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The Southern Indian Ocean is a major reservoir for rapid carbon exchange with

the atmosphere, plays a key role in the world’s carbon cycle. To understand the

importance of anthropogenic CO2 uptake in the Southern Indian Ocean, a variety

of methods have been used to quantify the magnitude of the CO2 flux between

air and sea. The basic approach is based on the bulk formula—the air-sea CO2

flux is commonly calculated by the difference in the CO2 partial pressure

between the ocean and the atmosphere, the gas transfer velocity, the surface

wind speed, and the CO2 solubility in seawater. However, relying solely on wind

speed to measure the gas transfer velocity at the sea surface increases the

uncertainty of CO2 flux estimation. Recent studies have shown that the

generation and breaking of ocean waves also significantly affect the gas

transfer process at the air-sea interface. In this study, we highlight the impact

of windseas on the process of air-sea CO2 exchange and address its important

role in CO2 uptake in the Southern Indian Ocean. We run the WAVEWATCH III

model to simulate surface waves in this region over the period from January 1st

2002 to December 31st 2021. Then, we use the spectral partitioning method to

isolate windseas and swells from total wave fields. Finally, we calculate the CO2

flux based on the new semiempirical equation for gas transfer velocity

considering only windseas. We found that after considering windseas’ impact,

the seasonal mean zonal flux (mmol/m2·d) increased approximately 10%-20%

compared with that calculated solely on wind speed in all seasons. Evolution of

air-sea net carbon flux (PgC) increased around 5.87%-32.12% in the latest 5 years

with the most significant seasonal improvement appeared in summer. Long-

term trend analysis also indicated that the CO2 absorption capacity of the whole

Southern Indian Ocean gradually increased during the past 20 years. These
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findings extend the understanding of the roles of the Southern Indian Ocean in

the global carbon cycle and are useful for making management policies

associated with marine environmental protection and global climatic

change mitigation.
KEYWORDS

greenhouse gases, gas transfer velocity, surface wave breaking, air-sea CO2 flux,
Southern Indian Ocean
1 Introduction

Human activities have been a major source of global warming

over the past 50 years (IPCC, 2022a). Anthropogenic emissions of

greenhouse gases have persisted since 1990. By 2019, carbon dioxide

(CO2) from fossil fuels and industry had the largest growth in

absolute emissions (IPCC, 2022b). Although CO2 accounts for

approximately 20% of greenhouse gases, it is responsible for 80%

of the radiative forcing that sustains the greenhouse effect and

makes the atmospheric temperature continuously rise (Lacis et al.,

2010; Schmidt et al., 2010). Since the beginning of the industrial era,

global anthropogenic CO2 emissions from human activities such as

the burning of fossil fuel, cement production, and changing land use

have increased over time, and the present atmospheric carbon

concentration has been unprecedented in the last three million

years (Willeit et al., 2019). The accumulation of discharged

atmospheric CO2 rose from 277 ppm in 1750 to 414.4 ppm in

2021, well beyond the normal range of natural variability (Levitus

et al., 2000; Feely et al., 2001; Joos and Spahni, 2008; Lekshmi et al.,

2021). Therefore, the accurate evaluation of anthropogenic

emissions and the world’s carbon cycle has been of great scientific

interest in recent years.

The ocean is an important active carbon reservoir, taking up

more than 25%-30% of anthropogenic CO2 emitted to the

atmosphere; so it plays a pivotal role in mitigating global climate

change (Sabine et al., 2004; Friedlingstein et al., 2020). The Southern

Indian Ocean, spanning from 0° to 66.5°S, is one of the largest

oceanic sinks of anthropogenic CO2, representing approximately

10% of the ocean surface area but removing 15% of CO2 emitted by

humans (Frölicher et al., 2015; Gruber et al., 2019). The Southern

Indian Ocean is unique because of its geographical features,

atmospheric forcing, and complex ocean dynamics. In contrast to

the Pacific and the Atlantic, it is completely enclosed by the Indian

subcontinent in the north and is dominated by westerlies near the

equator rather than trade winds (Valsala et al., 2012). Annual wind

speeds in this region are higher than those of other seas at the same

latitudes, which increases the gas transfer velocity and thus

accelerates the CO2 exchange between the sea surface and

atmosphere (Deacon, 1977; Wanninkhof, 2014; Watson

et al., 2020).

To understand the importance of anthropogenic CO2 uptake in

the Southern Indian Ocean, a variety of methods have been used to
02
quantify the magnitude of the CO2 flux between the sea and air

(Metzl et al., 1995; Louanchi et al., 1996). Typical approach based

on the bulk formula—the air-sea CO2 flux is commonly calculated

by the difference in CO2 partial pressure between the ocean and the

air ( pCOsea
2 and pCOair

2 , respectively), the gas transfer velocity,

contemporaneous sea surface wind speed, and the CO2 solubility in

seawater (Takahashi et al., 2002; Sabine et al., 2004; DeVries, 2014;

Frölicher et al., 2015; Roobaert et al., 2019). Using this approach, a

series of crucial results have been reported in the last 20 years (e.g.,

Bates et al., 2006; Wanninkhof and Triñanes, 2017; Vieira et al.

2020). However, relying solely on wind speed to calculate the gas

transfer velocity at the sea surface increases the uncertainty of CO2

flux estimation (Woolf, 1993). Recent studies have shown that the

generation and breaking of ocean waves also significantly affect the

gas exchange process at the sea-air interface (Zappa et al., 2007; Gu

et al., 2021). Observations in the Southern Indian Ocean sector of

the Antarctic Circumpolar Current (ACC) show that large

quantities of bubbles produced by wave breaking enhance the

intensity of under-surface turbulence by up to three orders of

magnitude and hence expand the gas contact area (Li et al.,

2021). This will substantially increase gas transfer velocity and

thus enhance CO2 absorption by the ocean. To address the

important role of surface wave breaking on CO2 exchange, a new

semiempirical equation for gas transfer velocity has recently been

proposed that can account for different significant wave height

(SWH hereafter) and divide gas transfer velocity into turbulence

and bubbles contributions. Calculations after this upgrade

significantly reduce the uncertainty of gas transfer velocity at

moderate-high wind speeds (Deike and Melville, 2018). And the

contribution of bubbles and the dependence of the ocean state vary

greatly on regional and seasonal scales, generally supporting the

ocean to absorb approximately 40% of the CO2 (Reichl and Deike,

2020). Gu et al. (2021) investigated a new expression of gas transfer

velocity that coupled with wind-wave and showed that about 50% of

the global CO2 fluxes at high wind speeds are attributable to bubble-

mediated contributions. However in these studies, ‘wind-wave’

represents total waves and using these to modulate gas transfer

velocity may exaggerate their impacts.

Surface waves consist of swells and windseas, which are two

categories with completely different characteristic features (Wang

and Huang, 2004). Swells usually have regular shapes, more orderly

arrangements with longer crest lines and smooth surfaces. They are
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stable as due to the action of air resistance and the internal friction

of sea water, the wave energy is distributed in a larger area, and the

energy and wave height of a swell in the water column decrease

continuously during propagation (Zhang et al., 2011; Ethamony

et al., 2013). As the period increases, the wavelength and wave speed

grow correspondingly, which makes the steepness of the wave

surface decrease. Hence swells will not produce large numbers of

bubbles in the sea-air interface. In contrast to swells, windseas are

locally generated, have short wavelengths, are more chaotic, and

travel more slowly than surface wind. Windseas gain energy from

wind to grow and easily lose instability and break, which

significantly affects the gas exchange process in the sea-air

interface (Qian et al., 2020). Now that total waves include two

categories, using total waves to quantify the gas transfer velocity

might overestimate the impact of waves on the overall CO2 flux.

Therefore, in this study, we highlight the influence of windseas

on air-sea CO2 exchange process and address the important role of

surface waves in CO2 absorption in the Southern Indian Ocean. We

run the WAVEWATCH III model to simulate surface waves in the

Southern Indian Ocean over the period from January 1st 2002 to

December 31st 2021. Then, we use the spectral partitioning method

to isolate windseas and swells from total wave fields. Finally, we

calculate CO2 flux based on the new semiempirical equation for gas

transfer velocity considering only windseas. The article is structured

as follows. Section 2 discusses the model configuration of the

simulations and the data source we used to validate the model

output. Spectral partitioning method to separate windseas and

swells are discussed. We also present the standard bulk formula

of air-sea CO2 exchange flux and bulk formula modulated by

windseas in this section. Section 3 first shows the simulated

results of the spatial and seasonal distributions of the SWH of

windseas and swells in the Southern Indian Ocean. Then, the

validation results of the model output and observation data are

discussed. Finally, the temporal and spatial distributions of air-sea

CO2 exchange flux modulated by windseas, differences between the

calculations with/without waves’ impact, and decadal trends of net

carbon flux are presented. The overall implication and limitations of

the study are evaluated in Section 4.
2 Data and methods

2.1 Configuration of wave simulations

We use the recent WAVEWATCH III (WW3, hereafter) official

version 4.18 to simulate surface waves in the Southern Indian

Ocean, spanning from 0° to 66.5°S. The specific settings are as

follows: The wind speed—the 10 m wind above the surface—

obtained from the European Centre for Medium-Range Weather

Forecasts (ECMWF) ERA-5 datasets over the period from January

1st 2002 to December 31st 2021. The wind fields are regularly

gridded and from 0° to 66.5°S, 30°E to 135°E with a 1/4°

resolution. The time resolution is set to 6 hours. The water depth

is automatically generated by the Gridgen 3.0 topography packet,

which combines the National Geophysical Data Center - ETOPO 1
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data. The topography resolution is 1/20°. Our model integrates the

spectrum to a cut-off frequency fHF and uses a parametric tail to

frequency above fHF. Twenty-four discrete wavenumbers

(0.0412∼0.4060Hz, 2.4∼24.7s) and 36 directions are used to

simulate isotropic waves. Parameterizations for current waves,

wave-wave interactions, wave breaking-related white capping,

wave refraction and shoaling are added to further improve the

accuracy of the simulated waves (Hanson et al., 2006). Field model

results, including 10-m wind speed, SWH of total waves, and wave

energy density spectra, are output at each grid point with a time

interval of 6 hours. We also output 4 points’ wave information

according to the position shown in Figure 1, which will be used for

model validation against altimeters in the following section 2.2.

Although ERA-5 datasets also provide wave reanalysis data that

contain partition results of swells and windseas, significant

numerical and physical differences can still be found between the

WW3 and WAM models (Liu et al., 2002).
2.2 Modelling validation

In this study, we use altimeter data to evaluate our model

performance. Data are obtained from the Australian Integrated

Marine Observing System (IMOS), CRYOSAT-2 altimeter

database. This data source provides global wave observations

from altimeter products that have been put to use since 1985. All

the wave heights have been verified against global float/buoy data at

all crossover points with independent missions. Calibration details

can be found in Ribal and Young (2019). In this study, we randomly

selected four positions (shown in Figure 1) over a period from

January 1st 2002 to December 31st 2021, for model validation. The

SWH of total waves simulated by the WW3 model were compared

to the altimeter data through temporal correlation analyses. We also

calculated the bias and correlation coefficient between the model

output and altimeter data to quantify the comparison results. All

results are shown in Figure 2. The SWH produced by the model

shows a clear temporal correlation with real-time data altimeter
FIGURE 1

A map of the study region showing water depth in the Southern
Indian Ocean, with the altimeter locations used for model
verification. Four positions (60.7°E 50.6°S; 80.3°E 35.3°S; 100.8°E
19.1°S; 120.2°E 48.9°S) are randomly picked over a period from
January 1st 2021 to December 31st 2021.
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observations. The correlation indexes are over 0.75-0.84, and the

biases are less than 0.17-0.32 in all four positions, indicating that

our model basically reflects the main wave information in the

Southern Indian Ocean.
2.3 The spectra energy partition method

The version of WW3 used in this study contains a partition

module that can separate swells and windseas from total waves. The

partition module was at first used as the topography processing

watershed algorithm by Hanson and Jensen (2004) to isolate a 2D

wave spectra. Then, modified FORTRAN routines (Hanson et al.,

2006) were added into the WW3 model to identified different

waves. The basic principle is inverting 2D wave spectra and

making spectral peaks become catchments. Then partition

boundaries or watershed lines can be identified using the

watershed algorithm. Swells and windseas are determined using

wave age criterion on the basis of different components of wind

direction and absolute speed. This method has proven to be highly
Frontiers in Marine Science 04
accurate and were added into the WW3 model to identified

different waves (Zheng et al., 2016; Tao et al., 2017; Anoop

et al., 2020).
2.4 Calculation of air-sea gas exchange
flux with no waves

We calculated the air-sea gas exchange flux of CO2 (F,mol/

m2·d) with no waves using a standard bulk formula by Wanninkhof

(2014):

F = k0LDpCO2 (1)

where positive values of Fdenote the transfer of CO2 from the

ocean towards the atmosphere, negative values correspond to that

from the atmosphere into the ocean, and L (mol(kg·atm)-1) is the

solubility of CO2 in water (Weiss, 1974):

lnL = Al + A2100SST + A3ln100SST + SSSB1 + B2SST100

+ B3SST1002 (2)
A

B

D

C

FIGURE 2

Time series of SWH comparisons between model outputs and altimeter records. Scatter points are results of model (green) and altimeter (red)
correspond to a same moment. (A–D) are four panels of the four randomly selected locations.
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Here, we used A1 = -60.2409, A2 = -93.4517, A3 = 23.3585, B1 =

0.023517, B2 = -0.023656, and B3 = 0.0047036. In addition, SST is

the sea surface temperature in degrees Celsius and SSS is the sea

surface salinity. k0 is the appropriate gas transfer velocity calculated

as k0 = 0:251 U2
10(Sc=660)

−0:5 , where U10 is the wind speed

measured 10 m above the sea surface. The constant value of 0.251

is based on an extensive collection of gas transfer velocity estimates

from Wanninkhof (2014). The variable Sc is the Schmidt number:

Sc = a + b(SST) + c(SST)2 + d(SST)3 (3)

where a = 2073.1,b =125.62, c = 3.6276, and d = 0.043219 are all

constant values applied from parameterization by Wanninkhof

(2014). DpCO2(pCO
sea
2 − pCOair

2 ) is the CO2 partial pressure

difference between the surface seawater and the air.

We calculated F for each 1/4° × 1/4° latitude-longitude grid

point in the open water of the Southern Indian Ocean over the

period 2002 to 2021. For variables, the following data products were

used. Monthly mean SSTs were employed from the Advanced

Microwave Scanning Radiometer (AMSR) datasets with two

satellites provided by the Romete Sensing System, namely,

AMSR-2 and AMSR-E. U10 is an ERA-5 dataset of ECMWF from

1979 to the present. Monthly mean SSS is available at the Physical

Sciences Laboratory (PSL) of the National Oceanic and

Atmospheric Administration (NOAA). SSS is a product of the

NCEP Global Ocean Data Assimilation System, which is forced

by the momentum flux, heat flux, and fresh water flux from the

NCEP atmospheric reanalysis (GODAS, Behringer et al., 1998). It

reproduces observations well and is now the most commonly used

dataset for F analysis (e.g., Watson et al., 2020;Monteiro et al., 2020;

Zheng et al., 2021). For the DpCO2, we employed the observation-

based global monthly gridded atmospheric and sea surface CO2

partial pressure and CO2 fluxes product by Landschützer et al.

(2020) from 1982 onwards. These observation-based data were

obtained using a two-step artificial neural network method

combining biogeochemical provinces and CO2 driver variables
Frontiers in Marine Science 05
and observations from the fourth release of the Surface Ocean

CO2 Atlas (SOCAT, Bakker et al., 2016).
2.5 Calculation of air-sea gas exchange
flux with waves

To stress the important role of ocean surface waves in air-sea

CO2 exchange, we used a wind-wave-dependent expression by

Deike and Melville (2018) to estimate the CO2 exchange rate, kw.

kw consists of two terms, bubble-mediated kwb and nonbubble kwnb,

given as:

kw = kwb + kwnb

=
AB

L · R · SST
u5=3* (gHs)

2=3(
Sc
660

)−1=2 + ANBu*(
Sc
600

)−1=2 (4)

where AB = 1 ± 0.2 × 10-5s2m-2 is a dimensional fitting

coefficient, ANB = 1.55 × 10-4, R = 0.08205 L atm mol-1k-1is the

ideal gas constant (Keeling, 1993), g is the gravitational acceleration,

and Hs is the SWH from the WW3 model simulated waves. u* =

(t rair

�
)1=2 is the friction velocity in the air, where rair is the mean air

density and t is a turbulent shear stress. Then, the calculated kw is

substituted into equation (1) to further calculate the F under the

impact of waves. The data sources used in this study are listed

in Table 1.
3 Results

3.1 Separation of swells and windseas from
total waves in the Southern Indian Ocean

Seasonal distributions of SWH (including total waves, windseas,

and swells) are showed in Figure 3. The highest seasonal mean SWH

of total waves, windseas and swells are found in the extratropical
TABLE 1 Descriptions of data used in this study and their sources.

Name Datasets Resolution Coverage
time Source Download link

U10 ERA-5 1/4° 1979-present
European Centre for Medium-

Range Weather Forecasts
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era5

SWH CRYOSAT-2 1° 2010-present Australian Ocean Data Network
https://thredds.aodn.org.au/thredds/catalogue/IMOS/
SRS/Surface-Waves/Wave-Wind-Altimetry-DM00/
CRYOSAT-2/catalogue.html

Water depth ETOPO1 1/60° —
National Geophysical Data

Center
https://www.ngdc.noaa.gov/mgg/global/

SST AMSR 1/4° 2002-present
NASA AMSR-E Science Team

and NASA Earth Science
MEaSUREs Program

https://www.remss.com/missions/amsr

SSS NCEP-GODAS 0.333°x1.0° 1980-present
NOAA Physical Sciences

Laboratory
https://psl.noaa.gov/data/gridded/data.godas.html

pCOsea
2 · pCOair

2

Global monthly
gridded sea surface

pCO2 product
1° 1985-present

NOAA National Centers for
Environmental Information

https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/
0160558/
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areas, which are basically distributed along the southern westerlies.

SWH also shows obviously seasonal variations in the whole

Southern Indian Ocean. The strongest wave energy appears in

summer, followed by winter. The wave heights depend greatly on

the seasonal changes in wind speed; windseas are clearly aligned

with the winds, as powerful westerly winds directly generate strong

windseas (Semedo et al., 2011). The westerly region in the Southern

Indian Ocean are the main source areas of swells (Vincent and

Soille, 1991) also make swells energy particularly high than low-

latitude region. Apart from these seasonal and spatial results that

are consistent with previous surface wave studies (Zheng et al.,

2016), our partition results provide an interesting view: windseas

contribute only a small fraction of energy to the total waves in

almost every region and season. In high- and middle-latitude areas

(30°S-60°S), the windseas energy in winter accounts for the largest

proportion, 37.26%, followed by summer, which is 25.09%. In low-

and middle-latitude areas (0-30°S), summer and winter also have a

higher windseas proportion but maintain less than 40% of total

waves. As we discussed above, windseas have completely different

physical properties with swells and should be the main factor
Frontiers in Marine Science 06
influencing gas transfer velocities (Jiang and Chen, 2013). We

suggest that modifying the air-sea CO2 exchange flux by using

total waves tends to overestimate the effect of waves. The specific

proportion of windseas energy to total waves is shown in Table 2. In

the following sections, we emphasize the effect of windseas on the

air-sea CO2 exchange flux in the southern Indian Ocean.
3.2 Spatial and temporal characteristics of
air-sea CO2 flux modulated by windseas

We first showed an important but independent driver—surface

seawater partial pressure (pCOsea
2 )—that affects air-sea CO2 transfer

in the Southern Indian Ocean. Because the atmospheric partial

pressure of CO2 (pCOair
2 ) is nearly consistent in the open ocean,

pCOsea
2 largely determines the direction and rate of CO2 transfer

through the air-sea interface (Takahashi et al., 2002). Study has

shown that the majority of the seasonal and spatial variations in

CO2 flux stem from the pCOsea
2 (McGillis et al., 2001). Therefore,

here, before carefully discussing the distribution and variation of the

air-sea CO2 flux, we first examined the spatial distribution of the

seasonal mean pCOsea
2 in the Southern Indian Ocean (Figure 4).

The spatial pattern of pCOsea
2 showed an uneven distribution, and

seasonal variation was also apparent. In autumn and winter, there

was a large area of low pCOsea
2 in the wide sea area between 20°S and

40°S. In addition, as the area of the subtropical high-pressure belt

increased with the onset of spring, a decrease in the low pCOsea
2 area

occurred from south to north. A high pCOsea
2 zone emerged near 80°

E and reached its maximum value of 380 matm. In summer, the low

pCOsea
2 region tended to be stable at approximately 40°S, and pCOsea

2

TABLE 2 The regional partition distribution of windseas energy to total
waves in different seasons.

Seasons 0-30°S 30-60°S

Spring 6.43% 9.53%

Summer 37.26% 35.71%

Autumn 15.09% 8.22%

Winter 25.09% 21.17
B C

D E F

G H I

A

J K L

FIGURE 3

Seasonal averages for total SWH (A, D, G, J), wave height of windseas (B, E, H, K), and wave height of swells (C, F, I, L) in the Southern Indian Ocean.
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followed by sea surface temperature variations. The pCOsea
2 in the

Antarctic coastal waters was higher in autumn and winter, and

lower in other seasons. Throughout the year, a high pCOsea
2 zone

existed between 0°S and 12°S on the east coast of Africa, which was

caused by the high-salinity and high-temperature water at the

confluence of cold and warm currents in summer and the

confluence of warm currents in winter (Deacon, 1981).

Surface wave breaking has an effect on gas transfer velocity. A

higher gas transfer velocity will be generated for more developed

windseas states under the same wind and pCOsea
2 (Zhao et al., 2003).

To see this difference clearly, we show the temporal evolution of the

gas transfer velocity with waves and no waves in Figure 5. Values at

each point are annually averaged in the full region. It is clear that

after considering the impact of windseas, the gas transfer velocity is

improved nearly for all times. An average 5%-15% enhancement is

seen, which is lower than the enhancement caused by total waves

shown in Gu et al. (2020). This is in line with expectations, as

increasing evidence has indicated that mass transfer, such as CO2, is

factually influenced by the surface turbulent process associated with

the wave field (Liang et al., 2013; Brumer et al., 2017; Lenain and

Melville, 2017). Surface wind is just an external forcing; as an

indirect factor, it does not determine gas exchange (e.g., Edson et al.,

2011; Liang et al., 2020). However, if windseas break, they generate

large amounts of whitecaps, which will directly affect gas transfer

through two mechanisms. First, breaking waves can promote the

transfer associated with the upper turbulent patches. The interface

contaminated by surface active impurities can be renewed by

breaking waves, resulting in an accelerated increase in gas
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exchange in high wind speed areas (Komori and Misumi, 2002).

Then there is a bubble-mediated transfer, in which the gas is

trapped in a bubble for a certain period of time during the

transfer between the air and the sea (Hasse and Liss, 1980).

Based on the new gas transfer velocity, we then provide the

distributions of seasonal mean CO2 flux modulated by windseas in

the Southern Indian Ocean in Figure 6. The distribution of CO2 flux

in the Southern Indian Ocean exhibited distinct regional and

seasonal differences. The tropical area (0°-12°S) tended to lose a

substantial amount of CO2 through outgassing, mainly due to the

high SST and low wind speeds throughout the year. Among them,

the CO2 uptake in summer was weak over the regions because of the

uniform distribution of air pressure and the relative scarcity of low

pressure systems in the atmosphere. Compared with the tropical

area, the seasonal variation of CO2 flux in the subtropical region

(12°S-36°S) was more obvious. During the spring and winter, the
FIGURE 5

Temporal evolution of gas transfer velocity with waves (solid black)
and no waves (solid purple).
B

C D

A

FIGURE 4

Seasonal distributions of surface seawater partial pressure of CO2, pCO
sea
2 (matm), in the Southern Indian Ocean. (A) Spring, (B) Summer, (C) Autumn,

(D) Winter.
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ability to absorb atmospheric CO2 tended toward to be stronger

than other seasons. In winter, controlled by the surface waves in the

southeasterly trade winds, the CO2 flux varied markedly. Strong

trade winds in winter produced stronger wave fields leading to

higher CO2 flux, with an average maximum of -3.14 mmol/m2·d in

the central region between 12°S and 24°S. In the ACC region (36°S-

52°S), the Southern Indian Ocean was a very strong sink of

atmospheric CO2 throughout the year, with the maximum mean

uptake reaching -8.12 mmol/m2·d. Strong westerly winds blowing

across the sea give rise to abundant physical oceanographic

processes, such as wind blocking, string, and high-pressure

collapsing, may further strengthen the effect of windseas on the

air- sea gas exchange (Toba and Koga, 1986; Toba, 1988). The

majority of the net uptake occurred in winter, consistent with the

findings of previous studies (Sarma et al., 2013; Zhang et al., 2017).

Finally, similar to the tropical region, the entire subpolar region (52°

S-62°S) tended to be a source of CO2 to the atmosphere, because the

horizontal temperature distribution was more uniform, the

horizontal pressure gradient was very small, the air flow mainly

converged and rose, the annual average wind speed is low which

was unfavorable to the gas exchange process at the air-sea interface.

Overall, annual mean value over the subpolar region is around -0.24

mmol/m2·d. To clearly show the impact of windseas to the CO2 flux,

we show differences for the seasonal and spatial distributions

between with and without windseas impact in Figure 7.

Consistent with the regional distributions of partition results of

windseas from total waves, the most significant differences appears

in the southern westerlies areas. And for the seasonal aspect, the

strongest CO2 uptake increasement appears in summer and winter.
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The maximum increasement gets up to 20% which suggests that the

windseas have considerable impact in the region. In contrast, low-

latitude region and spring and autumn all have a relatively weak

increasement response to the low energy of windseas there.

To further clarify the corresponding spatiotemporal

relationships and reveal the long-term trend of air-sea CO2 flux

in the investigated two-decade time span, we show the zonal time

series of air-sea CO2 flux modulated by windseas for the entire

Southern Indian Ocean in Figure 8. The overall pattern of CO2

sources and sinks in the Southern Indian Ocean was relatively stable

and had obvious temporal and spatial variations. In the tropical and

subpolar regions, the Southern Indian Ocean was generally

characterized by CO2 sources with a weak interannual variation

trend. The subtropical regions showed obvious seasonal variations,

with sinks in winter and spring and sources in summer and autumn.

The interannual variation remained unchanged in the 20-year time

span included in this study. Obvious CO2 source-to-sink and sink-

to-source transition regions were found at approximately 25°S and

35°S, which was also consistent with observations (Jabaud-Jan et al.,

2004; Xu et al., 2016; Lekshmi et al., 2021). The ACC region was a

clear long-persisting CO2 sink area, with increasing intensity of

carbon absorption over time. We also found that approximately

every seven years, a large CO2 absorbing area formed, with effects

covering 50 degrees of latitude from south to north. Each

appearance of this area lasted for three years, and it contributed

substantially to the net CO2 uptake in the Southern Indian Ocean.

Figure 9 shows the 20-year zonal mean seasonal flux in the

Southern Indian Ocean. To clearly highlight the impact of

windseas on CO2 exchange, we show the flux calculated from no
B

C D

A

FIGURE 6

Seasonal distributions of air-sea CO2 flux, F (mmol/m2·d), in the Southern Indian Ocean. (A) Spring, (B) Summer, (C) Autumn, (D) Winter.
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waves in dashed lines and with waves in solid lines in this figure.

Both the calculations from the two methods show clear

spatiotemporal characteristics. In terms of spatial distribution,

the CO2 flux was less than or near to zero between 12°S and 48°S,

which means this region is a CO2 sink or saturation area. The CO2

flux of all seasons was generally greater than or equal to zero

between 0°S and 12°S, indicating a moderate CO2 source. In

contrast, although the CO2 flux fluctuated significantly with the

seasons at south of 48°S, the total CO2 emissions were stronger.

The sea area near the Antarctic continent mainly presented a weak

convergence source and saturation zone. In terms of the seasonal

distribution of air-sea CO2 flux, the most dramatic fluctuations

with latitude occurred in winter. The CO2 uptake of the Southern
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Indian Ocean repeatedly increased and decreased, showing a “W”

pattern covering form approximately 12°S to 48°S, with more CO2

absorption in the middle and high latitudes than in the lower

latitudes; the peak values of CO2 absorption in winter were -3.23

mmol/m2·d with no waves and -3.31 mmol/m2·d with waves,

reached at 38°S and 40°S, respectively. In spring and autumn,

there was weak CO2 absorption at north of 30°S, whereas the

south was a strong CO2 sink area. The maxima of CO2 absorption

with the impact of windseas were -2.21 mmol/m2·d and -4.48

mmol/m2·d respectively, reached at approximately 45°S. Overall,

the Southern Indian Ocean had the strongest CO2 uptake in

summer, with seasonal mean absorption of approximately -1.97

mmol/m2·d under the influence of waves.
3.3 Decadal CO2 uptake trend predicted by
the gas transfer velocity affected by
windseas and no windseas

Finally, to further investigate the decadal CO2 uptake trend and

assess its important role in future carbon sequestration, we

examined the seasonal evolution of air-sea net carbon flux (Fnet)

without the impact of waves in the Southern Indian Ocean from

2002 to 2021. We also present a time series of Fnet with waves to

evaluate the implications of the CO2 uptake tread as affected by

surface windseas (Figure 10). In each of these diagrams, the

scattered points are seasonally averaged values integrated for the

entire Southern Indian Ocean, and the lines are independent trends

fitted for the corresponding seasons.
FIGURE 8

Zonal sequence diagram of F (mmol/m2·d) from 2002 to 2021 in the
Southern Indian Ocean.
B

C D

A

FIGURE 7

Differences for the seasonal and spatial distributions between with and without windseas impact. (A) Spring, (B) Summer, (C) Autumn, (D) Winter.
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In the last two decades, Fnet was negative in all four seasons,

which means that the Southern Indian Ocean is a perennial carbon

sink. Among the different seasons, summer had the largest Fnet, with

an annual mean value without the influence of breaking waves of

approximately -0.031 PgC. This was followed by winter, with an

annual mean Fnet of approximately -0.027 PgC, and then by spring

and autumn, with annual mean values of -0.022 PgC and -0.021

PgC, respectively. The atmospheric CO2 absorption capacity of the

Southern Indian Ocean gradually strengthened over time. The
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fitting line between the Fnet and time clearly shows a decreasing

trend. In particular, the correlation shows a relatively smooth trend

in the first decade but a much steeper trend in the second decade,

which means that the sequestration of atmospheric carbon in the

Southern Indian Ocean has become stronger in recent years. Again,

summer had the most significant growth rate of Fnet, with an annual

rate of increase of approximately -0.000319 PgC/year with no

waves. Under the impact of surface windseas, the annual mean

Fnet shows a clear increasing trend but has a stronger absorbing

ability. The largest seasonal improvement is in summer, and the

average result over the last 5 years is 32.12%. This indicates that

surface wave breaking has a great impact on gas transfer velocity

and hence total CO2 uptake, especially in high wind speed seasons.

Even in autumn, surface waves also clearly intensifies the total CO2

uptake in the Southern Indian Ocean with an improvement of

approximately 5.87%. Enter into the latest year, the capacity of CO2

uptake in the Southern Indian Ocean reach a new peak in 2021.

Especially in summer, annual mean value of Fnet gets to

approximately -0.048 PgC with the impact of windseas. These all

suggest that a faster process of carbon sequestration is taking place

in the Southern Indian Ocean.
4 Discussion and conclusion

Human-induced climate change has led to widespread

disruption in nature and is affecting the lives and livelihoods of

billions of people (IPCC, 2022a). Air-sea temperature change, sea

level rise and extreme weather and climate events have become

increasingly prominent due to excess emissions of greenhouse

gases. The ocean is an important sink for anthropogenic CO2

(Siegenthaler and Sarmiento, 1993). Studies have shown that the

ocean absorbs more than 25% of the CO2 emitted by human
FIGURE 10

Evolution of air-sea net carbon flux, Fnet(PgC) with waves and no waves in the Southern Indian Ocean. The scattered points are seasonally averaged
values integrated for the entire Southern Indian Ocean, and the lines are independent trends fitted for the corresponding seasons.
FIGURE 9

Seasonal mean zonal flux (mmol/m2·d) from 2002 to 2021 in the
Southern Indian Ocean. Dashed lines are flux calculated with no
waves and solid lines are calculated with waves.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1139591
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sun et al. 10.3389/fmars.2023.1139591
activities in the atmosphere (Watson et al., 2020) and therefore has

a climate-change mitigating effect. The role of the ocean in

regulating global climate is significantly affected by the

spatiotemporal variation in CO2 exchange processes at the ocean-

atmosphere interface. Although significant importance of the

world’s carbon cycle and mitigation of anthropogenic climate

change, uncertainties remain in quantifying the global marine

anthropogenic CO2 sink as CO2 uptake by the oceans fails to

match emissions from human activities as atmospheric CO2 levels

increase (Khatiwala et al., 2013). At the same time, the ocean will

also be negatively affected by climate warming and ocean

acidification, further inhibiting its absorption of CO2 or

accelerating its release (Arias-Ortiz et al., 2018; Nakano and Iida,

2018; Aoki et al., 2021).

Surface waves consist of swells and windseas, which are two

categories with completely different characteristic features. Previous

studies using total waves to quantify the gas transfer velocity may

overestimate the impact of waves on the overall CO2 fluxes. In this

study, we highlight the impact of windseas on the process of air-sea

CO2 exchange and address its important role in CO2 uptake in the

Southern Indian Ocean. The main findings of this study are as

follows. In the Southern Indian Ocean, previous studies using total

waves to modify the air-sea CO2 transfer rate tended to

overestimate the effect of waves. However, we found that

windseas, as a main factor influencing gas transfer velocities,

contributed only a small fraction of energy to the total waves in

almost every region and seasons. Air-sea CO2 flux showed strong

spatiotemporal variation: Regarding seasonality in the Southern

Indian Ocean, summer had the strongest CO2 uptake capacity, with

an annual mean flux of approximately −1.8 mmol/m2·d. The long-

term seasonal variations in Fnet in the Southern Indian Ocean are

negative in all seasons, and the fitting correlations of Fnet with time

show a decreasing trend, which means that the sequestration of

atmospheric carbon in the Southern Indian Ocean has been

strengthening in recent years. This further indicates that the

Southern Indian Ocean plays an increasingly important role in

influencing global carbon cycling and constraining the global

warming process. Meanwhile, the impact of surface waves clearly

intensifies the total CO2 uptake in the Southern Indian Ocean.

Under the impact of surface windseas, the annual mean Fnet shows a

clear increasing trend but has a stronger absorbing ability. The

largest improvement is in summer, with an average result over the

last 5 years of 32.12%. Even in autumn, they have an improvement

of approximately 5.87%.

This study presents new findings, but several limitations may

still affect the quantitative parts of our results. As lack of direct field

measurements of air-sea CO2 flux, we cannot evaluate the impact of

windseas proposed in this study, this is one of a major limitation of

this work. Furthermore, we only calculated the CO2 flux in the open

ocean for lack of quantitative synthesis of integrated coastal ocean

carbon, which may significantly underestimate the CO2 uptake

process in the entire Southern Indian Ocean. From a global

perspective, even though coastal regions account for only 7%-8%

of the global ocean area, such regions contribute approximately 28%

of the total primary production and help to bury up to 80% of total
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organic carbon (Dai et al., 2022). Coastal regions are thus one of the

most important carbon sinks in the world’s oceans and play a

crucial role in mitigating global climate change. However, because

of the lack of systematic observations and numerical simulations,

accounting for these regions in global carbon cycle research remains

challenging and has not yet been resolved in this study. In addition,

we assumed that the process of ocean absorption of atmospheric

CO2 was solely controlled by certain physical factors. This obviously

ignores potential interactions among different factors, such as wind

speed, sea surface temperature, and salinity, which may have

indirect effects on the CO2 partial pressure at the surface. Several

studies have also provided evidence that changes in SST, SSS, and

wind speed can induce variations in the partial pressure of CO2 via

physicochemical processes that affect CO2 exchange (Kashef-

Haghighi and Ghoshal, 2013; Sun et al., 2021a; Sun et al., 2021b;

Wanninkhof, 1992). We hope that necessary groundwork can be

performed to address these problems in future research.
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