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Abstract :   
 
The concept of Maximum Sustainable Yield (MSY) have been lying at the core of the theory of sustainable 
harvesting a fishery for decades and have become a key reference point for many fishing administrations, 
including the European Union. However, the existence of a MSY relies on the stability of a population 
equilibrium. This hypothesis, though always true in the original Schaeffer model, is still challenging in 
more realistic and recent population models. However, recent advances shows that fish population can 
exhibit complex dynamics that are ill described by the classical theory. In particular, processes occurring 
at intra-annual time scales can affect the stability of a population equilibrium even in a strictly single 
species case. Associated to stability, the resilience of the equilibrium (defined as an inverse return-time 
following a perturbation) also matters in a management purpose. Here, we introduce an analytical single 
population model in discrete time with a monthly time-step allowing temporal distinction between 
maturation and recruitment with density-dependent mortality and fishing exploitation. We show that, 
thanks to an appropriate population structure, we can easily derive inter-annual population equilibrium, 
and study their resilience and stability properties. Then, we show that under classical hypothesis 
concerning density-dependence, equilibrium stability is not guaranteed and that MSY can, in theory, be 
associated to unstable or low resilient states. However such destabilisation seems unlikely with realistic 
sets of parameters. Finally, a numerical illustration for sole (Solea solea) of the Bay of Biscay suggests 
that the value of MSY was sensitive to maturation period whereas viability, stability and resilience was 
more sensitive to timing of recruitment. The value of appeared robust to uncertainty concerning maturation 
and recruitment. We conclude by saying that even if the risk of destabilisation is low for real populations, 
the risk of decreased resilience near the border of extinction should be cared of. 
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Highlights 

► With our new model we can easily link intra-annual to inter-annual dynamics. ► With our new model 
we can separate maturation from recruitment processes. ► For sole, maturation timing has an impact on 

MSY values but little impact on  ► For sole, recruitment timing has an impact on stability and 
resilience of equilibrium. 
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value of FMSY appeared robust to uncertainty concerning maturation and
recruitment. We conclude by saying that even if the risk of destabilisation
is low for real populations, the risk of decreased resilience near the border of
extinction should be cared of.

Keywords: difference equation, intra-annual time-scales, maximum yield,
resilience, sensitivity

1. Introduction1

Numerous examples of marine population collapses (Mullon et al., 2005;2

Pauly et al., 2005) led to the progressive recognition that world fisheries3

were exhaustible and that fishing could affect deeply the abundance of ma-4

rine populations (Pauly et al., 2002). This concern, along with the will to5

maximize profits out of fisheries exploitation, fostered the development dur-6

ing the XX th century of a theory of sustainable harvesting of a population.7

The idea that there is an optimal level of fishing effort emerged after pio-8

neer works of Russell (1931), Hjort (1933) and Graham (1935), and led to9

the formalisation of the concept of Maximum Sustainable Yield (MSY ) by10

Schaefer (1954).11

Although early criticised (Larkin, 1977), this concept was highly success-12

ful amongst several fishing administrations worldwide (Mace, 2001; Mesnil,13

2012), including the European Union which set the goal that all stocks reach14

levels of biomass compatible with the production of MSY by 2020 (European15

Union, 2013). For Finley (2009), however, this institutional success is more16

explained by its political implications than by the scientific strength of the17

concept in itself.18

In practice, MSY -based management have evolved from a target point19

to be attained at all costs to a target range around the maximum taking20

into account uncertainties and allowing room to consider other management21

objectives or ecosystem aspects (Hilborn, 2010; Rindorf et al., 2017). In22

particular, the effect of uncertainty on several model inputs on theMSY have23

been largely studied (Zheng et al., 2019) and serves as a basis for fisheries24

advice (ICES, 2015). However, the sustainability of the MSY is still not25

clearly established and the effects of uncertainty of inputs on sustainability26

of this reference point have been little explored.27

The concept of sustainability is ubiquitous in the policy realm but lack28

clear definition which does not always match with those employed by sci-29
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entists (Hilborn et al., 2015; Donohue et al., 2016). In the classical under-30

standing of sustainability in fisheries as defined by Quinn and Collie (2005),31

and which correspond to the early developments of harvesting theory, “sus-32

tainable” is equivalent to “asymptotically stable” with the use of equilibrium33

models. Indeed, in the original model of Schaefer (1954) the harvested pop-34

ulation is described by a single differential equation, admitting a unique and35

stable positive equilibrium. This is in line with the ancient conception that,36

neglecting random fluctuations due to external factors, populations tend to37

stabilise around an equilibrium value constrained by their environment. It38

must be stressed out that in this framework, any population level can be con-39

sidered as sustainable as long as it is positive and MSY is a natural target for40

fishing management (Quinn and Collie, 2005). Even if the perception of sus-41

tainability have evolved and now includes a large number of metrics (Quinn42

and Collie, 2005; Hilborn et al., 2015; Donohue et al., 2016), the equilibrium-43

based concept of MSY, as a target or as a threshold (Mace, 2001), remains44

at the core of fishing management policies.45

However, stability of exploited populations dynamics is not guaranteed.46

Hsieh et al. (2006) showed empirically that increased fishing pressure had47

a destabilising effect on populations in the sense that it tends to increase48

abundance fluctuations. There is a growing debate concerning the processes49

implicated in this destabilisation (Shelton and Mangel, 2011; Sugihara et al.,50

2011; Rouyer et al., 2012) but Anderson et al. (2008) argued that increased51

fluctuations were probably due to intrinsic dynamical effects associated to52

changes in life-history parameters (e.g. intrisic growth rate) in response to53

fishing.54

Beside the binary opposition between stable and unstable attractors in55

population dynamics, the conceptually neighbouring notion of resilience, de-56

fined as an inverse return-time to the equilibrium Pimm (1984), have impor-57

tant management implications and is arousing a growing interest in ecological58

literature (Grimm and Calabrese, 2011). Key questions related to this notion59

are (i) whether or not ecological systems are likely to recover from a perturba-60

tion fast enough so that the equilibrium-based approach remain meaningful,61

and (ii) how exploitation and management are likely to affect this recovering62

capacity. Several theoretical studies have thus recently explored the effect63

of harvesting on resilience in relation with yields in single structured popu-64

lation models (Lundström et al., 2019), in prey-predator systems (Tromeur65

and Loeuille, 2017) or in tri-trophic food-chains Kar et al. (2019).66

Many fish populations characterised by birth-pulse growth with well dis-67
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tinct cohorts (Laurec and Le Guen, 1981) are straightforwardly modelled68

by the use of stock-recruitment relationships (Ricker, 1954). In this kind of69

models, recruitment is a discrete event and is well represented by difference70

equations. Such models are known to allow cyclic and chaotic dynamics even71

for a single population (May, 1975) and lead to very complex dynamics (Tang72

and Chen, 2002). This stresses out the importance of the mathematical for-73

malism employed and suggests that stability properties should not be taken74

for granted when deriving reference points such as MSY.75

A drawback of the use of stock recruitment relationships is the fact76

that they synthesise in a single equation a large number of life-history pro-77

cesses occurring at the youngest stages of individuals’ life (Needle, 2002).78

In Ricker (1954) pioneer work for example, maturation and recruitment are79

confounded. However, life-history features such as maturation delay (Cole,80

1954; Tuljapurkar, 1990; Koons et al., 2008) can have a large impact on the81

population dynamics. Timing and duration of density-dependent processes,82

including at time-scales shorter than one year, are also likely to have impor-83

tant consequences (Ratikainen et al., 2007). For example, timing of seasonal84

harvesting is known to affect the value of MSY (Kokko and Lindström, 1998;85

Xu et al., 2005) and the stability of population equilibrium (Cid et al., 2014).86

However, intra-annual processes are generally ignored in practice when deriv-87

ing reference points for harvested fish populations. This constitutes in itself88

a specific form of uncertainty in models, which is likely to have important89

management implications (Ratikainen et al., 2007).90

In this study, we consider that stability sensu stricto and resilience are91

key properties of sustainability. Here, we propose a theoretical model of92

a single harvested population submitted to birth-pulse growth and inter-93

stage density-dependence of juveniles. The latter proceeds by cannibalism94

(or other induced mortality) of immature individual by mature ones, which95

is well documented in a number of fish populations (Smith and Reay, 1991)96

including some of importance for exploitation such as cod (Bogstad et al.,97

1994; Uzars and Plikshs, 2000), and is known to be a major source of insta-98

bility in populations (Ricker, 1954). Our aim is to use this model to inves-99

tigate the consequences of the description at intra-annual time-scale of two100

critical processes, namely (i) maturation and (ii) recruitment, on long-term101

yields and their sustainability. A particular attention is given to the effect102

of these processes on the MSY. The first process investigated, maturation,103

is a purely biological process of critical importance that could not be con-104

trolled by management. Maturation is tightly linked to density-dependence,105
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which is generally supposed to affect strongly immature individuals (Ricker,106

1954; Rindorf et al., 2022), and to reproduction. It is subject to uncertainty,107

given that knowledge for real species is generally available on a yearly basis108

only (ICES, 2018). On the contrary, the second process, recruitment, de-109

fined as the young fish arrival in the exploited portion of the population, can110

be considered as a management control variable in the sense that is is par-111

tially dependent on fishing equipment and behavior (Laurec and Le Guen,112

1981). As being related to exploitation, it is likely to have consequences on113

long-term yields and MSY.114

This model and the whole set of hypotheses are presented in section115

2. We then make the link between the monthly and yearly dynamics in116

section 3, by showing that the dynamics can be represented by a first order117

difference equation system. It is then possible to compute an inter-annual118

equilibrium and to study his property within the classical dynamical system119

theory framework. The modelling approach exposed in these sections is one120

the main points of the present paper. In particular, we stress on the idea that121

if we develop here an application constrained by a number of assumptions122

that limit its generality, we opened the door to the development of alternative123

models with varied assumptions but based on the same approach. In section124

4, we give some details concerning the equilibrium properties of interest. We125

then apply our model to a real population with data for the Bay of Biscay126

sole (Solea solea). These applications are presented in section 5. Finally, our127

findings are discussed in section 6.128

2. Models & analysis129

2.1. Construction of a properly-structured population model with a monthly130

time-step131

2.1.1. Population & time structure132

Throughout this study, we model the monthly discrete dynamics of a133

marine population exploited by fishing from a particular biological devel-134

opment stage (recruited individuals). The population is described with a135

structured abundance at each month t, represented by the vector N(t) with136

t = 1, . . . ,+∞. Let us assume that in their life-time, individuals go through137

three structuring events: (i) reproduction (i.e. production of immature indi-138

viduals from mature ones), (ii) maturation (i.e. transformation of immature139

individuals into mature ones) and (iii) recruitment. The latter is defined140

(Laurec and Le Guen, 1981) as the entry of individuals into the exploited141
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+ Reproduction 

(at 𝒎 = 𝒎𝒓𝒆𝒑)

+

Recruitment

(at 𝒎 = 𝒎𝒓𝒆𝒄)

Density dependence

Figure 1: Conceptual view of the interactions between individuals and their influence on
yields. Index {a = 0, . . . , > arec} stands for round age in years, index {d, d̄} stands for
density-dependence and index {h, h̄} stands for accessibility to fishing. Three groups must
be considered depending of exact age δ (in months) of individuals : δ < ∆mat (in blue),
∆mat ≤ δ < ∆rec (in black) and ∆rec ≤ δ (in red). Depending on ∆mat and ∆rec, the
relative duration of each fraction of the population will vary and have consequences on
yields and their sustainability.

portion of the population. For sake of simplicity we assume that only mature142

individuals are exploited, i.e. maturation occurs before recruitment.143

Contrarily to annual models where the life-cycle events undergone by144

individuals are assumed simultaneous, we assume here that new-born indi-145

viduals mature and recruit after a fixed number of months noted ∆mat and146

∆rec respectively (as represented on time arrow in figure 1). Between two147

successive time-steps t and t+1, events happening in individuals lives depend148

on their exact age δ (in months) in comparison with ∆mat and ∆rec. Imma-149

ture individuals (δ ≤ ∆mat) are unable to reproduce, are not exploited and150

are assumed to undergo each month t a density-dependent mortality from151

mature individuals. Mature individuals (δ > ∆mat) are able to reproduce152

and are assumed to undergo each month a constant natural mortality. Re-153

cruited individuals (δ > ∆rec) undergo an additional fishing mortality and154

contribute to yields.155

As represented in figure 1, the result of this distinction between immature,156

mature, unharvested and harvested individuals is that three homogeneous157

groups of individuals (represented in different colors on the figure) interact158
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with each other in different ways. Depending on the value of ∆mat and ∆rec,159

the relative importance of each process is expected to differ. First, density-160

dependence is expected to have a larger effect on the overall dynamics if161

∆mat is large. The relative position of ∆rec to ∆mat controls the amount of162

time spent by mature individuals in the unspoiled situation characterized by163

a higher survival rate than immature and recruited individuals. The longer164

this duration time (∆rec − ∆mat) is, the more numerous mature protected165

individuals are, hence fostering reproduction. However it also affects the166

number of immature individuals through the capacity of fishing to modulate167

the effect of natural compensation within the population by removing can-168

nibalistic adults. Indeed, individuals of age ∆mat ≤ δ < ∆rec do not undergo169

fishing mortality but exerts density-dependent mortality on immature ones.170

In order to investigate the effect of the intra-annual timing of population
structuring events ((i),(ii) and (iii) detailed above) on the long-term dynam-
ics, we define the annual cycle as the repetition of a reproduction event. For
simplicity reasons and without losing in genericity, we assumed that repro-
duction occurs at month mrep = 12. ∆mat and ∆rec can be expressed as:

∆mat = 12 amat +mmat

∆rec = 12 arec +mrec

where mmat and mrec are the respective months where maturation and re-171

cruitment happen each year, and amat and arec are the respective number172

of whole years before these events happen in individuals’ life. We have173

1 ≤ mmat ≤ mrep = 12 and 1 ≤ mrec ≤ mrep = 12 . Assuming ∆mat ≤ ∆rec,174

we also have amat ≤ arec.175

To switch from the time step t to a calendar time, We also define a176

bijective function f which to each time-step t associates a value of month m177

and year y:178

f : N+∗ −→ {1, . . . ,mrep = 12} × N+,
f(t) = (m, y),
m = t− ⌊ t−1

mrep
⌋ ×mrep

y = ⌊ t−1
mrep

⌋

(1)

where ⌊ t−1
mrep

⌋ stands for the integer part of t−1
mrep

, and mrep is the month at179

the end of which reproduction happens.180

We will then denote N(m, y) the vector of abundance at the end of month181

m of the year y.182
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One of the main originalities of our model lies in the choice of the struc-183

ture of the population N(t) according to successive properly defined stages.184

Thanks to this particular structure, we will be able to perform easily the185

equilibrium and stability analysis in the next step. The stages are defined186

by the round age a in year (expressed as an integer number of whole years187

lived by individuals, as opposed to exact age δ in months), the maturity188

(characterised by constant instead of density-dependent natural mortality)189

and the accessibility to fishing. Individuals are arranged into arec+2 modal-190

ities associated to round age a: {0, 1, . . . , arec, > arec} (where > arec stands191

for individuals of age strictly greater than arec), two modalities associated192

to maturity (density-dependant vs. independent): {d, d̄} and two modalities193

associated to fishing (harvested vs. unharvested) {h, h̄}.194

It follows from our set of assumptions that, for all t:

Na,d,•(t) = 0, ∀a > amat,
Na,d̄,•(t) = 0, ∀a < amat,
Na,•,h̄(t) = 0, ∀a > arec,
Na,•,h(t) = 0, ∀a < arec,

where Na,d,•(t), Na,d̄,•(t), Na,•,h̄(t), Na,•,h(t) stands for the abundance of re-195

spectively immature, mature, harvested and unharvested individuals of round196

age a at time t.197

Hence, we can write the vector of the structured population:

N(t) = N(m, y) =



N0,d,h̄(m, y)
...

Namat,d,h̄(m, y)
Namat,d̄,h̄(m, y)

...
Narec,d̄,h̄(m, y)
Narec,d̄,h(m, y)
N>arec,d,h(m, y)


Figure 2 gives a schematic view of the complete population and time structure198

of our model.199

2.1.2. Description of the monthly dynamics200

As outlined above, the two modalities associated to maturity ({d, d̄}) and201

to fishing accessibility({h, h̄}) have implications in terms of mortality.202
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Figure 2: Conceptual view of the structured population and its dynamics represented in
our model. Graduations are in months, and year succession is represented by the large
arrow at the bottom, for all year y. The blue circle with dashed red and black arrows
stands for the production of individuals of age 0 (“Birth”) at month m = mrep. Dashed
coloured arrows stand for class changes (i.e. aging, maturation or recruitment). Empty
rectangles below axes mean that some classes are always empty during part of the year
because of a class change happening during the year. Each month, individuals undergo a
defined mortality as shown in figure 1. The position of month mmat is indicated as being
the month at which inter-annual equilibrium research is performed, for all year y.
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We model explicitly a density-dependent mortality of immature individu-203

als at each time step, assuming after Ricker (1954) that mortality of immature204

individuals increases with the number of mature individuals. For the sake of205

simplicity, let the mortality of immature individuals between t and t+ 1 be:206

Md(t+ 1) = µN•,d̄,•(t) + ω (2)

where µ and ω are two positive constants and N•,d̄,•(t) is the sum of mature207

individuals of all ages accessible to fishing at time t. The derived survival208

rate of immature individuals is expressed as: Sd(t+ 1) = e−Md(t+1) .209

Let the natural and fishing mortalities of mature individuals between210

time-steps t and t + 1 be two positive constants Md̄ and F . The derived211

survival rates for mature individuals, depending on if they are harvested or212

not, are expressed as Sd̄,h = e−(Md̄+F ) and Sd̄,h̄ = e−Md̄ .213

For each t, switching from t to (m, y) the abundance of the population214

can be analytically described from the abundance at time t − 1. For class215

(0, d, h̄), we have for all y:216

N0,d,h̄(1, y) = N0,d,h̄(mrep, y − 1)Sd(1, y)
N0,d,h̄(m, y) = N0,d,h̄(m− 1, y)Sd(m, y), ∀m ∈ {2, . . . ,mrep − 1}
N0,d,h̄(mrep, y) = r N•,d̄,•(mrep, y)

(3)

where r is mature individuals’ fecundity and N•,d̄,•(mrep, y) is the sum of217

mature individuals at the end of month mrep of year y.218

For classes (a1, d, h̄), a1 ∈ {1, . . . , amat − 1}, we have for all y:219

Na1,d,h̄(1, y) = Na1,d,h̄(mrep, y − 1)Sd(1, y)
Na1,d,h̄(m, y) = Na1,d,h̄(m− 1, y)Sd(m, y), ∀m ∈ {2, . . . ,mrep − 1}
Na1,d,h̄(mrep, y) = Na1−1,d,h̄(mrep − 1, y)Sd(mrep, y)

(4)

For classes (amat, d, h̄) and (amat, d̄, h̄), we have for all y:220

Namat,d,h̄(1, y) = Namat,d,h̄(mrep, y − 1)Sd(1, y)
Namat,d,h̄(m, y) = Namat,d,h̄(m− 1, y)Sd(m, y), ∀m ∈ {2, . . . ,mmat − 1}
Namat,d,h̄(m, y) = 0, ∀m ∈ {mmat, . . . ,mrep − 1}
Namat,d,h̄(mrep, y) = Namat−1,d,h̄(mrep − 1, y)Sd(mrep, y)

(5)
and221
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Namat,d̄,h̄(m, y) = 0, ∀m ∈ {1, . . . ,mmat − 1}
Namat,d̄,h̄(mmat, y) = Namat,d,h̄(mmat − 1, y)Sd(mmat, y)
Namat,d̄,h̄(m, y) = Namat,d̄,h̄(m− 1, y)Sd̄,h̄, ∀m ∈ {mmat + 1, . . . ,mrep − 1}
Namat,d̄,h̄(mrep, y) = 0

(6)
Notice that, for all m, only one of these last two classes takes non-zero222

values.223

For classes (a2, d̄, h̄), a2 ∈ {amat + 1, . . . , arec − 1}, we have for all y:224

Na2,d̄,h̄(1, y) = Na2,d̄,h̄(mrep, y − 1)Sd̄,h̄

Na2,d̄,h̄(m, y) = Na2,d̄,h̄(m− 1, y)Sd̄,h̄, ∀m ∈ {2, . . . ,mrep − 1}
Na2,d̄,h̄(mrep, y) = Na2−1,d̄,h̄(mrep − 1, y)Sd̄,h̄

(7)

For classes (arec, d̄, h̄) and (arec, d̄, h), we have for all y:225

Narec,d̄,h̄(1, y) = Narec,d̄,h̄(mrep, y − 1)Sd̄,h̄

Narec,d̄,h̄(m, y) = Narec,d̄,h̄(m− 1, y)Sd̄,h̄, ∀m ∈ {2, . . . ,mrec − 1}
Narec,d̄,h̄(m, y) = 0, ∀m ∈ {mrec, . . . ,mrep − 1}
Narec,d̄,h̄(mrep, y) = Narec−1,d̄,h̄(mrep − 1, y)Sd̄,h̄

(8)

and226

Narec,d̄,h(m, y) = 0, ∀m ∈ {1, . . . ,mrec − 1}
Narec,d̄,h(mrec, y) = Narec,d̄,h̄(mrec − 1, y)Sd̄,h̄

Narec,d̄,h(m, y) = Narec,d̄,h̄(m− 1, y)Sd̄,h, ∀m ∈ {mrec + 1, . . . ,mrep − 1}
Narec,d̄,h(mrep, y) = 0

(9)
As well as for classes (amat, d, h̄) and (amat, d̄, h̄), only one these last two227

classes takes non-zero values, for all m.228

Finally, for class (> arec, d̄, h), we have for all y:229

N>arec,d̄,h(1, y) = N>arec,d̄,h(mrep, y − 1)Sd̄,h

N>arec,d̄,h(m, y) = N>arec,d̄,h(m− 1, y)Sd̄,h, ∀m ∈ {2, . . . ,mrep − 1}
N>arec,d̄,h(mrep, y) =

[
N>arec,d̄,h(mrep − 1, y) +Narec,d̄,h(mrep − 1, y)

]
Sd̄,h

(10)
Notice that above equations were detailed for the most complex version230

of the model i.e. when 1 < amat and 1 < arec − amat. However, they can be231

easily reduced to any version of the model with 0 ≤ amat ≤ arec as long as232

∆mat ≤ ∆rec.233
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This analytical model is implemented in R and reproduces correctly the234

discrete monthly dynamics of exploited marine population (see figure 3 for235

an illustration).236

2.2. Connecting intra-annual and inter-annual time-scales237

2.2.1. From a monthly dynamics to an annual dynamics238

To investigate equilibrium properties of the model, we need to study the239

long-term evolution of the population abundance. Let N(m, y) be assessed at240

a particular arbitrary chosen month each year. Without the loss of generality,241

we set m at mmat. We will see below that the choice of mmat allows to reduce242

the dimension of the studied system. We therefore study the dynamics of243

N(mmat, y) with respect to y.244

First, it comes from equations (5), (6), (8) and (9) that at m = mmat, two
elements of N(mmat, y) are always empty. Depending on the the ordering of
mmat and mrec we have for all y:{

Namat,d,h̄(mmat, y) = Narec,d̄,h(mmat, y) = 0, if mmat ≤ mrec

Namat,d,h̄(mmat, y) = Narec,d̄,h̄(mmat, y) = 0, else

Therefore, we can always remove elements of N(mmat, y) without losing in-245

formation while performing the analysis of the annual dynamics.246

Then, we can derive from equations (3-10) the expression ofN(mmat, y+1)247

for all y. If mmat ≤ mrec, we get the system (17), expressed in table 3. Here,248

we focus on this particular case but the same reasoning is feasible for the249

alternative case when mmat > mrec (see Appendix A for the associated250

developments).251

Given some proper simplifications, N•,d̄,•(mrep, y),
∏mrep

m=mmat+1 Sd(m, y)252

and
∏mmat

m=1 Sd(m, y + 1) can be formulated as functions of N(mmat, y) (see253

Appendix B for proof) and system (17) can be expressed as a first-order254

difference system of dimension arec + 2. For all y, we get :255 

N0,d,h̄(mmat, y + 1) = r α1Ψ(N d̄(mmat, y)) e
−φ1(N d̄(mmat,y))

Na1,d,h̄(mmat, y + 1) = α2Na1−1,d,h̄(mmat, y) e
−φ2(N d̄(mmat,y))

Na2,d̄,h̄(mmat, y + 1) = σ Na2−1,d̄,h̄(mmat, y)

N>arec,d̄,h(mmat, y + 1) = ν N>arec,d̄,h(mmat, y)
+ρNarec,d̄,h̄(mmat, y)

(11)
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with a1 = 1, . . . , amat and a2 = amat + 1, . . . , arec. Ψ (N d̄(t)) is the number256

of spawner and φn(N d̄(t)) is a density-dependence function (see table 4 for257

detailed expressions). Moreover :258

— Ψ(N d̄(t)) and φn(N d̄(t)) are linear combinations of
(
Na,d̄,h̄(t)

)
a=amat, ..., arec

259

and
(
Na,d̄,h(t)

)
a=arec ,>arec

.260

— αn, σ, ν, ρ are positive constants.261

At this stage, given this first order difference equations system (11) we262

can perform easily the equilibrium and stability analysis of the population.263

2.2.2. Expressions of equilibrium264

In this study, we are interested in the equilibrium properties ofN(mmat, y)
described by system (11). N∗ is an inter-annual equilibrium if and only if it
verifies:

N(mmat, y + 1) = N(mmat, y) = N∗(mmat)

System (11) always admits only one non-trivial equilibrium which is the265

solution of:266 

N∗
amat,d̄,h̄

(mmat) = r α1 α
amat
2 Ψ(N∗

d̄(mmat))

×e−φ1(N
∗
d̄
(mmat))−amat φ2(N

∗
d̄
(mmat))

N∗
a2,d̄,h̄

(mmat) = σ N∗
a2−1,d̄,h̄

(mmat)

N∗
>arec,d̄,h

(mmat) = ν N∗
>arec,d̄,h

(mmat) + ρN∗
arec,d̄,h̄

(mmat)

(12)

withN∗
d̄(mmat) =

t
(
N∗

amat,d̄,h̄
(mmat), N

∗
a2,d̄,h̄

(mmat), N
∗
>arec,d̄,h

(mmat)
)
and a2 =267

amat + 1, . . . , arec;268

269

2.3. Equilibrium properties : equilibrium yields, stability & resilience270

2.3.1. Maximum Sustainable Yield271

The equilibrium yield can be straightforwardly derived from the equilib-272

rium abundance using the classical Baranov catch equation (Baranov, 1918),273

given that fishing and natural mortality of mature individuals are constant :274

Y ∗(mmat) = N∗
•,d̄,h(mmat)

(
1− e−(Md̄+F )

) F

Md̄ + F
(13)
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where N∗
•,d̄,h(mmat) = N∗

arec,d̄,h
(mmat) + N∗

>arec,d̄,h
(mmat) is the total number275

of recruited individuals at month m = mmat at inter-annual equilibrium.276

The value of inter-annual equilibrium at any month m ̸= mmat can be277

easily computed by applying equations (3-10) to N∗. Hence we can compute278

the total annual yield as:279

Y ∗
T =

mrep∑
m=0

Y ∗(m) (14)

where Y ∗(m) is the inter-annual equilibrium yield at month m.280

Let us consider at present that Y ∗
T depends only on the control variable

F . Unfortunately the expression of Y ∗
T (F ) is too complex to analytically

calculate the maximum of Y ∗
T (.) and derive the Maximum Sustainable Yield

(MSY). Instead we performed a numerical optimization of Y ∗
T (.) using Brent’s

method (Brent, 1973) to get the value of MSY and FMSY :

MSY = max(Y ∗
T (F ))

FMSY = argmax
F

Y ∗
T (F )

2.3.2. Equilibrium stability & resilience281

Computation of yields at equilibrium and their optimisation does not282

inform us on the stability of this equilibrium and hence on sustainability283

of yields. As we succeeded to express the whole dynamics of the structured284

population as first order difference equation system, we can perform easily the285

stability analysis of the equilibrium by studying the property of the Jacobian286

matrix of system (11). The inter-annual equilibrium N∗ is locally stable if287

and only if:288

|λi| < 1, ∀i ∈ {1, . . . , arec + 2} (15)

where |λi| is the modulus of the ith eigen value of the Jacobian matrix of289

the system at inter-annual equilibrium. See Appendix C for the general290

expression of the Jacobian matrix of system (11).291

Expressions of eigenvalues are expected to be too complex to be ana-292

lytically tractable and interpretable especially when the system is of large293

dimension. We therefore calculated numerically the eigenvalues to detect294

stability changes using the basic “eigen” function of R software which relies295

on LAPACK routines (Anderson et al., 1999).296
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The stability properties of equilibrium depends on parameters. Hence,297

stability, unstability, and extinction domains (i.e the set of parameters for298

which the equilibrium is stable, unstable and lesser than zero, respectively)299

represent volumes in a parameter space. In particular, we pay attention300

of the surfaces of stability, unstability and extinction in the r × F plan.301

Variations along the r axis can represent differences of fecundity between302

stocks or differences in reproductive success for a same stock, whereas F is303

the main control variable when dealing with exploited systems. In such a304

plan, it is also possible to plot the value of FMSY if it does exist, for each305

value of r.306

When no destabilisation occurs, the stability properties of the equilibrium307

can be more finely defined by considering the resilience of this equilibrium.308

Sensu Pimm (1984), a system is all the more resilient that the characteristic309

return-time to equilibrium is short. This notion is related to stability and310

can be studied with the same mathematical tools. Hence, in discrete time311

this return-time is given by (Beddington et al., 1976):312

τ =
1

1− |λmax|
(16)

where |λmax| is the modulus of the leading eigen value of the system. The313

return-time is one if the system returns instantaneously to his equilibrium314

and infinite when the equilibrium becomes unstable.315

Considering that return-time is, just as yields, a function of F , we can de-316

fine the same way as for FMSY , a mortality FRMY for ‘Resilience Maximising317

Yield’ for which resilience is maximum, i.e. associated return-time (denoted318

MiRT ) is minimum. Mathematically:319

FRMY = argmin
F

τ(F )

MiRT = τ(FRMY )

2.3.3. Sensitivity of MSY, stability domain and resilience to timing of mat-320

uration and recruitment321

Here, our aim is to assess the sensitivity of the equilibrium properties,322

namely MSY , FMSY , MiRT and FMiRT values, extinction and unstability323

domains (quantified by the areas under the curves Aext and Astab respectively)324

to intra-annual variations of maturation and recruitment, represented by pa-325

rameters ∆mat and ∆rec. The first one must be considered as a biological326
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parameter subject to epistemic uncertainty whereas the second can be con-327

sidered as a control variable insofar it is, at least theoretically, possible not to328

catch individuals under a defined age. Values for ∆mat and ∆rec are allowed329

to vary in a time-span shorter than one year. Such intra-annual dynamics are330

generally not taken into account when computing reference points for fish-331

eries management. Indeed, for most fish populations, information concerning332

maturation and recruitment are available on yearly basis only (ICES, 2018).333

We perform a variance-based sensitivity analysis based on 1) an experimen-334

tal design and 2) sensitivity indices associated to ∆mat and ∆rec (the inputs335

of the model) on each metric MSY , FMSY , Aext and Astab (model outputs)336

derived from an ANOVA. Then we can compute the sensitivity index of each337

parameter, both for principal effect and interactions (see e.g. Faivre et al.338

(2013) for full details on the method). The experimental design is build com-339

bining all possibles values of ∆mat and ∆rec within defined ranges. These two340

parameters take values expanding on a time-span less or equal to one year,341

corresponding to realistic values for the Bay of Biscay sole (see table 5).342

3. Application to the Bay of Biscay sole343

3.1. Origin of data344

Our model is general and flexible enough to be applied to any exploited345

population as long as maturation occurs before recruitment. However, for346

illustration purposes and also because the complexity of our model preclude347

the derivation of analytical results concerning stability or yield optimisation,348

we performed a numerical application.349

In order to get numerical simulations somewhat realistic, we parameter-350

ized our model on the ground of (i) published life-history parameters, and (ii)351

stock assessment data, for the sole (Solea solea) in the Bay of Biscay. Sole is352

a highly valued demersal species targeted by a number of fishing fleets in the353

Bay of Biscay (Vigier et al., 2022) and is subject to a stock assessment by354

the International Council for the Exploration of the Sea (ICES) on a yearly355

basis (ICES, 2018).356

All but two parameters where extracted directly from literature. Numer-357

ical values of all the parameters used in simulation, with their origin and358

meaning are presented in table 5.359

The last two parameters µ and ω, which govern density-dependence, were360

estimated based on ICES stock assessment results (ICES, 2018; table 7.10361

p.277). The basic idea here is to fit a custom stock-recruitment relationship362

16



on data (see Appendix D for more details). To distinguish the effect of363

intra-annual dynamics from the effect of density-dependence, µ and ω are364

reestimated at each change of ∆mat and ∆rec when assessing the sensitivity365

of the system to these parameters. µ and ω values obtained for each pair366

(∆mat,∆rec) considered are given in tables 6 and 7.367

3.2. Monthly dynamics and inter-annual equilibrium of abundance368

Once the model is fully parameterised, it is possible on the one hand369

to simulate the monthly dynamics with respect to equations (3-10), and on370

the other hand to compute the theoretical inter-annual equilibrium vector371

N∗(mmat). Both the abundance time series and the equilibrium abundance372

for each class are computed for the example of the sole of the Bay of Biscay373

(figure 3). In this example, the dynamics converges to a stable annual cycle374

represented by the inter-annual equilibrium N∗(mmat) (in dashed horizontal375

lines). The value of this equilibrium is expected to vary with model param-376

eters (see Appendix E for variations of N∗
amat,d̄,h̄

and of the sum of spawners377

for Bay of Biscay sole as a function of F , ∆mat and ∆rec).378

3.3. Sensitivity of MSY to timing of maturation and recruitment379

The equilibrium yield of the sole of the Bay of Biscay is computed for a380

range of monthly fishing mortality F ∈ [0; 0.4] and is numerically optimised381

as a function of F to get the MSY. We assessed their sensitivity to ∆mat and382

∆rec varying in a range shorter than 12 months, with ∆mat = 25, 26, . . . , 33383

(i.e. between the first and ninth month of the year) and ∆rec = 37, 38, . . . , 46.384

First, it appears clearly that the value of MSY is much more sensitive to385

variations of ∆mat (SI = 0.98) than to ∆rec whereas the position of FMSY is386

sensitive to both (SI = 0.56 for ∆mat) as shown in figure 4a and 4b. In fact,387

it appears that whereas MSY undergoes large variations when ∆mat or even388

∆rec are varied, FMSY remains remarquably constant around F = 0.01.389

When ∆mat only varies, the duration of immature phase and mature390

unharvested vary (respectively in blue and black on figure 1). An increase391

in ∆mat translates into a longer period where individuals are submitted to a392

large density-dependent mortality (empty arrows in figure 1) and a shorter393

period of protection from fishing for adults. In this case, as represented in394

figure 5a, MSY is maximum when ∆mat equals 25, i.e. when the density-395

dependent phase is short. An increase of one or very few months in ∆mat396

is sufficient to cause sharp reductions in yields and MSY. FMSY , on the397

contrary, increases very slightly when ∆mat increases.398
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(a) mmat ≤ mrec

(b) mrec < mmat

Figure 3: Simulated asymptotic behavior of the structured model with a monthly time-
step, in both configurations (mmat ≤ mrec and conversely). Only the asymptotic abun-
dance is plotted with month time-steps from 900 to 1000 (t ∈ [900; 1000]).The theoretical
inter-annual equilibrium at m = mmat for each elements of N(m, y) is represented with
horizontal dotted lines on each subplot. Periodic repetition of month mmat is represented
by vertical dotted lines. Parameters are set for the Bay of Biscay sole (see Appendix D
for parameterization details) and lags are set differently in each column: (a) ∆mat = 28
(i.e. amat = 2, mmat = 4) and ∆rec = 44 (i.e. arec = 3, mrec = 8) ; and (b) ∆mat = 28
(i.e. amat = 2, mmat = 4) and ∆rec = 38 (i.e. arec = 3, mrec = 2).
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(a) MSY (b) FMSY

(c) Extinction surface (d) Stability surface

(e) MiRT (f) FMiRT

Figure 4: Sensitivity indices of parameters ∆mat, ∆rec for different model outputs: (a)
MSY , (b) FMSY , (c) surface in the r × F plan as represented in figure 6 where the
population goes extinct, (d) surface in this plan where the inter-annual equilibrium is
unstable, (e) MiRT , (f) FMiRT .
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(a) ∆rec fixed (b) ∆mat fixed

(c) ∆rec −∆mat fixed

Figure 5: Total annual yields at inter-annual equilibrium as a function of fishing mor-
tality (by month) and position of MSY when ∆mat and/or ∆rec vary and the system is
parameterized for the sole of the Bay of Biscay. Coloured triangles correspond to MSY
(numerically solved) and different colours indicate different values of ∆mat and/or ∆rec de-
pending on the case: (a) ∆mat vary and ∆rec = 44 ; (b) ∆rec vary and ∆mat = 28 ; (c) both
∆mat and ∆rec vary and their difference is constant and equals 14 (∆mat = 25, 26, . . . , 33
; ∆rec = 39, 40, . . . , 47).
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When ∆rec only varies and the duration of the density-dependent phase399

(in blue on figure 1) is kept constant. The only modification is hence on400

the balance between unharvested adult phase and harvested adult phase401

(respectively in black and red on figure 1). This translates into a modification402

of the ability of fishing to modulate natural regulation of the population403

which can be represented by the relative importance of red and black arrows404

on figure 1.405

As shown in figure 5b, an increase in ∆rec is associated to a decrease in406

MSY but much smaller than when ∆mat is varied, as well as a slight increase407

in FMSY and extinction mortality (i.e the smallest value of F > 0 that brings408

null yields because of extinction of the population).409

When ∆mat and ∆rec are varied jointly so that the mature unharvested410

phase (in black on figure 1) is constant in duration, the general shape of the411

curves obtained (figure 5c) presents properties of the first two ones. On the412

one hand, variations of MSY are large as when ∆mat only is varied, but on413

the other hand we get an increase in extinction mortality that was observed414

when ∆rec only was varied.415

3.4. Sensitivity of stability domain to timing of recruitment and maturing416

The domain of viability and of stability of the population in the r × F417

plan is also affected when ∆mat and/or ∆rec vary, although the second one418

has a much larger effect (figure 4c and 4d). Indeed, sensitivity index of ∆rec419

is of 0.95 for the surface of viability domain and of 0.96 for the surface of420

stability domain in the considered section of r × F plan, which means that421

most of the variance in those surfaces are explained by variations of ∆rec.422

In the three cases investigated (variations of ∆mat only, ∆rec only or423

joint variations), population can be brought to extinction by increasing F or424

reducing r. Equilibrium can be destabilised by increasing r or increasing F ,425

and FMSY always increase with r.426
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In the first case (variation of ∆mat, see figure 6a), viability frontiers are al-427

most superposed and stability surface increases slightly when ∆mat increases.428

This quite surprising result suggests that a long immature phase has a stabi-429

lizing effect on the population, probably a consequence of spreading in time430

density-dependent processes (as illustrated in figure 1).431

When ∆rec only varies (figure 6b), as was seen before, an increase in ∆rec432

value increases the viability surface of the population. Indeed for a same433

value of parameter r, a higher F brings population to extinction when ∆rec434

is high. Moreover, as was stated above, a difference of one or very few months435

can have large consequences in terms of viability. This is especially true for436

species with large values of r.437

Variations of ∆rec also have important consequences concerning the posi-438

tion of the stability frontier. As with ∆mat variations, for a given r the value439

of F necessary to destabilise inter-annual equilibrium is higher when ∆rec is440

high. This means that protection of mature individuals from fishing also has441

a stabilizing effect on the population.442

As was also stated before, the value of FMSY is quite insensitive to vari-443

ations of ∆mat and ∆rec, especially when r is low. By superimposing curves444

for FMSY with stability domain, we can see that MSY can in fact, at least445

theoretically, be associated to an unstable i.e. non-sustainable state. How-446

ever considering realistic values for r (of the same order of magnitude as the447

sole of the Bay of Biscay, say 0.2M), it is clear that the population is much448

more likely to become extinct than to get his equilibrium destabilised, given449

the respective positions of the stability and viability frontiers (figure 6).450

When ∆mat and ∆rec are varied jointly so that the mature unharvested451

phase is constant in duration (figure 6c), differences with the pattern observed452

for ∆rec (figure 6b) concerning stability and viability frontier are small. How-453

ever, differences exist on FMSY curves. By contrast to the pattern observed454

for ∆mat variations only (figure 6a), they are interrupted when r is increased455

beyond a certain threshold. This interruption is due to a modification of456

the yield curve’s shape, the optimum being replaced by a plateau (see figure457

E.11 in appendices). In this configuration the MSY strictly speaking (i.e.458

the optimum) was always stable in the ranges of r and F considered.459

In difference equations models, it is well known (Ricker, 1954) that pop-460

ulation stability can be visualised by plotting the stock-recruitment relation-461

ship. In our model, the relation between the number of individuals par-462

ticipating to reproduction (i.e the “stock”) and the associated number of463

individuals entering the exploited portion of the population (i.e. the “recruit-464
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(a) Sole parameters (b) ∆rec = 46, increased r and F

(c) ∆rec = 42, increased r and F

Figure 7: Stock-recruitment relationship extracted from simulated time-series of the
model. Each black point represents an association of a given stock (number of mature
individuals at mmat) with the corresponding recruitment (recruted inidividuals as defined
in our model) after arec years, at the same month mmat. Values are simulated by running
the model for 1000 time steps with 1000 initial conditions evenly distributed between a
stock of 10 and 1010 individuals. Equilibrium stock and recruitment are represented by
the red square. Different sets of parameters are tested: (a) model parameterised for sole
with ∆mat = 28 and ∆rec = 44, (b) same parameters but with µ and ω re-estimated for
∆rec = 46, r = 1.5× 106 , F = 0.45 ; (c) same parameters but with µ and ω re-estimated
for ∆rec = 42, r = 1.5× 106 , F = 0.45
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ment”) emerges from density-dependent processes involving several classes of465

individuals and occurring at different time-steps (see Appendix D for the466

complete formulation of the relation between spawning stocks and associated467

recruitment). However, it is possible to generate observations of recruitment468

as a function of stock by running the model for a number of time steps with469

different initial conditions.470

When the model is run with realistic parameters for sole (figure 7a), which471

corresponds to a region at the bottom-left of the parameter plan represented472

in figure 6 (indicated in this figure by the grey triangles), the observed re-473

lationship is monotonous and steadily increasing. It shows here no evidence474

of decreased recruitment for high values of stock. Observations are roughly475

arranged along a continuous curve which means that oscillations are quickly476

damped.477

When we move to a higher region of r × F plan presented in figure 6,478

with r = 1.5 × 106 and F = 0.45, we can observe more complex dynami-479

cal behaviours, as well as the destabilisation of equilibrium with a decreased480

∆rec. In the case where ∆rec = 46 (figure 7b) for example, which corre-481

sponds to a stable region of the parameter space (see figure 6b) there is a482

concentration of points around the equilibrium value which indicates stabil-483

ity of the latter, even if large oscillations are observed before stabilisation.484

When ∆rec is decreased from 46 to 42, we move from a stable to an unsta-485

ble region of the parameter space (see figure 6b). Then, we can observe no486

stock-recruitment pairs in the neighbourhood of the equilibrium (figure 7c)487

which is a clear sign of destabilisation of the equilibrium. Instead, we get488

very complex trajectories which indicate apparition of chaotic oscillations.489

Although we observed that, especially for the two cases with increased490

r and F , a single value of stock could be associated to a set of possible491

recruitment values, we can recognise in the scatter-plots the apparition of492

the typical dome-shaped stock-recruitment relationship when moving from493

a very stable to a less stable and unstable region of the parameter space494

(figures 7a-7c).495

3.5. Sensitivity of the resilience to timing of recruitment and maturing496

Resilience also is affected by intra-annual variations of ∆mat and ∆rec.497

Once again, the influence of ∆rec is more pronounced than the influence498

of ∆mat. First of all it must be noticed that for most of the (∆mat,∆rec)499

pairs considered, we had FMiRT very close to 0 which means that resilience500

generally decreased with increasing F . Values of MiRT were also largely501
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insensitive to variations of ∆mat and ∆rec. The very small variance of MiRT502

was mainly explained by variations of ∆mat (SI = 0.77) whereas the one of503

FMiRT was mainly explained by ∆rec (SI = 0.85), as shown in figures 4e and504

4f.505

All resilience curves tended toward infinity when F increased. We found506

not much difference between resilience curves when ∆mat only was varied.507

On the contrary, an increase of ∆rec was associated to the vertical asymptote508

moving to the right (figure 8b).509

Combining the results to provide a biological interpretation for the Bay510

of Biscay sole (with r supposed to be near 0.2M, see Appendix D for details511

of parameters value), the loss of resilience observed when increasing r charac-512

terises the approach of the viability frontier rather than the stability frontier.513

The consequence of this observation is that it is possible to have population514

weakly resilient even far from the stability frontier if the viability frontier is515

near. Even when fishing at FMSY this situation is likely to be problematic516

when FMSY is near from the frontier, e.g for species with low r or high ∆mat.517

4. Discussion and conclusion518

Our aim in this study was to investigate the effect of processes occurring at519

intra-annual time scales on the amount and sustainability of long-term yields520

from a population, and on the widely used reference point known as MSY.521

We considered an idealised population submitted to three structuring pro-522

cesses namely reproduction, maturation and recruitment and described using523

a deterministic, structured dynamic population model in monthly discrete-524

time. The main originality of the modelling approach relies on the particular525

way we structured the population in order to (i) make the analysis tractable,526

(ii) link intra-annual and inter-annual time-scales and (iii) to avoid resorting527

to stock-recruitment relationship to represent the dynamics. Most modelling528

approaches use structuring by age (Marchal et al., 2009; Tahvonen, 2009;529

Doyen et al., 2012; Nielsen and Berg, 2014), by size (Bartolino, 2011; Lind-530

strøm et al., 2009) or by stage (Zipkin et al., 2008; Wikström et al., 2012; Liz531

and Pilarczyk, 2012). In our modelling framework instead, the classes of the532

population are defined by combining age (in year), maturity and accessibility533

to fishing characteristics. Thanks to this original structure we were able on534

the one hand, to simulate month by month the evolution of the population,535

and on the other hand, to resume the inter-annual dynamics to a first order536

difference equation system. This interesting result enabled us to compute537
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(a) ∆rec fixed (b) ∆mat fixed

(c) ∆rec −∆mat fixed

Figure 8: Caracteristic return-time to inter-annual equilibrium as a function of fishing
mortality (by month) when ∆mat and ∆rec vary and the system is parameterized for
the Bay of Biscay sole. Different colours indicate different values of ∆mat and/or ∆rec

depending on the case: (a) ∆mat vary and ∆rec = 44 ; (b) ∆rec vary and ∆mat = 28
; (c) both ∆mat and ∆rec vary and their difference is constant and equals 14 (∆mat =
25, 26, . . . , 33 ; ∆rec = 39, 40, . . . , 47).
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analytically the inter-annual equilibrium and to assess numerically its stabil-538

ity and resilience as a function of the model parameters. This is in our sense539

one of the main innovation of our approach.540

Application of the model was illustrated with parameters and data pub-541

lished for the Bay of Biscay sole, although we stress that our model is gen-542

eral and flexible enough to be applicable to any species whatever the ages543

of maturation and recruitment. In our model, we hypothesized that recruit-544

ment occurs after maturation but the reverse situation would constitute a545

straightforward generalisation.546

First, we found that yields curves shape was influenced by variations of547

maturation lag ∆mat and recruitment lag ∆rec in different ways. The value of548

MSY was more sensitive to ∆mat whereas viability, stability and resilience549

were more sensitive to ∆rec. In classical stock-recruitment modelling (Hilborn550

and Walters, 1992), all processes occurring before the age of first capture are551

synthesised into a single stock-recruitment relationship (Bjorkstedt, 2000).552

The advantage of our model is to separate explicitly maturation and recruit-553

ment as processes of different nature. As a matter of fact, maturation is a554

strictly biological process on which no control is possible whereas recruit-555

ment is in part dependent of fishing behavior and gear (Laurec and Le Guen,556

1981) so that it could be considered as a control variable. Simulations of557

the emergent stock-recruitment relationship in our model show that under558

certain conditions, this relationship can be complex and a single value of559

stock associated to a large number of potential recruitment values. These560

oscillations must be a consequence of the separation of the stock into differ-561

ent stages. Soudijn and de Roos (2017) found that adding juvenile stages562

in a population model enhanced population cycles and made dynamics more563

realistic in the sense that they approximated better a physiologically struc-564

tured model. Exhaustive description of attractors associated to observed565

oscillations, although interesting, is beyond the scope of this study. It re-566

mains that this result outlines the interest of modelling explicitly life-history567

processes occurring in the youngest stages of the population. However, it is568

true that the most complex dynamical behaviours were obtained with values569

of fecundity probably unrealistically high. With realistic values of param-570

eters, these quantities would have been quite well described by a classical571

stock-recruitment function.572

In practice, for most exploited species, these information on maturation573

and recruitment are known, if at all, on a yearly basis only ICES (2018)574

and the specific uncertainty related to timing and duration of processes on575
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intra-annual time-scales is generally ignored. The application of our model576

to the Bay of Biscay sole is in line with other studies (Kokko and Lindström,577

1998; Tang and Chen, 2004; Xu et al., 2005; Cid et al., 2014) concerning578

the fact that intra-annual time-scales matter and that neglecting them can579

lead to important errors. Here, we argue that timing of biological processes580

and harvesting have different effects. With this example we show, on the581

one hand, that ignoring intra-annual timing of maturation can have a large582

impact on the computation of classical reference points such as MSY. On583

the other hand, we found that the viability frontiers of the population was584

sensitive to small variations in recruitment time. It is expected that these585

aspects could be even more critical if the seasonality of fishing was considered586

and F varied within the year as it is usually the case. Fortunately, the value587

of FMSY was insensitive to variations in ∆mat and ∆rec so that the advice588

for the population management at FMSY would not be much affected by589

uncertainty concerning processes occurring at intra-annual time-scales.590

The second aspect of our study was to quantify local stability of inter-591

annual equilibrium as a measure of sustainability of yields drawn from the592

population. There is a growing debate on whether the fish populations are593

stable or not, and on the role of fishing on their destabilisation (Anderson594

et al., 2008; Shelton and Mangel, 2011; Sugihara et al., 2011; Rouyer et al.,595

2012). Our results support after other studies (Hsieh et al., 2006; Anderson596

et al., 2008; Cid et al., 2014; Liz, 2017) the fact that single population’s597

equilibrium can be destabilised by increasing fishing mortality, but only for598

species with very high fecundity. When parameterised for the Bay of Biscay599

sole, the value of parameter r required to effectively destabilise the inter-600

annual equilibrium is too high to be realistic and the population is more likely601

to become extinct than to have his inter-annual equilibrium destabilised.602

Shelton and Mangel (2011) assessed the stability of a Ricker model pa-603

rameterised for 45 exploited stocks and concluded that the presence of deter-604

ministic cyclic or chaotic behavior in real stocks was very unlikely. Our re-605

sults are consistent with this prediction even if differences with their findings606

must be noticed. In particular, an important difference concerns the modi-607

fication of the stability region when the time between birth and maturation608

increase. In our model, the stability region increases when ∆mat increase, in609

the sense that a higher F is necessary to destabilise the inter-annual equi-610

librium. In their study, on the contrary, the stability region decreases with611

each year added between birth and maturation. The explanation of this dif-612

ference must rely on the different hypothesis concerning density dependence.613
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Indeed, in our model immature individuals’ mortality is made dependent of614

adult abundance at each month and not only on the abundance at birth-time615

as it is the case in Ricker model. Unfortunately, our model is too complex616

to get an analytical demonstration of this difference.617

Our results demonstrate that the MSY can theoretically imply an unsta-618

ble inter-annual equilibrium. This is in line with results obtained by Kokko619

and Lindström (1998). This eventuality was also known in predator-prey620

models (Beddington and Cooke, 1982) and in single species with Allee effect621

(Ghosh et al., 2014). Then we agree with Beddington and Cooke (1982) that622

sustainability of MSY reference points should not be taken for granted but623

we temper this view by saying that the risk to get an unstable MSY in the624

mono-specific case is very low. However, even in case of a stable equilib-625

rium, resilience measured by the return time to this equilibrium should still626

be considered. Indeed, as stated Beddington et al. (1976), in some cases,627

“perturbations may take so long to die away that effectively the populations628

may never return to equilibrium within a biologically meaningful times-pan”.629

Such a situation would result in the impossibility of managing properly an630

exploited system.631

Assessment of resilience in exploited populations is a topic of growing632

interest among empirical (Britten et al., 2014; Mumby et al., 2016) and the-633

oretical ecologists. Tromeur and Loeuille (2017) and Kar et al. (2019) inves-634

tigated relationship between the objectives of resilience and yields in food635

chains and found a RMY distinct from the MSY, leaving room for a trade-off636

between these objectives. Lundström et al. (2019) also explored trade-offs637

between yields and a number of conservation objectives including resilience638

on two structured single population models. One of their key result is that639

resilience is highly correlated with biomass loss, suggesting to use this met-640

rics as a proxy for resilience in practice. This is in line with our observation641

that return-time to inter-annual equilibrium increase dramatically near the642

viability frontier. Here, we predict that in most real exploited populations,643

resilience will be harmed by approaching this frontier due to a lowered equi-644

librium biomass, rather than by getting in an unstable region of parameter645

space. In the theoretical studies above cited, values of parameters were set646

arbitrarily in an exploratory purpose and their authors found an optimum of647

resilience corresponding to a non-zero value of fishing mortality. Here, with a648

set of realistic parameters, we located this optimum at very low, although non649

zero, values of F . This would practically exclude some “win-win” situation650

in which it would be possible to increase both yield and resilience.651
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Previous works proposed to manage the trade-off between yields and re-652

silience by acting on the distribution of effort on trophic level (Tromeur and653

Loeuille, 2017; Kar et al., 2019) or on the stage development (juvenile vs.654

adults) inside the population (Lundström et al., 2019). Our model is not de-655

signed to answer these questions. Instead, we evaluated the effect of another656

control parameter which is the timing of recruitment. In our application for657

the Bay of Biscay sole, we found that variations in recruitment time had a658

non-negligible effect on resilience curves although it did not affect much the659

value and location of the optimum.660

Our aim in this study was to propose a generalised and relatively simple661

model to shade light on the effect of intra-annual time-scales in maturation662

and recruitment processes which are of key importance in fisheries manage-663

ment. Although we parameterised the model with published literature and664

data concerning a real stock, this was on a qualitative and illustrative pur-665

pose rather than to make quantitative predictions (i.e. to get possible rather666

than exact values). We stress that our model is far too idealised to make667

precise predictions and that available data are not designed for our model.668

Our choice here was to formulate as simply as possible a model of density669

dependence by cannibalism of adults on juveniles. Cannibalism is known to670

be frequent in fish populations (Smith and Reay, 1991) including in highly671

exploited stocks such as cod (Bogstad et al., 1994; Uzars and Plikshs, 2000).672

Moreover cannibalism was at the core of development of Ricker historical673

stock and recruitment theory (Ricker, 1954) and is a useful assumption in674

the sense that it is the most straightforward process of over-compensatory675

mortality. Other processes such as competition for food and space (Biro676

et al., 2003) are known to potentially give rise to the same type of mortal-677

ity. Rindorf et al. (2022) gave support to Ricker’s (1954) assumptions by678

showing that most of exploited stocks undergo density-dependence before re-679

cruitment and that overcompensation was more likely to occur in demersal680

stocks such as the Bay of Biscay of sole. From a dynamical point of view,681

over-compensatory reproduction curves with inter-stage density-dependence682

are known to cause more complex behaviours. We were interested in stability683

and resilience properties of the population equilibrium and for that reason684

adopting a number of Ricker’s assumptions was a way of not restricting the685

dynamical potential of our model.686

This is to our knowledge the first resilience analysis on a single exploited687

population subject to cannibalistic density-dependence, as well as the first688

evaluating the effect of intra-annual timing of maturation and recruitment689
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on resilience. Although we restricted ourselves to a particular case study690

and made a number of assumptions that limit the generality of the presented691

results, we stress that in future studies, the model could be modified in order692

to address new questions while adopting a similar approach for structuring693

the population in order to be able to study its dynamics easily as a first order694

system. For example, instead of dealing with the case in which maturation695

is separated from recruitment (what we did here), one could write another696

slightly different model in which start of reproduction is separated from end697

of density-dependent mortality. Alternatively, the reverse case where recruit-698

ment occurs before maturation would be worth exploring given that it would699

be verified in some species (ICES, 2018). All these extensions are permitted700

by the conceptual framework presented in this study.701

Moreover, in an operational purpose, one could be interested in expand-702

ing this theoretical model to increase realism, at the cost of simplicity and703

analytical tractability. A natural extension to it would be to add a representa-704

tion of fecundity depending on length or weight of individuals. This function705

would probably be species-dependent. Therefore, to maintain a broad scope706

of conclusions, it would be necessary to explore a large panel of functions.707

Also, the processes such as reproduction, recruitment and maturation were708

considered instantaneous while they are likely spread over several months in709

real populations. Finally other formulation for density-dependence including710

form of functional response in the cannibalistic case could be tested.711

More generally, the absence of consideration of process error (i.e. error712

arising from under-specified models) limits the scope of our results. Here, we713

presented some non-linear dynamics obtained assuming perfect knowledge of714

the underlying mechanisms, but it remains true that non-linearities can be715

enhanced in models containing process error when this error propagates in a716

specific way (Anderson et al., 2008).717

Our results suggest that ignoring intra-annual dynamics would result in718

little error on FMSY advice. However, we saw that small variations of the719

recruitment time would have non negligible consequences on the fishing mor-720

tality a population can support before extinction as well as on her resilience.721

We recommend that the latter be taken into account in harvest management,722

so that the sustainability of yields be guaranteed. A first step could be to723

modify the FMSY -range framework (Hilborn, 2010; Rindorf et al., 2017) to724

include resilience objectives to be attained aside from high enough yields.725
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Table 1: Time and population structure notations.

Notation Interpretation
t Model time-step (expressed in months)
(m, y) Time-step expressed as a calendar time (month and year)
δ Exact age of individuals (in months)
a Round age of individuals (in years)
d, d̄ Density dependent/independent individuals (equivalent here

to immature/mature individuals)
h, h̄ Harvested/unharvested individuals
∆mat Lag between birth and maturation (in months)
∆rec Lag between birth and recruitment (in months)
amat Minimum round age of matured individuals (in years)
arec Minimum round age of recruited individuals (in years)
mmat Month of the year at which maturation occurs
mrec Month of the year at which recruitment occurs
mrep Month of the year at which reproduction occurs (by construc-

tion, we always have mrep = 12)
N(t) Vector of the structured population at time t
Nc(t) Number of individuals of class c at time t. The class c is de-

fined by the intersection of groups of individuals of age a, im-
mature/mature individuals (d, d̄) and harvested/unharvested
individuals (h,h̄), e.g. Namat,d,h̄(t) is the number of immature,
unharvested individuals of round age amat.

• Union of groups, e.g. (•, d̄, •) stands for the class of mature
individuals of all ages, whether or not they are harvested.
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Table 2: Model parameters and their interpretation

Parameter Interpretation
r Fecundity of mature individuals (number of eggs released in

a year)
µ Density-dependence factor
ω Density-independent part of immature individuals’ mortality
Md(t) Immature individuals’ mortality at time t
Md̄ Mature individuals’ natural mortality (assumed to be con-

stant)
Sd(t+ 1) Survival rate of immature individuals between time-steps t

and t+ 1
Sd̄,h̄ Survival rate of mature, unharvested individuals between

time-steps t and t+ 1 (assumed to be constant)
Sd̄,h Survival rate of mature, harvested individuals between time-

steps t and t+ 1 (assumed to be constant)
F Fishing mortality by month (assumed to be constant)
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Table 4: Expressions of aggregated constants and auxiliary functions used in model devel-
opment. Sd̄,h̄ is the survival rate of mature, unharvested individuals. Sd̄,h is the survival
rate of mature, harvested individuals. µ and ω are the two constants in immature indi-
viduals’ mortality function (2).

Number of spawners

Ψ(N d̄(t)) = ψ1

∑arec−1
a=amat

Na,d̄,h̄(t) + ψ2Narec,d̄,h̄(t) + ψ3N>arec,d̄,h(t)

with

ψ1 = S
mrep−mmat

d̄,h̄
ψ2 = Smrec−mmat

d̄,h̄
S
mrep−mrec

d̄,h
ψ3 = S

mrep−mmat

d̄,h

Expression of density-dependence, ∀n ∈ {1, 2}

φn(N d̄(t)) = βn
∑arec−1

a=amat
Na,d̄,h̄(t) + θnNarec,d̄,h̄(t) + κnN>arec,d̄,h(t)

with

β1 = µ
∑mmat−1

m=0 S
mrep−mmat+m

d̄,h̄
κ1 = µ

∑mmat−1
m=0 S

mrep−mmat+m

d̄,h

β2 = β1 + µ
∑mrep−mmat−1

m=0 Sm
d̄,h̄

κ2 = κ1 + µ
∑mrep−mmat−1

m=0 Sm
d̄,h

θ1 = µ Smrec−mmat

d̄,h̄

∑mmat−1
m=0 S

mrep−mrec+m

d̄,h

θ2 = θ1 + µ
[∑mrec−mmat−1

m=0 Sm
d̄,h̄

+ Smrec−mmat

d̄,h̄

∑mrep−mrec−1
m=0 Sm

d̄,h

]
Other aggregated constants

α1 = e−ωmmat σ = S
mrep

d̄,h̄
ρ = Smrec−mmat

d̄,h̄
S
mrep−(mrec−mmat)

d̄,h

α2 = e−ωmrep ν = S
mrep

d̄,h
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Appendix A. Alternative case, when mmat > mrec726

The same way we deduced system (17) from equations (3-10) for the case727

when mmat ≤ mrec, we can deduce from the same equations the system E.1,728

expressed in table E.8. As before, this system can be expressed as a first729

order difference equation (see Appendix B for proof):730



N0,d,h̄(mmat, y + 1) = r α1Φ (N d̄(mmat, y)) e
−ξ1(N d̄(mmat,y))

Na1,d,h̄(mmat, y + 1) = α2Na1−1,d,h̄(mmat, y) e
−ξ2(N d̄(mmat,y))

Na2,d̄,h̄(mmat, y + 1) = σ Na2−1,d̄,h̄(mmat, y)

Narec,d̄,h(mmat, y + 1) = χNarec−1,d̄,h̄(mmat, y)

N>arec,d̄,h(mmat, y + 1) = ν N>arec,d̄,h(mmat, y)
+ν Narec,d̄,h(mmat, y)

(A.1)

with a1 = 1, . . . , amat and a2 = amat+1, . . . , arec−1, Φ (N d̄(t)) the number731

of spawners, ξn(N d̄(t)) a density-dependence function. Here, we have :732

Φ(N d̄(t)) = ψ1

arec−1∑
a=amat

Na,d̄,h̄(t) + ψ3

[
Narec,d̄,h(t) +N>arec,d̄,h(t)

]
and733

ξn(N d̄(t)) = βn
∑arec−2

a=amat
Na,d̄,h̄(t) +ηnNarec−1,d̄,h̄(t)

+κn
[
Narec,d̄,h(t) +N>arec,d̄,h(t)

]
where734

η1 = µ
[
S
mrep+mrec−mmat

d̄,h̄

∑mmat−mrec−1
m=0 Sm

d̄,h
+
∑mrec−1

m=0 S
mrep−mmat+m

d̄,h̄

]
735

η2 = η1 + µ
∑mrep−mmat−1

m=0 Sm
d̄,h̄

736

χ = S
mrep+mrec−mmat

d̄,h̄
Smmat−mrec

d̄,h
is a constant and all other parameters737

are the same as in model (11) (see table 4 for full detail).738

The inter-annual equilibrium is solution of :739

40





N∗
amat,d̄,h̄

(mmat) = r α1 α
amat
2 Φ (N∗

d̄(mmat))

× e−ξ1(N
∗
d̄
(mmat))−amat ξ2(N

∗
d̄
(mmat))

N∗
a2,d̄,h̄

(mmat) = σ N∗
a2−1,d̄,h̄

(mmat)

N∗
arec,d̄,h

(mmat) = χN∗
arec−1,d̄,h̄

(mmat)

N∗
>arec,d̄,h

(mmat) = ν
[
N∗

>arec,d̄,h
(mmat) +N∗

arec,d̄,h
(mmat)

]
(A.2)

with740

N∗
d̄(mmat) =

t
(
N∗

amat,d̄,h̄
(mmat), N

∗
a2,d̄,h̄

(mmat), N
∗
arec,d̄,h

(mmat), N
∗
>arec,d̄,h

(mmat)
)

741

and a2 = amat + 1, . . . , arec − 1.742

Appendix B. Proof of result (11) and (A.1)743

Expressions of systems (17) and (E.1) were deduced directly from the744

month model represented by equations (3-10). To rewrite these two systems745

as first-order difference equations systems we need to express:746

1. N•,d̄,•(mrep, y)747

2.
∏mmat

m=1 Sd(m, y + 1)748

3.
∏mrep

m=mmat+1 Sd(m, y)749

as functions of N(mmat, y).750

Expression of N•,d̄,•(mrep, y)751

For all y, we have: Namat,d̄,h̄(mrep, y) = 0 and Narec,d̄,h = 0, ∀y. Hence, if752

mmat ≤ mrec, we get after equations (3-10):753

N•,d,•(mrep, y) =
∑arec

a=amat+1Na,d̄,h̄(mrep, y) +N>arec,d̄,h(mrep, y)

= S
mrep−mmat

d̄,h̄

∑arec−1
a=amat

Na,d̄,h̄(mmat, y)

+Narec,d̄,h̄(mmat, y)× Smrec−mmat

d̄,h̄
S
mrep−mrec

d̄,h

+N>arec,d̄,h(mmat, y)× S
mrep−mmat

d̄,h

= Ψ(N d̄(mmat, y))

(B.1)
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Else, we get:754

N•,d,•(mrep, y) =
∑arec−1

a=amat+1Na,d̄,h̄(mrep, y) +N>arec,d̄,h(mrep, y)

= S
mrep−mmat

d̄,h̄

∑arec
a=amat

Na,d̄,h̄(mmat, y)

+Narec,d̄,h(mmat, y)× S
mrep−mmat

d̄,h

+N>arec,d̄,h(mmat, y)× S
mrep−mmat

d̄,h

= Φ(N d̄(mmat, y))

(B.2)

Expression of
∏mmat

m=1 Sd(m, y + 1)755

We have, for all y:756

mmat∏
m=1

Sd(m, y + 1) = e−ωmmat e−µ [N•,d̄,•(mrep,y)+
∑mmat−1

m=1 N•,d̄,•(m,y+1)] (B.3)

with

N•,d̄,•(mrep, y) +
∑mmat−1

m=1 N•,d̄,•(m, y + 1)

= Namat,d̄,h̄(mrep, y) +
∑mmat−1

m=1 Namat,d̄,h̄(m, y + 1)

+Namat+1,d̄,h̄(mrep, y) +
∑mmat−1

m=1 Namat+1,d̄,h̄(m, y + 1)

+ . . .

+Narec,d̄,h̄(mrep, y) +
∑mmat−1

m=1 Narec,d̄,h̄(m, y + 1)

+Narec,d̄,h(mrep, y) +
∑mmat−1

m=1 Narec,d̄,h(m, y + 1)

+N>arec,d̄,h(mrep, y) +
∑mmat−1

m=1 N>arec,d̄,h(m, y + 1)

Moreover, after (3-10), we have for all y :757

Namat,d̄,h̄(mrep, y) +
mmat−1∑
m=1

Namat,d̄,h̄(m, y + 1) = 0 (B.4)
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and for all a ∈ {amat + 1, . . . , arec − 1}:758

Na,d̄,h̄(mrep, y) +
∑mmat−1

m=1 Na,d̄,h̄(m, y + 1)

= Na,d̄,h̄(mrep, y)
∑mmat−1

m=0 Sm
d̄,h̄

= Na−1,d̄,h̄(mmat, y)
∑mmat−1

m=0 S
mrep−mmat+m

d̄,h̄

(B.5)

If mmat ≤ mrec we also have:759

Narec,d̄,h̄(mrep, y) +
∑mmat−1

m=1 Narec,d̄,h̄(m, y + 1)

= Narec−1,d̄,h̄(mmat, y)
∑mmat−1

m=0 S
mrep−mmat+m

d̄,h̄

(B.6)

Narec,d̄,h(mrep, y) +
mmat−1∑
m=1

Narec,d̄,h(m, y + 1) = 0 (B.7)

and760

N>arec,d̄,h(mrep, y) +
∑mmat−1

m=1 N>arec,d̄,h(m, y + 1)

= N>arec,d̄,h(mmat, y)
∑mmat−1

m=0 S
mrep−mmat+m

d̄,h

+Narec,d̄,h̄(mmat, y)S
mrec−mmat

d̄,h̄

∑mmat−1
m=0 S

mrep−mrec+m

d̄,h

(B.8)

Else we have:761

Narec,d̄,h̄(mrep, y) +
∑mmat−1

m=1 Narec,d̄,h̄(m, y + 1)

= Narec,d̄,h̄(mrep, y) +
∑mrec−1

m=1 Narec,d̄,h̄(m, y + 1) + 0

= Narec−1,d̄,h̄(mmat, y)
∑mrec−1

m=0 S
mrep−mmat+m

d̄,h̄

(B.9)

Narec,d̄,h(mrep, y) +
∑mmat−1

m=1 Narec,d̄,h(m, y + 1)

= 0 +
∑mmat−1

m=mrec
Narec,d̄,h(m, y + 1)

= Narec,d̄,h(mrec, y + 1)
∑mmat−mrec−1

m=0 Sm
d̄,h

= Narec−1,d̄,h̄(mmat, y) S
mrep−mmat+mrec

d̄,h̄

∑mmat−mrec−1
m=0 Sm

d̄,h

(B.10)
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and762

N>arec,d̄,h(mrep, y) +
∑mmat−1

m=1 N>arec,d̄,h(m, y + 1)

= N>arec,d̄,h(mmat, y)
∑mmat−1

m=0 S
mrep−mmat+m

d̄,h

+Narec,d̄,h̄(mmat, y)
∑mmat−1

m=0 S
mrep−mmat+m

d̄,h

(B.11)

By summing equations (B.4-B.5) and (B.6-B.8) if mmat ≤ mrec, or (B.4-763

B.5) and (B.9-B.11) otherwise, and injecting it into (B.3), we can rewrite the764

product of interest as:765

mmat∏
m=1

Sd(m, y + 1) =


α1 φ1(N d̄(mmat, y)) if mmat ≤ mrec

α1 ξ1(N d̄(mmat, y)) else
(B.12)

see table 4 for exact formulation of α1, φ1 and ξ1.766

Expression of
∏mrep

m=mmat+1 Sd(m, y)767

Likewise, we can express
∏mrep

m=mmat+1 Sd(m, y) for all y as:768

mrep∏
m=mmat+1

Sd(m, y) = e−ω (mrep−mmat) e−µ
∑mrep−1

m=mmat N•,d̄,•(m,y) (B.13)

with ∑mrep−1
m=mmat

N•,d̄,•(m, y)

=
∑mrep−1

m=mmat
Namat,d̄,h̄(m, y) +

∑mrep−1
m=mmat

Namat+1,d̄,h̄(m, y)

+ . . .

+
∑mrep−1

m=mmat
Narec,d̄,h̄(m, y) +

∑mrep−1
m=mmat

Narec,d̄,h(m, y)

+
∑mrep−1

m=mmat
N>arec,d̄,h(m, y)

For all a ∈ {amat, . . . , arec − 1}, for all y, we have:769

mrep−1∑
m=mmat

Na,d̄,h̄(m, y) = Na,d̄,h̄(mmat, y)

mrep−mmat−1∑
m=0

Sm
d̄,h̄ (B.14)
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and770

mrep−1∑
m=mmat

N>arec,d̄,h(m, y) = N>arec,d̄,h(mmat, y)

mrep−mmat−1∑
m=0

Sm
d̄,h (B.15)

If mmat ≤ mrec we also have, for all y:771

mrep−1∑
m=mmat

Narec,d̄,h̄(m, y) = Narec,d̄,h̄(mmat, y)
mrec−mmat−1∑

m=0

Sm
d̄,h̄ + 0 (B.16)

and772 ∑mrep−1
m=mmat

Narec,d̄,h(m, y) = Narec,d̄,h̄(mmat, y)

×Smrec−mmat

d̄,h̄

∑mrep−mrec−1
m=0 Sm

d̄,h

(B.17)

Else we have:773
mrep−1∑
m=mmat

Narec,d̄,h̄(m, y) = 0 (B.18)

and774

mrep−1∑
m=mmat

Narec,d̄,h(m, y) = Narec,d̄,h(mmat, y)

mrep−mmat−1∑
m=0

Sm
d̄,h (B.19)

Hence, with notations exposed in table 4, we can write the double product:

mrep∏
m=mmat+1

Sd(m, y)
mmat∏
m=1

Sd(m, y+1) =


α2 φ2(N d̄(mmat, y)) mmat ≤ mrec

α2 ξ2(N d̄(mmat, y)) else

Finally we get systems (11) and (A.1).775

Appendix C. Jacobian of systems (11) and (A.1)776

Let J∗(mmat) be the Jacobian matrix of system (11) at equilibrium.777

J∗(mmat) is written:778
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J∗(mmat) =



0 j0,a2 j0,arec j0,arec+1

ja1,0 ja1,a2 ja1,arec ja1,arec+1

0 ja2+1,a2 0 0

0 0 jarec+1,arec jarec+1,arec+1


(C.1)

with a1 = 1, . . . , amat ; a2 = amat, . . . , arec − 1 and:779

j0,a2 = −r α1 [β1Ψ(N∗
d̄(mmat))− ψ1] e

−φ1(N
∗
d̄
(mmat))

j0,arec = −r α1 [θ1Ψ(N∗
d̄(mmat))− ψ2] e

−φ1(N
∗
d̄
(mmat))

j0,arec+1 = −r α1 [κ1Ψ(N∗
d̄(mmat))− ψ3] e

−φ1(N
∗
d̄
(mmat))

ja1,a1−1 = α2 e
−φ2(N

∗
d̄
(mmat))

ja1,a2 = −α2 β2N
∗
a1−1,d,h̄

(mmat) e
−φ2(N

∗
d̄
(mmat))

ja1,arec = −α2 θ2N
∗
a1−1,d,h̄

(mmat) e
−φ2(N

∗
d̄
(mmat))

ja1,arec+1 = −α2 κ2N
∗
a1−1,d,h̄

(mmat) e
−φ2(N

∗
d̄
(mmat))

ja2+1,a2 = σ

jarec+1,arec = ρ
jarec+1,arec+1 = ν

780

For system (A.1), the Jacobian matrix at equilibrium is of the same gen-781

eral shape but elements are instead:782
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j0,a2 = −r α1 [β1Φ(N
∗
d̄(mmat))− ψ1] e

−ξ1(N
∗
d̄
(mmat)), a2 ̸= arec − 1

j0,arec−1 = −r α1 [η1Φ(N
∗
d̄(mmat))− ψ1] e

−ξ1(N
∗
d̄
(mmat))

j0,arec = −r α1 [κ1Φ(N
∗
d̄(mmat))− ψ3] e

−ξ1(N
∗
d̄
(mmat))

j0,arec+1 = −r α1 [κ1Φ(N
∗
d̄(mmat))− ψ3] e

−ξ1(N
∗
d̄
(mmat))

ja1,a1−1 = α2 e
−ξ2(N

∗
d̄
(mmat))

ja1,a2 = −α2 β2N
∗
a1−1,d,h̄

(mmat) e
−ξ2(N

∗
d̄
(mmat)), a2 ̸= arec − 1

ja1,arec−1 = −α2 η2N
∗
a1−1,d,h̄

(mmat) e
−ξ2(N

∗
d̄
(mmat))

ja1,arec = −α2 κ2N
∗
a1−1,d,h̄

(mmat) e
−ξ2(N

∗
d̄
(mmat))

ja1,arec+1 = −α2 κ2N
∗
a1−1,d,h̄

(mmat) e
−ξ2(N

∗
d̄
(mmat))

ja2+1,a2 = σ, a2 ̸= arec − 1
ja2+1,arec−1 = χ

jarec+1,arec = ν
jarec+1,arec+1 = ν

783

See table 4 for formulations of all the constants.784

Appendix D. Estimation of parameters for the Bay of Biscay sole785

Assume that all the model parameters are known except µ and ω. Here,786

we aim at fitting a custom stock-recruitment relationship compatible with787

our model formulation to estimate those parameters. In the case where ∆mat788

and ∆rec verify mmat ≤ mrec, the population is governed by system (11). It789

comes immediately from the formulation of the system that:790

Namat,d̄,h̄(mmat, y + amat + 1) = r α1 α
amat
2 Ψ(N d̄(mmat, y))

×e−φ1(N d̄(mmat,y))

×e−
∑amat

i=1 φ2(N d̄(mmat,y+i))

(D.1)

which is the number of newly mature individuals as a function of the set of791

mature individuals of the amat years before.792

To get the number of newly recruited individuals, we just need to take793

into account the years between maturation and recruitment. We get:794

Narec,d̄,h̄(mmat, y + arec + 1) = Namat,d̄,h̄(mmat, y + amat + 1)

×Smrep (arec−amat)

d̄,h̄

(D.2)
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Let us pose: X3 =
X1

µ
and X4 = X3 +

X2−X1

µ
, where Xn = βn, θn, κn (see795

table 4 for computations of these constants), and let us define:796

φ(y) = β3
∑arec−1

a=amat
Na,d̄,h̄(mmat, y)

+β4
∑amat

i=1

∑arec−1
a=amat

Na,d̄,h̄(mmat, y + i)

+θ3Narec,d̄,h̄(mmat, y)

+θ4
∑amat

i=1 Narec,d̄,h̄(mmat, y + i)

+κ3N>arec,d̄,h(mmat, y)

+κ4
∑amat

i=1 N>arec,d̄,h(mmat, y + i)

(D.3)

then we can express:797

φ1 (N d̄(mmat, y)) +
amat∑
i=1

φ2 (N d̄(mmat, y + i)) = µφ(y) (D.4)

Finally, with α1 α
amat
2 = e−ω (mmat+amat mrep) we can write the custom798

stock-recruitment relationship as:799

Narec,d̄,h̄(mmat, y + arec + 1) = r σ(arec−amat) Ψ(N d̄(mmat, y))
×e−µφ(y)−ω (mmat+amat mrep) (D.5)

Conversely, in the case where ∆mat and ∆rec verify mmat > mrec, the rela-800

tionship to be fitted is:801

Narec,d̄,h(mmat, y + arec + 1) = r χ σ(arec−amat−1)Φ (N d̄(mmat, y))
×e−µ ξ(y)−ω (mmat+amat mrep) (D.6)

where802

µ ξ(y) = ξ1 (N d̄(mmat, y)) +
amat∑
i=1

ξ2 (N d̄(mmat, y + i)) (D.7)

Hence, one can estimate parameters µ and ω by non-linear regression for803

any value of ∆mat or ∆rec, as long as sufficient data is available, assuming that804

assessment is effectively made at m = mmat. The regression was performed805
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(a) ∆rec fixed (b) ∆mat fixed

(c) ∆rec −∆mat fixed

Figure E.9: Number of mature individuals of round age a = amat at equilibrium (m =
mmat) as a function of fishing mortality (by month) when ∆mat and ∆rec vary and the
system is parameterized for the Bay of Biscay sole. Different colours indicate different
values of ∆mat and/or ∆rec depending on the case: (a) ∆mat vary and ∆rec = 44 ; (b)
∆rec vary and ∆mat = 28 ; (c) both ∆mat and ∆rec vary and their difference is constant
and equals 14.

using the nls function of R software, and repeated each time ∆mat or ∆rec806

was modified.807

Estimations of parameters µ and ω for each combinations of ∆mat and808

∆rec considered are given in tables 6 and 7.809

NB: often, data for age amat ≤ a < arec are not available. In this case,810

one can compute them by applying the right constant to the first known age811

class. That is what we did for the Bay of Biscay sole (with arec − amat = 1),812

considering that for all y: Namat,d̄,h̄(mmat, y) =
Narec,d̄,h̄

(mmat,y+1)

σ
.813

Appendix E. Supplementary outputs814
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(a) ∆rec fixed (b) ∆mat fixed

(c) ∆rec −∆mat fixed

Figure E.10: Sum of reproducers at equilibrium at m = mrep as a function of fishing
mortality (by month) when ∆mat and ∆rec vary and the system is parameterized for
the Bay of Biscay sole. Different colours indicate different values of ∆mat and/or ∆rec

depending on the case: (a) ∆mat vary and ∆rec = 44 ; (b) ∆rec vary and ∆mat = 28 ; (c)
both ∆mat and ∆rec vary and their difference is constant and equals 14.
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Figure E.11: Total annual yields at inter-annual equilibrium as a function of fishing mor-
tality (by month) and position of MSY when r varies, ∆mat = 25 and ∆rec = 39 (all
other parameters being the same as in table 5). Coloured triangles correspond to MSY
(numerically solved) and different colours indicate different values of r.
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