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Abstract The improvement of water management 
requires monitoring techniques that accurately evalu-
ate water quality status and detect the effects of land 
use changes on water chemistry. This study aimed 
to evaluate how multivariate statistical methods and 
water quality indices can be applied together to evalu-
ate the processes controlling water chemical composi-
tion and the overall water quality status of a tropical 
watershed. Thirty-four water samples were collected 
in the Formoso River basin, located on the border of 
the Amazon Forest. Water parameters were meas-
ured in  situ using a multiparameter and in the lab 
using spectroscopic and volumetric techniques. The 

water quality dataset was interpreted through princi-
pal component analysis, multivariate linear regres-
sion, and water quality indices. Statistical methods 
allowed us to identify the sources and geochemical 
processes controlling water quality chemistry, which 
were carbonate dissolution, runoff/erosion, nutrient 
input due to anthropogenic activities, and redox reac-
tions in flooded zones. They were also used to cre-
ate linear functions to evaluate the effects of land use 
changes on the geochemical processes controlling 
water chemistry. Conversely, the water quality indi-
ces provide information about the overall condition of 
the water. The Weight-Arithmetic Quality Index cor-
rectly evaluates water suitability for its multiple uses, 
according to the Brazilian guidelines. Conversely, the 
Ontario Water Quality Index is not suitable to evalu-
ate the water quality of tropical rivers, since the usual 
higher water temperature and the low oxygen contents 
associated with tropical environments result in biased 
water quality evaluations by this index.
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Introduction

Water is imperative for life; nevertheless, it remains 
one of the world’s most vulnerable resources to chem-
ical emissions from anthropogenic sources (punc-
tual and diffuse) and drastic land use modifications, 
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mainly related to urbanization sprawl and agriculture 
expansion (Varol, 2020a). These activities affect water 
quality by altering the natural biogeochemical cycles 
and the dynamics of soil erosion, transport, and depo-
sition. The input of metals and potentially toxic sub-
stances into aquatic systems can cause adverse effects 
on human health and aquatic biota, impairing the mul-
tiple uses of water and the adequate fulfillment of the 
demands of society (Iticescu et al., 2019; Şener et al., 
2017). Therefore, regulation and policies on pollutant 
emissions and the improvement of water management 
require monitoring techniques to accurately evaluate 
water quality status and identify natural and anthropo-
genic processes and sources controlling water chemi-
cal composition (Gnanachandrasamy et  al., 2020; 
Nong et al., 2020).

One of the most used water monitoring techniques 
applies water quality indices since they have been 
conceived to substantially decrease the data volume 
and simplify the interpretation of the water quality 
status by using key parameters. They can be used as 
an accessible and easy tool for managing and moni-
toring water resources and assessing overall water 
quality. An index is considered as a number result-
ing from a mathematical or statistical operations on 
a group of indicators (parameters) that expresses a 
certain quality value in a dimensionless way (Bordalo 
et al., 2006; Sánchez et al., 2007; Şener et al., 2017). 
Horton (1965) and Brown et  al. (1970) were the 
first to propose the usage of a Water Quality Index 
(WQI). Subsequently, several national and interna-
tional organizations developed water quality indices, 
such as the Weight Arithmetic Water Quality Index 
(WAWQI), the National Sanitation Foundation Water 
Quality Index (NSFWQI), the Canadian Council of 
Ministers of the Environment Water Quality Index 
(CCMEWQI), and the Oregon Water Quality Index 
(OWQI) (Tyagi et al., 2020). However, these indices 
were developed using quality criteria for river waters 
in temperate climates and do not consider the inher-
ent geological heterogeneity. Therefore, using solely 
these indices may produce misperceptions while eval-
uating water quality worldwide.

Multivariate statistical techniques have also been 
extensively applied to evaluate water quality and the 
ecological status of aquatic systems by reducing data 
volume and simplifying the interpretation of com-
plex water quality datasets. The most used statistical 
techniques applied to water quality evaluation are 

correlation analysis, principal component analysis, 
factor analysis, the hierarchical cluster analysis, and 
discriminant analysis (Shrestha & Kazama, 2007; 
Singh et  al., 2004). These methods have been also 
applied to identify the pollution sources and the natu-
ral or anthropogenic factors or processes that influ-
ence aquatic systems conditions (Helena et al., 2000; 
Mar da Costa et  al., 2016; Mulholland et  al., 2012; 
Varol, 2020b).

The Formoso River watershed hosts several munic-
ipalities with poor sanitary conditions without sewage 
collection and treatment systems (SRHMA, 2007). 
Therefore, the disposal of untreated sewage in the soil 
and in the waters of the Formoso basin is a potential 
contamination source of organic matter, nutrients, and 
metals in surface and groundwaters. The Formoso 
River basin also hosts several agriculture projects 
that caused the suppression of vegetation in extensive 
areas. Floodplain areas usually contain several irriga-
tion projects by flooding and sub-irrigation methods. 
Networks of water channels with more than 20,000 ha 
are used for rice crops in the rainy season (SRHMA, 
2007). The intensive fertilizer loads applied to these 
crops can be transported to rivers through surface 
runoff, causing disruptive changes in the aquatic eco-
logical balance, such as eutrophication.

The Formoso River basin is an emblematic case 
to evaluate the feasibility of water quality indices and 
multivariate statistic methods to understand the key 
processes controlling the water chemical composi-
tion and to predict the water quality status of rivers in 
developing countries of tropical environment where 
impacts on water quality are rarely stablished sat-
isfactorily. To this end, this study aimed to evaluate 
how multivariate statistical methods and water quality 
indices can be applied together to evaluate the pro-
cesses controlling water chemical composition and 
overall water quality status of a tropical watershed.

Material and methods

Study area

The Formoso River basin has an area of approxi-
mately 20,654  km2 and is located in the southeast of 
the State of Tocantins (Brazil), bordering the Ama-
zon Forest (Fig.  1). It hosts 21 small municipalities 
(< 200 thousand inhabitants), of which only 7 have 
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urban centers inside the basin area. Agriculture and 
livestock projects represent approximately 90% of the 
land use practices. The most significant agriculture 
activities occur along the basin downstream, where 
the land is used for rice crops in the rainy season and 
for soybeans, corn, beans, and watermelon crops in 
the dry season (SRHMA, 2007).

The basin is situated in the northern sector of 
the Tocantins Province, which is bordered to the 
south by the Transbrasiliano Lineament, to the 
southwest and northwest by the Amazon Craton, 
to the southeast by the São Francisco Province, 
and to the northeast by the Parnaiba Province. 
The most important lithostratigraphic units found 
in the area are the following: (i) alluvial deposits 
found in Formoso River downstream; (ii) Couto 

Magalhaes e Xambioá Formations that host phyl-
lites, metargillites, quartzites, and carbonates in 
the north-central region of the basin; and (iii) Rio 
dos Mangues Complex that hosts mainly gneisses 
in the basin upstream area (dos Santos, 2016). 
Highly weathered soils cover approximately 90% 
of the basin area, mainly composed of Plinthosols 
(15%), Ferralsols (33%), and concretionary soils 
(41%) (Fagundes, 2021; SRHMA, 2007). The basin 
is situated in a tropical wet and dry climate region, 
according to the Köppen climate classification. The 
average annual precipitation ranges from 1400 to 
2200 mm, of which 70% occurs between November 
and March. The Formoso River discharge ranges 
from 0.611  m3/s in the dry season to 97.02  m3/s 
(Fagundes, 2021).

Fig. 1  Map showing the 
location of the Formoso 
River basin and the water 
sampling sites
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Water sampling and analysis

Thirty-four water samples were collected along the 
entire length of the Formoso River, its tributaries, and 
the irrigation channels located near the city of Formoso 
do Araguaia (Fig.  1). The samples were stored in 1-L 
polyethylene bottles previously rinsed with 1  M HCl. 
In the field, the bottles were previously conditioned 
with the riverine water from the sampling site. After 
collection, the samples were refrigerated at approxi-
mately 3 °C and protected from sunlight. At the labora-
tory, approximately 200 mL of the sample was filtered 
by a frontal vacuum filtration system equipped with 
HA membranes in cellulose esters,  Millipore©, sterile, 
with 0.45 µm pore size. Aliquots of the filtered samples 
were separated and acidified (pH < 2) with conc. Merk 
Suprapur  HNO3 for the subsequent metal determination.

Water analysis was performed according to the 
methods reported in the “Standard methods of the 
examination of water and wastewater” (APHA, 2005). 
The determination of electrical conductivity (EC), total 
dissolved solids (TDS), dissolved oxygen (DO), and 
pH were performed in  situ using a Hannah HI9828 
multiparameter. In the laboratory,  PO4

3−,  NO3-N, 
 NH3-N, and color were measured in filtered samples 
by visible spectrophotometry using a Kasvi K37-VIS’ 
spectrophotometer.  CO3

2−,  HCO3
−, and  Cl−, hardness, 

and alkalinity were determined in bulk samples by vol-
umetric methods. The acidified filtered samples were 
analyzed by Inductively Coupled Plasma Optical Emis-
sion Spectrometry using an ICP-OES, 5100, Agilent at 
University of Brasília to measure the concentrations of 
dissolved Al, Fe, Mn, Zn, Co, Ni, Cr, Cu, Cd, As, and 
Pb. For the analyses performed herein, only Fe, Si, Mn, 
and Sr had concentrations above the limit of detection 
(LOD) of approximately 0.01  mg/L. Exceptionally, 
 Na+ was determined by flame emission spectrometry 
(FAES) using a Quimis-Q498M2 photometer. The 
NRC (SLRS-6) (CRM Environment Canada) was used 
for quality assurance (QA)/quality control (QC) of the 
water dissolved fraction analysis. The averaged meas-
ured concentration of the certified reference materials 
deviates within ± 5% of the certified values.

Multivariate statistical methods

Principal component analysis (PCA) is a statistical 
exploratory method to identify the relationships among 
the parameters. It reduces the variable dataset into 

uncorrelated combinations called principal components 
(PC), making easier to infer their geochemical associa-
tions (Tripathi & Singal, 2019). PCA was performed 
using a correlation matrix with Varimax rotation to 
maximize the variance weights in which only sig-
nificant components with eigenvalues greater than 1.5 
were selected (Mar da Costa et  al., 2016; Mulholland 
et al., 2012). Parameters with concentrations below the 
limit of detection (LOD) were replaced by a LOD/√2 
value as suggested by Verbovšek (2011) for geochemi-
cal data. The parameters with factor loadings > 0.7 in 
a same PC had high direct correlations, whereas the 
ones with factor loadings <  − 0.7 had indirect correla-
tions. Direct and indirect correlations among water 
parameters are usually caused by a specific natural or 
anthropogenic process, and, therefore, they were used 
to understand the main geochemical mechanisms con-
trolling water chemistry. The factor loadings and fac-
tor scores provided by PCA were calculated using the 
SPSS software v.18.0 (IBM).

The factor loadings describe the contribution of each 
water parameter to a particular principal component, in 
which large (positive or low) factor loadings represent 
strong relationship between the water parameters. The 
strong correlations between the water parameters per-
mit the identification of the geochemical process con-
trolling their variability. The factor scores (FS) repre-
sent the position of each observation (sample) in a new 
coordinated system of principal components. They are 
calculated by a linear combination of the water param-
eters (xij) and the factor loadings (aij) (Elemile et  al., 
2021). Therefore, the factor scores can indicate the 
intensity of each geochemical process in a given sam-
ple site and may be used as an index. The factor scores 
were calculated according to the following equation:

where i, j, and m represent the component, the sam-
ple, and the total number of variables, respectively.

A further step applying a multivariate linear regres-
sion was used to reduce the number of water param-
eters needed to calculate the factor scores to create a 
more feasible index. Multivariate linear regression is a 
statistical method that predicts the value of a depend-
ent variable (factor score) using the values of the inde-
pendent variables (water parameters). The multivariate 
linear regressions were calculated using the forward 
regression method to maximize the coefficients of 

(1)FSij = a
1jx1j + ai2x2j +⋯ + aimxmj
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determination (R2) and the adjusted R2 (adj-R2) with 
a p-value < 0.01, using the least possible amount of 
water quality parameters. The new dependent variables 
generated by the multivariate linear regression were 
calculated using standardized and non-standardized 
values of the water quality parameters and are called 
now on as indices Zx and Ix, respectively.

Water quality indices

Oregon Water Quality Index

The Oregon Water Quality Index (OWQI) is cal-
culated using theoretical quality functions (curves) 
that transform variables with different units to a non-
dimensional scale value called Sub-Index. The lat-
ter is then aggregated with a mathematical function 
to form a water quality index (Cude, 2001). OWQI 
developed a score that can integrate up to eight water 
quality characteristics into a single number to evalu-
ate the general water quality. DO, pH,  NH3-N, and 
 NO3-N, as well as total solids were used herein to cal-
culate this index. The original OWQI index uses the 
notion of harmonic averaging instead of arbitration 
in weighing the parameters and is mathematically 
expressed as follows: 

where n is the number of subindices and Si is the sub-
index of the ith parameter.

Weight arithmetic quality index

This index assesses the water quality status using 
variables commonly presented in water monitoring 
programs and guideline established by local legisla-
tion with a mathematical approach. This index was 
calculated using the following parameters: Turbid-
ity, color,  Cl−,  NO3-N, pH, TDS, Fe-dis, and DO. 
The WAWQI is calculated according to Eq.  3, in 
which each water quality parameter’s unit weight 
(Wi) is calculated according to Eq.  4, the propor-
tionality constant (K) is calculated using Eq. 5, and 
each parameter’s quality rating scale (Qi) is calcu-
lated using Eq.  6 (Tyagi et  al., 2020). The variable 
Vi expresses the concentration of the ith parameter 
in the analyzed water, V0 is the ideal value in pure 

(2)OWQI =

�

n
∑n

i=1

1

Si2

water (V0 = 0, except for pH and DO, which ideal 
values are 7.0 and 14.6  mg/L, respectively) and Si  
is the threshold value of the ith parameter stablished 
by local water quality guidelines.

Irrigation water quality indices

The water quality for irrigation purposes usually 
associates its major ion concentrations with their 
effects on soils and plants. For instance, high salt 
concentration in irrigation water can be harmful to 
crops by changing soil structure, and plant meta-
bolic processes, decreasing plant growth rates, and 
promoting salt accumulation in soil profiles (Singh 
et  al., 2020). This study evaluated water quality 
for irrigation by four indices, i.e., sodium adsorp-
tion ratio (SAR), permeability index (PI), magne-
sium hazard (MH), and residual sodium carbonate 
(RSC).

The SAR evaluates the suitability of the water 
to be used for agricultural irrigation. Adsorbed Na 
ions promote soil clay particle dispersion, change 
soil structure, affect water infiltration rate, and lead 
to problems with crop production (Nagaraju et  al., 
2016). It evaluates Na concentration with respect to 
calcium and magnesium, expressed in milliequiva-
lents per liter (Chebet et al., 2020), as shown below:

Similar to the SAR, the PI evaluates the effects of 
long-term use of mineral rich water in soil perme-
ability and, consequently, in crop production. The PI 
is calculated using the criteria proposed by Doneen 
according to Eq. 8 (Nagaraju et al., 2016), using  Ca2+, 

(3)WAWQI =

∑

QiWi
∑

Wi

(4)Wi = K∕Si

(5)K =
1

∑ 1

Si

(6)Qi = 100[
(

Vi − Vo

Si − Vo

)

]

(7)SAR =
Na+

√

Ca2++Mg2+

2
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 Mg2+,  HCO3
−, and  Na+ concentrations expressed in 

milliequivalents per liter.

The MH index is applied to evaluate possible 
adverse effects of high concentration of Mg to plants 
(Ali & Ali, 2018; Wakeel, 2013). In most natural 
environments, Ca and Mg ions are present in the state 
of equilibrium. However, plant growth can decrease 
when Mg exceeds Ca in irrigation water due to a 
Mg-induced Ca deficiency, affecting crop production. 
The MH index is calculated using Eq.  9 with ion 
concentrations expressed in milliequivalents per liter 
(Chebet et al., 2020).

The RSC index expresses the excessive  HCO3
− and 

 CO3
2− concentrations when compared to  Ca2+ and 

 Mg2+ concentrations. Irrigation waters with excessive 

(8)PI =
(Na+ +

√

HCO−
3
) × 100

(Na+ +Mg2+ + Ca2+)

(9)MH = Mg2+ +
100

Ca2+Mg2+

carbonate species can be balanced by  Na+ ions and 
cause  Na2CO3 precipitation in soils, affecting crop 
production (Murtaza et al., 2021). Together with the 
SAR index, the RSC index can be used to evaluate 
sodicity hazard of irrigation waters. The RSC is cal-
culated according to Eq. 10.

Results and discussion

Water chemistry

The results from Table  1 and Online Resources 
show that the waters of the Formoso River have 
low nutrient concentrations. For instance, the mean 
and 95% confidence interval (CI) for the follow-
ing parameters were as follows:  NO3-N (0.10 mg/L, 
95% CI = 0.03–0.17),  NH3-N (0.03  mg/L, 95% 
CI = 0.01–0.05), and  PO4

3− (< 0.03  mg/L, 95% 

(10)RSC = [
(

HCO−
3
+ CO2−

3

)

− (Ca2+ + Mg2+)]

Table 1  Statistical data 
obtained through the 
analysis of the Formoso 
River basin water and 
quality guidelines 
stablished by CONAMA for 
class 2 waters

All data expressed in 
milligrams per liter, except 
color (mg/L Pt–Co), 
turbidity (FTU), EC (µS/
cm), and pH
EC electrical conductivity, 
TDS total dissolved 
solids, DO dissolved 
oxygen, SS suspended 
solids, Alka. alkalinity, 
TH total hardness, SD 
standard deviation, CI 95% 
confidence interval, CV 
coefficient of variation

Mean SD Min Max CI (95%) CV CONAMA 357/05

pH 6.96 0.6 5.8 8.0 6.8–7.1 0.1 6.0—9.0
EC 96.3 72.2 16.0 244.0 72.1–120.6 0.7 –
TDS 48.4 36.5 8.0 122.0 36.2–60.7 0.8 < 500
DO 5.0 1.0 2.7 7.1 4.7–5.3 0.2  > 5
Turbidity 24.3 12.5 0.9 63.0 20.1–28.5 0.5 < 100
SS 7.8 7.9 0.4 31.5 5.2–10.4 1.0 –
Fe-total 1.0 1.2  < 0.02 6.3 0.6–1.4 1.1 –
Color 26.1 23.2 0.0 92.0 18.3–33.9 0.9 < 75
Alka 42.8 38.5 6.6 147.4 29.9–55.8 1.3 –
HCO3

− 52.2 47.0 8.0 179.8 36.8–68.0 0.9 –
CO3

2− 0.0 0.0 0.0 0.0 0.0–0.0 0.0 –
TH 40.8 37.4 6.0 138.0 28.3–53.4 0.9 –
Cl− 7.2 6.4 3.0 37.0 5.1–9.3 0.9 < 250
NO3-N 0.10 0.21  < 0.03 1.26 0.03–0.17 2.1 < 10
NH3-N 0.03 0.05  < 0.03 0.20 0.01–0.05 2.0 –
PO4

3−  < 0.03 0.03  < 0.03 0.10 0.01–0.03 1.5 –
Ca 11.2 9.5 2.4 40.0 8.0–14.4 1.2 –
Mg 3.2 3.7  < 0.01 14.6 2.0–4.5 1.1 –
Na 3.0 3.7 0.6 14.4 1.8–4.3 1.2
Fe-Dis 0.15 0.15  < 0.01 0.68 0.10–0.21 1.0 < 0.3
Mn 0.05 0.11  < 0.01 0.61 0.01–0.09 2.23 –
Si 4.80 2.17 0.54 10.78 4.03–5.49 0.46 –
Sr 0.04 0.02  < 0.01 0.10 0.03–0.05 0.63 –
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CI = 0.01–0.03). The waters also had a circumneu-
tral pH (6.96, 95% CI = 6.8–7.1), low alkalinity 
(42.8  mg/L  CaCO3, 95% CI = 29.9–55.8), and low 
TDS (48.4  mg/L, 95% CI = 36.2–60.7). These find-
ings shows that the waters are typical of oligotrophic 
aquatic environments and porewater of soils com-
monly found in the Brazilian Central-West Region 
(Lilienfein et  al., 2000; Mar da Costa et  al., 2016; 
Mulholland et  al., 2012). The high coefficient of 
variation (> 1.0) found for some paraments measured 
herein (Table 1) shows that water chemical composi-
tion varies spatially throughout the basin.

Geochemical processes and sources

The principal component analysis (PCA) was applied 
to the water quality dataset summarized in Table  1. 
The dataset variability can be explained by three main 
components (PCs), representing 82% of its total vari-
ance (Fig. 2). PC1 had large factor loading (> 0.7) for 
 HCO3

−,  Ca2+,  Mg2+,  Sr2+, total hardness, alkalinity, 
TDS, and pH, representing 33.7% of the variance 
(Fig. 2a). PC2 obtained large factor loadings (> 0.7) 
for turbidity, SS, total and dissolved Fe, Si, and color, 
representing 23.9% of the variance (Fig. 2a). PC3 had 
large factor loadings (> 0.7) for  NO3-N,  Cl−, and  Na+ 
(Fig.  2b), representing 14.9% of the total variance. 

PC4 had factor loadings of 0.86 for Mn and − 0.84 for 
DO, representing 9.5% of the variance and showing a 
strong inverse correlation between them (Fig. 2b).

The PCA analysis allowed to infer the key geochem-
ical processes that regulate the chemical composition 
of Formoso River waters. PC1 shows the dissolution 
of carbonates by the solubilization of  HCO3

−,  Ca2+, 
 Mg2+, and  Sr2+ that direct influence on pH values and 
total hardness, alkalinity, and TDS concentration (Mar 
da Costa et al., 2016; Morse et al., 2007). PC2 denotes 
the runoff and erosion processes that increase water 
turbidity and color by transporting particulate and col-
loidal materials rich in Fe-oxyhydroxides, commonly 
found in highly weathered soils of tropical environ-
ments. PC2 can also be influenced by oxidation and 
precipitation of Fe-oxyhydroxides in punctual sampled 
sites near riverheads, where the reduction conditions 
of the groundwater input high concentrations of aque-
ous  Fe2+ into river waters through their springs. PC3 
shows the anthropogenic influence in rivers from both 
urban and rural areas, which influences  NO3-N,  Na+, 
and  Cl− concentrations in water. High concentrations 
of these parameters are not linked to local geology and 
are commonly associated with urban and rural waste-
water releases and runoff.

The geochemical indices (Table 2) were applied 
to evaluate the intensity of each process throughout 

Fig. 2  Biplots calculated by the principal component analysis 
(PCA), showing the correlations between water quality param-
eters linked to different natural and anthropogenic sources and 

processes, i.e., carbonate dissolution (PC1), runoff and erosion 
(PC2), nutrient input (PC3), and redox processes (PC4), and 
their effects on spatial of data variability
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the basin (Fig.  3). The new linear combinations 
generated by the multivariate linear regression were 
calculated using standardized and non-standardized 
values of the water quality parameters. The new 
linear combinations generated by the regressions 
significantly predicted the factor scores as showed 
by p-value < 0.01, the coefficient of determination 
(R2), and the adjusted-R2 (adj-R2; Table  2). The 
indices Zx were calculated using the standardized 
values of the variables and show the relative contri-
bution of each water quality parameter to their total 

variance, i.e., the best indicators of each geochemi-
cal processes controlling water chemistry.

The indices were assessed based on their deviation 
from the mean values (Zx = 0), since they are stand-
ardized. The intensity of each process was assessed 
as negligible (Zx ≤ 1), moderate (1 < Zx ≤ 2), high 
(2 < Zx ≤ 3), and extreme (Zx > 3). The index values 
calculated for each geochemical process are showed 
in Fig. 3 in a cumulative distribution plot. The index 
 Z1 expresses the intensity of the dissolution of car-
bonate rocks, demonstrating that total hardness, 

Table 2  Indices calculated by the multivariate linear regression as function of the standardized and non-standardized values of water 
quality parameter

The values between the brackets corresponds to the standardized or non-standardized values found for each water quality parameter
Ix indices calculated used non-standardized values, Zx indices calculated using standardized values, TDS total of dissolved solids, TH 
total hardness, DO dissolved oxygen, Turb. turbidity

Process Index R2 adj-R2 p-value

Carbonate dissolution I1 = [TH] × 0.015 + [TDS] × 0.008 + [pH] × 0.490 − 4.329
Z1 = [TH] × 0.512 + [TDS] × 0.275 + [pH] × 0.256

0.973 0.970  < 0.01

Runoff/erosion or Fe precipitation I2 = [Turb.] × 0.039 + [Color] × 0.010 + [Fe-T.] × 0.787 − 1.798
Z2 = [Turb.] × 0.394 + [Color] × 0.204 + [Fe-T.] × 0.515

0.913 0.903  < 0.01

Nutrient input I3 =  [Cl−] × 0.039 +  [NO3-N] × 1.845 +  [Na+] × 0.134 − 0.855
Z3 =  [Cl−] × 0.248 +  [NO3-N] × 0.404 +  [Na+] × 0.434

0.986 0.985  < 0.01

Mn reduction due to DO depletion I4 = [Mn] × 10.202 − [DO] × 0.618 + 2.748
Z4 = [Mn] × 0.597 − [DO] × 0.555

0.978 0.976  < 0.01

Fig. 3  Cumulative distribution plots of the indices calculated 
for each sampled site, showing the intensity of the different 
natural and anthropogenic processes, i.e., carbonate dissolution 

(Z1), runoff and erosion or Fe precipitation (Z2), nutrient input 
(Z3), and redox processes (Z4)
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TDS, and pH are the best indicators of this process. 
The sites that showed the highest values in  Z1 were 
P26 and P27, located in the irrigation channels, and 
P30 and 31 (Fig.  3a), located over to the carbonate 
lithologies of the Magalhaes Formation that outcrop 
in the fluvial plains of the Formoso do Araguaia 
region. The P26 had moderate carbonate dissolution 
(1 < Z1 ≤ 2), whereas P27, P30, and P31 had high car-
bonate dissolution (2 < Z1 ≤ 3).

The index Z2 expresses the intensity of runoff and 
erosion or iron oxidation and precipitation and is best 
represented by turbidity, color, and total Fe. The P2, 
P9, and P10 sites had moderate runoff (1 < Z2 ≤ 2; 
Fig.  3b) and are located mainly in the upper course 
of the Formoso River and its tributaries, close to the 
Middle Araguaia Depression, where the intensity of 
erosion and runoff is higher than on the Formoso-
Javaés Plains and Intermediate Fluvial Plains located 
in the lower course of the watershed. The P5 had Fe 
precipitation with extreme intensity (Z2 > 3; Fig. 3b) 
and is located close to a groundwater spring where 
the high input of aqueous  Fe2+ into the river water 
followed by its subsequent oxidation cause the precip-
itation of Fe-oxyhydroxides species, which increases 
water turbidity and color.

The index Z3 expresses the intensity of nutrient 
input due to anthropogenic activities. The water qual-
ity parameters  NO3-N,  Cl−, and  Na+ were the main 
indicators of this process. The sites that presented the 
highest values in Z3 were P5, P11, and P29 (Fig. 3b), 
located in the cities of Araguaçu, Cristalândia, and 
Formoso do Araguaia, respectively. The sites P05 
and P29 had nutrient input with moderate intensity 
(1 < Z3 ≤ 2; Fig.  3c), whereas P11 had nutrient input 
with extreme intensity (Z3 > 3; Fig. 3c).

The index Z4 demonstrates the influence of redox 
processes on the mobility of the elements, with Mn 

and DO as the best indicators. The P24 and P25 
sites had moderate (1 < Z4 ≤ 2) and high intensity 
(2 < Z4 ≤ 3) of Mn reduction due to DO depletion, 
respectively (Fig. 3d), and are in the irrigation chan-
nels of the rice crops. When the soil is flooded for 
the rice crop, the microbial decomposition of organic 
matter can exhaust oxygen supply and start to use 
Mn oxides as electron acceptors. Thus, in environ-
ments with DO depletion, Mn reduction promotes 
their remobilization to the water column, increasing 
its concentrations. The P5 site had extreme inten-
sity (Z4 > 3; Fig.  3d) of Mn reduction due to DO 
depletion in the groundwater spring, which inputs 
aqueous  Mn2+ and  Fe2+ into river water (Online  
Resources).

Domestic and ecological quality evaluation

The water quality of the Formoso Basin was evalu-
ated using two indices (OWQI and WAQI; Fig.  4). 
The OWQI showed that 9% of the samples were 
assessed as having very bad quality, 59% had bad 
quality, and 32% of the samples had terrible condi-
tions (Fig. 4a). Conversely, the WAQI index showed 
that 9% of the samples were assessed as having ter-
rible conditions, 18% were assessed with very bad 
quality, 26% had bad quality, 9% were of good qual-
ity, and 38% of the samples were assessed with excel-
lent conditions (Fig. 4b). The contrasting water qual-
ity status found by these indices are due to the average 
DO concentration (5.0 ± 1.0 mg/L, 95% CI = 4.7–5.3) 
found by the present study and the way that the 
OWQI uses this parameter to evaluate the water qual-
ity status. The OWQI index considers that the ideal 
oxygen concentration (i.e., Sub-index = 100) should 
be approximately 11  mg/L. Conversely, the WAQI 
index recommends to use a quality guideline, which 

Fig. 4  Results for the 
Ontario Water Quality 
Index (OWQI) (a) and the 
Weighted Arithmetic Qual-
ity Index (WAQI) (b)
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was 6.0  mg/L based on the Brazilian Environment 
Council (CONAMA) Class 2 guidelines (CONAMA, 
2005). As DO concentration tend to decrease in 
waters with higher temperatures, tropical systems are 
more propense to oxygen depletion, leading to major 
bias in the water quality evaluation when using indi-
ces conceived in temperate environments. While our 
findings shows that the WAQI index can be applied to 
correctly define the water quality status of a tropical 
environment, the OWQI require further adaptation for 
tropical watersheds.

The water dataset and the results from the WAQI 
were compared to the Brazilian water quality guide-
lines to evaluate whether this index can correctly 
evaluate if the water is suitable for its multiple uses. 
The Brazilian water quality threshold values applied 
for surface waters are established CONAMA, accord-
ing to water most restrictive uses (CONAMA, 2005). 
Among the many activities developed along the For-
moso River basin, the most water restrictive uses 
found therein are water consumption after conven-
tional treatment, irrigation, and recreational activi-
ties. Therefore, the waters of the Formoso Basin were 
accessed as class 2, in which the threshold values are 
reported in the Online Resources. Among the param-
eters analyzed, only color and dissolved Fe had non-
compliance values. Color had noncompliance values 
in P5 and P10 sampling sites, whereas dissolved Fe 
had noncompliance values in P5, P1, and P10 sam-
pling sites. All these sites were assessed as having ter-
rible water quality conditions by the WAQI, showing 
that this index is suitable for predicting water quality, 
according to the Brazilian guidelines. Moreover, P1 
and P10 sample sites had high values in I2, whereas 
P5 sampled site had high value in I3. These findings 
shows that soil erosion and the nutrient input from 
urban areas are the geochemical processes impairing 
the fulfillment of water multiple uses.

Irrigation water quality evaluation

The water quality for irrigation purpose was evaluated 
using the SAR, PI, RSC, and MH indices (Table  3). 
According to sodium hazard risk, SAR values greater 
than 9  meq/L are considered unsatisfactory for irri-
gation use (Nagaraju et  al., 2016). The SAR values 
calculated for the samples collected in the Formoso 
River basin ranged from 0.009 to 0.532 meq/L, which 
are significantly lower than the threshold value and, 

therefore, considered suitable for irrigation. The PI is 
assessed in three categories, i.e., class I (PI > 75%) con-
sidered good for irrigation, class II (25% < PI < 75%) 
considered suitable, and class III (PI < 25%) consid-
ered unsuitable for irrigation (Nagaraju et  al., 2016). 
The PI values of Formoso River basin water ranged 
from 14.6 to 69.6%. Approximately, 23% of the sam-
ples analyzed were considered unsuitable for irrigation. 
Irrigation water with MH values greater than 50 meq/L 
is deemed hazardous, and therefore, they are unsuit-
able for this purpose (Ali & Ali, 2018; Wakeel, 2013). 
The MH values found in the waters of the Formoso 
River basin ranged from 0 to 59.1 meq/L. Among the 
34 samples, only 2 had MH higher than 50 meq/L and 
therefore are considered inappropriate for crop produc-
tion. To be considered suitable for irrigation, the water 
should also have RSC values lower than 1.25  meq/L 
or preferentially less than 0.5  meq/L. The RSC val-
ues of Formoso River basin waters ranged from − 2.56 
to − 0.12 meq/L and, therefore, are considered suitable 
for irrigation by this index.

The combined evaluation of the irrigation water 
quality indices shows that the Formoso River basin 
waters are suitable for crop irrigation, although some 
sites were considered inappropriate. Some specific 
sites, mainly located at the carbonate lithologies of 
the Magalhaes Formation that outcrop in the fluvial 
plains of the Formoso do Araguaia region (P9, P14, 
P16, P30, and P31) and at the irrigation channels used 
mainly for rice crop irrigation (P25, P26, P27), were 
assessed as unsuitable for irrigation according to the 
PI. These regions can, therefore, deal with carbonate 
precipitation within soil profiles affecting water infil-
tration rates and crop production. Two sites (P23 and 
P26) located at irrigation channels used mainly for 
rice crop irrigation had MH indices higher than the 
threshold values, suggesting that these regions may 
deal with a Mg-induced Ca deficiency in plant, which 
can decrease crop production.

Table 3  Water quality indices for irrigation purposes

SAR sodium adsorption ratio, PI permeability index, MH mag-
nesium hazard, RSC residual sodium carbonate

Index Mean S.D. C.V. Min. Max.

SAR 0.08 0.13 1.58 0.01 0.53
RSC  − 0.53 0.68  − 1.27  − 2.56  − 0.12
PI 37.75 15.95 0.42 14.65 69.56
MH 30.62 16.97 0.55 24.03 59.06
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Conclusion

The present study showed that multivariate statistical 
methods combined with water quality indices consti-
tute a holistic approach to evaluate the water quality 
condition and the effect of land uses changes in the 
geochemical processes controlling water chemistry. 
The quality indices provide information about the 
overall water quality condition of the basin based on 
quality criteria (e.g., logarithmic quality models or 
quality guidelines). In contrast, statistical approaches 
can extract information about the sources and geo-
chemical processes intrinsic to the watershed. Addi-
tionally, the irrigation quality indices allow to identify 
regions that might deal with carbonate precipitation 
within soil profiles and Mg-induced Ca deficiency 
in plant, which together can affect crop production. 
The study also showed that the OWQI is not suitable 
to evaluate the water quality of tropical rivers, since 
the usual water higher temperature and the associated 
lower oxygens contents usually found in tropical envi-
ronments result in biased water quality evaluation by 
this index.
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