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ABSTRACT: Long waves play an important role in coastal inundation and shoreline and dune erosion, requiring a de-
tailed understanding of their evolution in nearshore regions and interaction with shorelines. While their generation and dis-
sipation mechanisms are relatively well understood, there are fewer studies describing how reflection processes govern
their propagation in the nearshore. We propose a new approach, accounting for partial reflections, which leads to an ana-
lytical solution to the free wave linear shallow-water equations at the wave-group scale over general varying bathymetry.
The approach, supported by numerical modeling, agrees with the classic Bessel standing solution for a plane sloping beach
but extends the solution to arbitrary alongshore uniform bathymetry profiles and decomposes it into incoming and
outgoing wave components, which are a combination of successively partially reflected waves lagging each other. The
phase lags introduced by partial reflections modify the wave amplitude and explain why Green’s law, which describes the
wave growth of free waves with decreasing depth, breaks down in very shallow water. This reveals that the wave amplitude
at the shoreline is highly dependent on partial reflections. Consistent with laboratory and field observations, our analytical
model predicts a reflection coefficient that increases and is highly correlated with the normalized bed slope (bed slope rela-
tive to wave frequency). Our approach shows that partial reflections occurring due to depth variations in the nearshore are
responsible for the relationship between the normalized bed slope and the amplitude of long waves in the nearshore, with
direct implications for determining long-wave amplitudes at the shoreline and wave runup.
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1. Introduction

Long waves with frequencies between 0.005 and 0.05 Hz,
also referred to as infragravity waves, are low-frequency grav-
ity waves that fall within the frequency range forced by wind-
wave groups. Free long waves (FLW) generated by wave
group forcing were first identified by Munk (1949) and Tucker
(1950). These infragravity waves are especially important in
the nearshore ocean, where they can make a dominant contribu-
tion to water motion in the surf zone (Elgar et al. 1992; Guedes
et al. 2013; Reniers et al. 2002; Ruessink 1998; Thornton and
Guza 1982) and play an important role in coastal inundation
(Cheriton et al. 2016; Merrifield et al. 2014; Péquignet et al.
2009; Roelvink et al. 2009) and beach erosion (Russell 1993;
van Rooijen et al. 2012). Therefore, the accurate prediction of
the dynamics of long waves in surf zones, including their genera-
tion, propagation, and dissipation, is crucial to assess wave-driven
coastal hazard risk.

The generation of FLWs results from radiation stress forcing
from wind-wave groups approaching the surf zone (Longuet-
Higgins and Stewart 1962). Generation can be triggered by three
main mechanisms: breakpoint forcing (Symonds et al. 1982),

bound wave release (Masselink 1995; Longuet-Higgins and Stew-
art 1962), and by depth variations (Contardo et al. 2021; Mei and
Benmoussa 1984; Nielsen 2017; Moura and Baldock 2019; Liao
et al. 2021). These mechanisms have been identified in numerical
modeling, laboratory experiments, and field observations (Masse-
link 1995; Contardo and Symonds 2013; Pomeroy et al. 2012; Inch
et al. 2015; Moura and Baldock 2017).

The detailed processes that govern how FLWs propagate
through the surf zone (i.e., after their generation) have generally
been less well studied. A basic description of the propagation of
FLWs is usually assumed where the FLWs are approximated to
be sinusoidal and shoal in response to conservation of wave en-
ergy flux, where the amplitude theoretically follows Green’s law
(Green 1838) as h2a, where h is local depth and a is the growth
rate (theoretically equal to 0.25). However, in this theory, partial
reflections, defined here as local reflections occurring over depth
variations, are neglected (Koh and Le Méhauté 1966; Svendsen
and Hansen 1977), which, according to Koh and Le Méhauté
(1966), is only valid for mild bed slopes (,0.025). In many
cases, partial reflections are not negligible. Such situations
would include the forereef of a fringing reef where the slope is
steep (Pomeroy et al. 2012; Péquignet et al. 2014; van Donge-
ren et al. 2013; Buckley et al. 2018), the sandbar on a barred
beach (Contardo and Symonds 2013), and near the shoreline
where they can generate partial standing patterns (Baldock
2006; Lara et al. 2010).

Corresponding author: Stephanie Contardo, stephanie.contardo@
csiro.au

DOI: 10.1175/JPO-D-22-0109.1

Ó 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

661

VOLUME 53 J OURNAL OF PHY S I CAL OCEANOGRAPHY MARCH 2023

Brought to you by IFREMER/BILIOTHEQUE LA | Unauthenticated | Downloaded 03/03/23 09:58 AM UTC

https://orcid.org/0000-0003-2994-8789
https://orcid.org/0000-0003-2994-8789
mailto:stephanie.contardo@csiro.au
mailto:stephanie.contardo@csiro.au
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


Reflection processes become increasingly important in shal-
lower water, with local reflection coefficients increasing with
decreasing depth, and therefore can be very important in the
swash zone where waves interact with the shoreline. Wave
runup, defined as the maximum vertical elevation of water
level at the shoreline, tends to be correlated with long-wave
amplitude (Watson et al. 1994; Ruju et al. 2014; Baldock
2006). The approaches used to predict runup are either empir-
ical (Stockdon et al. 2006) or numerical (Fiedler et al. 2020,
2018; Quataert et al. 2020; de Beer et al. 2021), with the excep-
tion of Madsen and Fuhrman (2008), who provide analytical
solutions for long waves and tsunamis. In two (horizontal) di-
mensions, edge waves may also develop as seaward propagating
FLWs propagate back toward the shore, after being refracted
and reflected, forming interference patterns (Contardo et al.
2019; Bowen and Guza 1978; Eckart 1951; Guza and Davis
1974; Chao and Pierson 1972; Almar et al. 2018).

Strong reflections of FLWs from steeply sloping bathyme-
try profiles can also play a dominant role in establishing low-
frequency standing waves that become dominant sources of
wave runup. For example, in fringing reef environments with
steep fore reef slopes, resonant amplification of long waves can oc-
cur when low-frequency forcing by wave groups matches the natu-
ral frequencies for standing waves propagating across reef flat
(Péquignet et al. 2009; Torres-Freyermuth et al. 2012; Cheriton
et al. 2016; Gawehn et al. 2016; Buckley et al. 2018). The amplifi-
cation of these long waves thus results from the strength of partial
reflections of outgoing long waves at the crest of the steep forereef
that return long waves back to the shoreline.

The total reflection coefficient, defined either as the ratio of
outgoing to incoming wave amplitudes or energy fluxes, is also
influenced by a range of long-wave dissipation processes (Battjes
1974), including bottom friction (Henderson and Bowen 2002),
nonlinear transfers of energy back to sea-swell frequencies
(Henderson et al. 2006; Thomson et al. 2006; Guedes et al. 2013;
Ruju et al. 2012), and depth-limited breaking (Battjes et al. 2004;
van Dongeren et al. 2007; Ruju et al. 2012). Therefore, the mea-
sured reflection coefficient has been used as a proxy for the level
of long-wave dissipation in field observations (Sheremet et al.
2002; de Bakker et al. 2014; Elgar et al. 1994, 1992; Okihiro and
Guza 1995; Bertin et al. 2020), laboratory experiments (Padilla
and Alsina 2017; Battjes et al. 2004), and in numerical model
applications (van Dongeren et al. 2007).

Reflection coefficients are known to increase with bed slope
and decrease with wave frequency, with both effects generally
incorporated into empirical parameterizations of reflection,
namely, a surf similarity parameter (Iribarren number) (Battjes
1974; Iribarren Cavanilles and Casto Nogales 1949) or the nor-
malized bed slope parameter (Battjes et al. 2004). Various field
and laboratory experiments have confirmed that the reflection
coefficient increases with normalized bed slope (van Dongeren
et al. 2007; Guedes et al. 2013; de Bakker et al. 2014; Padilla
and Alsina 2017; Okihiro and Guza 1995; Bertin et al. 2020).

In analytical studies of long-wave transformation, the total
wave amplitude, rather than its decomposition into incoming
and outgoing components, is usually predicted. The linear
shallow-water equation on a sloping bottom is a Bessel differen-
tial equation of zeroth order and its analytical solutions are in

the form of Bessel functions (Dean 1964; Symonds et al. 1982;
Eckart 1951; Abdelrahman 1986; Friedrichs 1948; Suhayda
1974; Symonds and Bowen 1984; Synolakis 1991). Since the
solutions conserve energy, they account for all reflections, i.e.,
both full (at the shoreline) and partial.

The question of a formulation for reflection of free waves
has been addressed mostly for short waves (wind-sea and
swell) and inferred empirically based on wave breaking dissi-
pation (Battjes 1974; Ursell et al. 1960; Miche 1951), which
motivated the development of empirical predictive formula-
tions that are widely used in coastal engineering applications
(Miche 1951; Seelig and Ahrens 1981; Madsen and White
1976; Zanuttigh and van der Meer 2008; Zhang et al. 2021; Dean
1964). Analytical studies of reflection over bathymetry profiles
exist, but for specific cases only; for example, Didenkulova
et al. (2009) for specific convex bathymetry profiles; Bayındır
and Farazande (2021) for power-law profiles; and Mei (1989),
who proposed a solution for slowly varying depth, based on
the classical WKB approximation, where a reflection coeffi-
cient is calculated for a section of slope.

In the present study, we propose analytical expressions for
the incoming and outgoing components of a FLW propagating
in the cross-shore direction in shallow water over a variable
depth profile in the absence of dissipation. We account for up-
slope and downslope partial reflections and assess the effect of
normalized bed slope on the propagation. We first describe the
method leading to our analytical model based on partial reflec-
tions, then we apply our partial reflection approach to various
common nearshore bathymetry profiles (sloping beach, barred
beach, fringing reef) and show how these results can help ex-
plain some previous observations of long-wave dynamics over
these profiles. We finally extend the results to cases where long
waves are assumed to dissipate at an inshore location (e.g., due
to breaking). The study reveals that continuous partial reflec-
tions occurring due to depth variations in the nearshore are re-
sponsible for the strong dependency between the normalized
bed slope and the amplitude of long waves in the nearshore.

2. Partial reflection analytical model

The approach we develop here is built upon existing theory of
wave reflection over a single step (summarized in appendix A).
By discretizing an arbitrary cross-shore bathymetry profile into a
series of steps, through superposition we investigate the role of
partial reflections over common nearshore morphologies. To de-
velop this approach, we initially consider the case where there is
no long-wave dissipation. The case where dissipation is included
will be discussed in section 4e.

Following the approach adopted by Contardo et al. (2021)
to describe the generation of FLWs over varying bathymetry,
the bathymetry is discretized into a succession of small steps,
of width dx, such that the equations governing reflection and
transmission over a single step are repeated for each depth
variation, as presented schematically in Fig. 1. Therefore, the
total incoming waves (propagating shoreward) at a given loca-
tion are a combination of waves reflected an even number (in-
cluding zero) of times. Similarly, outgoing waves (propagating
seaward) are a combination of waves reflected an odd number
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of times. As the number of reflections increases, the ampli-
tude within the series of reflected waves decreases and be-
comes negligible.

We start by calculating the amplitude Ain of the initial in-
coming wave, i.e., the wave transmitted without any reflec-
tions (blue arrows in Fig. 1), at a given cross-shore location
x(nx):

Ain(nx) 5 A0 *
nx21

j51
kt( j), (1)

where A0 is the amplitude of the incident wave at the bot-
tom of the slope, kt(nx) is the transmission coefficient be-
tween the steps nx and nx 1 1, kt(0) 5 1 (on the first step),
and P is the product notation. We introduce the complex
amplitude: Â(x)5Aei(kx1u). By including the phase lag aris-
ing from the propagation over the steps, the complex incom-
ing amplitude is

Â in(nx) 5 A0 *
nx21

j50
kt(j)exp i∑

nx

j51
udx( j)

[ ]
: (2)

where udx(nx) is the phase difference corresponding to the
propagation time over the finite step nx:

udx(nx) 5
dx
c
v: (3)

In this first estimation of the amplitude of the incoming wave,
the number of reflections is zero. We refer to this as level 0
(nl 5 0). The next step is to account for partial reflections by
superimposing the signals from reflected waves.

We calculate the amplitude Aout of the outgoing wave by
assuming total reflection at the shoreline (and neglecting all
other reflections):

Âout(nx) 5 Â in(nx)exp 2i ∑
nbx

j5nx
udx(j)

[ ]
, (4)

with nbx the total number of steps. Since the reflection at the
shoreline is by definition the total reflection, due to the transmit-
ted wave being zero, in the absence of dissipation the outgoing
and incoming waves have equal amplitudes at all cross-shore loca-
tions, and their phase difference is determined by the propagation
time from their cross-shore position to the shoreline and back.

In this initial example, the waves have been assumed to
only reflect at the shoreline. However, in reality the incident
wave reflects successively at each step, the reflected waves
deshoal as they move into deeper water, and the reflected sig-
nals combine with a time lag (Fig. 1). We now consider the
influence of these successive partial reflections.

We define nl as the number of additional downslope reflec-
tions that is accounted for in the combined wave field. As nl
increases, another level of reflection is added. For instance,
the outgoing signal at nl 5 1 (green arrows in Fig. 1) is the

FIG. 1. Schematic of the series of reflected waves (illustrating four reflections), over three
steps. Blue: level 0 (no reflection), green: level 1 outgoing, red: level 1 incoming, purple: level 2
outgoing, and magenta: level 2 incoming. The dashed lines denote a reflected signal with oppo-
site phase. The line thickness gives a qualitative indication of the wave amplitude.
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combination of waves reflected on steps nx 5 1, nx 5 2 and
at the shoreline (nx 5 nbx). Therefore, we calculate the am-
plitudes iteratively and the amplitude of the total outgoing
wave is, for nl$ 1:

Âout;nl(nx) 5 Â in;nl21(nx)kr(nx)exp[iudx(nx)]
1 Â in;nl21(nx 1 1)kr(nx 1 1)kinvt (nx)
3 exp{i[udx(nx 1 1) 1 udx(nx)]}
1 Â in;nl21(nx 1 2)kr(nx 1 2)kinvt (nx 1 1)kinvt (nx)
3 exp{i[udx(nx 1 2) 1 udx(nx 1 1) 1 udx(nx)]}
1 · · ·

5 ∑
nbx

j5nx
Â in;nl21( j)kr( j) *

j21

l5nx
kinvl (l)exp i ∑

j

l5nx
udx(l)

[ ]
,

(5)

with kinvt (nx) the downslope transmission coefficient between
h(nx1 1) and h(nx) defined according to Eq. (A7):

kinvt 5
2ksea

kshore 1 ksea
5 kt

ksea
kshore

: (6)

The next reflection to occur is a downslope reflection, which
is followed by a succession of reflections occurring alternately
upslope and downslope. Therefore, for nl $ 1, the incoming
complex amplitude is

Â in;nl(nx) 5 Âout;nl(nx)kr(nx 2 1)exp[iudx(nx)]
1 Âout;nl(nx 2 1)kr(nx 2 2)kt(nx 2 1)
3 exp{i[udx(nx 2 1) 1 udx(nx)]}
1 Âout;nl(nx 2 2)kr(nx 2 3)kt(nx 2 2)kt(nx 2 1)
3 exp{i[udx(nx 2 2) 1 udx(nx 2 1) 1 udx(nx)]}
1 · · ·

5 ∑
nx

j51
Âout;nl(j)kr(j 2 1) *

nx21

l5j
kt(l)exp i∑

nx

l5j
u(l)

[ ]
: (7)

At a cross-shore location x 5 nx 3 dx, the total reflection co-
efficient R, which accounts for all the local reflections, can
thus be defined here as the ratio of cumulative outgoing to in-
coming wave amplitudes:

R(x) 5 Ao(x)
Ai(x)

, (8)

or where alternatively R2 represents the reflection coefficient
based on energy flux.

Based on this model, the amplitude of the outgoing wave is
dependent on the bed slope, the depth at the model offshore
boundary and the wave frequency, due to the phase lags gen-
erated over each step [Eq. (3)] being dependent on the wave
frequency. Using this model, we calculate the amplitude of
the incoming and outgoing FLWs for a frequency f5 0.005 Hz
and for three slope values: b 5 0.05, 0.005, and 0.001. The am-
plitude of the incident wave, A0, is defined at the reference
cross-shore position X, which could, for example, represent

the offshore extent of the surf zone, where FLWs originate.
For these calculations, a flat bottom is assumed beyond X, so
no reflections occur further offshore. In this example,
X5 2000 m. This value is chosen so that at least a whole wave-
length can be observed (about 1800, 180, and 37 m for
b 5 0.05, 0.005, and 0.001, respectively). As we account for
an increasing number of reflections, the total reflection
coefficient tends toward 1 to ensure conservation of energy
(Fig. 2). Convergence is achieved rapidly for a very mild slope
(b 5 0.001), for instance, after three iterations, but it takes
over 20 iterations for b 5 0.05 to converge. Hereafter, we
will apply the analytical model with nl 5 50 to ensure con-
vergence is reached, for all slopes considered in this study
(not shown), and unless specified otherwise, the amplitudes
of the incoming and outgoing FLWs will be calculated as
AiFLW 5 Ain(nl 5 50) and AoFLW 5 Aout(nl 5 50), respectively.
Note that in applications of the model that follow, amplitudes A
will be nondimensionalized with the amplitude of the incident
FLW atX (denotedA*, where the * will be used to denote nondi-
mensional variables) and x* 5 x/X is the nondimensional cross-
shore distance parameter.

3. Comparison with Bessel analytical standing wave
solutions for a plane sloping bottom

Analytical solutions based on linear wave theory are avail-
able for predicting long-wave propagation over a mild sloping
bottom. The shallow-water equation for slowly varying depth
(i.e., Dean 1964) is



x
gh

z

x

( )
1

2z

t2
5 0: (9)

Given a linear slope b and assuming a harmonic wave, Eq. (9)
becomes

x
2z

x2
1

z

x
2

v2

gb
z 5 0, (10)

FIG. 2. Calculated total reflection coefficient vs number of iterations
(nl) for three bed slopes.

J OURNAL OF PHY S I CAL OCEANOGRAPHY VOLUME 53664

Brought to you by IFREMER/BILIOTHEQUE LA | Unauthenticated | Downloaded 03/03/23 09:58 AM UTC



which is a Bessel equation. For a propagating wave, the Bessel
solutions are in the form (Symonds et al. 1982; Eckart 1951;
Dean 1964):

J0 2

�����
v2x
gb

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠cos(vt) 2 Y0 2

�����
v2x
gb

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠sin(vt), (11)

with J0 a Bessel function of the first kind and Y0 a Bessel func-
tion of the second kind, both of order zero. If the shoreline is
at the shoreward boundary of the sloping section, the solution
in Y0 is excluded as it tends to infinity for x 5 0, and the solu-
tion is a standing wave:

J0 2

�����
v2x
gb

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠cos(vt): (12)

While the approach we developed (section 2) is valid for any
arbitrary bathymetry profile, here we calculate solutions for
the plane sloping bottom case using our approach (section 2)
and compare these results to the analytical Bessel solutions.
We calculate the amplitudes and phase lags, at f 5 0.005 Hz,
for three values of slope b: 0.05, 0.005, and 0.001.

The amplitudes of the outgoing and incoming waves are
equal (not shown), both with our approach where we assume
total reflection (i.e., no dissipation) at the shoreline and using
Bessel solutions, as the total solution is a standing wave.
While we use local reflection and transmission coefficients
(kr and kt, respectively) to calculate the complex amplitudes
of the incoming and outgoing waves, the system conserves

energy and therefore the total reflection coefficient (R), de-
fined by Eq. (8), equals 1.

Figure 3 shows a comparison of the amplitudes and phase
lags of the standing wave calculated using our approach (blue
solid lines, including partial reflections) developed in section 3
with the Bessel standing wave solutions (red solid lines), as a
function of the nondimensional cross-shore distance x*. In all
cases, the cross-shore profile of the total (standing wave) am-
plitudes and phase lags are in good agreement.

In Fig. 3 a standing pattern is well defined (i.e., the ampli-
tude is zero at the location of the nodes) despite the phase
lags present, because of the total reflection at the shoreline
and conservation of energy. The phase lags introduced by
partial reflections modify the amplitude of the standing
waves and shift the location of the nodes. With no partial
reflection, the nodes would be located at the cross-shore
positions xnode (indicated in vertical dashed lines in Fig. 3)
according to (i.e., Buckley et al. 2018; Symonds and Bowen
1984)

fnode 5
1
4
(2n 2 1)

�x0

xnode

1����
gh

√ dx

( )21

(13)

with n the node number. In the case of a plane beach, we
obtain

xnode 5 gb
2n 2 1
8fnode

( )2
: (14)

FIG. 3. Theoretical FLW nondimensional (a)–(c) total amplitudes A*
FLW and (d)–(f) phase lagsfFLW for plane sloping bottom, compar-

ing predictions from our partial reflection approach with Bessel function solutions, for f 5 0.005 Hz and three values of slope b: 0.05,
0.005, and 0.001. The shoreline is at x* 5 0. Vertical dashed gray lines denote the theoretical locations where the nodes would be located
in the absence of partial reflections.
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The actual node frequencies, accounting for partial reflec-
tions, are therefore underestimated by Eq. (13), but in agree-
ment with the Bessel solutions.

4. Results and discussion

With the analytical model based on partial reflections veri-
fied in appendix B, we apply it here to demonstrate that the
partial reflection approach can be used to help interpret and
provide new insight into previously observed features of long-
wave propagation in the nearshore. We first focus on partial
reflection processes at the shoreline then apply the analytical
model to a plane sloping beach, a realistic barred beach, and
an idealized fringing reef, and study the role of partial reflec-
tions, first assuming complete reflection at the shoreline, then
investigating the total reflection coefficient for the case where
the bathymetry near the shoreline is truncated, as a proxy for
dissipation of the FLW occurring at some shallow inshore
depth.

a. Shoreline processes

In appendix B, the amplitude of the FLWs decreased at the
shoreline as b increased (i.e., Fig. B1 for the plane beach) and
as f decreased (i.e., Fig. B3 for the barred beach profile),
which we now show here is due to the presence of phase lags
resulting from the occurrence of continuous partial reflec-
tions. To visualize how the processes of reflection affect the
phase lag and support this interpretation, we consider the nu-
merical model results for a plane sloping beach (b 5 0.004,
f 5 0.01 Hz) as in appendix B, section a, and compare these
results to a case with two large steps, as the latter will be use-
ful to explain the former. The widths of the steps are chosen
large enough so the waves can be clearly isolated (h 5 0.5 m
for x, 3700 m, h5 1 m for 3700# x, 5200 m and h5 1.5 m
for x $ 5200 m). The model is forced with a negative single
(transient) wave, as opposed to periodic waves, to enable the
incident and radiated long waves to be clearly separated in
time and space and their propagation paths to be visualized
(Baldock 2006; Contardo et al. 2021; Watson et al. 1994).

For the plane sloping beach case, the reflection of the nega-
tive incoming signal is a combination of a negative signal and
a positive signal (Fig. 4a). We use the two-step configuration
(Fig. 4c) to visualize the reflection processes that occur contin-
uously for the slope case and explain why the reflected signal
has both positive and negative components. The interpreta-
tion is as follows. Once the level 0 incoming (negative) signal
has reflected at the shoreline, it reflects again at the next
depth change as it propagates seaward. While reflecting
shoreward, the signal changes sign (the reflected wave is in
antiphase with the incident wave). It reflects in the same
way, on each depth change, so that the signal at the shore-
line is a combination of the level 0 incoming wave (defined
earlier as the blue arrow in Fig. 1), of the level 1 incoming
waves reflected twice (red dashed arrows in Fig. 1) and of
higher level incoming waves. In the linear slope case, waves
reflecting near the shoreline are only slightly smaller than
the level 0 signal, they overlap with it, and their phase lag
with the level 0 wave is small; whereas waves reflecting fur-
ther from the shoreline are smaller and their phase lag with
the level 0 signal is larger. Figure 4b shows the elevation for
an intermediary bathymetry profile, with finer steps than in
Fig. 4c. Partial standing wave patterns appear as the re-
flected components of the signal overlap.

The interactions between the incoming and reflected waves
is further illustrated with a synthetic example where we con-
sider two sinusoidal waves (Fig. 5). The first wave represents
a level 0 incoming wave (Fig. 5, dashed lines) and the second
wave represents a level 1 wave (Fig. 5, dash–dot lines), reflected
twice (thus also incoming). The amplitudes of the waves are the
same in both cases but in one case the non dimensional time lag
dt* between the two waves is.0.5 (Fig. 5a) and in the other case
it is ,0.5 (Fig. 5b). When dt* . 0.5, the total wave that results
from the combination of the level 0 and level 1 waves is larger
than the level 0 wave, and when the lag is dt* , 0.5 the total
wave is smaller than the level 0 wave. In addition, a time lag
is introduced by the presence of the level 1 wave (the total
signal precedes the level 0 signal). Therefore, the addition
of the level 1 wave to the level 0 wave introduces a time lag
and either increases or decreases the total amplitude

FIG. 4. Nondimensional total FLW elevation as a function of nondimensional time (horizontal axis) and cross-shore position (vertical
axis), for (a) a plane slope with b 5 0.005, (b) a succession of small steps (0.2 m every 200 m), and (c) a two-step configuration, forced by
a single transient wave. Cross-shore bathymetry profiles are represented on the right side of each color plot. The dashed horizontal lines
in (b) represent the location of the step depth changes.
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depending on the lag between the level 0 wave and the level 1
wave.

The literature provides examples of such observations from
experimental and numerical modeling. Figure 5 in Baldock
(2006) and Fig. 9 in Lara et al. (2010) represent the sea sur-
face elevation as a function of time and cross-shore position
for a plane beach (b 5 0.1) and a beach with two sloping re-
gions (b 5 0.05) separated by a horizontal bottom section,
respectively. These figures are similar to Fig. 4a. In Fig. 5
in Baldock (2006), after a positive signal reaches the shore-
line, the reflected signal is composed of both a positive and
a negative signal, with the outgoing negative signal being
(according to our interpretation) the incoming positive
signal reflected an odd number ($3) of times. Baldock
(2006) mentions an “interference between long waves formed
by the different surf zone generation mechanisms” which
would reduce the long-wave energy and points out that
the negative part of the signal indicates “either reflection
higher on the beach or further long wave generation in the
swash.” In Fig. 9 in Lara et al. (2010), a positive signal also
reaches the shoreline, and, with a delay, a negative signal
also reaches the shoreline, which according to our inter-
pretation is the incoming positive signal reflected an even
number of times. Lara et al. (2010) hypothesize that the
signal is being generated within the surf and swash
zone. Our models (analytical and numerical) do not include
a time-varying shoreline position, yet this signal is ob-
served, suggesting that the shoreline processes observed by
Baldock (2006) and Lara et al. (2010) are driven by reflec-
tion. Given the apparent role of partial reflections near the

shoreline and the direct correlation between runup and
shoreline amplitude (Madsen and Fuhrman 2008), runup
estimations could benefit from including a partial reflection
approach.

b. Plane sloping beach

Here we further investigate the processes that govern how
partial reflections affect the amplitude and phase of the FLWs
as a function of beach slope. The results that follow are pre-
sented as a function of the normalized surf zone width x

(Symonds et al. 1982):

x 5
v2X
gb

: (15)

The term X represents the location where the FLWs are
generated. This location is generally associated with the
short-wave breakpoint where FLWs are generated through
both breakpoint forcing (Symonds et al. 1982) and bound
wave release (Masselink 1995). However, it can also be the
location where FLWs are generated via the depth-variation
mechanism (Contardo et al. 2021), offshore of the short-
wave breakpoint or inshore of it from remaining short-wave
groupiness. In the following, we use the short-wave break-
ing depth hb to indicate where the FLWs are generated, al-
though it could simply be replaced by the depth at which
FLWs are generated in the case of generation by the depth-
variation mechanism.

As X represents the location where the FLWs are gener-
ated, we note that for a linear slope it can be replaced with

FIG. 5. Synthetic example of combinations of positive and negative sinusoidal wave signals at the shoreline in both
single and periodic form for (a) dt* . 0.5 and (b) dt* , 0.5. In this example, the nondimensional amplitude of the neg-
ative signal (level 0) is 2 and the amplitude of the positive signal (level 1) is 1, f5 0.4 Hz, and h5 5 m. Black lines rep-
resent single (transient) waves while gray lines represent periodic signals. The vertical red lines indicate the trough of
the incoming wave (dashed line) and total wave (solid line).
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hb/b, as in Battjes et al. (2004); thus x can be alternatively ex-
pressed as

x 5
v2hb
gb2 5

1
b2
norm

, (16)

with bnorm defined as the normalized bed slope:

bnorm 5
b

v

����
g
hb

√
: (17)

1) INCOMING WAVE

The incoming amplitude and phase calculated at two differ-
ent locations are normalized with the amplitude and phase
calculated without partial reflections (nl 5 0), i.e., the case
where only shoaling occurs, (Figs. 6a,b), at two locations:
x* 5 dx* (the nonzero depth closest to the shoreline) and at
x* 5 0.1 (a location away from the shoreline). The level 0 case
is used as reference as, without partial reflection, the relative
amplitude and phase does not vary with x, as shoaling does
not depend on the slope.

The inclusion of partial reflections affects the amplitude and
phase of the total incoming wave signal (Fig. 6a). The ampli-
tude, calculated with the partial reflection approach, displays a
variable but generally increasing trend, similar to what was ob-
served (but not explained) by Madsen and Fuhrman (2008),
whose solutions to the linear shallow water equation for runup
(which is analogous to shoreline wave amplitude) on a finite
slope attached to a flat bottom present an analogous oscillating
response. The amplitude with partial reflections included is
higher than the level 0 amplitude for higher x (1.5 for x* 5 0.1
and 8.2 for x* 5 dx*), and lower for lower x.

The trend in Fig. 6a occurs because for small x (equivalent
to a steep normalized bed slope), the signal reflected at the

shoreline and then back to the shoreline (nl 5 1) does not
substantially lag behind the incoming wave (nl 5 0). As it is
of opposite sign to the incoming signal, the combination re-
sults in a total amplitude that is smaller than would be ex-
pected from shoaling, as was indicated in Fig. 5b. In contrast,
for large x (equivalent to a mild normalized bed slope), the
level 1 and level 0 signals lag each other more substantially so
that their combined signal is larger than the amplitude ex-
pected from shoaling (Fig. 5a).

Partially transmitted and partially reflected signals combine
and form partially standing waves. These partial standing patterns
appear as amplitude and phase variations around the general
trend. In Fig. 6a, the elevation amplitude at the shoreline is maxi-
mum when x 5 2.7, due to the level 1 signal (reflected at the
shoreline then reflected back to the shore) being in phase with
the level 0 signal; conversely, when x 5 5.5, there is a local mini-
mum because the signal when reflected twice is in antiphase with
the incoming signal.

Due to this interference pattern, the wave amplitude
growth does not increase as h2a, with the growth rate a 5

0.25 following Green’s law. However, we can estimate a mean
growth rate over the domain using the present results, as

a(x) 5 2 log10
Ai(x)
Ai(X)
[ ]/

log10
h(x)
hb

[ ]
, am 5 ha(x)i, (18)

where the angle brackets represent spatial averaging.
The mean growth rate is represented as a function of

bnorm for different hb, which serves as a proxy for the loca-
tion of long-wave generation (Fig. 7). For bnorm , 0.5, am is
between 0.15 and 0.4 and there is no trend in the response
to bnorm. However, there is a consistent maximum (am be-
tween 0.4 and 0.5) around bnorm 5 0.65, with am then de-
creasing exponentially past the maximum. Importantly, the
growth rate is substantially above Green’s law (a 5 0.25)

FIG. 6. (a) Ratio of the incoming FLW amplitudes for results based on partial reflection approach (A*
iFLW) divided by

results with reflection at the shoreline only (A*
iFLW;nl50) at two cross-shore locations x* 5 dx* 5 0.01 (location nearest the

shoreline) and x* 5 0.1 (X5 100 m) and (b) total amplitude for the partial reflection approach and with reflection at the
shoreline only (nl5 0) for f5 0.005 Hz over a plane sloping beach with b varying between 0.001 and 0.05.
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for 0.7 , bnorm , 1 and lower for bnorm . 1. We note that a
similar trend had been observed close to the shoreline by
van Dongeren et al. (2007), although the wave growth
reached a lower limit at 0.25. They indicate a transition to
conservative shoaling (a 5 0.25) for bnorm . 1, which in our
results corresponds to a # 0.25. Values of a , 0.25 indicate
that the incident (shoreward propagating) transmitted wave
is smaller than it would be in the absence of partial reflec-
tions. This means that the reflected signal must be taken
into account to ensure energy conservation.

2) TOTAL (INCOMING AND OUTGOING)

As there is complete reflection at the shoreline, the outgoing
amplitude is equal to the incoming amplitude, and a standing
pattern is expected. The total amplitude, at two cross-shore lo-
cations, as a function of x is shown in Fig. 6b. The standing
pattern expected is present at x* 5 0.1, but it is shifted toward
higher x (i.e., higher frequencies), compared to the approach
with reflection at the shoreline only, the nodes being shifted
from x 5 0.8 and 7.8 (nl 5 0) to 1.5 and 8.4 (partial reflection
approach). At x* 5 dx* (shoreline), the level 0 amplitude does
not vary with x, while the amplitude with partial reflections
generally increases with some variability (one local maximum
and one local minimum) as x increases. This response is due to
interference patterns introduced by the reflections, which are
visible as variations around the trend in Fig. 6a.

3) INCOMING AND OUTGOING COMPONENTS IN

BESSEL SOLUTIONS

In section 3, we showed that the total (standing) solution
based on our partial reflection approach agreed with the

standing Bessel solution. Here we extend the comparison to
incoming and outgoing components of the solutions.

We decompose the Bessel standing solution into a single in-
coming wave and a single outgoing wave following Contardo
et al. (2018), where the incoming and outgoing solutions for
elevation based on the decomposition are, respectively,

ziFLW;Bessel ~
1
2

J0 2

�����
v2x
gb

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠cos(vt) 2 Y0 2

�����
v2x
gb

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠sin(vt)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ and

zoFLW;Bessel ~
1
2

J0 2

�����
v2x
gb

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠cos(vt) 1 Y0 2

�����
v2x
gb

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠sin(vt)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦:
(19)

The amplitudes of the incoming and outgoing waves based on
this decomposition are therefore both

Ai/oFLW;Bessel ~
1
2

J0 2

�����
v2x
gb

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠2 1 Y0 2

�����
v2x
gb

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦: (20)

Results showing the amplitudes of the incoming wave in
Eq. (20), the amplitudes of the incoming solution from the
partial reflection approach and the amplitudes following
Green’s law (shoaling only) are represented in Figs. 8a, 8c,
and 8e as a function of the nondimensional cross-shore
distance x*.

First, we compare the partial reflection approach to the
Bessel solutions, in terms of amplitudes and phase lags (Fig. 8,
blue and red lines). At the shoreline, the incoming wave based
on the partial reflection approach is smaller than the Bessel
incoming wave and, away from the shoreline, the incoming
wave amplitudes are alternately above and below the shoaling
curve, because of the interference pattern created by partial
reflections (Figs. 8a,c,e). As the water gets shallower and the
slope steeper, the phase lag of the incoming component calcu-
lated from the partial reflection approach and the phase lag of
the Bessel incoming wave diverge (Figs. 8b,d,f). This shows
that the inclusion of partial reflections (in our approach), in-
troduces a large phase lag close to the shoreline in steep slope
cases. Therefore, decomposing the standing wave into one sin-
gle incoming wave and one single outgoing component as we
did in Eq. (19), leads to an overestimation of the amplitude at
the shoreline because the phase lags introduced by partial re-
flection are not accounted for. Therefore, in shallow water
and steep slope cases, the standing solution cannot be decom-
posed into one incoming and one outgoing wave but is instead
a combination of incoming waves (reflecting at each depth
variation) and their corresponding outgoing waves, as repre-
sented in Fig. 1.

Second, we compare the Bessel incoming solution to
Green’s law (Figs. 8a,c,e, red and green lines). Both ap-
proaches assume no partial reflection. However, close to the
shoreline, the solutions diverge, and the amplitude based on
Green’s law is larger than the amplitude based on Bessel
solutions.

Using Bessel asymptotic expansions of J0 and Y0 (Friedrichs
1948; Lamb 1932), we express an approximation of the

FIG. 7. Mean growth rate am of the FLW amplitude [calculated
with Eq. (18)] as a function of bnorm, for different short-wave
breaking depths (FLW generation depths) hb, calculated for a
plane sloping beach with b between 0.01 and 0.05 and f between
0.005 and 0.05 Hz. The horizontal dashed line denotes the value
a 5 0.25 predicted based on Green’s law. The error bars represent
the standard deviation of a(x).
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amplitude of the incoming (and outgoing) wave, valid at large
x (Guza and Bowen 1976), as a function of h:

Ai/oFLW;Bessel;expansion ~

���
2
p

√
gb
v2x

( )0:25
5

���
2
p

√
gb2

v2h

( )0:25

5

���
2
p

√
gb2

v2

( )0:25
h20:25: (21)

This expression is in h20.25. Therefore, for large x, the ampli-
tude reduces to Green’s law (shoaling) as was demonstrated
by Synolakis (1991). This shows that Green’s law is not an ex-
act solution to the shallow water equations for small values of
2

������������
v2x/(gb)√

, even with the mild slope assumption. Indeed, the
shoaling coefficient is calculated assuming sinusoidal waves
and a flat bottom, while the solutions are in the form of Bessel
functions over a sloping bottom.

FIG. 8. Theoretical nondimensional incoming FLW (a),(c),(e) amplitudes and (b),(d),(f) phase for plane sloping
bottom, comparing predictions from our partial reflection approach with Bessel function solutions and Green’s law,
for f5 0.005 Hz and three values of b: 0.05, 0.005, and 0.001. The shoreline is at x* 5 0. Panels (a), (c), and (e) include
a zoom insert on small values of x*.
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c. Barred beach

In appendix B, section b, we verified the validity of the partial
reflection analytical approach using numerical modeling for a
barred beach profile (Fig. B2). Here, we apply the partial reflec-
tion approach to the same barred beach profile to investigate the
standing wave patterns arising from partial reflections and how
the resulting wave amplitudes vary for different wave frequencies.

We calculate the amplitude of the FLWs for the barred
beach case for two scenarios: 1) by assuming the incident
FLWs originate at the bar crest location and 2) by assuming
the incident FLWs originate seaward of the bar at 7-m depth.
Comparison of these scenarios will show how the location
where long waves are generated influences their amplitude in
the surf zone. We plot the total amplitude as a function of the
frequency (Fig. 9).

Over the barred profile, nodes and antinodes are expected at
the bar crest for frequencies resonating with the geometry. The
theoretical node frequencies, according to the theory without par-
tial reflection, were given earlier in Eq. (13) by replacing xnode
with the bar location xbar, and antinodes frequencies are given by

fantinode 5 n
�0

xbar

1����
gh

√ dx

( )21

: (22)

For the barred beach bathymetry, based on Eqs. (13) and (22)
the frequencies resonating at the bar crest are 0.010 Hz
(node), 0.021 Hz (antinode), 0.032 Hz (node), and 0.043 Hz
(antinode) representing the quarter-wave, half-wave, three-
quarter-wave, and full-wave frequencies. As these predictions
do not account for partial reflections (i.e., reflection is as-
sumed to occur only at the shoreline), these frequencies coin-
cide with where the level 0 minima and maxima are located

in Fig. 9 (orange solid lines). However, as in the slope case
(appendix B, section a) when partial reflections are included,
the nodes and antinodes are shifted toward higher frequencies:
0.0130, 0.0240, 0.0325, and 0.0450 Hz (Fig. 9, blue solid lines).

At the shoreline, when partial reflections are not included,
the total FLW amplitude does not vary with the frequency.
Partial reflections introduce a local maximum (f 5 0.028 Hz)
and a local minimum (f 5 0.0036 Hz) for cases where the
FLWs are assumed to originate at both the bar crest (Fig. 9a)
and offshore at 7 m depth (Fig. 9b).With the complete ba-
thymetry profile included when the FLWs originate from off-
shore (Fig. 9b), there is an additional maximum (f5 0.008 Hz)
and an additional minimum (f 5 0.0015 Hz). The local ex-
trema are also more pronounced in this latter case.

Standing wave patterns and resonance on a barred beach
were studied by Symonds and Bowen (1984). We find very simi-
lar patterns (Fig. 9) compared to their study of breakpoint-
forced long waves on a barred beach (refer to Fig. 4 in their
study). Symonds and Bowen (1984) used Bessel solutions,
therefore accounting for partial reflections. Our results show
that similar resonance patterns at the shoreline are found with-
out including breakpoint-forced outgoing FLWs and that the
standing wave patterns at the shoreline originate from the pres-
ence of partial reflection, which are enhanced by the presence
of the sandbar. We also note that the barred profile chosen by
Symonds and Bowen (1984) was idealized, and the very shallow
bar crest they considered led to a more pronounced oscillating
pattern at the shoreline than with the realistic bathymetry pro-
file we use here.

d. Reef

Reef geometries are known to amplify long waves due to
resonance when the forcing matches the natural frequencies

FIG. 9. Relative amplitude of the total FLW signal (A*
FLW) for the realistic barred beach profile, comparing results

from both the partial reflection approach and when reflection occurs only at the shoreline (nl 5 0) for two locations,
at the bar crest and at the shoreline. (a) Forcing at the bar crest, dx* 5 0.004, and (b) offshore forcing in 7-m depth,
dx* 5 0.0002.
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associated with standing wave motions over a reef bathymetry
profile (Buckley et al. 2018). Here we show how partial reflec-
tions occurring both over forereef slope and beach slope affect
the standing wave pattern associated with a reef geometry.
The geometry adopted for the reef is borrowed from the study
by Buckley et al. (2018), where at field scale, the forereef slope

is 1/5 followed by a 500 m flat at 1.4-m depth then a beach
with a 1/12 slope (Fig. 10). First, the calculations are done for
a case where the incident FLWs originate from offshore of the
reef crest on the fore reef at h5 2 m.

We calculate the amplitude for long waves with frequencies
between 0.001 and 0.05 Hz, which includes very low frequen-
cies (VLF, 0.001 to 0.005 Hz), that have been found to be res-
onant for reef studies with comparable geometries (Péquignet
et al. 2009; Torres-Freyermuth et al. 2012; Cheriton et al.
2016; Gawehn et al. 2016; Buckley et al. 2018). The amplitude
at the shoreline and at the reef crest follows a standing wave
pattern set by the bathymetry profile (Fig. 11a). The frequen-
cies where amplitude minima occur at the reef crest corre-
spond to amplitude maxima at the shoreline, as the phase is
shifted by 1808 when outgoing waves reflect on the reef crest.
In addition, the amplitude at the shoreline also depends on re-
flections over the beach slope, as the amplitude increases
when the frequency increases (and the normalized slope bnorm

gets milder), as shown in appendix B, section a. In the absence
of partial reflections, the amplitude at the shoreline is constant
with varying frequency (Fig. 11a, orange dash–dot line), consis-
tent with the plane sloping beach case (Fig. 6) and the barred
beach case (Fig. 9). The partial reflections introduce variations
of the amplitude at the shoreline. The amplitude decreases as
the frequency decreases (Fig. 11a, blue dash–dot line) to the
point that the beach slope is not “seen” by the VLF waves

FIG. 10. Cross-reef bathymetry profile for a fringing reef based on
the study by Buckley et al. (2018).

FIG. 11. Relative amplitude of the total FLW signal (A*
FLW) for reef profiles, comparing results from both the partial reflection approach

and when reflection occurs only at the shoreline (nl 5 0) for two locations, at the reef crest and at the shoreline. (a),(d) Realistic reef ge-
ometry; (b),(e) modified reef geometry (vertical wall at the beach only); (c),(f) step reef; (top) offshore depth 2 m; (bottom) offshore
depth 20 m, dx* 5 0.0005. The vertical dashed gray lines indicate the limit between VLF (,0.005 Hz) and IG frequencies (.0.005 Hz).
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(,0.005 Hz). Therefore, the VLF waves effectively respond as
if the reef geometry consists of a large single step (the reef
crest) followed by a wall (the beach), while the beach slope
only influences the shorter long waves and their amplitude at
the shoreline is larger. At the reef crest (Fig. 11a, solid line), the
nodes and antinodes are shifted toward higher frequencies as in
the plane sloping beach (Fig. 6) and barred beach (Fig. 9) cases.

To further illustrate the role of varying beach slope, we
consider a second case where the beach slope is replaced with
a vertical wall (Fig. 11b). The increase of the amplitude at the
shoreline with frequency for the original case with the beach
slope (Fig. 11a, dash–dot blue line) is not present when the
beach slope is replaced by a vertical wall (Fig. 11b, dash–dot
blue line), confirming that the beach slope was responsible for
the frequency dependency of the amplitude at the shoreline.
The shift in the node and antinode frequencies disappears, as
it is associated with the partial reflections on the beach slope.

A third case is also investigated where both the beach slope
and forereef slope are replaced with vertical walls (referred to as
the step reef case) (Fig. 11c). The results are very similar, whether
the forereef slope is vertical or not, showing the forereef slope has
minimal effect on the amplitude of long waves generated in water
not much deeper (2 m here) than the reef flat (1.4 m deep).

We finally investigate the effect of offshore source depth of
free long wave generation by reexamining the same three
cases where the offshore depth is h 5 20 m (Figs. 11d–f),
while still normalizing the wave amplitude with the amplitude
at 2 m, as using a consistent amplitude to normalize allows for
a direct comparison of the magnitudes of amplitudes across
both of these source depth scenarios. For this deeper source
depth, with vertical walls both at the beach and at the fore-
reef, the amplitude maxima (antinodes) at the shoreline attain
larger values than when the offshore source depth is 2 m, be-
cause the reflection of the outgoing wave at the forereef is
stronger (Figs. 11c,f). When the beach slope is vertical but the
forereef slope is not (Fig. 11e), the amplitudes of the VLF
waves at the shoreline are not substantially affected by the
forereef slope, but as the frequency increases, the amplitude
of the maxima (antinodes) decreases and the amplitude of the
minima (nodes) increases (Fig. 11e, blue dash–dot line) be-
cause the resonance becomes milder with relatively milder
forereef slope. The antinodes at the reef crest (Fig. 11e, solid
blue line) are shifted toward higher frequency due to the hori-
zontal extent of the forereef slope (which extends the reef flat
width). When the beach slope is not vertical (Fig. 11d), there
is a slight increase of shoreline amplitudes at higher frequen-
cies compared with the case when the beach slope is vertical
(Fig. 11e), but this is not as clear as in the case when the off-
shore depth is 2 m (Fig. 11a). Therefore, with deep offshore
source depth, the beach slope tends to appear as a wall for
most long waves, i.e., the differences of shoreline ampli-
tudes between the more realistic reef geometry case with
slopes (Fig. 11d) and the case with a vertical wall at the
beach (Fig. 11e) are small. For real applications, this implies
that the generation depth of free waves is important for the
long-wave features over the reef.

Overall, our model shows that the resonance of high-frequency
long waves is affected by the beach slope and the forereef slope

as they propagate over a reef geometry. When the long-wave fre-
quency corresponds to a node (antinode) at the reef crest, the
amplitude over the reef flat is large (small). The beach slope re-
duces the amplitude of the long waves in the IG band (from 0.005
to 0.05 Hz) but does not affect the amplitude of the VLF waves,
as the beach slope appears “transparent” to them. Thus, the VLF
amplitudes remain large at resonant frequencies, providing a sen-
sible explanation for why field studies have observed VLF waves
to have higher amplitudes over the reef flat than higher-frequency
long waves (Péquignet et al. 2014; Gawehn et al. 2016).

e. Long-wave dissipation

For the plane sloping beach case (section 4b), the free
long waves are assumed to conserve energy and thus reach
the shoreline without any dissipation. However, in reality, a
proportion of the long waves dissipate before reaching the
shoreline. The total reflection coefficient has thus been
used as a proxy in measurements to estimate long-wave dis-
sipation depth (e.g., de Bakker et al. 2014; van Dongeren
et al. 2007). Since there is dissipation of energy, the outgo-
ing signal is smaller than the incoming signal and the reflec-
tion coefficient is ,1. This can be modeled (assuming total
dissipation) by calculating the reflection coefficients over a
section of slope, ending before the shoreline, as in appendix B,
section c. The shallowest depth of the section serves as a proxy
for the long-wave dissipation depth (hd,LW), since no local re-
flection occurs shoreward of this depth.

We consider a broad range of normalized slopes and fre-
quencies. The reflection coefficients are plotted against the
long-wave normalized bed slope:

bnorm;LW 5
b

v

��������
g

hd,LW

√
, (23)

which differs from bnorm [Eq. (17)], as it refers to the depth
where long waves dissipate rather than the depth where short
waves break. The reflection coefficients calculated as a func-
tion of bnorm,LW collapse onto a single curve (Fig. 12); thus,
bnorm,LW and R2 are highly correlated with a correlation coef-
ficient of 0.95. The reflection coefficient consistently increases
sublinearly with bnorm,LW, for a range of long-wave dissipation
depths and slopes, showing the relevance of the normalized
bed slope [Eq. (17)] for estimating reflection when the dissipa-
tion is confined to occur a specific location, i.e., as can be
done when dissipation is due to depth-limited breaking.

The total reflection of waves on a slope is dependent on the
rate of energy dissipation, including depth-induced breaking,
that occurs shoreward of the observation location (Battjes
1974). The surf similarity parameter (Battjes 1974) or Iribar-
ren number (Iribarren Cavanilles and Casto Nogales 1949) is
a commonly used breaking criterion, which is defined as the
ratio of bed slope on the square root of wave steepness:

j 5
b��������
H/L0

√ , (24)

whereH is a reference wave height, which can be taken as the
offshore wave height or the breaking wave height, and L0 is
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the deep-water wavelength. As the breaking depth controls
the reflection coefficient, the Iribarren number may be consid-
ered to parameterize predictions of the reflection coefficient
(Battjes 1974; Miche 1951). However, such an approach does
not consider the role of partial reflections, and as shown by
Guedes et al. (2013), the Iribarren number does not collapse
R2 based on data collected on a dissipative beach (Raglan,
New Zealand). In contrast, these present results, accounting
for the effect of partial reflections, show that the normalized
bed slope bnorm,LW collapses all of the R2 data (Fig. 13).

These results indicate that the relationship between long-
wave reflection coefficients and bnorm,LW can be used to help
interpret surf-zone observations for cases where the cross-
shore bathymetry profile is known and long-wave breaking is

the dominant long-wave dissipation mechanism [e.g., as in the
field sites studied by de Bakker et al. (2014)], with such obser-
vations of reflection coefficients enabling long-wave breaking
depths (related to hd,LW) to be estimated. This is illustrated
using an example based on the barred beach profile consid-
ered earlier (Fig. B2). In Fig. 13, we calculate the long-wave
dissipation depth as a function of the energy flux reflection co-
efficient, for five different frequencies, for monochromatic
long waves generated at the bar crest. We find that the reflec-
tion coefficient is generally larger for both lower-frequency
long waves and shallower breaking depths. At higher frequen-
cies, the reflection coefficient is low unless the long waves
break in very shallow water (,20 cm), indicating that high re-
flection coefficients would be reached only if the waves were
breaking very close to the shoreline.

We note that these calculations provide an idealized repre-
sentation of how long waves would be dissipated in natural
surf zones (i.e., by assuming monochromatic waves and com-
plete dissipation occurring at a specific cross-shore location).
In reality, bulk reflection coefficients measured on a natural
beach would be representing a range of long-wave frequen-
cies and amplitudes. Therefore, at this stage this approach
would only provide a rough estimation of the breaking depth,
and thus here aims to simply demonstrate the concept, with
further investigation required to calculate reflection coeffi-
cients for spectral long waves with partial dissipation.

In a relevant field study on two beaches, de Bakker et al.
(2014) found, in agreement with Battjes et al. (2004) and
van Dongeren et al. (2007), that high-frequency long waves
were mostly dissipated while low-frequency long waves were
strongly reflected and therefore any breaking of these waves
would have to occur in very shallow water. In the present
study, we show that the reflection coefficient is generally
greater for low-frequency long waves than for high-frequency
long waves, even if they break at the same location. It is
also greater for shallower breaking depth, consistent with

FIG. 12. Energy flux reflection coefficients (R2) calculated at the offshore reference location
(x* 5 1), as a function of the long-wave normalized bed slope (bnorm,LW) for a series of cases
with five different bed slopes (b between 0.01 and 0.05) and long-wave dissipation depths
(hd,LW between 0.005 and 0.5 m) for frequencies between 0.005 and 0.05 Hz.

FIG. 13. Predicted long-wave dissipation depth (hd,LW) vs energy
flux reflection coefficient (R2) at h5 1.36 m (bar crest), for five fre-
quencies based on the barred beach bathymetry profile (Secret
Harbour beach) in Fig. B2.
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Elgar et al. (1994), who observed a decrease in reflection coef-
ficient with increasing wave height.

f. Limitations and possible extensions of the study

In this study we proposed an approach to investigate the
propagation and reflection of monochromatic free long waves
over arbitrary bathymetry profiles based on the linearized
shallow-water equations in one dimension. The objective of
the study was to show how long-wave amplitude and phase re-
lationships are affected by continuous reflections over depth
variations in the nearshore after FLWs are generated. To iso-
late the response of these processes, we needed to exclude
other processes from the model. To obtain a complete de-
scription of the entire range of nearshore hydrodynamic pro-
cesses, the role of other processes such as bottom friction,
nonlinear transfers of energy, depth-limited breaking would
need to be considered, in the way they are accounted for in
numerical hydrodynamic models. However, to isolate the spe-
cific role of partial reflections, we did not include other pro-
cesses in the model.

Nonlinearity is thus not accounted for, which can include
energy transfers from and to short-wave frequencies and self
interactions (van Dongeren et al. 2007). However, studies
have found these nonlinear processes might not be dominant
in the inner surf zone region (shoreward of short-wave break-
ing) once FLWs have been generated (de Bakker et al. 2014;
Ruju et al. 2012).

The current study has focused on the propagation and re-
flection of FLWs in one (cross-shore) dimension only. In two
(horizontal) dimensions, the solutions to the shallow water
equation (Ursell 1952; Guza and Davis 1974) are trapped
edge waves, which are refracted and reflected back to shallow
water by the increasing water depth (Guza and Davis 1974;
Eckart 1951; Chao and Pierson 1972). While an extension of
our study to two dimensions would not be straightforward, it
would also likely bring insight on how the propagation and re-
flection of long waves influence the amplitude and patterns of
edge waves.

Last, this present study is of particular interest for long
waves, as it has helped elucidate key features of long waves in
the nearshore; for example, explaining why with reflection, the
bed slope appears relatively steeper to low-frequency waves
than short waves. However, we note that the approach is read-
ily adaptable to short-wave (wind-sea and swell) reflections.

5. Conclusions

In this study we developed a new analytical solution to the
linearized shallow water equations, based on energy conserva-
tion at each step of a discretized arbitrary bathymetry profile,
which includes the incoming and outgoing components of the
solution. This novel approach explicitly accounts for partial
reflections and can therefore provide improved insight into
the role of reflections on long-wave dynamics in the near-
shore. By validating and then applying the approach, we dem-
onstrated that, in the absence of dissipation, standing long
waves in the surf zone are composed of a combination of in-
coming and outgoing waves lagging each other because of the

continuous occurrence of partial reflections over depth varia-
tions. The role of phase lags is essential as they modify the
amplitude of the waves and shift the location of standing no-
des. The combination of multiple time-lagged incoming and
outgoing waves can help explain why Green’s law is not appli-
cable to calculate the amplitude of free waves in very shallow
water. The approach can also explain why the Bessel standing
solution for long waves propagating over a steep slope cannot
be decomposed into a single incoming wave and single outgo-
ing wave but is instead a combination of smaller phase-lagged
incoming and outgoing waves that reflect at each incremental
depth variation.

Through extension of the approach to cases where long-
wave dissipation occurs at a shallow inshore location (e.g.,
due to depth-limited breaking), we show how the long-wave
normalized bed slope can explain variations of the total reflec-
tion coefficient for long waves propagating over a range of
beach slopes and for different dissipation depths. Due to the
dependency of the total reflection on long-wave dissipation,
we also show how accounting for partial reflections can alter-
natively be used to estimate long-wave breaking depths from
measurements of reflection coefficients.

This partial reflection approach provides insight and inter-
pretation of previously observed shoreline processes (Lara
et al. 2010; Baldock 2006), including partial standing patterns
expected at the shoreline on barred beaches from breakpoint
forcing theory (Symonds et al. 1982) and resonance features
of low-frequency waves observed on reefs (Péquignet et al.
2014; Gawehn et al. 2016). Given the relationship between
the amplitude of long waves and the shoreline wave runup,
further extension of this method would also provide addi-
tional insight into the dynamics of low-frequency contribu-
tions to runup.
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APPENDIX A

Background: Wave Reflection over a Single Step

By building on existing theory, summarized here, for pre-
dicting local reflection and transmission coefficients (Dean
1964) for a free long wave incident to a single depth variation
(i.e., a step), we will develop theory in section 3 for analytical
predictions over arbitrary cross-shore bathymetry profiles. As
we are focusing on the propagation of long waves in the
nearshore, we assume linear shallow water wave propagation,
where the phase speed is c5v/k 5

����
gh

√
, where v is the an-

gular frequency (52pf, with f the ordinary frequency), k is
the wavenumber and h is the local water depth.

For a free wave propagating over a step depth variation,
the local reflection and transmission coefficients must satisfy
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conservation of energy requirements, such that energy fluxes
are conserved at the step (Bender and Dean 2003):

Eicsea 2 Ercsea 5 Etcshore or

(Ai
2 2 Ar

2)csea 5 At
2cshore, (A1)

where A is the wave amplitude, E 5 1/2rgA2 is the energy
density, the subscript i refers to the incident wave, the sub-
script r to the reflected wave, the subscript t to the transmit-
ted wave, the subscript “sea” to the seaward side of the step
(i.e., where the incident wave originates) and the subscript
“shore” to the shoreward side of the step.

For a free long wave propagating over a step at a cross-
shore location x 5 x0, where x is the cross-shore coordinate
(positive offshore) with x 5 0 defined at the shoreline, for
given depths hsea and hshore on the seaward and shoreward
sides of the step, respectively, both the surface elevation
and momentum must be continuous functions at all times t,
such that

zi(x0, t) 1 zr(x0, t) 5 zt(x0, t) and

Mi(x0, t) 1 Mr(x0, t) 5 Mt(x0, t), (A2)

where z is the surface elevation and M is the momentum.
The elevations for harmonic incident, reflected and trans-

mitted waves, respectively, have the form

zi(x, t) 5 Aiexp{i[ksea(x 2 x0) 1 vt]} 1 *,

zr(x, t) 5 Arexp[ksea(x 2 x0) 2 vt 1 f] 1 *,

zt(x, t) 5 Ate{i[kshore(x 2 x0) 1 vt]} 1 *: (A3)

where f is the local phase difference between the incident
and reflected wave. In Eq. (A3) the * denotes the complex
conjugate of the preceding term, which will be dropped for
brevity. By assuming linear shallow water wave propaga-
tion, small amplitude waves (z ,, h) and with M 5 rhU
(Schäffer 1993; Contardo et al. 2021), the momentum of the
waves is:

Mi(x, t) 5
rghseaksea

v
Aiexp{i[ksea(x 2 x0) 1 vt]}

5 rcseaAiexp{i[ksea(x 2 x0) 1 vt]},

Mr(x, t) 5 2
rghseaksea

v
Arexp{i[ksea(x 2 x0) 2 vt 1 f]}

5 2rcseaArexp{i[ksea(x 2 x0) 2 vt 1 f]},

Mt(x, t) 5
rghshorekshore

v
Atexp{i[kshore(x 2 x0) 1 vt]}

5 rcshoreAtexp{i[kshore(x 2 x0) 1 vt]}: (A4)

By applying continuity of surface elevation at the step [Eq.
(A2)] at t 5 0, we obtain

Ai 1 Are
if 5 At and

csea(Ai 2 Are
if) 5 cshoreAt , (A5)

which gives expressions for the reflection (kr) and transmis-
sion (kt) coefficients:

kr 5
Are

if

Ai

5
csea 2 cshore
cshore 1 csea

5
kshore 2 ksea
kshore 1 ksea

and (A6)

kt 5
At

Ai

5
2csea

cshore 1 csea
5

2kshore
kshore 1 ksea

: (A7)

We note that Eq. (A5) is consistent with Eq. (A1) when either
f 5 0 or p. If f 5 0, At . Ai (representing upward propa-
gation) and if f 5 p, At , Ai (representing downward propa-
gation). Therefore, if cshore , csea (equivalent to hshore , hsea,
i.e., shallower shoreward), kt . 1 so the transmitted wave is
larger than the incident wave and kr is positive so f 5 0.
If cshore . csea (hshore . hsea, i.e., a deeper depth shoreward),
kt , 1, implying that the transmitted wave is smaller than the
incident wave and kr is negative such that the reflected wave is
in antiphase with the incident wave (f 5 p).

FIG. A1. Reflection (kr), transmission (kt), and shoaling (ks) coefficients as a function of different
step heights (Dh) for different reference depths on the shoreward side of the step (hshore).
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For long waves in shallow water, the phase speed is only
a function of the local water depth, therefore,

kr 5

�����
hsea

√
2

��������
hshore

√��������
hshore

√
1

�����
hsea

√ and (A8)

kt 5
2

�����
hsea

√��������
hshore

√
1

�����
hsea

√ : (A9)

Note that if reflection is neglected in Eq. (A1), we obtain

ks5
At

Ai

5
�������������
csea

/
cshore

√
5 (hsea

/
hshore)0:25, (A10)

which is the shoaling coefficient (i.e., Holthuijsen 2007). If
the depth variation across the step is small, reflections may
be neglected (Koh and Le Méhauté 1966; Svendsen and Hansen
1977), while in steep slope cases, they become important.

To illustrate how the local reflection, transmission and
shoaling coefficients vary for steps with different depths, we
show responses for both upward and downward propagating
long waves with depth differences varying between 2 and
25 m (Fig. A1). For the same depth difference, reflections in
both directions have the same value, as the reflected wave
propagates at the same depth as the incident wave. For small
depth variations, the local reflection coefficient is small, which
justifies neglecting reflection in those cases. For large depth
variations (i.e., |Dh| . ;20 m), the downward reflection coef-
ficient reaches values . 0.5 and is larger than the transmission
coefficient. The transmission coefficient is .1 in the upward
direction and ,1 in the downward direction of the effect of
shoaling. The transmission coefficient is smaller than the
shoaling coefficient, as not all the energy is transmitted when
reflection is taken into account.

APPENDIX B

Verification Using Numerical Modeling

a. Plane sloping beach

We next verify our approach by comparing the results with
those of a numerical model, forced with a monochromatic long
wave. We use a one-dimensional numerical model (Contardo
et al. 2021), which solves the linearized depth-integrated mass
and momentum conservation equations, averaged over short-
wave periods:

z

t
1

(hU)
x

5 0,

U
t

1 g
z

x
5 0:

(B1)

To verify our approach, the numerical model is run in the
linear slope configuration, with three values of b: 0.05,
0.005, 0.001, at f 5 0.005 Hz. We compare the amplitude
of the FLWs and their phase lag (referenced to the initial
amplitude and phase at x* 5 1) that are obtained using
both the numerical model and the partial reflection analyt-
ical approach (Fig. B1). The numerical model is run for a
duration of five wave periods, which was enough time to
reach a steady state, and the amplitude measured is that
of the last wave to propagate across the domain and back.
The numerical model and partial reflection analytical ap-
proach are in very good agreement. The amplitude of the
FLWs at the shoreline decreases as b increases, as the
effect of partial reflections is stronger for steeper slope.
The processes responsible for this trend are discussed in
section 4a.

FIG. B1. Comparison of the partial reflection analytical approach and numerical model results for predictions of the (top) normalized
amplitude and (bottom) phase lag of the FLW (referenced to the incoming FLW at x* 5 1) as a function of the dimensionless cross-shore
distance x* 5 x/X, for b 5 0.05, 0.005, 0.001, withX5 2000 m.

C ON TARDO E T A L . 677MARCH 2023

Brought to you by IFREMER/BILIOTHEQUE LA | Unauthenticated | Downloaded 03/03/23 09:58 AM UTC



b. Complex bathymetry profile (barred beach)

Our partial reflection analytical model is further verified
for a realistic bathymetry profile by comparing it with results
from the numerical model. A barred beach geometry is
taken as the longshore average (over 400 m) of a bathymetry
survey (3 February 2014) of Secret Harbour beach in West-
ern Australia (Contardo and Symonds 2013, 2015; Contardo
et al. 2019). The 1.34-m-deep sandbar crest is located 70 m

from the shoreline and the 1.65 m trough is located 45 m
from the shore (Fig. B2). The reference (X 5 70 m) is taken
at the sandbar crest. We vary the frequency of the long
wave and study the response.

Four frequencies are specifically considered, covering the
range of frequencies of the infragravity wave spectrum and
including frequencies with a node and an antinode at the
bar crest: 0.005, 0.013, 0.024, and 0.05 Hz. Figure B3 presents
the amplitudes, calculated both analytically (partial reflection
approach) and modeled numerically, as a function of the
cross-shore location for the four frequencies. The analytical
and numerical model results are in very good agreement.
The amplitude of the FLWs at the shoreline decreases as the
wave frequency decreases. The processes responsible for this
trend are discussed in section 4a and the standing patterns
are discussed in section 4c.

c. Truncated plane beach (section of slope)

In the above examples, the slope ends at the shoreline.
Therefore, the incoming wave is fully reflected. We now con-
sider the case of a truncated plane beach, assuming an infinite
flat plateau beyond the slope, where waves propagate indefi-
nitely. This case is of interest because it could be a proxy in
field observations where the long waves fully dissipate at a
particular depth (i.e., no reflection occurs shoreward of this
point), for example, due to long-wave breaking. We model,
both analytically (using the partial reflection approach) and nu-
merically, the propagation of a wave of frequency f 5 0.005 Hz

FIG. B2. Cross-shore profile of the barred beach bathymetry.

FIG. B3. Comparison of the partial reflection analytical approach and the numerical model results for the barred
beach profile in Fig. B2, for predictions of the (a),(b),(e),(f) normalized amplitude and (c),(d), (g),(h) phase lag of the
FLW (referenced to the incoming FLW at x* 5 1), calculated at four frequencies.
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over a slope with b 5 0.005, with the initial offshore depth at
2 m and the inshore at a given cutoff (dissipation) depth for
hd,LW, with three cutoff depths considered here (hd,LW 5 0.1,
0.5 and 1 m). Thus, while in previous cases where the slope
ended at the shoreline and the total reflection coefficient was
by definition 1 at all cross-shore locations, here the total reflec-
tion coefficient is everywhere ,1. We calculate this reflection
coefficient [Eq. (8)] for both the analytical and numerical mod-
els and we find that both models are in excellent agreement
(Fig. B4). In this example with a bottom depth of 5 m, the re-
flection coefficient reaches maxima of 0.21, 0.14, and 0.11 at
x* 5 0.32, 0.58, and 0.94 for values of the cutoff depth of 0.2,
0.5 and 1 m, respectively, so that the maximum reflection coeffi-
cient is larger and located closer to the shore for long waves
breaking close to the shoreline. Further analysis and discussion
of reflection, associated with long-wave dissipation, are revisited
in section 4e.
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