, resGF and the LCTA approach achieved the highest 

correlation between their resulting resistance surfaces reaching 0.699 in the univariate 

scenario. ResGF also displayed the strongest correlation among genetic-based methods with 

the resistance surface generated using species distribution model (SDM) (Table 2). 

ResistanceGA was moderately correlated with either resGF, LCTA or SDM methods reaching 

0.299, 0.319 and 0.337 respectively. Although we observed strong correlation between 

resistance surfaces generated with resGF and LCTA, the latter was not able to distinguish the 

true resistance surface among competing surfaces when refitting a MLPE model (Table 1). 

However, the LCTA method performed well when using RMSE as a metric where LCTA 

approach identified the true surface >60% of the time (Table 1) for continuous variable. These 

findings ascertain that resGF performed at least as well as ResistanceGA under the univariate 

scenario to generate resistance surface with continuous and categorical variables. Moreover, 
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in our individual-based model (provided in SI), resGF was the genetic-based method which 

was the most strongly correlated surface with initial resistance map (1-habitat map).  

The resolution provided by the gradient forest offered a refined complexity over the 

landscape. As opposed to regression models which uses summary statistics in the form of FST 

or DPS, resGF takes advantage of the potential of machine learning applications, it uses 

individual genotypes and environmental predicators experienced by these individuals rather 

than population estimates to refine a cost surface.  

Peterman & Pope (2021) raised concerned about fitting regression models with effective 

distance calculated independently from several single resistance surfaces. In this study, the 

two RF-based approaches tested were successfully able to incorporate multiple environmental 

predicators to generate a resistance surface (Table 3). In ResistanceGA, multisurface 

optimization was performed using a composite surface which does not take into account the 

weighted importance of the different environment predicators and therefore could not 

calculate the relative contribution of the different landscape variables. Link-based linear 

models refer to methods relating pairwise genetic distance to their landscape distance and 

these approaches are deeply subjected to multicollinearity among predictors (Cayuela et al. 

2018). RF-based approaches appear free from these assumptions and by design, can 

accommodate correlated variables (Ellis et al. 2012).  

In our multivariate simulations, resGF performed slightly better than LCTA in its ability to 

match the expected contribution of each individual raster value (Table 3, Table S4-7). The 

two methods maintained a moderate average correlation of 0.246 for the three-surfaces 

scenario but the correlation dropped to 0.109 and 0.106 in the five and ten-surfaces scenarios. 

The lack of observed correlation between the two methods under these scenarios might reflect 

the unrealistic aspect of the cumulative effect of the generated landscapes. A different 

simulation framework outputting allelic frequencies where populations are allowed to evolve 

 17550998, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13778 by Ifrem

er - C
entre A

tlantique, W
iley O

nline L
ibrary on [27/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 
 

according to multiple abiotic factors could further improve the assessment of these methods. 

The two RF-based methods are designed to incorporate multiple environmental predicators 

and have been previously used successfully (Fitzpatrick & Keller 2015; Bishop et al. 2021; 

Pless et al. 2021).  

The runtime analysis (Table S2) indicates that resGF is faster than ResistanceGA when the 

number of individuals is below 500 with 1,000 loci investigated. However, using different 

subsets of a large dataset, the resulting resistance surface appeared strongly correlated (Table 

S3) These findings indicate that the method would be appropriate for RAD-seq or 

Genotyping-in-Thousands by sequencing (GT-seq) datasets. ResGF could be implemented 

using larger dataset using cluster computing resources or using a subset of SNPs selected 

using a landscape genomic approach. Regarding the number of features to be included in an 

analysis, Breiman (2001) suggested to limit the number of variables to log2(N + 1) features in 

order to limit the correlation among trees and reduce the impact of the features on the 

generalization of error.  

 

4.2 Comparison using published datasets 

In the two real-dataset examples, the two approaches converged. ResGF and LCTA 

performance converged with an average correlation of 0.474 for the Andropadus virens 

dataset (Zhen et al. 2017) (Fig. 3) and 0.461 for the Aedes aegypti  microsatellite dataset  

(Pless et al. 2021) (Fig. 5). Interestingly, the migration surface calculated using EEMS offered 

a different picture of gene flow. This approach under the stepping-stone model approximate 

all possible migration histories using resistance distance to adjust the migration rate in the 

population grid before interpolating across the entire habitat (Petkova et al. 2016). In the two 

datasets, EEMS appeared significantly different than the resistance surfaces. Migration 

surface are designed to highlight areas where genetic similarities decay faster (i.e. low 
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effective migration) or where the relationship between genetic similarities and geographic 

distance remain constant. In the Andropadus virens dataset, high effective migrations were 

observed in the North of the studied area, whereas RF-based methods identified this region as 

high resistance to gene flow (i.e. low connectivity). In the West, low migration rates were 

inferred, a pattern which was observed in the resGF resistance surface. In the microsatellite 

dataset, Florida represented an area of high connectivity for Ae. aegypti as well as a place 

with high effective migrations. Other pockets of high connectivity were observed using both 

resGF and the LCTA approaches, which were not inferred by EEMS excepted for the stretch 

of high effective migration rates inferred in Texas. The combination of effective migration 

surface with resistance-based methods can be complementary when designing conservation 

areas or developing control strategy for infectious diseases propagated by dispersing animals. 

Resistance surface seemed to offer a refined precision, whereas EEMS has the ability to 

reveal broad scale patterns of gene flow. 

To investigate the robustness of RF-based methods, one population was removed from A. 

virens dataset (Bioko island population). This also allowed to obtain a dataset which was not 

fragmented by the sea as non-fully connected populations could potentially be problematic for 

some of the tested methods. In the resulting resistance surfaces, some variation was observed 

across the different implementations of the LCTA methods (full model and loocv) and when 

using 14 and 15 populations with correlation among cost surfaces ranging from 0.051 to 0.880 

(Fig. S6). The LCTA optimization method, like most landscape genetic approach, rely on 

sampling unit underlying some a priori decision about demes delineation (Manel et al. 2003). 

In this analysis, the genetic distance measure used was proportion of shared alleles (DPS) as 

this metric responds faster to landscape change (Savary et al. 2021b). F-statistics are 

predominantly used to reflect gene flow and assume equal effective population sizes and 

demographic equilibrium (Prunier et al. 2017). By modelling the change in allelic frequencies 
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over the landscape, gradient forest approach does not rely on demes delineation or F-statistics. 

In the random forest model, each allele is used and contributes to establish species 

connectivity over the landscape. In the LCTA optimization approach, mean values between 

population pairs calculated through each environmental raster are used to predict the 

resistance surface using a RF model. The optimization method therefore models the potential 

distance through each raster between populations, whereas resGF uses changes in allelic 

frequencies to obtain transformation functions. These variations might explain the differences 

in variable contributions where resGF performed slightly better in matching the expected 

contribution of environmental predicator in the multivariate scenario (Table 3). LCTA relies 

on least-cost path algorithm where the algorithm assumes that dispersing individuals possess a 

perfect knowledge of the entire landscape (Adriaensen et al. 2003). ResGF is an ensemble 

learning approach which relies on specialised transformation functions where each function is 

suited to the data.  

Machine learning algorithms are designed to develop predictive models using complex and 

non-linear data (Olden et al. 2008). In this study, we examined the potential of random forest 

approaches to generate cost-surface. The resGF approach provides an alternative to link-

based linear models as it does not violate traditional assumptions of linear model, 

independence, normality and linearity (Balkenhol et al. 2009).  The study has shown that 

gradient forest approach could be applied to wide range of genetic datasets including whole-

genome, RAD-seq, microsatellite or even Genotyping-in-Thousands by sequencing (GT-seq) 

datasets. This method appeared more precise that the LCTA optimization although the two 

approaches converged when using real datasets. These methods can be use in complement of 

effective migration surfaces when implementing conservation or disease elimination 

strategies. In a world subjected to increasing landscape fragmentation, we hope that this 
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gradient forest approach and other machine learning techniques will prove useful to 

understand landscape connectivity.  
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8 Data Accessibility 

The resGF function is available on GitHub (https://github.com/MVan35/resGF)as well as the 

simulation scripts for single continuous and categorical variable and multi-variable 

simulations.  The dataset of Andropadus virens, an African tropical bird, was obtained on 

Dryad - https://datadryad.org/stash/dataset/doi:10.5061/dryad.8n8t0 (Zhen et al., 2017) and 

the microsatellite dataset for the LCTA (Pless et al. 2021) was obtained from GitHub - 

https://github.com/evlynpless/MOSQLAND/tree/master/ModelingConnectivity.  
Data citation: 

• Zhen Y, Harrigan RJ, Ruegg KC, et al. 2017,  Data from: Genomic divergence across 
ecological gradients in the Central African rainforest songbird (Andropadus virens) - 
https://datadryad.org/stash/dataset/doi:10.5061/dryad.8n8t0 

• Pless E, Saarman NP, Powell JR, Caccone A, Amatulli G 2021, ModelingConnectivity - 
https://github.com/evlynpless/MOSQLAND/tree/master/ModelingConnectivity 
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10 Figures and tables 
 

Tables 
 
Table 1 – Simulation summary for the continuous univariate scenario varying the true surface 
using either the “gaus”, “fbm” or “composite” surface as the true surface influencing 
movement over 100 iterations. Evaluation metrics for each surface are provided, they were 
obtained either by refitting a maximum likelihood population effects model (MLPE) or using 
method specific metrics. 
 

True 
surface 

Method 
tested 

Evaluation metrics by surfaces by 
refitting a MLPE 

Method specific 
metrics 

AIC BIC R2c R2m AICc 

gaus 
 

resGF 67% 67% 42% 61% 67% Accuracy importance: 
100% 
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 ResistanceGA 47% 47% 55% 50% 47% - 

LCTA 26% 26% 35% 37% 35% RSME: 63% 

fbm 
 
 

resGF 61% 58% 55% 67% 59% Accuracy importance: 
100% 

ResistanceGA 43% 49% 55% 43% 43% - 

LCTA 43% 37% 20% 26% 43% RSME: 63% 

Composite 
 
 

resGF 63% 59% 61% 61% 64% Accuracy importance: 
100% 

ResistanceGA 44% 47% 50% 46% 41% - 

LCTA 46% 42% 31% 29% 45% RSME: 59% 

 
 
Table 2 – Correlation between the final resistance surfaces generated using the different 
methods 
 
 resGF ResistanceGA LCTA SDM 
resGF 1.000 0.442 0.669 0.570 
ResistanceGA 0.442 1.000 0.319 0.337 
LCTA 0.669 0.319 1.000 0.030 
SDM 0.570 0.337 0.030 1.000 
 
 
 
 

Table 3 – Contribution of each surface to the final multivariate surface using three rasters 
scenario. In this three-variables scenario, the multivariate scenario contained 70% of pooled 
allelic frequencies simulated on the fractional brownian motion raster (Raster 1), 30% of the 
allelic frequencies found in the Gaussian field raster (Raster 2) and no contribution from the 
random cluster raster (Raster 3). The table presents average results (over 20 iterations) of the 
variable importance measures for each method and the expected values under this scenario. 
 
contribution Name Expected 

% 
ResistanceGA resGF LCTA 

Raster 1 fractional 
brownian 
motion 

70% 22% 61% 48% 

Raster 2 Gaussian 
field 30% 46% 29% 31% 

Raster 3 random 
cluster 0% 31% 10% 21% 
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ii)

Gaussian Field ResistanceGA ResGF LCTA

IBD = 0.703

SDM

R2= 0.765 R2= 0.685R2= 0.691 R2= 0.707i) iii) iv) v)

ii)i) iii) iv) v)IBD = 0.613 R2= 0.595 R2= 0.561R2= 0.577 R2=0.567

a) Iteration 1

b) Iteration 2

Gaussian Field ResistanceGA ResGF LCTA SDM
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a) c) b) 

R2= 0.504 R2= 0.489
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