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Abstract : 

Different classification techniques of water masses have been developped using the potential 
temperature-salinity (θ-S) diagram and its volumetric analysis. In this study, we propose a new method to 
automatically classify water masses via a supervised machine learning algorithm based on the K nearest 
neighbors (Knn), in the potential density and potential spicity (σ-π) coordinates. This method is applied to 
temperature and salinity data collected in the western side of the Alboran Sea during a glider mission, 
dedicated to sample the Western Alboran Gyre (WAG) in late winter 2021. The water masses in the 
studied region were classified into five different categories following a supervised learning process, based 
on ocean profile databases available on the region of interest. The results corroborate previous studies 
of the spatial distribution of water masses in the Alboran Sea, inferred from traditional method based on 
the expert analysis of the (θ-S) diagram, and suggest that this methodology is efficient and reliable for 
water masses classification. Compared to a classical clustering computation (herein k-means), this 
method is more appropriate in a region where the characteristics of the water masses change 
considerably in both space and time. 

Highlights 

► High spatial resolution glider profiles of θ-S in the western Alboran sea. ► Water masses derived on
a (σ-π) diagram using Knn algorithm. ► Classification results confirm earlier derived circulation schemes.
► The proposed method outperforms classical clustering analysis in delineating water mass boundaries.
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1.  Introduction 1 

A water  mass is a volume of oceanic water  with horizontal and  vertical  ex- 
 

tensions,  and  having  specific physical  characteristics.  In general,  most  of the 

water  masses  are  formed  by atmosphere-ocean exchanges,  however  some oth- 

ers acquire  their  characteristics (e.g minimum  salinity)  through biochemical  or 

physical  processes  (e.g  convection).    The  signature  of such  characteristics are 

represented by tracers  such  as the  potential temperature and  salinity.   These 

tracers  are important to understand the  oceanic circulation  at  different global 

and regional scales, as the thermohaline circulation  (Broecker,  1991). The ther- 

mohaline  circulation  plays a key role in the climate  regulation  by the transport 

of heat,  carbon  and oxygen across the different basins around  the world (Clark 

et al., 2002). 

In this context, Pantiulin (2002) sketches a brief history  about  the genesis of 

the concept  of water  masses, depending  on the evolution  of the in-situ  observa- 

tions of temperature and salinity.  Indeed,  the definition,  classification  and first 

principles  of water  masses appeared for the  first time  in the  monograph  called 

the  Norwegian  Sea in 1909 (Hansen  and  Nansen).   The  latter was followed by 

the  introduction of the  potential temperature-salinity (θ-S) diagram  as a tool 

to analyze  water  masses properties, in a Norwegian  study  after  the  first world 

war (Hansen,  1916).  He showed on a wide area  of the  eastern  Atlantic ocean 

that the  variations in the  (θ-S) diagram  can be attributed to the  intrusion  of 

offshore water  masses. 

Since then,  the  (θ-S)  diagram  has  been  used  widely  in  physical  oceanog- 

raphy  and  by numerous  authors across different fields.  Major  progress  in the 

water mass analysis was the introduction of the volumetric  (θ-S) diagram  which 

was used in different studies  that includes the  Pacific ocean, the  Indian  ocean, 

the Atlantic ocean and the Global  ocean (Cochrane, 1958; Pollak,  1958; Mont- 

gomery,  1958).  In these  studies,  the  quantity of volumetric  units  for standard 

levels of depths  were estimated statistically.  This  estimation was based  on a 
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division  of the  oceans  in  bi-variate classes  defined  by  their  temperature and 
 

salinity. 
 

Other  studies  followed the previous  ones based on the volumetric  (θ-S) sta- 

tistically  analysis methodology.  They improved  and reworked this methodology 

for the sake of understanding the water masses distribution in a volumetric  (θ-S) 

diagram  (Miller and  Stanley,  1961; Wright and  Worthington, 1970; Worthing- 

ton,  1981). 

Besides  the  volumetric  (θ-S)  diagram  analysis,  other  techniques  of water 

mass classification  have been used such as the  cluster  analysis  where the  data 

are  grouped  on the  basis  of a set  of measured  parameters.  The  objective  of 

this  method  is to find an optimal  data  distribution which minimizes  a certain 

metric  that define the  similarity  within  the  clusters.   For  example,  Kim et  al. 

(1991) applied a clustering analysis based on the average linkage between groups 

for the temperature and salinity  to identify  the water  masses in the Yellow sea 

and  the  East  China  sea.   The  metric  used  for their  clustering  analysis  is the 

squared  Euclidean  distance  defined as the normalized  temperature and salinity 

differences between  points. 

Hur  et  al. (1999) studied  the  yellow and  east  china  seas for over 40 years 

(1950-1992) using historical  data  of temperature and salinity.  They included  in 

their study the geographical  distance  and the depth  separation in computing  the 

distance  for the  clustering  method.   Naranjo  et al. (2015) examined  the  distri- 

bution  and spatio-temporal evolution  of water  masses in the strait of Gibraltar 

using clustering  analysis.  These authors used historical  values of potential tem- 

perature, salinity  and potential density  for each water  mass as initial  centroids 

for the  classification.    Roseli  et al.  (2015)  applied  the  k-means  algorithm  on 

temperature and salinity  data  from CTD casts in two different seasons (fall and 

summer),  to classify water masses at the Shallow Sunda Shelf of Southern  South 

China  Sea.  Recently,  Gao et al. (2020) proposed  a novel and robust  method  to 

identify  the  frontiers  between  water  masses  in the  Northern South  China  sea. 

Their  identification of the water  masses center  is based on ranges and standard 

deviations  of the  potential spicity  π  in different  potential density  layers,  and 
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water  volumetric  distributions in the bi-dimensional  plan (σ-π). 

The  (θ-S) diagram  and  its  different techniques  for analyzing  water  masses 

have been developed for several oceans; but it is also interesting to conduct  such 

studies for regions where several water masses from different oceans can interact, 

such  as  the  Alboran  Sea  :  the  westernmost Mediterranean  sub-basin   where 

Atlantic and  Mediterranean waters  interact through the  strait of Gibraltar.  In 

our knowledge, only traditional water  masses analysis  based  on (θ-S) diagram, 

have been previously used in this region (Bryden  et al., 1982; Pistek  et al., 1985; 

Gascard  and Richez, 1985; Parrilla et al., 1986; Parrilla and Kinder, 1987; Millot 

et al., 2006; Millot, 2009; Renault et al., 2012; Millot, 2014). 
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Figure 1: Map  of the  Western Alboran Sea sketching the  bathymetric depths and  topographic 

elevations in meters (m)  relative to  the  mean sea  level.  Red  arrows show  the  general surface 

circulation of Atlantic Water (AW), showing  the  Western Alboran Gyre  (WAG) as well as the 

Atlantic Jet (AJ). The  green  and  black  arrows represent  respectively the  intermediate and 

deep  circulation of Mediterranean waters (LIW and  WMDW). 

The  related  circulation  schemes have been sketched  for each water  mass of 

the Atlantic ocean and the Mediterranean sea (figure 1) where their  properties 

and distributions are summarized  in table  1 and can be described  as follows: 
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The Atlantic Water  (AW),  located in the western side of the strait of Gibral- 
 

tar,  is injected  in the Alboran  Sea (top  200 m depth). It is subject  to different 

variations through its cyclonic path  (Coriolis effect) at the surface due to its in- 

teraction with the atmosphere and the surface mixing with older Atlantic water. 

This water  becomes saltier  (∼ 38 psu) and progressively  cooler in winter  (∼ 13 

◦ C) and therefore this results in increased density.  Then,  this water is called the 
 

Modified Atlantic Water  (MAW).  At the surface layer, quasi-homogeneous light 

waters  are  observed  with  a salinity  S = 36.6 psu:  the  Surface  Atlantic Water 

(SAW).  A second layer,  the  North  Atlantic Central Waters  (NACW),  is char- 

acterized  by a minimum  of salinity  separating the  SAW from the  MAW.  This 

separation is progressively  dissipated through mixing in the  strait of Gibraltar 

and the Alboran  Sea (T=11-17 ◦ C, S=35.6-36.5  psu). 

Previous  studies  about  the  Mediterranean Waters  (MWs)  in the  Alboran 
 

Sea suggest  the  presence  of Winter  Intermediate Water  (WIW), Levantine  In- 

termediate Water  (LIW),  Western  Mediterranean Deep Waters  (WMDW) and 

the  Tyrrhenian Deep  Water  (TDW). The  LIW  and  WMDW  were considered 

as the  main  contributors for the  outflow.  The  WIW  results  from AW cooling 

along the  continental shelf of the  Liguro-Provencal sub-basin  and  is generated 

periodically  in the  Alboran  Sea near  the  Spanish  continental shelf.  The  WIW 

can be identified  by its minimum  potential temperature (12.9-13 ◦ C) between 

100 and 350 m depth  and between 28 and 29 kg.m−3  isopycnals.  The LIW from 
 

the Western  Mediterranean sea generated by winter convection is the most salty 

and  warmest  water  mass encountered at  mid depth  (200-600 m) in the  Albo- 

ran  Sea.  The  LIW is mostly  concentrated in the  north  and  center  sides of the 

Alboran  Sea and  absent  along  the African  coast.    The  LIW  is characterized 

by  temperature and  salinity  maximum  (13.1-13.3  ◦ C,  38.47-38.52 psu).   The 

WMDW  is generated in the gulf of Lion by deep convection  and is cold (< 12.9 

◦ C) and  relatively  salty  (> 38.4 psu)  water.  The  WMDW  is considered  as the 

most dense water  in the Mediterranean sea (at  800 m depth  in the central  part 

of the Alboran  Sea).  The TDW is the result of mixing between ancient WDMW 

in the  Tyrrhenian sea and  the  LIW  coming  from the  Western  Mediterranean 
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105        sea  through   the  strait of Sicily.   The  TDW  is slightly  denser  than  the  LIW 
 

106        and  lighter  than  the  WMDW  and  lies between  these  two water  masses.  In the 
 

107        Alboran  Sea, the  temperature and  salinity  values of the  TDW  are respectively 
 

108        within  the range 13-13.1 ◦ C and 38.41-38.51 psu. 

Table 1:  Summary of water masses  definitions with  their respective references. 

109 

6 

Water 
 

mass 

Description 
 

Reference 
 

SAW 
 

Quasi homogenous  salinity  layer (S ≈ 36.6) and a constant 
 

temperature gradient. 

(Gascard  and   Richez,   1985;  Parrilla 
 

et al., 1986; Vélez-Belchı et al., 2005) 

NACW 
 

The  Seperation   layer  between  the  SAW  and  MAW.  It’s 

characterized by a salinity minimum  (35.5-36.6) that atten- 

uated  quite  rapidly  after  entering  the Mediterranean Sea. 

(Gascard  and   Richez,   1985;  Parrilla 

et al., 1986; Vélez-Belchı et al., 2005) 

 

MAW 
 

A mixture  layer of Atlantic (16◦ C-36.5) and Mediterranean 
 

waters  (12.9◦ C-38.45) 

(Gascard  and   Richez,   1985;  Parrilla 
 

et al., 1986; Vélez-Belchı et al., 2005) 

LIW 
 

The warmest  and saltiest  Mediterranean waters,  easily 

recognised  anywhere   in  the  sea.    Concerning   the  west- 

ern  Alboran,   it  is  characterised by  (T=13.1-13.2◦ C  and 

S=38.5). 

(Gascard and Richez, 1985; Parrilla and 
 

Kinder, 1987; Millot et al., 2006; Millot, 
 

2009, 2014) 
 

WIW 
 

Results  from  the  AW  wintertime cooling in the  northern 

part  of the western  basin and characterised by a Tempera- 

ture  minimum  (12.9-13◦ C). 

(Millot,  2009, 2014) 
 

TDW 
 

Results from mixing between ancient WDMW in the 

Tyrrhenian sea  and  the  LIW  coming  from  the  Western 

Mediterranean sea.   Its  core  characteristics are  in  ranges 

(T = 13.0-13.1◦ C and S = 38.48-38.51). 

(Millot  et al., 2006; Millot, 2009, 2014) 
 

WMDW 
 

Formed  in the Liguro-Provencal mainly  from an AW-LIW 
 

mixture  by wintertime convection  processes.  It is Cold (< 
 

12.9◦ C) and relatively  salty  (> 38.4). 

(Gascard and Richez, 1985; Parrilla and 
 

Kinder, 1987; Millot et al., 2006; Millot, 
 

2009, 2014) 
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The application of clustering  analysis methods  for the purpose  of automatically 
 

classify water  masses,  has  yielded  encouraging  results  in many  regions.   Nev- 

ertheless,  these  techniques  have  revealed  many  shortcomings in region  with  a 

high spatio-temporal variability and  could not  exactly  identify  the  water  mass 

boundary (Gao et al. (2020)).  Clustering  analysis is particularly relevant to dis- 

tinguish  water  masses with similar salinity  and  temperature variance  (Naranjo 

et al. (2015)).   This  is not  the  case in the  Alboran  Sea, where SAW is widely 

variable  in temperature and the MWs range much more in temperature than  in 

salinity. 

Within  this  context  of challenges  to  be solved in automatic water  masses 

classification  notably  in region where intense  mixing occurs,  in this  paper,  we 

propose  a novel methodology  that classify automatically water  masses  in the 

Alboran  Sea, based on machine learning supervised algorithm, applied on curvi- 

linear  potential density  and  potential spicity  (σ-π)  diagram.    Two  datasets, 

described  in section  2, have  been  used  for the  study.    The  first  concerns  the 

global database of temperature and  salinity  vertical  profiles used as a training 

dataset of the algorithm. The second is relative to the glider in-situ observations 

collected  in the  Western  Alboran  Sea, on which the  classification  algorithm is 

applied.   Section  2 also describes  the  classification  methodology,  starting with 

the labeling process and ending with the sensitivity test of the employed method. 

Water  mass classification  results  in the  glider transects are provided  in section 

3 and are discussed in section 4. Finally,  conclusions are drawn  in section 5. 
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2.  Materials and Methods 132 

2.1.  Database 133 

To build  the  training water  mass classes, we assemble  the  available  in-situ 
 

observations from oceanographic  databases such as World Ocean Database 2018 

’WOD18’ (Boyer et al., 2019) and the Global Data  Assembly Centers  ’GDACs’ 

(Argo, 2021) in a given geographic  domain  (Figure  2). 
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Figure 2: Map  of the  Western Alboran Sea sketching the  bathymetric depths and  topographic 

elevations in meters (m)  relative to  the  mean sea  level.   The  black  dots  and  magenta  circles 

indicate the  localization of  the  vertical profiles  of  WOD18 related  to  Ocean Station Data 

(OSD) dataset and  Conductivity Temperature Depth (CTD) dataset respectively (Table 2). 

Brown asterisks represent  Argo  Profiling Floats (PFL) trajectories from  GDACs (Table 2). 

The  first  glider  transect (T1) is sketched in green  and  the  second  transect (T2) in red. 

The resultant product is based on 5068 vertical  profiles of temperature and 
 

salinity  including  1759 sampling  cycles of Argo  floats.   The  in-situ  data  are 

gathered over a broad  range  of temporal scales between  1951 and  2020.  Table 

2 summarizes  the key informations about  the mentioned databases. 
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2.2.  Glider  data 143 

In this  study,  our  analysis  is focused on the  second mission  performed  by 

the  Moroccan  association  AGIR  (Leader  of the  Marine  Observatory of Al Ho- 

ceima) in the Western  Alboran  Sea, as part  of the European project  ODYSSEA 

(https://odysseaplatform.eu/fr/home-fr/).   This mission was conducted 

after  a first  one in late  fall 2020 (from  10 November  to  11 December)  in the 
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Table 2:  Database information used  for the  supervised learning. The  acronyms XCTD, STD, 

LVR  and  HVR  stand respectively for:  eXpandable Conductivity Temperature Depth, Salinity 

Temperature Depth, Low Vertical Resolution and  High  Vertical Resolution. All casts  with  a 

depth increment less than two meters are  considered High  Resolution otherwise, the  casts  are 

considered as Low Resolution. 

same region (Nibani  et al., 2021).  The  second mission occurred  in late  winter 

– early  spring  (from  11 February to  23 March).    During  this  mission,  a Sea- 

Explorer  glider (manufactured and commercialized  by ALSEAMAR  in France), 

equipped  by a Seabird  CTD,  performed  a total  of 873 cycles from the  surface 

to  approximatevely 500 m depth  with  a sampling  rate of 4 seconds.   Only  a 

part  of these  cycles (during  the  11 first days  of the  mission)  was dedicated to 

sample the  WAG  and  have been studied  herein (Figure  2).  In this  paper,  only 

the classification of water masses in the WAG and the ambient environment will 

be discussed. 
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Dataset 
 

Description 
 

Temporal 
 

range 

# of casts 
 

# of TS ob- 
 

servations 

OSD 
 

measurements  made  from  a  stationary  ves- 

sels using reversing thermometers mounted  on 

special bottles including LVR CTD rosette 

system,  LVR  STD  and  LVR  XCTD  (XCTD 

is collected from moving vessels). 

1951-2011 
 

2344 stations 
 

26568 
 

CTD 
 

data   from  a  stationary  vessels  using  HVR 

CTD  rosette  system,  STD  (The  salinity  S is 

computed from  the  conductivity) data  mea- 

sured at high frequency with respect  to depth 

as  well as  HVR  XCTD  (XCTD   is  collected 

from moving vessels). 

1975-2018 
 

965 stations 
 

344881 
 

PFL 
 

contains   temperature  and  salinity   data   col- 

lected from drifing profiling floats of the Argo 

project. 

2006-2020 
 

1759 cycles 
 

249788 
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Isotherms  and isohalines sketched  hereafter  in all vertical  sections as continuous 

lines, represent the interpolated temperature and salinity on a grid of (horizontal 

and vertical)  resolution  dx=1.1km and dz=1m. The interpolation is performed 

using the optimal  spatial  kriging.  In order to remove high frequencies, the inter- 

polated  data  were smoothed  using a gaussian  filter with a width  corresponding 

to  the  radius  of deformation in the  studied  region  (Bosse  et  al.,  2015).   The 

parameter p ∈ {T,S} of each transect is transformed in a smoothed  parameter 

p̃   ∈ {T̃ ,  S̃}  by a convolution  product: 

158 

159 

160 

161 

162 

163 

164 

165 

Where  x is the distance  along the section,  xmin and xmax the section limits, 
 

z the  depth  and  L the  standard deviation.   Taking  L = 15 km is sufficient  to 

conserve the signal linked to the WAG. 

In addition  to the  glider data  described  previously,  and  in order  to further 

test  the  performance  of our method,  more examples  of data  and  their  related 

classification  results  are represented in Appendix   A. 
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167 

168 

169 

170 

171 

2.3.  Data  single-labeling 

To  build  a  training dataset  with  a  unique  labeling,  each  sample  of the 

database has been attributed to a water mass from those described in the intro- 

duction  {SAW, N AC W, M AW, W I W, LI W, T DW, W M DW }. To keep a clear 

physical  sense,  the  approximate boundaries   between  the  water  masses,  have 

been  defined  manually  by  specifying  polygons  in the  θ-S plane  (Figure  12a). 

the  separation interface  has  been  characterized in such  a way  to  present the 

water  masses as objectively  as possible on the  basis of the  values of θ, defined 

in the  various  studies  cited  in the  introduction.  The  large seasonal  variability 

of SAW,  the  intermittency of NACW  as well as the  occasional  direct  mixing 

of dense  MWs  with  AW  were taken  into  account  during  this  process.   Then 

each sample  labeled  on the  θ-S plane  is projected  into  the  coordinate  system, 

potential density  and potential spicity  (σ-π)  (Figure  12b).  The reason why the 

labeling was not directly done on the (σ-π) diagram  is explained by the fact that 
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the characteristics of the water  masses in the study  area are defined in previous 
 

studies  via the θ-S diagram  and that the equivalent potential spicity properties 

will only be deduced  after  the  projection  of the  labeled  samples  into the  (σ-π) 

plane. 

The constructed training dataset is therefore A  = {(σs , πs , λs )}s=1 where σs , πs 

and λs  are respectively  the potential density  anomaly,  the potential spicity and 

the  water  mass  label  of a sample  s at  a given longitude,  latitude and  depth. 

The  choice of the  (σ-π)  diagram  for this  classification  study  is justified  in the 

next  part  of this  section  (2.4.3).   It’s worth  mentioning that the  terminologies 

of spicity  and  spiciness  are  used  by  several  authors with  different  definitions 

to  describe  a  ’spice’  type  variable  in  physical  oceanography.   Some  authors 

have  chosen to derive such a variable,  called potential spicity,  so that its con- 

tours  are orthogonal to those of potential density  (Veronis,  1972; Huang et al., 

2018).  Other  studies  are  based  on the  non-orthogonal functions,  called spici- 

ness  (Jackett and  McDougall,  1985; Flament, 2002; McDougall  and  Krzysik, 

2015).  In our  study,  the  potential spicity  (π)  is calculated  on the  basis of its 

definition  as a function  whose contours  are orthogonal  to those of the potential 

density  (Huang  et  al.,  2018) via  the  MATLAB  subroutine gsw pspi(SA,  CT, 
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N 
190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

pr),  also provided  by (Huang  et al., 2018), where (SA, CT,  pr)  is the  absolute 
 

salinity  (g.8kg−1 ),  conservative  temperature (°C)  and  reference  pressure  (db) 

(https://github.com/lanlankai/Spicity-JGR).  The  pressure  value of pr = 

0 (the  sea  surface  pressure)  was  taken  as  a  reference  level.   Another  remark 

concerns  the  WIW  and  WMDW  : No traces  of these  two water  masses  were 

detected  in the  glider transects. In these  cases, they  will be excluded  from the 

training dataset to avoid the distortion of the classification  results.  The choice 

to eliminate  WMDW  from the study  was based on the 12.85 °C potential tem- 

perature isoline used by (Millot, 2014) as an unambiguous definition of WMDW. 

Thus  λs  ∈ {SAW, N AC W, M AW, LI W, T DW }. In analogy with Millot (2009) 

and Millot (2014) we differentiate hereafter, for convenience, a lower-TDW  from 

an upper-TDW that will behave  more like WMDW  and LIW, respectively. 
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2.4.  K nearest  neighbors classification 216 

2.4.1.  Problem  statement 
 

The classification  using the nearest  neighbor  search (Cover  and Hart,  1967; 

Fix and  Hodges, 1989) is a well known decision procedure,  non parametric  for 

automatic learning.  It is used in this study  to evaluate  the presence and preva- 

lence of each water  mass sampled  by the  glider in the  different transects.  This 

method  has been considered  as one of the widely used classification  algorithms 

owing to its simplicity and straightforward implementation. However, it has few 

shortcomings affecting  its accuracy  of classification  (Gallego  et al., 2022; Gou 

et al., 2022) which are discussed  in sections  2.4.2 and  2.4.3.  This  classification 

technique  has an objective  of classification  and attribution to a request  point q 

belonging to a sample of observations Q, the class of the instance  of training of 

the  nearest  neighbor  based  on a metric  that define the  similarity  between  ob- 

servations  and classes of a training dataset A. Moreover, it is useful to consider 

more than  one neighbor,  so the  technique  is more commonly  referred  to as K 

nearest  neighbors  (Knn)  classification  where the  K nearest neighbors  are used 

to determine the class (Cunningham and Delany, 2007). Figure 3 visualizes the 

overview  scheme  for the  proposed  K nearest  neighbors  classification  of water 

masses. 

We  suppose  a  supervised  learning  set  of data  A    =  {(σs , πs , λs )}s=1   as 

described  previously.   In the  training step,  the  dataset A is simply stored  with 

any explicit learning.  In the inference step, for each request instance  q belonging 
 

to  the  dataset Q   =  {(σj , πj )}j=1 
, a Knn  search  is done  to  get  the  K closest 

217 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

N 
235 

236 

237 

M 
238 

k 

)}i=1 
(i)    (i)    (i) 

instances  N(σs , πs )   =  {(σs  , πs    , λs which are  the  nearest  to  q on the 239 

basis of the metric  d.  Therefore,  the predicted  water  mass label λp   is obtained 

using a weighted  combination of labels (λ(i) |(i=1..k) ) based  on the  d metric  as 

follows: 
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Figure 3:  Flowchart of the  proposed K nearest neighbors classification of water masses. 

Thus,  a Knn  instance  with  a smaller  distance  will contribute more to the  pre- 
 

diction  for the instance. 

In addition  to classifying water masses into different categories, we can quan- 

tify the fraction  of a given water  mass λq   in a request  sample q belonging to Q 

as follows : 
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249 

where m is the number  of samples representing the water  mass λq  among the K 
 

nearest  neighbors  on the basis of the metric  d.  Distances  have been normalized 

to have all them  lying between  0 and 1. 

Such a quantification is helpful to supplement the  information displayed  in 
 

figures like 15b or 16b. 
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2.4.2.  K nearest  neighbors search 
 

The  simplest  solution  to  the  problem  stated before remains  on computing 

the  d metric  between  the  request  point  q and  each  point  of the  dataset and 

to  return the  k nearest  points  on the  basis  of d.   The  computing  complexity 

is O(N × L), where N is the  size of the  data  ensemble  and  L is its dimension 

(herein  L=2).    This  method  can  be  costly  due  to  the  huge  amount of data. 

Within  this  context, numerous  studies  have  been concerned  with  finding new 

approaches that are efficient with computations through employing  fast search 

algorithms  or using a training dataset size reduction scheme (Ougiaroglou  and 

Evangelidis,  2016; Hou  et  al.,  2018; Gallego  et  al.,  2022).   In  our  study,  this 

drawback  was  overcome  by  searching  for  the  K  nearest  neighbors  using  the 

spatial  K dimensional  tree  subdivision  structure (Kd-tree) (Chen  et al., 2019). 

The  latter is a well known  optimisation for the  Knn  algorithm convenient for 

reduced  dimensional  spaces.   The  points  ensemble  N is divided  recursively  in 

the 2D space (σ-π)  into a binary  tree with N levels and log(N) depths. 

This division continues until reaching at least a well defined number  of points 

for each node.  Therefore,  the K nearest  neighbors search for a point with a given 

request  is done following these steps: 
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262 

263 

264 

265 

266 

267 

268 

269 

270 

271 

272 

1.  The determination of the node to which the query point belongs. 
 

2.  The  search  of the  closest  K points  within  that node on the  basis  of the 

metric  d. 

3.  The  determination of all other  nodes having  any  area  that is within  the 

same metric  d, in any direction,  from the  query  point to the  Kth  closest 

point on the basis of the metric  d. 

4.  The search of the  closest K points  within  those nodes on the basis of the 
 

metric  d. 
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2.4.3.  Parameter definition  and performances analysis 

The  Knn  performances  are  known  to  be sensitive  to  choices of the  metric 

and  the  parameter K which  depend  on the  data  characteristics (Jiang  et  al., 
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2007).  Therefore,  they  must  be chosen appropriately to improve  the  classifica- 
 

tion  performances.  The  metric  selection  can  affect the  form,  the  volume  and 

the  orientation of classes because  some data  points  can  be close for a metric 

and distant for another  one.  A small parameter K can capture a local structure 

in the  data  and  therefore  the  result  can be sensitive  to noise, however a larger 

K permits  to capture the global structure of data  and suppress  the noise effect 

but  consumes more memory  (Ghosh,  2006; Kang,  2021). 

In this study,  the chosen distance  metric  for the query points  categorization 

is the Euclidean  distance.  Therefore,  the metric  d in equations  2 and 3 has the 

following form: 
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As mentioned in section  2.3,  we choose the  definition  of potential spicity 
 

proposed  by(Huang   et  al.,  2018)  who  attempted to  rehabilitate in  the  least 

square  sense,  the  (Veronis,  1972) form  of orthogonality between  this  variable 

and potential density.  Thus,  the choice of σ-π coordinates  system instead  of the 

traditional θ-S diagram  is justified  by  the  orthogonality and  the  dimensional 

homogeneity  of these  two pairs  (σ  and  π).   This  allows a precise  and  concise 

measure  of the distance  d compared  with θ-S diagram  (Huang  et al., 2018; Gao 

et al., 2020). Also, despite the existence of numerous  techniques  of data  scaling, 

many authors have shown the impact  of these techniques  on the stability of ma- 

chine learning algorithms  performances  as it is the case for the Knn (Ambarwari 

et  al., 2020; Shahriyari, 2017).  Furthermore, one of the  primary  challenges  is 

selecting  the  most  suitable  method  for scaling.  The  latter problem  is avoided 

here since σ and π share almost  the same range. 

Indeed,  the  major  difference  between  the  use  of the  two aforementioned 

diagrams  is to  determine boundaries  between water  masses.   In our  case,  the 

previously  described labeling method  makes it possible to reduce this difference 

to 1.2%.  However, to show the  advantage of σ-π diagram  for the  computation 

of distance  on which our method  is based;  the  samples  of the  training dataset 
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forming the  labeled  boundaries  of water  masses have been eliminated  in order 
 

to  construct separate water  masses  in the  two spaces  σ-π  and  θ-S (figure  4). 

This  situation represents the  case of non-continuity of the  training  dataset or 

the  case of difficulty  to  determine the  boundaries  characteristics between  the 

water  masses in a subjective  way. 

Taking  as  reference  the  classification  results  of the  two  transects  (section 
 

3.2),  we computed the  total  percentage  of samples  that changed  membership 

from one water  mass to another  for the  two diagrams.   The  results  sketched  in 

figures 5 and  6 represent  a total  difference of 10.38% for σ-π  diagram  versus 

17.7% for θ -S diagram.  Therefore,  using our methodology  of classification,  σ-π 

diagram  is more appropriate for water masses frontiers determination. Also, the 

difference in distance  calculation between  the two spaces σ-π and θ-S is clearly 

visible in the computation of the fraction of a given water mass in a given sample 

(figures 7 and 8). 

Concerning  neighborhood  size K selection,  several  methods  have  been  de- 

veloped with a view to predict  its optimal  value and to overcome its sensitivity 

(Zhongguo et al., 2017; Zhang et al., 2018; Gou et al., 2019, 2022). In our case, 

the choice of the parameter K was based on the traditional L-Fold Cross Valida- 

tion method  (Paik  and Yang, 2004; Ghosh,  2006; Kang,  2021).  This validation 

technique  is based on estimating an accuracy  rate  for different values of K and 

select the one that induces the smallest classification error rate.  The latter have 

been illustrated using the confusion matrix  (Provost and Kohavi,  1998). 

Indeed,  the L-Fold Cross Validation consists in splitting  the dataset 

A  = {(σs , πs , λs )}s=1 in L independent subsets  randomly  selected  with quasi- 

constant sizes. A subset is used to validate  the produced  model with the help of 

the  L-1 remaining  subsets.  This  process is applied  L times so that each subset 

is used exactly  one time  for the  validation.  The  classification  error  rate  for all 

the partitions L is defined by a set A′ = {(σs , πs , λs )}s=1 ∈ A, as: 
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where 340 

Two popular  choices of L are 5 and 10. In this study,  we fix L to 5. 

In practice,  the total  classification error rate for the set A  = (σs , πs , λs )
Ns=1 

is deduced  from  the  confusion  matrix.   This  matrix   illustrates not  only  the 

algorithm errors  but  also how the  classification  algorithm works for each class 

(Markoulidakis et al., 2021). Indeed, the confusion matrix  is a cross table where 

each column  represents the  predicted  class instances,  and  each row represents 

the real class instances.  The classes λs  ∈ {SAW, N AC W, M AW, LI W, T DW }, 

are listed in the same order in the rows and columns,  so the correctly  classified 

elements  are located  on the  main  diagonal.  During  the  cross validation L-fold, 

if the  predicted  class of the  test  sample  is correct,  then  the  diagonal  element 

of the  confusion  matrix  is incremented by  1.  However,  if the  predicted  class 

is incorrect,  then  the  element off diagonal  is incremented by 1.  Once,  all the 

training samplings  are  classified,  the  classification  error  rate  is based  on  the 

ratio  of the  number  of sampling  incorrectly  classified and  the  total  number  of 

classified samplings. 

Numerous  evaluations of K between  10 and  100 recorded  classification  er- 

ror  rates  between  2% and  2.2%.   The  parameter k=51  seems  to  be  a  good 

compromise  between  the  complexity  and  precision of computation. The  multi- 

classes confusion  matrix, a matrix  of 5×5 dimension,  relative  to  this  value  of 

K is sketched  in Figure  9. This matrix  is build from the cross validation 5-fold 

applied  to  a total  number  of sampling  N=604855.   The  classes SAW;  MAW; 

TDW  record an accuracy  beyond the total  accuracy  of 98%. For the case of the 

NACW, the algorithm classifies incorrectly  almost  4% of the training samplings 

between  the  surface  SAW  and  subsurface  MAW  layers.   The  LIW  record  the 

highest  classification  error  rate.  Indeed,  8% of the  sampling  that are supposed 

to belong to this class were confused with the classes MAW; TDW.  The reason 

behind  this  is the  relatively  tight ans  sinuous  relationship between  the  LIW, 
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MAW and TDW  classes in regards  to the θ-S and σ-π diagrams. 
 

It  is mentioned that the  experimental environment  of model  building  was 

performed  on  a  computer with  an  Intel  i7-1165G7  CPU  @2.80 GHz  with  8 

GB  memory.    For  a  total  number  of sampling  N=604855  forming  the  train- 

ing dataset, prediction  speed was 44000 observations per second and  the  total 

training time was 72.03 seconds. 

368 
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2.5.  Sensitivity  of the method 374 

A  sensitivity analysis  was  performed  to  assess  the  impact  of the  spatio- 
 

temporal distribution of the  hydrological  profiles forming the  training dataset. 

This  is achieved  by computing  the  percentage  of samples  that move from one 

water mass to another, when spatio-temporal variability is reduced in the train- 

ing dataset. The  classification  results  of the  two transects, using all profiles of 

the database are taken  as reference. 

Regarding  the spatial  sensivity  and as the distribution of MWs in the Albo- 

ran Sea mainly depends on latitude (e.g the presence of LIW in the northern 2/3 

of the  basin),  the  area has been divided  into two regions separated by latitude 

35◦ 45’N. Hydrological profiles of each region were used separately as a training 
 

dataset to examine  the  impact  of database spatial  distribution on the  classifi- 

cation  results  of the proposed  method.  The results  of this analysis  is presented 

in the following section. 

The  temporal sensitivity was examined  to evaluate  the  impact  of the  tem- 

poral  ranges  of the  training dataset.  This  is achieved  by dividing  the  training 

data  into  profiles acquired  during  four periods,  from 1950 to 1980, from 1950 

to  1990, from 1950 to  2000 and  from 1950 to  2010.  Ocean  profiles related  to 

each period were used separately as a training dataset. The confusion matrices 

computed for these four cases (figure 10) showed that no significant changes oc- 

cur.  Therefore,  the classification  results  are not altered  by the temporal ranges 

of the training data. 

Also, temporal sensitivity of the seasonal variability of SAW was performed. 
 

The training dataset was divided into profiles collected during fall, winter, spring 
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and  summer  seasons.   The  confusion  matrices  computed for these  four  cases 

showed  less than  2% of difference between  predicted  SAW  samples  using  the 

whole dataset and  those  predicted  by using the  separate seasonal  data.   Thus, 

seasonal variability of SAW does not influence the classification  results. 

398 

399 

400 

401 

3.  Results 402 

3.1.  Water  masses  labeling in the σ-π plane 403 

All the observation of the potential temperature and salinity  obtained from 
 

the database used to build the training dataset and reaching a maximum  depth 

of 700 m are sketched  in figure 11. The seven water masses previously described 

can  be distinguished as  follows:  the  SAW  are  the  lightest  and  characterized 

by  a  salinity  layer  quasi-homogeneous subject  to  intense  seasonal  variability 

and  a constant  temperature vertical  gradient.  The  NACW  is below the  SAW 

and  characterized by a salinity  minimum  with θ − S between  14◦ C-36 psu and 

16◦ C-36.4 psu.   Under  the  Atlantic Waters, the  θ − S diagram  shows a linear 
 

stripe  limited  by the  isopycnals  σ ≃ 27.2 kg.m−3  and  σ ≃ 28.8 kg.m−3 .  These 

values  characterize the  MAW  resulting  from the  mixing  between  the  Atlantic 

and Mediterranean Waters. 

Beyond  a salinity  of 38 psu,  the  θ − S diagram  is characterized by a tight 

and sinuous relationship, representing more than  80% of the total  water volume. 

During  its presence,  the  WIW  is clearly noticed  by its local temperature mini- 

mum (13◦ C-13.1◦ C, 38.25-38.35) linking the AW and the LIW. This water mass 

is characterized by  a temperature and  salinity  local maximum  shown  by  the 

θ − S diagram,  with salinity  values up to 38.58.  The  TDW  is represented by a 

curved  line linking the LIW and WMDW.  This water  mass is clearly indicated 

by its  low temperature (< 12.9◦ C),  its  relatively  low salinity  (≃38.4)  and  its 

high density  (≃29.09 kg.m−3 ). 

Figure 12a sketches a part  from the labelled training data  in the coordinates 

system θ−S.  The labels are the water masses SAW ; NACW ;MAW ;LIW ;TDW. 

The  equivalent  result  is projected  on the  σ − π plan  as shown in Figure  12b. 
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The  latter shows the  water  masses  characteristics which are  clearly  identified 
 

through the analysis  of potential spicity. 

The  general  aspect  of the  water  masses in the  σ − π plan  are perceived  as 

a rotation transformation of the  θ − S plan  around  the  origin  with  an  angle 

α = 45◦   (Figure  12b).  Indeed,  the  Atlantic waters  (SAW,  NACW  and  MAW) 

keep a geometric aspect of a curve as an elbow. The inflexion point of this curve 

represents the  interface  between  the  surface  waters  (SAW)  and  those  of the 

subsurface  (MAW).  These waters  are characterized by a linear relation  defined 

by positive and negative coefficients respectively.  The NACW reveals a potential 

spicity minimum  π = 0.45 kg.m−3 . The Mediterranean waters (LIW and TDW) 

keep the aspect  of broad  relationship where the LIW is characterized by a local 

maximum  of potential spicity π = 2.58 kg.m−3 , equivalent to a local maximum 

of salinity  S  = 38.52 psu. 
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3.2.  Glider  transects classification 440 

As mentioned  in section  2.2, the  first days of the  glider profiling were dedi- 

cated  to the  survey  of Moroccan  Mediterranean waters  offshore and  more pre- 

cisely of the Western  Alboran Gyre (WAG),  located between the strait of Gibral- 

tar  and  the  Tres  Forcas  cape.   This  quasi-steady anticyclonic  gyre has  a typ- 

ical diameter of approximately 100 km  and  a depth  of 200 m and  represents 

the  most intense  dynamical  structure of the  mean  circulation  in the  western 

Mediterranean sea,  with  surface  currents reaching  1.5 m         (Á lvaro  Viúdez 
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et al., 1996; Vélez-Belchı et al., 2005; Flexas et al., 2006). 
 

The vertical  profiles of temperature and salinity  acquired between 11 and 22 
 

February 2021 during  the  first and  second transects are represented in Figures 
 

13 and 14 respectively. 

The  warm  and  fresh anomalies  characterizing the  WAG  appear  noticeably 

in  the  temperature and  salinity  fields.   Globally,  the  vertical  distribution of 

T  is characterized by  decreasing  values  with  depth   and  by  a  sharp  vertical 

gradient.  The  WAG  core highlights  temperature values  higher  than  15◦ C and 

positive  anomaly  compared  to the  ambient environment.  The  latter results  in 
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a deepening  of the  isothermal  layers by several tens  of meters  inside the  WAG 
 

and an upwelling of these layers outside  the WAG. 
 

Despite  the  relatively  long time  period  sampling  of both  transects (  ∼  7 

days  for the  first transect and  ∼  5 days  for the  second transect), we consider 

a quasi-synoptic situation, highlighting  the water  mass composition  during  this 

period  of time  in the  studied  region.   Therefore,  we only consider  the  spatial 

mixing variability of the water  mass. 

The classification methodology  applied on both glider transects (Figures  15b 

and  16b) shows that the  AW engulfs the  top  layer (from surface to 200-250m) 

of the  Alboran  Sea,  just  below the  isopycnal  σ   =  28.9 kg.m−3 .  This  layer 

is characterized by a density  anomaly  which is the  result  of temperature and 

salinity  anomalies.  The isohaline light layer (S < 36.6 psu, sigma < 27 kg.m−3 ) 

is classified as  a SAW  in both  transects.  However,  only  the  second  transect 

outlines  the  presence  of the  NACW  in  its  southern side  near  the  Moroccan 

coast as highlighted  by a spicity  minimum  (Figure  16b). 

Beyond the  isopycnal  σ  = 28.9 kg.m−3 , we found the  MWs adjoining  the 
 

WAG  and  containing  the  LIW and  the  TDW.  The  LIW layer  is absent in the 

south,  near  the  Moroccan  coasts,  and  is principally  concentrated in the  center 

and the north of the Alboran Sea; where it thickens.  The TDW is mainly present 

along the two transects from the south to the north.  Neverthless,  we distinguish 

an upper  TDW  which is found just  below the  LIW and a lower TDW  which is 

located in the southern side below the AW. The σ − π diagrams  (Figures 15a and 

16a) outline  the distribution of the TDW  : In the southern part  of the transect, 
 

the  dense MWs (herein  the  lower TDW)  are individually  mixed  with  the  AW 

leading to a relatively  straight shape with some bending in the deep part  of the 

profiles.  However,  far away  from the  African  coasts  the  MWs are  overlapped 

and  slightly  mixed leading  to a sinuous  shape  in which the  upper  TDW  tends 

to connect  the LIW with dense MWs. 

Thus,  the  classification  of glider  transects shows:  (i)  the  formation  of the 

WAG by the newly flushed AW, (ii) The presence of the LIW in the 2/3  North 

of the  region, (iii) the  presence of an upper  TDW  below the  LIW and  (iv) the 
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presence of a lower TDW  in the southern side below the AW. 488 

3.3.  Training dataset  sensitivity 489 

In the case where only the profiles gathered below 35°45’N are used as train- 
 

ing dataset, the confusion matrix  (Figure  17a) shows that the TDW  is very well 

classified while almost  30% of LIW samples  move to TDW  (26.2%) and  MAW 

(2.5%).  The results  of the new classification  applied  to the first glider transect 

(Figure  18a) show that the  algorithm captures  the  uplift  of dense MWs in the 

southern part  of the basin and that the LIW layer is still present in the northern 

2/3  of the  transect but  the  latter becomes less thick.   In the  case where  only 

the  profiles gathered beyond  35◦ 45’N are used as training data,  the  confusion 

matrix  (Figure  17b) shows that the LIW regains about  10% of its samples com- 

pared  to in the previous  case, while almost  30% of TDW  samples move toward 

MAW (20.2%) and LIW (8.7%).  The results  of the new classification  applied to 

the first transect of the glider are shown in Figure 18b.  The spatial  distribution 

of the LIW is close to that relating  to the use of the entire  database. However, 

the uplift of dense MWs in the south  is not well represented. Similar tests  were 

carried  out on the data  from the second transect with similar results. 
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3.4.  Clustering  analysis 506 

To  show the  advantage of our  method  compared  to  those  of unsupervised 
 

classification,  a cluster  analysis  based  on the  iterative algorithm k-means  (Ap- 

pendix  B), classically used to specify water masses characteristics (Roseli et al., 

2015; Molleri et al., 2010), was applied on the σ − π diagram  to classify the water 

mass in the  both  transects.  As the  k-means  is also based  on distance  compu- 

tation, we choose the  σ − π  coordinate  system  to  allow a concise measure  of 

this distance.  The similarity  between the samples and the centroids  of the clus- 

ters  (selected  randomly  in the first step)  is indicated by the  euclidean  distance 

defined as in equation  3.  The  results  obtained and  the  related  analyzes  being 

the  same for the  two transects, we limit  ourselves to the  presentation of those 
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relating  to  the  first  transect.  To  ensure  that the  chosen  number  of clusters, 

k, is representative of the  system,  different values  of k between  2 and  5 were 

tested  (Figure  19).  The silhouette method  (Appendix   B) is used as the tool to 

validate  the  clustering  quality  and  to see how well each sample  lies within  its 

cluster.  In this  test,  the  positive  silhouette value nearest  to one, indicate  cases 

where a sample  is well clustered.   Samples  with  negative  silhouette values  are 

considered  as poorly classified. 
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524 

The  classification  results  show that the  clustering  analysis  performs  well to 

distinguish the Atlantic and Mediterranean Waters  for a k value greater  than  or 

equal to 3 (Figures  19b, 19c and  19d).  The  separating interface  between these 

waters  is formed  by the  28.8 kg.m−3   isopycnal,  which is approximately equal 

to the value found by our method  (σ ∼ 28.9 kg.m−3 ).  However, when different 

AWs are considered,  only the SAW can be distinguished by the algorithm. The 

MWs (LIW,  upper  and  lower TDW)  are inherents and  this  results  in a single 

layer above the 28.8 kg.m−3  isopycnal. 
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The silhouette values show that when water masses are divided into 2 clusters 

(Figure  not  shown)  all the  samples  are correctly  clustered,  showing a positive 

and significant silhouette values greater  than  the mean value ( 0.96 in this case). 

Nevertheless,  for the other  number  of clusters  (k=3, 4 and  5), several samples 

are  wrongly  grouped  with  a  negative  silhouette values  (Figures  not  shown). 

however  in all this  cases, clusters  number  1 and  2 still well classified and  this 

explain  the  fact that (i) the  k-means  performs  well for k ≥ 3 in distinguishing 

the Atlantic and Mediterranean Waters  and that (ii) in the AWs, only the SAW 

is well defined. 
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4.  Discussion 543 

4.1.  The hydrographic  structure of the WAG 544 

The  hydrographic structure of the  WAG  sampled  through the  glider shows 

that the gyre vertical  extent (∼ 180 m) is characterized by a large homogeneous 

layer  in salinity  with  values  lower than  36.6 psu.   These  results  are  in agree- 

ment with other  cruises that sampled  the WAG at its usual location  (as in our 

study), in this case (Á lvaro Viúdez et al., 1996; Nibani et al., 2021). Using data 

from  an  intensive  field experiments, these  authors recorded  the  same  salinity 

characteristics of the  isohaline layer, occupying  the  upper  part  of the  gyre and 

reported a typical vertical  extension  of 180-200m. However, in comparison  with 

oceanographic  cruises coinciding with the eastward migration event of the WAG 

(Vélez-Belchı et  al.,  2005; Flexas  et  al.,  2006), the  salinity  within  the  gyre is 

higher than  that found in our study  (up to 0.2 psu).  This difference is explained 

by the  fact  that in its  usual  location,  the  WAG  is more  exposed  to  inputs  of 

fresh AW than  when it is located further  east.  Moreover, these authors recorded 

a reduced  vertical  extensions  of the WAG of 130-150m. 

545 

546 

547 

548 

549 

550 

551 

552 

553 

554 

555 

556 

557 

558 

4.2.  The classification  results 559 

As shown  above,  the  water  in  the  study  region  is classified  into  5 types 
 

via a Knn  classification  method  based  on σ-π  diagram.   The  labeling  process 

result  shows that the  characteristics of the  different  water  masses  evolving in 

the  Alboran  Sea can be clearly  identified  through the  σ-π  coordinate  system. 

Indeed, each water masses represents a physical property and a geometric aspect 

that correlates  with  that of the  traditional θ − S diagram  but  which  can  be 

studied  from a different angle. 

The  classification  results  obtained for the  AW  show that the  latter is not 

sensitive  to the spatio-temporal variability of the training dataset. The core of 

the  WAG  marked  with a large vertical  thickness  of homogeneous  salinity  layer 

(<36.6 psu),  is principally  generated by the SAW. This result  is in good agree- 

ment with previous studies (Á lvaro Viúdez et al., 1996; Vélez-Belchı et al., 2005; 
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Flexas  et al., 2006).  These  authors show through a three  dimensional  descrip- 
 

tion  of he Western  Alboran  Sea that the  WAG  is characterized by recent AW 

transported from the  Strait of Gibraltar into  the  core of the  gyre and  occupy- 

ing a considerable  part  of it.  The  28.9 kg.m−3  isopycnal,  found  as separating 

interface  between  AW and  MWs,  corresponds  to that deduced  from the  θ − S 

diagram  analysis  by Gascard  and  Richez (1985) in their  study  of water  masses 

and circulation  in the western  Alboran  Sea.  The no significant NACW samples 

detected  during  the second transect can be interpreted as points being closer to 

NACW than  to any other  water  mass (in this case SAW and MAW) and not as 

samples marking  the pure NACW. 

The  vertical  distributions result  of the  MWs in both  transects is sensitive 

to the  spatial  variability of the  training dataset.  By using the  whole labeling 

data,  the  obtained result  is in agreement with  those  inferred  from the  expert 

analysis  of the  θ − S diagram.   The  spatial  distribution of the  LIW layer  that 

thickens  from  the  north  to  the  south  corroborates with  the  works of Parrilla 

et al. (1986); Millot (2014).  These authors found that the properties  of the LIW 

is quite  recognizable  in most  of the  Alboran  Sea, except  in the  southernmost 

part  near  the  Moroccan  coasts.  They  showed that the  path  of the  LIW in the 

Alboran  basin did not cross south  of 35◦ 30’N. The LIW limits obtained by our 

classification  method  are 35◦ 30’N and 35◦ 45’N for the first and second transect 

respectively.   The  spatial  distribution of the  TDW  (the  upper  TDW  and  the 

lower TDW)  is in total  concordance  with the studies  of Millot (2009, 2014) and 

highlights  the  direct  link between  the  deep MWs and  the  AW in the  southern 

side of the  two  transects.  Indeed  Millot  (2009, 2014), shows through a θ − S 

diagram  analysis  of zonal hydrographic transects that, in southern part  of the 

Alboran  Sea, dense MWs mixes directly  with AW. 
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4.3.  Comparison with clustering  analysis 598 

The comparison  between the method  adopted in this paper and the k-means 
 

algorithm shows that this latter can not distinguish  water  masses when several 
 

AWs  and  MWs  are  considered.    In  fact,  the  uplift  of the  dense  MWs  in the 
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2 southern part  and the presence of the LIW in the     parts  of the northern basin 602 
3 

can not  be outlined  by the  clustering  analysis.   This  comparison  corroborates 

the  performed  analysis  by Cheng  et  al. (2014); Millot  (2019).   Indeed,  Cheng 

et al. (2014) shows that in a well-defined range of potential density, water masses 

having similarities  in temperature and salinity  are inseparable by the clustering 

analysis.  Millot (2019) shows that the method proposed by Naranjo  et al. (2015) 

is rather a computation of euclidean distances  between the samples and a set of 

centroids  representing the water masses than  a clustering analysis.  He concludes 

that, in regions of relatively  moderate mixing processes such as in the Strait of 

Gibraltar, a subjective  (θ-S)  diagram  analysis  based  on a traditional method 

where  boundaries  of water  masses  are  defined by experts  experience,  is much 

more robust  than  clustering  analysis. 

Thus,  conventional cluster  analysis  are not  always appropriate to discrimi- 

nate  water  masses and  there  is no clear physical  meanings  of the  water  masses 

boundaries.  As the  labeling  process  guides  the  decision  of the  algorithm to- 

wards the choice of the water  mass representing each sample,  our methodology 

retains  a part  of this physical meaning  through a labeling approach based on a 

traditional method  for defining boundaries between  water  masses. 
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5.  Conclusions 620 

The objective  of this  study  was to identify  the  spatial  distribution of water 

masses in the  Western  basin  of the  Alboran  Sea.  To do this,  a novel method- 

ology based on water  masses automatic classification  using the Knn search was 

applied  to the  T-S data  acquired  by a glider.  These  data  have been projected 

on the orthogonal and dimensional  homogeneous coordinates  system:  potential 

density  anomaly-potential spicity  (σ-π).The parameters used in this  algorithm 

have been selected  in order  to get the  most  accurate  classification.   The  latter 

have been insured  by a supervised  machine  learning  process based on available 

data  from the World Ocean Database 18 and the Global Data  Assembly Center 

(Figure  2).   From  all the  water  masses  described  in section  1, the  WIW  and 
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the WMDW  were not successfully detected  by the glider and therefore  were ex- 

cluded from the training dataset. Thus,  the water masses in the glider transects 

were classified in 5 categories:  SAW; NACW;  NAW; LIW and TDW. 

631 

632 

633 

634 

In  comparison  to  the  classic  method  of classification  based  on  clustering 

analysis  (herein  the  k-means),  the  proposed  method  in this  paper  permits  to 

ascertain the  water  masses  frontiers  with  a  reasonable  and  robust  approach. 

In the  studied  region, the  classification  results  are in good agreement with the 

circulation  schemes  established in previous  studies  and  inferred  from the  tra- 

ditional  method  based  on the  subjective  expert  analysis  of the  (θ-S) diagram, 

showing: 
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641 

• The formation  of the WAG by the recently advected  Atlantic Water  (Á lvaro 
 

Viúdez et al., 1996; Flexas et al., 2006) ; 

642 

643 

• The uplift  of the dense Mediterranean Waters  (the  lower-TDW) near the 
 

Moroccan coasts (Millot,  2009, 2014) ; 

644 

645 

• The  presence  of the  LIW  in the  2/3  North  of the  Western  basin  of the 
 

Alboran  Sea (Parrilla et al., 1986; Millot, 2009). 
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647 

The  application of our  approach for ocean  water  masses  classification  has 
 

many  advantages.  By combining  traditional method  based  on expert  analysis 

and  Machine  learning  technique, this  methodology  is useful  and  appropriate 

to automatically classify water  masses  in regions where intense  mixing  occurs 

such as the  Western  Alboran  Sea.  Although  the  labeling  process requires  the 

knowledge of the water  masses characteristic in the study  area,  the adaptation 

of this  technique  to  other  regions  is easy  and  straightforward.   Indeed,  this 

methodology can be applied easily to other sub-basins or marginal seas as long as 

a sufficient number  of in-situ  observations describing the whole spatio-temporal 

variability of the area can be provided  as a training dataset. 

The speed of the proposed  method  will make it possible on the basis of ba- 
 

sic hydrographic data  collected  during  typical  research  cruises  or autonomous 
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systems,  to  provide  classification  results  in real  time.   Remarkably, Using the 
 

proposed methodology,  researchers  non-particularly specialists in oceanography, 

can take  advantage of previous  knowledge of water  masses characteristics val- 

idated  by experts  to solve the  problem  of water  masses classification.   Within 

this context, a Graphical User Interface  (GUI) is under development in order to 

enable  users performing  the  entire  process described  in this  manuscript (figure 

3), within  all ocean basins. 
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Appendix  A.   Examples of using K  Nearest Neighbors Classification 
 

to study the spatial distribution of water mass in  the 
 

Western Alboran Sea. 

675 
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677 

Other  examples of data  acquired over different time period have been used to 
 

study  the spatial  distribution of water  mass in the Western  Alboran  Sea (figure 
 

A.20).  It’s about: 

678 

679 

680 

• A CTD transect of a field experiment acquired in September 1992 on board 

of the  R/V  Garcia  del Cid (Á lvaro  Viúdez et al., 1996).  Being available 

on WOD18,  these  data  have  been removed  from the  training dataset to 

assess the results  of the classification  in a more objective  way. 
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682 
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684 

• A hydrographic (CTD)  cast of an intensive oceanographic survey (BIOMEGA) 
 

collected  on  board  of the  Spanish  R/V  Garcia  del Cid  during  October 
 

2003 (Flexas  et al., 2006). Data  were provided  through SeaDataNet Pan- 

European infrastructure for ocean and marine  data  management (https: 

//www.seadatanet.org); 
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• A glider transect (from 11 to 17 November  2020) of the first mission per- 

formed by the  Moroccan  association  AGIR  (Nibani  et al., 2021), as part 

of the European project ODYSSEA (https://odysseaplatform.eu/fr/ 

home-fr/). 
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693 

The  temperature and  salinity  fields, and  the  classification  results  obtained 

for the three aforementioned oceanographic  cruises, are sketched in figures A.21, 

A.22 and  A.23.  This  leads to the  same interpretation of glider data  previously 

described  in section 2.2. 
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Appendix  B.   k-means clustering and silhouette method. 698 

k-means  is one of the  simplest  unsupervised learning  algorithms  that solve 

the  well known  clustering  problem  (Kaufman and  Rousseeuw,  1990).  It  is an 

iterative, data-partitioning  algorithm which  aims  to  partition n  observations 

into k groups,  called clusters.  The algorithm proceeds as follows : 

699 

700 

701 

702 

1.  Select k initial  centroids  at random  after  indicating  the desired k number 
 

of clusters  ; 
 

2.  Compute  sample-to-cluster-centroid distances  of all observations to each 

centroid  and  then  assign each observation to the  cluster  with  the  closest 

centroid  ; 

3.  Compute  the  average  of the  observations in each cluster  to obtain  k new 

centroid  locations; 

4.  Repeat   steps  2 and  3 until  cluster  assignments do  not  change,  or  the 
 

maximum  number  of iterations is reached. 
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711 

k-means  aims at minimizing  an objective  function  that depends  on the dis- 

tance  of the  data  points  to  the  cluster  centroids.   Suppose  D = {x1 , ..., xn } is 

the dataset to be clustered.  K-means  problem  can be expressed as follows : 
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713 

714 

(B.1) 

The function  ’f ’ computes  the distance  between  object x and centroid  ck  which 
 

is defined by: 
 

(B.2) 

where nk   is the number  of data  objects  assigned to cluster  Ck . 715 

716 

To evaluate  the clustering analysis quality,  (Rousseeuw, 1987) introduced the 

so-called silhouette method.  This technique  provides a graphical  representation 

which helps the  user to select the  number  of clusters  and  to see how well each 

sample lies within  its cluster.  The silhouette value for each sample is a measure 
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of how similar that sample is to other  samples in the same cluster,  compared  to 

samples  in other  clusters.   The  silhouette value si for the  ith sample  is defined 

as : 

721 

722 

723 

  (bi − ai )   
si = 

max(a , b ) 
(B.3) 

i   i 

724 

where ai is the average dissimilarity of the ith sample with all other data  within 

the  same cluster  and  bi  is the  minimum  average  dissimilarity of the  ith  sample 

to samples  in a different cluster.   Distance  metric  is employed  to calculate  the 

dissimilarity between  samples.  When a cluster  contains  only a single sample,  it 

is unclear  how ai should be defined and then  si is set to 1. 

Indeed,  from the  preceding  definition,  it  is clear  that -1≤ si  ≤  1 for each 

sample  i.  A high and  positive  value indicates  that the  sample  is well matched 

to  its  own cluster,  and  distant from  neighboring  clusters.   A low or negative 

silhouette value,  correspond  to  cases in which  samples  are  assigned  to  wrong 

clusters. 
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(a) 

(b) 

Figure 4: Example of a θ − S diagram (a)  labelled by the  Atlantic (SAW, NACW, MAW) and 

Mediterranean (LIW, TDW) water masses, with frontiers removed, and  its  equivalent  σ − π 

diagram (b). 
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(a) 

(b) 

Figure 5:  Classification of the  water masses  in the  first  transect using  training dataset with 

frontiers removed for σ − π (a)  and  θ − S (b)  diagrams. 
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(a) 

(b) 

Figure 6: Classification of the  water masses  in the  second  transect using  training dataset with 

frontiers removed for σ − π (a)  and  θ − S (b)  diagrams. 
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(a) 

(b) 

44 

Figure 7:   Percentage of  the   AWs  and   MWs   along   the   first  (a)   and   second   (b)   transects 

using  (σ-π) diagram.  The  sum  of the  four  contributions leads  to  100%  in  the  Atlantic and 

Mediterranean layers. 
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(a) 

(b) 
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Figure 8:   Percentage of  the   AWs  and   MWs   along   the   first  (a)   and   second   (b)   transects 

using  (θ − S) diagram. The  sum  of the  four  contributions leads  to  100% in the  Atlantic and 

Mediterranean layers. 
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Figure 9:  Confusion matrix for the  5 water masses  deduced from  the  classifcation during the 

training stage. 
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(a) (b) 

(c) (d) 

Figure  10: Confusion matrices of training dataset profiles  gathered from  1950  to  1980  (a), 

from  1950 to  1990 (b),  from  1950 to  2000 (c)  and  from  1950 to  2010 (d). 
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(a) 

(b) 

Figure 11:  (a)  θ − S diagram for  all  the  database. Depths between the  surface and  700  m 

are  illustrated in different  colors.   isopycnals (solid  lines)  and  spicity isopleths (dotted  lines) 

are  plotted 1 kg.m−3  apart. (b)  Occurrence of water types as a function of temperature and 
48 

salinity over temporal range  of the  WOD18 (1951-2020). Bin is scaled  to represent percentage 

of total points. The  color  scales  go from  0 to  0.05 for the  sake  of clarity. 
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(a) 

(b) 

Figure 12:  Example of a θ − S diagram (a)  labelled by the  Atlantic (SAW, NACW, MAW) and 

Mediterranean (LIW, TDW) water masses  and  its equivalent σ − π diagram (b).  Upper-TDW 

and  lower-TDW are  separated by the  red  curve  plotted in the  inset  (a). 
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(a) 

(b) 

(c) 

Figure 13:  Temperature (b)  and  salinity (c)  along  the  first  glider  transect (a). The  black 

lines  are  the  isopycnal levels  and  the  gray  line  is the  Mixed  Layer  Depth, defined  using  the 

threshold method with  a  finite  difference criterion (density criterion of 0.03  kg.m−3 ).   The 

black  arrow in (a)  points in the  North direction. 
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(a) 

(b) 

(c) 

Figure 14:  Temperature (b)  and  salinity (c)  along  the  second  glider  transect  (a).   The  black 

lines  are  the  isopycnal levels  and  the  gray  line  is the  Mixed  Layer  Depth, defined  using  the 

threshold method with  a  finite  difference criterion (density criterion of 0.03  kg.m−3 ).   The 

black  arrow in (a)  points in the  South direction. 
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(a) 

(b) 

(c) 

Figure 15:  The  σ − π  diagram (a)  and  the  classification (b)  of the  water masses  in the  first 

glider  transect (c).  The  black  arrow in (c)  points in the  North direction. 
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(a) 

(b) 

(c) 

Figure 16:  The  σ − π diagram (a)  and  the  classification (b)  of the  water masses  in the  second 

glider  transect (c).  The  black  arrow in (c)  points in the  South direction. 
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(a) 

(b) 

Figure 17:  Confusion matrices of training dataset profiles  gathered below  (a)  and  beyond (b) 

35°45’N. 
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(a) 

(b) 

Figure 18: Classification of the  water masses  in the  first transect using  training dataset profiles 

gathered below  (a)  and  beyond (b)  35°45’N. 
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(a) (b) 

(c) (d) 

Figure 19:  Classification of water masses  in  the  first  transect (Figure 15c)  provided by  the 

k-means clustering.  The  number of clusters used  in:  (a)  k = 2, (b)  k = 3, (c)  k = 4 and  (d) 

k = 5. 
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Figure A.20:   Map  of  the  Western Alboran Sea  sketching the  bathymetric depths and   to- 

pographic elevations in  meters (m)  relative to  the  mean sea  level.   Black  dots  indicate the 

position of the  CTD data gathered in 1992.  Red  dots  represent  the  localization of the  CTD 

data collected in 2003.  The  glider  transect is sketched in magenta. 
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(a) 

(b) 
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(c) 

Figure A.21:  Temperature (a)  and  salinity (b)  along  the  westernmost transect (figure  A.20). 

(c)  represent the  classification results.  The  black  lines  are  the  isopycnal levels 
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(b) 
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(c) 

Figure A.22:  Temperature (a)  and  salinity (b)  along  the  easternmost transect (figure  A.20). 

(c)  represent the  classification results.  The  black  lines  are  the  isopycnal levels. 
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(a) 

(b) 
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(c) 

Figure A.23:   Temperature (a)  and  salinity (b)  along  the  glider  transect (figure  A.20). 

represent the  classification results. The  black  lines  are  the  isopycnal levels. 

(c) 
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• High spatial resolution glider profiles of θ-S in the western Alboran sea ; 

 

• Water masses derived on a (σ-π) diagram using Knn algorithm ; 

 

• Classification results confirm earlier derived circulation schemes ;  

• The proposed method outperforms classical clustering analysis in delineating water mass 

boundaries. 

 

Jo
urn

al 
Pre-

pro
of



Declaration of interests 
  

☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
  

☐ The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests: 
 

 
  
  
  
 

Jo
urn

al 
Pre-

pro
of


