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Abstract Mesoscale eddies play an important role in transporting water properties, enhancing air‐sea
interactions, and promoting large‐scale mixing of the ocean. They are generally referred to as “coherent”
structures because they are organized, rotating fluid elements that propagate within the ocean and have long
lifetimes (months or even years). Eddies have been sampled by sparse in‐situ vertical profiles, but because in‐
situ ocean observations are limited, they have been characterized primarily from satellite observations,
numerical simulations, or relatively idealized geophysical fluid dynamics methods. However, each of these
approaches has its limitations. Many questions about the general structure and “coherence” of ocean eddies
remain unanswered. In this study, we investigate the properties of seven mesoscale eddies sampled with relative
accuracy during four different field experiments in the Atlantic. Our results suggest that the Ertel Potential
Vorticity (EPV) is a suitable parameter to isolate and characterize the eddy cores and their boundaries. The latter
appear as regions of finite horizontal extent, characterized by a local extremum of the vertical and horizontal
components of the EPV. These are found to be closely related to the presence of a different water mass in the
core (relative to the background) and the steepening of the isopycnals due to eddy occurrence and dynamics.
Based on these results, we propose a new criterion for defining eddies at the mesoscale. We test our approach
using a theoretical framework and explore the possible magnitude of this new criterion, including its upper
bound.

Plain Language Summary Mesoscale eddies are ubiquitous rotating currents in the ocean. They are
considered as one of the most important sources of ocean variability because they can live for months and
transport and mix heat, salt, and other properties within and between ocean basins. They have been studied
extensively from satellite observations because they are often at or near the ocean surface. However,
observations of their 3D structure are rare, and calculations of eddy transport are often approximated without
precise knowledge of their true vertical extent. In addition, recent studies suggest the existence of subsurface
eddies that are not detectable from satellite observations. Here, we characterize and attempt to generalize 3D
eddy properties by analyzing observations collected during specific high‐resolution field experiments in the
Atlantic Ocean. We also propose a criterion, based on geophysical fluid dynamics theory, that defines the lateral
and vertical eddy boundaries. This criterion can be applied broadly to assess eddy structure, volume, transport,
and evolution more quantitatively than in previous studies. We also provide insight into why these boundaries
are substantial, which may explain why oceanic eddies are coherent structures that can span long distances and
have long lifetimes.

1. Introduction
Mesoscale eddies are ubiquitous in the ocean and have been observed by satellite and sparse in‐situmeasurements
for several decades. They are defined as relatively long‐lived horizontal recirculations of seawater on a spatial
scale close to one or a few deformation radii and smaller than the Rhines scale (Rhines, 1975). Since the 1990s,
satellite observations (mainly altimetry) have been used to detect mesoscale eddies in the ocean and to assess their
intensity, lifetime, and trajectories (Chaigneau et al., 2009; Chelton et al., 2011). The number, lifespan, and
structure of mesoscale eddies have also been investigated using surface drifters (Lumpkin, 2016), acoustically
tracked floats (Richardson & Tychensky, 1998), or Argo vertical profiling floats ((Laxenaire et al., 2019, 2020;
Nencioli et al., 2016), as well as moorings and shipboard observations (e.g., Barceló‐Llull et al., 2017; Z. Zhang
et al., 2016). This lifetime often exceeds several months and can reach several years (Ioannou et al., 2022;
Laxenaire et al., 2018). Such longevity suggests that most mesoscale eddies in the ocean are resilient dynamical
structures.
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One of the most important properties of mesoscale eddies is their ability to trap water masses at their source and
transport them over very long times and distances. In fact, due to their quasi‐2D recirculating fluid motions, water
masses in the eddy core remain constrained by closed trajectories created by the azimuthal velocity field. This
phenomenon was first described by Flierl (1981) when surface drifters and subsurface floats became an important
tool for measuring ocean processes. Using a Lagrangian approach, he proposed that if the eddy azimuthal mean
velocity field is greater than the translational velocity, then fluid particles are trapped in the core of the eddy. As a
result, the water masses in the eddy core often differ from the surrounding water masses and are thus associated
with temperature/salinity anomalies (e.g., Ioannou et al., 2022; L’Hégaret, Carton, et al., 2015; L’Hégaret,
Duarte, et al., 2015; Laxenaire et al., 2019, 2020).

Therefore, mesoscale eddies are thought to play an important role in the transport of properties (heat, salt, carbon,
and other chemical constituents) as they propagate through the ocean, representing a key dynamic element in the
overall global budget of these tracers (Bryden, 1979; Jayne & Marotzke, 2002; Morrow & Traon, 2012;
Wunsch, 1999). In addition, mesoscale eddies influence several ocean processes, from air‐sea fluxes (Frenger
et al., 2013), to ventilation of the ocean interior (Sallée et al., 2010), to large‐scale ocean circulation (Lozier, 1997;
Morrow et al., 1994). Due to temperature/salinity differences between the water masses trapped inside and
outside the eddies, the eddy boundaries have often been characterized as large gradients in thermohaline prop-
erties, resulting in finite gradient regions (Pinot et al., 1995; Martin et al., 2002; J. Chen et al., 2020). There the
variance increases and it can be assumed that the diffusion of the tracer also increases (Hua & Klein, 1998;
Lapeyre et al., 2001; Sobel et al., 1997). However, even in the case of turbulent diffusion, this process is very slow
in the ocean (turbulent diffusion coefficients are on the order of 10− 4 m2/s vertically and 1 − 10 m2/s horizontally
(Bowden, 1965; Nencioli et al., 2013). Ruddick and Gargett (2003) and Ruddick et al. (2010) showed that for
axisymmetricMediterranean eddies (or Meddies), lateral mixing is mostly generated by lateral intrusions. In these
studies, the horizontal diffusion coefficient due to these intrusions was estimated to be between 1 m2/s and 10m2/s
at the boundary of an eddy. For a typical isolated structure of radius 50 km, a simple scaling law gives a duration
of 8 years before complete decay. Thus, for an isolated eddy, the initial water mass trapped in the core can remain
unchanged for long periods of time, except at the boundary. There, intrusions directly affects the properties of the
trapped water and thus the tracer transport across the boundary.

Previous studies, mainly using satellite altimetry fields, have attempted to quantify eddy transport by using
proxies to calculate eddy volumes. Eulerian and Lagrangian criteria have been used to obtain an overall estimate
of the effect of eddies on tracer transport (Beron‐Vera et al., 2013; Hunt et al., 1988; Okubo, 1970; Weiss, 1991b).
Although the development of satellite altimetry has brought real progress in the monitoring of ocean eddies, it
only provides access to smoothed (in time and space) sea surface heights. The surface geostrophic velocities are
derived from the latter. However, they often do not correspond to the effective eddy core velocities (Bash-
machnikov & Carton, 2012; Ienna et al., 2022; Subirade et al., 2023). This is partly due to the space‐time res-
olution and smoothing applied to the satellite altimetry products, but also to the fact that eddies detected by
satellite altimetry are not always surface intensified eddies (their core may be located well below the ocean
surface and mixed layer). This suggests that satellite data, including satellite altimetry, may not be sufficient to
represent the kinematic and dynamical properties of eddies, nor their 3D properties. Therefore, the large set of
Eulerian and Lagrangian eddy estimates available from satellite data alone do not always adequately describe the
characteristics and evolution of ocean eddies (e.g., Li et al., 2017; Sun et al., 2022).

To better understand the properties and behavior of eddies, we rely on in‐situ observations collected during four
oceanic cruises—EUREC4A‐OA, Meteor 124, Meteor 160, and KB2017606—in the Atlantic Ocean, as well as
on a theoretical framework. We propose to define the 3D boundary of mesoscale eddies using a new criterion
based on the Ertel Potential Vorticity (EPV) (Ertel, 1942). The EPV is indeed a powerful tool for studying ocean
dynamics. For a mesoscale eddy, it associates the existence of closed trajectories within which the EPV simply
recirculates (in the absence of forcing and mixing) and the trapping of water masses (via isopycnal deflections). In
the ocean, EPV mixing occurs at boundaries (ocean surface, bottom, and lateral boundaries, especially at shelf
breaks, straits, and passages) (Benthuysen & Thomas, 2012; Welander, 1973); EPV mixing also occurs at the
edges of eddies and within fronts. Previous studies of potential vorticity dynamics have quantified the effects of
forcing and mixing processes on the EPV distribution (Marshall & Schott, 1999; Marshall & Speer, 2012). In the
present study, we show how EPV can be used to define the 3D eddy boundary. In particular, we propose a new
criterion that we compare with other previously published criteria as well as the Richardson number, which is well
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known for studying symmetric instability and vertical mixing (Large et al., 1994; Pacanowski & Philander, 1981;
Yu & Schopf, 1997; Zaron & Moum, 2009).

The paper is organized as follows. In Section 2, we describe the in‐situ data we used to identify mesoscale eddies.
We specify the resolution and measurement accuracy of the sampled anticyclonic eddies (AEs) and cyclonic
eddies (CEs) in order to assess the relative errors of the derived quantities. In Section 3, we examine how eddy
boundaries have been previously defined, and we focus on a subsurface eddy that is particularly well sampled by
in‐situ data to illustrate this comparison. In Section 4, we introduce the criterion we developed to define the eddy
boundaries based on observations. In Section 5, we use a generic eddy to evaluate the magnitude of the criterion
we define to support the observations. In Section 6, we reformulate the latter as a function of the Richardson
number to relate it to criteria for symmetric instability. In Appendix A, we also propose a constraint on this
criterion using a theoretical framework for semi‐geostrophic baroclinic instability. This appendix details
necessary conditions for instabilities using the Charney‐Stern method (Kushner & Shepherd, 1995) at the eddy
boundary and relates them to our criterion. In Section 7, we conclude the paper by summarizing our results.

2. Data and Methods
2.1. Collection of In‐Situ Data

2.1.1. 2 AEs Sampled During EUREC4A‐OA Campaign

The EUREC4A‐OA campaign took place between the 20th of January and the 20th of February 2020 (Speich &
Team, 2021; Stevens et al., 2021). We focus here on two AEs sampled along the continental slope of Guyana by
the French RV L’Atalante. One of the anticyclones is a surface intensified eddy and has been identified as an NBC
ring (Subirade et al., 2023). Its velocity field extends to a depth of − 150 m. The other is a subsurface intensified
anticyclone (with an intra‐thermocline structure). Its core is located between − 200 and − 600 m depth. Hydro-
graphic observations were carried out using Conductivity Temperature Pressure (CTD), underway CTD (uCTD),
and Lower Acoustic Doppler Profiler (L‐ADCP) measurements. A Moving Vessel Profiler (MVP) was also used
to observe the surface‐intensified eddy, but only for a few vertical profiles on the eastern side of the eddy (Speich
& Team, 2021; L’Hégaret et al., 2022). A total of 25 and 24 CTD/uCTD profiles sampled the NBC ring and the
subsurface eddy, respectively. The eddies velocity field was also measured by two ship‐mounted ADCPs (S‐
ADCPs) with sampling frequencies of 75 and 38 kHz. Temperature and salinity were measured by the CTD with
an accuracy of±0.002°C and±0.005 psμ, respectively. For the uCTD, the temperature and salinity accuracies are
±0.01°C and ±0.02 psμ, respectively. The S‐ADCP measures horizontal velocities with an accuracy of ± 3 cm/s.
See L’Hégaret et al. (2022) for more information on the in‐situ data collected during the EUREC4A‐OA
fieldwork.

The in‐situ data were collected along sections, where stations or soundings provide vertical profiles at different
distances from each other. We define the resolution of each section as the average of all distances between its
successive soundings. For the particular section of the subsurface AE discussed here, the hydrographic data
(considering only the CTD/uCTD profiles) have a horizontal (resp. vertical) resolution of 8.4 km (resp. 1m) and
the velocity data have a horizontal (resp. vertical) resolution of 0.3 km (resp. 8m—we use the 38 kHz S‐ADCP
data). For the NBC ring, the data have a horizontal (resp. vertical) resolution of 10.3 km (resp. 1m) and the
velocity data have a horizontal (resp. vertical) resolution of 0.3 km (resp. 8m—we use the 38 kHz S‐ADCP data).
In the following, either the resolution of the hydrographic data or that of the velocity data will be used, depending
on the properties of interest.

2.1.2. 2 AEs and 1 CE Sampled During Meteor M124

The RV Meteor M124 cruise took place between 29th of February 2016 and 18th of March 2016 (Karstensen,
Sabrina, et al., 2016) and crossed the South Atlantic ocean between Cape Town and Rio de Janeiro. We focus on
two anticyclones (hereafter AEs) and one cyclone (CE) that appear to be Agulhas Rings and a Benguela Up-
welling Eddy, respectively, sampled in the South Atlantic Ocean near the west coast of South Africa. Each eddy is
associated with an extremum of the absolute dynamic topography derived from satellite altimetry (see Figure 1 of
Karstensen, Sabrina, et al., 2016). These eddies extend vertically below − 400 m depth. uCTD and S‐ADCP
measurements were performed to study their vertical structure. The 12, 11, and 8 uCTD profiles provide ac-
cess to the thermohaline properties of the CE and AE, respectively. For each eddy, the hydrographic data have a
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horizontal (resp. vertical) resolution of 21 km (resp. 1 m) and the velocity data have a horizontal (resp. vertical)
resolution of 0.3 km (resp. 32 m).

2.1.3. 1 CE Sampled During Meteor M160

The RV Meteor M160 cruise took place between the 23rd of November 2019 and the 20th of December 2016
(Körtzinger & Team, 2021). We focus on a surface CE sampled along the east coast of Ilha do Fogo, Cabo Verde.
For this eddy, interactions with the local topography may have affected its vertical structure. CTD, L‐ADCP
and S‐ADCP measurements were used to investigate its vertical structure. 9 CTD profiles provide access to the
thermohaline properties of this eddy. The hydrographic data have a horizontal (resp. vertical) resolution of 13.3 km
(resp. 1 m) and the velocity data have a horizontal (resp. vertical) resolution of 0.3 km (resp. 8 m).

2.1.4. 1 AE Sampled During Kristine Bonnevie KB2017606

The RV Kristine Bonnevie cruise KB2017606 took place between the 10th of March 2017 and the 23rd of March
2017 (Bosse et al., 2019; Søiland & Team, 2017). We focus on a subsurface AE sampled in the open Arctic Ocean
off the east coast of Norway. CTD and S‐ADCP measurements were conducted to investigate its vertical
structure. 20 CTD profiles provide access to the thermohaline properties of this eddy. The hydrographic data have
a horizontal (resp. vertical) resolution of 5 km (resp. 1 m) and the velocity data have a horizontal (resp. vertical)
resolution of 5 km (resp. 8 m).

For the purpose of our study, it is important that the in‐situ section of the eddies crosses the eddy centers to avoid
side effects. In Figure 1 we show, using the S‐ADCP data and the eddy center detection method of Nencioli
et al. (2008), that this was the case for the data we used. Also, we could only select eddies that were fully sampled
to examine all their boundaries (upper, lower, and lateral). These conditions are rarely, if ever, met in the
literature. As shown below, even eddies sampled during M124 fail this requirement.

2.2. Data Processing

For each campaign, the raw data were validated, calibrated, and then interpolated. Interpolation of vertical
profiles sampled at different times had to be done carefully to avoid creating an artificial signal. To limit spurious
effects, we only performed linear interpolations in x→ (here radial) and in z→ (vertical) directions. The data were
then smoothed with a numerical low‐pass filter of order 4 (scipy.signal.filt in Python). The choice of thresholds is
subjective and depends on the scales studied. Here we consider mesoscale eddies, so we choose thresholds of the
order of Lx ≈ 10 km and Lz ≈ 10 m for the horizontal and vertical length scales. Obviously, the cutoff period is
chosen to be longer than the temporal sampling of the calibrated data. The grid size chosen for the interpolated
data (Δx, Δz) as well as the cutoff periods Lx and Lz are summarized in Table 1 for each cruise. Due to the coarse
resolution of the M124 data, we expect the eddy boundaries for this cruise to be less defined.

Denoting ( x→, z→) the vertical plane of the section, and using smoothed data, the derivatives of a quantity a are

approximated by a Taylor expansion of order one as follows:

∂xa(x + Δx, z)≈
a(x + Δx, z) − a(x, z)

Δx
(1)

∂za(x, z + Δz)≈
a(x, z + Δz) − a(x, z)

Δz
(2)

Since the Taylor expansion has been truncated, the terms of order two (Δx)2
2

∂2a
∂x2 have been neglected with respect to

those of order one Δx ∂a
∂x. An approximation of these second order term for the temperature, salinity, and velocity

fields was calculated to substantiate this point. For instance, using data from the EUREC4A‐OA cruise, the
second‐order terms for temperature are, on average, about 1.10− 6°C/m horizontally and 0.6.10− 4°C/m vertically.
These values are small compared to the first order terms (7.6.10− 6°C/m horizontally and 2.5.10− 2°C/m verti-
cally). For temperature, second order terms thus represent 13% of first order terms horizontally and 0.03%
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vertically. For salinity and orthogonal velocity, the first‐order horizontal (vertical) terms are larger than the
second‐order terms by factors of 10 (102) and 102 (103), respectively. With these approximations, the gradients of
the different fields can be calculated reliably.

Figure 1. Velocity vector field at: − 50 m for surface AE of EUREC4A‐OA (a), − 300 m for subsurface AE of EUREC4A‐OA (b), − 50 m for surface CE of M124 (c),
− 150 m for both AEs ofM124 (d), − 50 m for surface CE ofM160 (e), − 800 m for subsurface AE of KB2017606 (f). The regional bathymetry from the ETOPO2 dataset
(Smith & Sandwell, 1997) is presented in the background as color shading as well as the estimated center (the yellow square) of the eddy computed from the observed
velocities using Nencioli et al. (2008) method. The colored contours represent the loci of constant tangential velocity. The center is defined as the point where the
average radial velocity is minimum.
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3. Eddy Boundaries Characterization From Previously
Published Criteria
In the following, we describe several criteria which have been used to
determine eddy boundaries from in‐situ observations in previous studies.
Uncertainties on the calculated quantities and basic information on mesoscale
eddies are summarized in Table 2. For the sake of clarity, detailed criteria are
illustrated only for the subsurface AE sampled during EUREC4A‐OA, where
the vertical structure is very clear (see Figure 2). Vertical sections related to
other mesoscale eddies can be retrieved in Supporting Information S1 (Fig-
ures S1 to S16).

3.1. Relative Vorticity

The first criterion we present is based on the relative vorticity ζ. The boundary of an eddy is defined as a closed
contour where ζ changes sign, or more simply where ζ= 0. This criterion has often been applied to altimetry maps
using geostrophic velocity (Morvan et al., 2019; D’Addezio et al., 2019). It is a simple way to provide the upper
boundary of a surface eddy or the lateral boundary of a subsurface eddy. It requires a knowledge of the horizontal
velocity field but it does not require a reference profile.

To derive the relative vorticity (the vertical component of the vorticity vector), derivatives in two perpendicular
horizontal directions are required. This is not possible with only one ship section. An approximation to the relative
vorticity is the “Poor Man's Vorticity” (PMV) introduced by Halle and Pinkel (2003). They decompose the
measured velocities into a transverse component v⊥ (denoted Vo in Figure 3) and a longitudinal component v‖. The
relative vorticity is then approximated as ζ ≈ 2 ∂v⊥

∂x . The factor of 2 allows the PMV to be equal to the actual ζ in a
rotating solid vortex core. Rudnick (2001) and Shcherbina et al. (2013) used the derivative along the section of the
perpendicular velocities without the factor 2. This factor depends only on the estimate of ∂v‖

∂y . Here, we keep the
latter approximation without further assumption:

ζ ≈
∂v⊥

∂x
(3)

The errors on the relative vorticity can be calculated using finite differences. Using Equation 1, a local assessment
of accuracy can be obtained:

δζ
ζ

≈
δVo

Vo
+

δx
l

(4)

Table 1
Grid Size of Interpolated Data and Cutoff Periods for the Four Cruises

Cruise Δx [km] Δz [m] Lx [km] Lz [m]

EUREC4A‐OA 1 0.5 10 10

M124 1 1 25 40

M160 1 1 15 10

KB2017606 1 1 10 10

Table 2
Basic Properties of Mesoscale Eddies: Radius of Maximum Velocity R[km], Maximum Isopycnal DeviationH[m], Maximum
Velocity Vm[m/s], Rossby Number Ro = Vm

f0R

Cruise Type R [km] H [m] Vm [m/s] Ro δζ
ζ [%]

δEPVz
EPVz

[%] δEPVx
EPVx

[%]

EUREC4A‐OA AE surf 121 70 1.14 0.44 2.9 3.6 17.0

EUREC4A‐OA AE sub 71 220 0.96 0.66 3.5 3.8 18.6

M124 CE surf 67 120 1.53 0.28 2.4 2.8 59.7

M124 AE surf 58 200 1.27 0.26 2.9 3.1 58.0

M124 AE surf 55 105 0.95 0.28 3.7 4.2 75.5

M160 CE surf 49 50 0.46 0.09 20 22 36

KB2017606 AE sub 15 250 0.78 0.34 28.8 29.3 32.8

Note. Uncertainties of the relative vorticity δζ
ζ [%], vertical EPV

δEPVz
EPVz

[%], horizontal EPV δEPVx
EPVx

[%]. The uncertainties of the
horizontal EPV are large. In fact, the calculation of this quantity combines two low resolution data sources: hydrographic data
with low horizontal resolution and velocity data with low vertical resolution. Future oceanic cruises should take these relative
errors into account in order to obtain measurements that are suitable for resolving the finer scales of the ocean.
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where δx is the spacing between two measurement points (two stations) and l is a characteristic length scale taken
here as the distance from the current point to the center of the eddy. Obviously, the smaller l and Vo, the larger the
uncertainty, which can reach unlimited values. To avoid this pitfall and obtain an order of magnitude, we set r= R
the radius of the maximum velocity and V(r)= Vm the maximum rotational speed of the eddy; the relative error in
the relative vorticity is then given by

Figure 2. Vertical sections (x‐axis = horizontal scale, z‐axis = vertical scale) of different quantities: (a) thermal anomaly on isopycnal surfaces interpolated on
geopotential levels; (b) salinity anomaly on isopycnal surfaces interpolated on geopotential levels; (c) θ − S diagram; (d) and (e) norm of 2D temperature/salinity
gradients; (f) relative vorticity; (g) horizontal component of EPV; (h) vertical component of EPV; (i) EPV anomaly on isopycnal surfaces interpolated on geopotential
levels. The thermohaline anomalies computed on isopycnals show a maximum at depth. For the θ − S plot, the reference profile in blue is the climatological mean
computed using ARGO floats, and the red dots represent grid points for x ∈ [100 km; 150 km] and z ∈ [− 400 m; − 300 m]. The data have been smoothed with a cutoff of
10 km horizontally and 10 m vertically. Isopycnals are shown as dark lines. The core is characterized by a homogeneous negative relative vorticity and EPV anomaly,
and negative thermohaline anomalies.
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δζ
ζ
=

δVo

Vm
+

δx
R

(5)

By taking into account the resolution of the S‐ADCP data, uncertainties in the eddy relative vorticity can be
calculated for all cruises.

However, this criterion has limitations. If the eddy is embedded in a parallel flow of uniform velocity U0, a fluid
particle can escape from the eddy core even if it is inside the ζ = 0 contour (the relevant kinematic criterion then
includes the ratio V(r)/U0). Moreover, as shown in Figure 2f, the velocity field may tend to zero at the upper and
lower boundaries of a subsurface eddy. Criteria based on surface vorticity are then ineffective in determining the
eddy boundary.

Figure 3. Vertical sections showing the modulus of the horizontal and vertical gradients for orthogonal velocity with respect to the ship's path Vo and the potential density
field σ0. At the boundary, the modulus of the vertical velocity gradient and the horizontal density gradient increase. On the contrary, the modulus of the horizontal
velocity gradient and that of the vertical density gradient decrease. The small geographic maps show where the eddy was sampled.
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More generally, it seems counterintuitive to have a locally defined border, since an eddy boundary has a finite
horizontal extent; it is a region characterized by turbulence subject to external shear and instabilities (de Marez
et al., 2020). From a Lagrangian point of view, a fluid particle located on the ζ/f0 = 0 line is in an unstable region
and can be pulled into or out of the core. Finally, this criterion does not take into account the thermohaline
properties of the water trapped in the core, although they do affect the global properties and dynamics of the eddy.

3.2. Thermohaline Anomalies on Isopycnals

When an eddy traps and transports a water mass, the temperature and salinity anomalies of the eddy core relative
to the surrounding waters can help determine the eddy boundary. The eddy boundary is the region where the
surrounding and trapped waters converge. Thus, a priori, temperature and salinity anomalies on isopycnic sur-
faces disappear there. Taking T* and S* as two reference temperature and salinity profiles (out of the eddies) and
T and S as profiles (in the eddies), the thermohaline anomalies on isopycnic surfaces are defined by:

∀ σ0, ΔT(σ0) = T(σ0) − T∗ (σ0) (6)

∀ σ0, ΔS(σ0) = S(σ0) − S∗ (σ0) (7)

where σ0 is the potential density with respect to the surface pressure. It is interesting to note that the
compressibility of seawater is low for the studied eddies. Therefore, the T/S fields will be correlated and the
anomalies will show similar structures.

The best choice of the reference profile has been the subject of several studies. Here we use the methodology
developed by Laxenaire et al. (2019). A climatological average of temperature/salinity/potential density is
computed over the geopotential levels, in a domain containing the sampled eddy. A square of side 0.5° is con-
structed around the estimated center of the eddy so that the center is at the intersection of the diagonals. Then all
temperature, salinity, and potential density profiles sampled by Argo profiling floats over 20 years (Coriolis.eu.
org) in this area are assembled and their values averaged over the geopotential levels.

In Figure 2 these anomalies are plotted (panels (a) and (b)) at the geopotential level. In fact, these anomalies
are computed on isopycnal surfaces, but interpolated to geopotential levels to facilitate comparison with other
criteria. The isopycnal anomalies (dark lines) are consistent with the anticyclonic nature of the eddy. Large
negative temperature and salinity anomalies occur between − 150 m and − 600 m depth, showing that a
heterogeneous water mass is trapped in the eddy core. The surrounding water is warmer and saltier than the
core. Panel (c) showing the θ_S diagram confirms this. The anomalies appear fairly uniform in the core of the
eddy and decrease near the eddy boundary. Closer inspection shows that they are slightly more intense in the
upper part of the core (between − 250 and − 350 m depth) and that they decrease slowly with depth. Small‐
scale patterns of these anomalies are observed in the upper part of the core and will be discussed further in
Section 4.2.

Using these quantities, the boundaries of the vortex can be drawn using a zero line for ΔT or ΔS (Figure 1). These
lines are used to locally define the upper, lower, and lateral boundaries of the eddy. When thermohaline exchange
occurs at the boundary of an eddy, this boundary is actually spread out rather than point‐like. Furthermore, the
zero lines are also sensitive to the reference profiles and will therefore vary with different choices of T* and S*.

It should be noted that at the eddy boundary, due to the isothermal/isohaline deviation, the gradients of T and S,
defined as:

|∇→(T,S)| =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(∂x(T,S))2 + (∂z(T,S))
2

√

(8)

increase (see Figures 2d and 2e). Characterizing the eddy boundary in terms of temperature or salinity gradients
has two advantages over T or S anomalies: first, the region of intense T or S gradients is not pointwise but
relatively widespread; second, they do not depend on a reference value. These quantities are calculated at geo-
potential levels.
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BARABINOT ET AL. 9 of 32

 21699291, 2024, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JC

020422 by Ifrem
er C

entre B
retagne B

lp, W
iley O

nline L
ibrary on [20/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://Coriolis.eu.org
http://Coriolis.eu.org


3.3. Ertel Potential Vorticity on Isopycnals

Ocean eddies are associated with a rotating flow field around an axis, with closed current lines and with ther-
mohaline anomalies due to the water mass trapped in their cores. Ertel's Potential Vorticity (EPV) (Ertel, 1942),
which takes into account all these properties, has therefore often been used to characterize the structure of eddies.
The EPV is a Lagrangian invariant under several assumptions: inviscid flow, incompressible fluid, and potential
body forces (Egger & Chaudhry, 2009). In the ocean, the EPV is rarely conserved due to atmospheric forcing and
energy dissipation (Morel et al., 2019). For subsurface eddies, far from the seafloor, changes in EPV are moderate
for most of their life cycle.

EPV is generally defined for 3D, non‐hydrostatic flows with arbitrary density fluctuations. Here, we simplify this
general definition for an application to 2D in‐situ data. We also apply the Boussinesq approximation and the
hydrostatic equilibrium. Under these hypotheses, the vertical acceleration vanishes and in the EPV definition the
term 1/σ0 ≈ 1/σ(0)0 , where σ(0)0 is a reference value taken here as an average over each profile of the considered
section. With our simplifications, EPV takes the following form:

EPV = EPVx + EPVz = (− ∂zVo∂xb) + (∂xVo + f )∂zb (9)

where b = − g σ0
σ(0)0

is the buoyancy and Vo is the orthogonal component of the velocity on the horizontal axis of the

section. Note that although Equation 7 gives only a 2D approximation to the true value of EPV, no approximation
to the shape of the vortex (e.g., axisymmetry) has been used. We can also compute the relative error on the EPV,
given by.

δEPVx

EPVx
=

δHb
b
+

δHx
l
+

δVVo

Vo
+

δVz
δz

(10)

δEPVz

EPVz
=

δHb
b
+

δHz
H
+

δVVo

Vo
+

δVx
l

(11)

where δH refers to the uncertainty in the hydrological data and δV to the uncertainty in the velocity data. To
calculate the uncertainty in buoyancy, we use the linearized equation of state:

δHb =
− g
σ(0)0

δHσ0 =
− g
σ(0)0

(− αδHT + βδHS) (12)

where g is gravity, α and β are averages over the section of the ship.

At the edge of the eddy, the isopycnals deviate sharply from the equilibrium depth of the environment, creating a
horizontal buoyancy gradient. Thus, EPVx is large, in contrast to the eddy core where EPVx is small and EPVz

dominates. This suggests that EPVx is a better criterion for eddy boundaries. Note that without a lateral buoyancy
anomaly and without a baroclinic velocity term, EPVx no longer exists.

Since eddies are stratification anomalies, characterization of the core of the eddy can be achieved using Ertel
Potential Vorticity Anomaly. The EPV anomaly, ΔEPV, relative to the seafloor is also used to locate the eddy,
compute its volume and characterize its intensity. The EPV of the ocean at rest (hereafter EPV) is:

EPV = f
db
dz

(13)

where b is the buoyancy reference profile in the area of the eddy which has been computed as described in
Section 3.2. The Ertel Potential Vorticity anomaly is then calculated on isopycnal surfaces (i.e., using density as
the vertical coordinate) as follows:

∀ σ0, ΔEPV(σ0) = EPV(σ0) − EPV(σ0) (14)
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More precisely.

∀ σ0, ΔEPV(σ0) = EPVx (σ0) + ΔEPVz (σ0) (15)

∀ σ0, ΔEPVz (σ0) = EPVz (σ0) − EPV(σ0) (16)

As with thermohaline anomalies, this quantity is computed on isopycnic surfaces and then represented on geo-
potential levels. As observed in Figure 2i, the boundary of an eddy can be defined by the outermost closed contour
of ΔEPV. This quantity takes into account both thermohaline anomalies and the velocity field. As before, the
upper, lower, and lateral boundaries of the eddy appear clearly. However, the boundary remains locally defined
(i.e., for each eddy in its own environment) and is strongly dependent on the reference profile.

To conclude this section, there are many diagnostics to characterize the core of the eddy and thus calculate its
volume (a given isotherm or isohaline, or the total EPV anomaly). However, all these criteria depend on an
arbitrary reference and are very sensitive to its choice (in particular to compute the eddy volume). In the following
section, we propose a criterion to characterize the boundary of an eddy with less arbitrariness. We could have
discussed other criteria such as the Okubo‐Weiss criterion (Okubo, 1970; Weiss, 1991a). However, the latter
criterion is difficult to apply to vertical sections without additional assumptions (e.g., axisymmetry).

4. The α − Criterion for Vortex Boundary Determination
4.1. The α − Criterion for Vortex Boundary

In the core of the eddy, EPVz strongly dominates EPVx. At the boundary, this dominance becomes less pro-
nounced due to three combined effects. First, the horizontal buoyancy gradient increases due to cyclo‐geostrophic
equilibrium; further out, the isopycnals return to the equilibrium depth for the surrounding waters. Second, two
different water masses meet at the boundary, creating a frontal region that is usually characterized by a large
horizontal buoyancy gradient. Third, the horizontal shear of the tangential velocity decreases. Peliz et al. (2014)
have observed these variations in the amplitude of the EPV component from a numerical simulation. Here, for the
first time, we use the EPV component amplitude to characterize the eddy boundary using in‐situ data for a wide
range of mesoscale eddies. An example of the EPVx and EPVz components is shown in Figures 2g and 2h for the
subsurface AE sampled during EUREC4A‐OA. The core of the vortex is characterized by a homogeneous region
of low EPVz (EPVz approximately 2× 10− 10 s− 3) surrounded by a zone where the EPVx is close to − 1× 10− 10 s− 3.
Thus, the eddy boundary can be characterized as the region where the quantity |EPVx /EPVz| reaches an extremum.
To illustrate this point, the modulus of the horizontal and vertical gradients of the two quantities Vo (orthogonal
velocity with respect to the ship's trajectory) and σ0 (potential density) are shown in Figure 3 for the same
mesoscale eddy.

In the modulus, the vertical velocity gradient and the horizontal density gradient increase at the eddy boundary,
reaching values of the order of 10− 3 s− 1 and 10− 6 kg/m4, respectively. On the contrary, the horizontal velocity
gradient (or ζ) as well as the vertical density gradient decrease near the eddy boundary. According to Equation 7
this is consistent with EPVx and EPVz variations at the eddy boundary. A similar conclusion can be drawn for a
cyclonic eddy.

It is worth noting that, in this article, we propose a “mesoscale” characterization of eddy boundaries, and the data
have been filtered accordingly to reduce the intensity of smaller scale processes. Indeed, a large number of high‐
resolution in‐situ observations have shown that energetic submesoscale processes (including fronts, filaments,
and vortices) co‐occur with mesoscale eddies. These submesoscale processes can have very low and even
negative EPV (Shi & Wang, 2020; Z. Zhang et al., 2021) and typically have extreme |EPVx/EPVz| ratios.
Therefore, they may blur the true boundary of mesoscale eddies in the submesoscale resolving data. Here, we
consider a mesoscale point of view with processes having a horizontal characteristic length scale larger than
10 km. From a smaller scales viewpoint, submesoscale processes will indeed modify this boundary, but with less
intensity. Moreover, these submesoscale processes which have not completely disappeared from the filtered data
concur to the finding that the boundary is not pointwise (see Figure 4).

In addition to submesoscale processes, internal gravity waves (IGW) can also introduce in large noise into the
calculated |EPVx/EPVz| ratios. Since a shipboard transect across a mesoscale eddy typically takes more than a
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Figure 4. The α − criterion for different mesoscale eddies: (a) the surface AE observed during EUREC4A‐OA, (b) the subsurface AE measured during EUREC4A‐OA,
(c) the surface CE sampled during M160, (d) the surface CE sampled during M124, (e) both surface AEs observed during M124, (f) the subsurface AE sampled during
KB2017606. Magenta dots indicate the positions of the CTD/uCTD vertical profiles, cyan lines are locations where ζ = 0 s− 1 (due to data noise there is no unique
extremum) and dark lines are isopycnals. The color bars have been chosen so that the red areas correspond to locations where |EPVx| − α|EPVz| > 0, with α chosen as a
fraction of the Rossby number. This criterion surrounds the core and extends from 10 to 50 km depending on the case and resolution. Note that this limit coincides with
the inflection points of the isopycnals (see the theoretical part developed in the main text in Section 5).
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day, the resulting eddy‐resolving hydrographic data may also contain signals from IGW. Some recent papers have
shown that IGW reduce the Kinetic Energy by about 25% on a global scale, for example, considering an entire
ocean basin, and increase the forward energy cascade especially in regions of strong submesoscale fronts and
filaments that dynamically deviate from the geostrophic equilibrium (Barkan et al., 2021). Other studies, such as
Snyder et al. (2007), have shown that IGW mostly remain at the edge of eddies where submesoscale processes
actually occur. Based on these arguments, from a mesoscale perspective and considering relatively short time
scales, IGW will not significantly alter the mesoscale anomaly of stratification or velocity gradients.

Because in‐situ data are sparse, the difference |EPVx| − α|EPVz| (where α is a scalar) is less noisy than the ratio |
EPVx|/|EPVz|. In fact, due to noise, EPVz may tend to zero at some spurious points, causing the ratio to diverge.
We call the criterion α the characterization of the eddy core based on this condition:

|EPVx| − α|EPVz|> 0 (17)

This approach does not require a reference profile, which is its main advantage over other anomaly‐based criteria.
An application of this α − criterion is shown in Figure 4 for each eddy. It maps an area several kilometers wide,
and the boundary is more irregular than for the pointwise criteria. From observations, the value α = Ro

2 , or even
α = Ro

3 , seems to adequately characterize the 3D eddy boundaries. In each case, the lateral boundaries appear well
marked, while the lower boundary is not well defined due to the weak velocity field at this location. The value of α
depends on the resolution: a lower value was found for the coarse resolution of M124 compared to KB2017606 or
EUREC4A‐OA, even if the three eddy Rossby numbers are close.

Consequently, the eddy boundary can be defined as a region whose length scale is comparable to the radius of
deformation in one direction, but much smaller in the cross‐direction; in the cross‐direction, significant changes in
buoyancy and velocity occur with substantially increasing gradients. In fact, this is the definition of a front given
by Hoskins (1982) and confirmed by several studies (Archer et al., 2020; Katz, 1969; Voorhis & Hersey, 1964).
At the frontal eddy boundary, water recirculates vertically during frontogenesis or when symmetric instability
occurs. EPVx and EPVz are key terms in semi‐geostrophic frontogenesis (Hoskins & Bretherton, 1972); they drive
the dynamics of frontal regions. The associated vertical recirculation tends to flatten isopycnals. This has already
been analyzed in numerical simulations (J. Chen et al., 2020). It has been shown that for high values of EPVx,
instabilities can occur that allow water masses to leak from the core of the eddy into the environment, where they
are stirred and mixed. As a result, the baroclinic components of Vo and the horizontal gradient of σ0 determine the
amplitude of EPVx with respect to EPVz. Therefore, the value of α increases with the baroclinicity of mesoscale
eddies.

4.2. α − Criterion Validation

In Figure 5 we focus only on the subsurface AE sampled during the EUREC4A‐OA field experiment. For this
anticyclone, we apply and compare the previous eddy boundary criteria. First, we characterize the eddy core by
the EPV anomaly on the outermost closed contour. This is ΔEPV < − 5.10− 10 s− 3. We also plot the ratio |EPVx /
EPVz|. The region of intense ratio (in dark red) agrees well with ζ = 0 (dark green lines) around the core. It also
agrees with the ΔT(σ0) = 0 and ΔS(σ0) = 0 contours both above the eddy and laterally. In fact, the thermohaline
anomalies and the rotation of the eddy are related. Note that for other eddies, the boundary of the eddy core is best
represented by non‐zero values of these variables. This is a priori due to the choice of a reference profile that is not
equal to a time average of the hydrology outside the eddies.

However, as shown in Figure 5, the lateral boundary is not a single line, but a relatively wide zone (sometimes
reaching 30 km in width). In fact, lateral intrusion and mixing occur at the eddy boundary (Joyce, 1977, 1984). In
addition, the criterion is less accurate near the base of the eddy because the eddy velocity decreases with depth.
Here, the eddy boundary appears to be more diffuse and exchange of water masses with the surrounding water can
take place (in particular by double diffusion). We recall that for a given translational velocity of the eddy, the
velocity field decreases with depth; thus, the ability to trap water according to the (Flierl, 1981) criterion depends
on depth. This is clearly illustrated by the anticyclone we are studying.

Finally, the upper part of the eddy near − 200 m depth is well characterized by both the EPV anomaly and the
α − criterion. The tropical thermocline (defined by a steep vertical density gradient) is clearly visible at the top of
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the eddy. Small‐scale structures appear between − 200 m and − 300 m depth in the core of the eddy. They
correspond to stair‐like features in the temperature and salinity profiles (see Figure 6). Such features have been
commonly observed in the northwestern tropical Atlantic by previous studies (Bulters, 2012; Fer et al., 2010).
Staircases also occur at the top of the eddy core; they are detected by the α − criterion due to the strong vertical
buoyancy gradient.

We now compare the α − criterion with the previously published Eulerian and Lagrangian criteria. First, many of
these criteria are based on satellite altimetry data, which do not provide access to the 3D eddy structure. Second,
our criterion can be applied to in‐situ data, to numerical model results, or to sea surface height maps, allowing
comparisons. Third, this criterion takes into account both the thermohaline anomaly and the rotating flow, which
is not the case with all other criteria. Fourth, it provides a way to qualify and quantify the coherence of mesoscale
eddies. In fact, the α value describes the intensity of eddy boundaries. The stronger the thermohaline anomalies,
the more intense the α at the boundary. Determining the evolution of α gives access to the evolution of the 3D
structure of an eddy and its coherence. Fifth, this criterion is complementary to the EPV anomaly criterion; in fact,
it determines a boundary region where lateral water mass exchange takes place, rather than a single, well‐located

Figure 5. Vertical sections showing the comparison between the possible criteria for determining the eddy boundary. In the
background, the dark red region corresponds to the α criterion, where the ratio EPVx /EPVz is plotted directly. The material
boundary corresponding to ΔT= 0 and ΔS= 0 is plotted as purple and blue lines. The kinematic limit corresponding to a sign
change of ζ is represented by a green line. Regions where ΔEPV < − 5 × 10− 10 s− 3 are plotted in light gray.
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eddy boundary. Since the eddies are constantly responding to the background flow, the isopycnals adjust to this
external forcing in the region where they develop. It should also be noted that this region is close to an inflection
point of the isopycnal surfaces.

4.3. Modeling the Vortex Profile and Estimating the Influence of the Spatial Resolution

The α − criterion is sensitive to data resolution. To study the influence of the data resolution on the results, we
have developed a simple model. This model is applied here to the EUREC4A data, and more specifically to the AE
of Figure 2. The data used in the model correspond to a vertical section with a resolution in x→ and z→ comparable
to those obtained from oceanographic ships.

First, a generic model was fitted to the thermohaline anomalies on isopycnal surfaces. In the literature, Gaussian
profiles have often been used to model thermohaline anomalies on these surfaces. In our study, a different
function fits the data better (derived using the nonlinear least squares algorithm scipy.optimize.curve_fit in
Python). We then calculated the density anomalies by applying the linearized seawater equation of state to use an
explicit model equation. Next, we computed the geostrophic velocity by assuming that the eddy was in
geostrophic and hydrostatic equilibrium. Actually, the maximum eddy Rossby number calculated using the
maximum velocity estimated from the data was 0.61. However, for the purpose of this section, which is devoted to
investigating the sensitivity of the results to the horizontal resolution of the data sampling, the geostrophic
approximation is sufficient. Finally, we computed the ratio |EPVx /EPVz| from the velocity field and the buoyancy
anomaly.

This approach can be summarized in Figure 7.

• (1) ‐ A nonlinear least squares algorithm has been used to fit an analytical expression to the data.
• (2) ‐ The formula for the anomaly has been derived as follows:

Figure 6. Staircases in the temperature profiles at the top of the subsurface eddy. The x‐axis is the same horizontal scale as in
Figure 1 but it starts at 80 km for more clarity. Each line is a vertical profile for temperature. Quick variations of these lines
create a staircase shape (Bulters, 2012).

Figure 7. Steps followed: quantities computed at each step are written in boxes.
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Δa = A0

10
100Γ(0,1) exp(− (

r
71e3)

15
)

max( 10
100Γ(0,1) exp(− (

r
71e3)

15
))

with r2 = x2 + (0.25z − 0.25 × (− 400))2 locating the center of the anomaly at (x = 0 m, z = − 400 m). The factor
0.25 was chosen to account for the difference between the horizontal and vertical scales. This formula provides an
elliptical pattern for the thermohaline anomaly on the vertical plane. The investigation of more complex functions
approximating the anomaly are left for future studies. In the present work, we focused in the optimization by the
nonlinear least squares algorithm only the radius 71 km, exponent 15, and center location at z= − 400 m. It should
be noted that a value of 15 for the exponent is very rare in the literature. This steepness can be explained when the
external flow erodes the rotating flow. In this case, the eddy diffuses less momentum into the background flow
(Legras & Dritschel, 1993; Mariotti et al., 1994).

• (3) ‐ The linearized equation of state Δρ = ρ0(− αΔT + βΔS − κΔP) was then used to obtain the density
anomaly; α is the coefficient of thermal expansion, β is the coefficient of saline contraction, κ is the
isentropic compressibility, ΔT and ΔS are the thermohaline anomalies on isopycnal surfaces,
Δp= p − patmospheric= − ρ0gz the hydrostatic pressure (we used ρ0= 1026 kg/m3 as reference density for
seawater). The reference values (ρ0, T0, S0) have been calculated using the climatological average in the
EUREC4A region.

• (4) ‐ The geostrophic balance f0∂zVo = ∂xΔb was then applied with a reference level (no flow condition)
Vo(x, z = − 1,000 m) = 0 m/s. The reference level has been chosen at − 1,000 m in order to lie below the
type of eddies we were focusing on (the NBC rings).

• (5) ‐ Formula for EPV. We assume that the Boussinesq approximation and hydrostatic equilibrium hold.
We use Equation 7.

The temperature anomaly calculated on the isopycnal surfaces is shown in Figure 8a as an example of step (2).
The model does not fit the data perfectly. The geostrophic balance is not accurate near the tangential velocity
peak, where cyclostrophic effects are not negligible. The eddy background is not modeled here, in particular the
tropical thermocline, which causes the velocity field to decrease rapidly in the upper layers. The fields in the
model are assumed to be stationary, which is not the case in reality. Finally, the f‐plane approximation is used,

Figure 8. Vertical sections for the modeled anticyclonic eddy. (a) Comparison between data and model profile for the temperature anomaly, contours of constant value
for the model are plotted. Fitting the gradient of the anomalies directly affects the EPV calculation and thus the α − boundary. (b) Azimuthal velocity for the model
reaching a maximum at the sea surface. (c) Ratio |EPVx /EPVz|, (d) EPVx, (e) EPVz for the model.
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whereas for large eddies the β‐plane approximation would be more appropriate. For information, the steepness of
the radial temperature (or salinity) profile can be explained by shear effects that may have stripped the outer layers
of the eddy. Nevertheless, the quantities provided by the model (see panels (b), (c), (d) and (e)) seem to be in
reasonable agreement with the data: Vo seems to be quite faithful, and EPVx increases at the boundaries, as does
the ratio |EPVx /EPVz|. The latter follows the region where the horizontal buoyancy gradient is large, which is the
case in the observed AE. The shape of the eddy as well as the magnitudes of the anomalies are consistent with the
observed eddy properties.

To evaluate the effect of spatial resolution on the α − criterion, we computed a very high resolution vertical
section (Δx = 100 m, Δz = 0.1 m) as a reference. Other sections were then computed with lower spatial reso-
lutions. As shown in Figure 8, the ratio |EPVx /EPVz| diverges in the upper part of the eddy, near 300 m depth. This
divergence is obviously not present in the observed eddy, which underlines the limitations of the model.
Therefore, to calculate the difference between the high‐resolution reference section and the lower‐resolution
sections, we consider only the lower part of the eddy at depths between 400 and 1,000 m.

With this assumption, the reference EPV ratio Ra = |EPVx /EPVz| reaches its maximum of 1.342 at z = − 400 m
and r = ±59 km. The maximum error and the maximum RMS between a lower resolution profile and the
reference profile are plotted to analyze the effect of resolution. The maximum error is defined as emax = max |
Raref − Ra|, r ∈ [− 100; 100], z ∈ [− 1,000; − 400]. The results are shown in Figure 9.

This figure shows that the lower the resolution, the higher the error. The horizontal resolution mainly affects the
accuracy of the results. The vertical resolution has less influence on the maximum error and the RMS. Even at the
relatively high horizontal resolution (10 km) of the EUREC4A data, the maximum error is 0.8 or 58% of the
maximum value of Ra. The resolution largely limits the accuracy of the results. However, the shape of the eddy
boundary appears to be less sensitive to resolution. For example, at a horizontal resolution of 10 km, the RMS is
0.21 or 16% of the maximum Ra. In addition, in‐situ data are often affected by noise, which is not considered here.
In conclusion, resolution has a large effect on the quantitative values of the criteria, but a moderate effect on the
shape of the eddy boundary.

4.4. An Experimental Range of α Values

In this section, the α − criterion is used to compare the intensity of the eddy boundaries and to obtain an
experimental range of α values. Each boundary is characterized by the α − criterion as described above. The value
of α indicates the intensity of the boundary. To quantify the intensity of the boundary, we numerically compute its

area Aα in the ( x→, z→) plane. Obviously, the higher α, the smaller the area of the boundary: Aα is a decreasing

function of α. α will reach higher values over a larger part of the total boundary area for a more intense eddy. In

Figure 9. Maximal RMS and maximal error, in percentage of the ratio maximum value, as a function of horizontal resolution.
Curves are plotted for various value of Δz.
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this case Aα will decrease more slowly. What influences the intensity of the boundary is examined in the theo-
retical part. To compare the curves, Aα is arbitrarily normalized by A0.01≤α ≤ 0.05, which is the area of the boundary
when α ∈ [0.01; 0.05]. For α varying from 0.01 to 1.1 with a bin of 0.05, Aα is plotted as a step function in
Figure 10. As an example, the second step represents the area of the boundary for α ∈ [0.05; 0.01] normalized by
A0.01≤α ≤ 0.05. Note that the boundary region corresponds to a volume in space. Here, with 2D fields, only a portion
of this volume can be observed.

In Figure 10 we observe that α is never greater than 1 for the studied eddies. Furthermore, 90% of the boundary
region is characterized by α ≤ 0.4. As before, the resolution seems to determine the value of α, as the three lower
curves are those of the coarse M124 data.

To quantify the decay of an eddy boundary, it will be interesting to study the evolution of these curves with time.
As an eddy boundary weakens due to interaction with the topography or in the presence of external shear flows, its
boundary is eroded, and we therefore expect the quantity ∫αA(α′)/A0.01 dα′ to decrease.

4.5. A Subsequent Criterion: Comparison Between ΔEPVz and EPVx

Using the same idea, since EPVx is stronger at the eddy boundary (Y. Zhang et al., 2014; Y. Chen et al., 2021), the
ratio |ΔEPVz /EPVx| can be used to separate the eddy core from its boundary.

Figure 11 shows that |ΔEPVz /EPVx| > β, with β= 50 in the core of the subsurface AE sampled during EUREC4A‐
OA, decreases to a ratio of 5 or less at the edge of the eddy. The value of 50 was chosen to obtain the last closed
contour of |ΔEPVz /EPVx| from the center of the eddy. Therefore, the EPV anomaly in the eddy cores is mainly due
to the EPVz term. Since the EPV anomaly is due to the anomaly in stratification and relative vorticity, the in-
fluence of the EPVx term becomes significant only at the eddy boundary. This is in agreement with the results
previously obtained for the |EPVx /EPVz| ratio. To our knowledge, this calculation has never been performed on
in‐situ data. Previous studies have neglected the EPVx term in the EPV anomaly (e.g., Paillet et al., 2002) because
it only slightly modifies the wavy shape of the boundary. In fact, this term emphasizes and quantifies the frontality
of the eddy boundary.

A drawback of this criterion is that it also detects regions where ΔEPVz > EPVx outside the core of the eddy.
Therefore, one must assume the connectedness of the core to eliminate these outlying regions. Finally, note that
the lower boundary of the eddy is more obvious with this criterion. According to the last closed contour, the base
of this anticyclone is located near z = − 650 m.

Figure 10. Eddy boundary intensity for the seven mesoscale eddies. For each bin α ∈ [0.05k; 0.05(k + 1)] (except for the first
step where α ∈ [0.01; 0.05]), the area of the boundary where 0.05k ≤ |

EPVx
EPVz

| ≤ 0.05(k + 1) is computed and arbitrarily
normalized by A0.01≤α ≤ 0.05. The ordinate axis represents the normalized limit. The abscissa axis shows the value of α.
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5. Theoretical Aspects and Discussion
5.1. α − Criterion for a Generic Eddy

The purpose of this section is to apply the criterion to a generic eddy in an otherwise quiescent idealized ocean.
Our goal is to illustrate the criterion and find orders of magnitude for the α values. Consider an isolated and stable
circular eddy near the surface of a continuously stratified ocean. We assume the f − plane approximation ( f = f0).
Assume that this eddy traps water in its core, so that the density field ρ can be decomposed into cylindrical
coordinates as follows:

ρ(r,z) = ρ(z) + ρ′(r,z) (18)

ρ(z) = ρw + ρ1ez/D (19)

ρ′(r,z) = ρ0ez/He− r
δ/Rδ

(20)

ρ(z) is the stratification of a quiescent ocean composed of ρw = 1,000 kg/m3 the water density, ρ1 the surface
density anomaly relative to ρw, and D the vertical scale of the undisturbed stratification. The perturbed density
profile adds an exponential power anomaly of amplitude ρ0 and steepness δ so that for δ = 2 we recover a
Gaussian profile (Carton et al., 1989). The characteristic radius of the profile is noted as R. This anomaly de-
creases exponentially in the vertical direction on a scale H. Assuming that the eddy is in hydrostatic and

Figure 11. Vertical section showing the modulus of the ratio between ΔEPVz and EPVx; colors have been saturated to obtain a
homogeneous core. The clear boundary represents the region where the baroclinic term EPVx has a non‐negligible value
compared to ΔEPVz.
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geostrophic equilibrium, the velocity field vθ, the pressure anomaly p′, and the density anomaly ρ′ are related by
the following equations.

f0vθ =
1
ρw

∂p′
∂r

(21)

∂p′
∂z

= − gρ′ (22)

As for the model, for simplicity, only the geostrophic component of the velocity is calculated, but as we have seen,
the eddy Rossby number may not be small.

Substituting the expression ρ′ into these equations and calculating the pressure and velocity leads to:

p′(r,z) = p0ez/He− r
δ/Rδ

(23)

vθ(r,z) = V0(
rδ− 1

Rδ− 1) e
z/He− r

δ/Rδ
(24)

with p0 = − ρ0gH and V0 =
− δp0
f0ρwR

. The relative vorticity can also be computed with the velocity field and we
introduce the buoyancy field:

ζ(r,z) =
δVm

R
(
rδ− 2

Rδ− 2) (1 −
rδ

Rδ) e
z/He− r

δ/Rδ
(25)

b(r,z) = − g
ρ
ρw

(26)

In order to find variations of α as well as an order of magnitude, each quantity is normalized. Therefore, we
introduce the normalized variables r = r/R and z = z/H, the normalized quantities b = b/g, vθ = vθ/Vm and
ζ = ζ/(δVm/R), and the parameters ξ = H/D, γ = ρ1/ρ0. We then obtain:

b(r,z) = − 1 −
ρ0
ρw
(γeξz + eze− r

δ
) (27)

vθ(r,z) = rδ− 1eze− r
δ

(28)

ζ(r,z) = rδ− 2 (1 − rδ) eze− r
δ

(29)

ξ represents the influence of the perturbed stratification relative to that of the quiescent ocean. γ introduces the
influence of the amplitude of the density anomaly generated by the trapped water relative to the amplitude of the
density of the quiescent ocean. For an axisymmetric eddy in the f − plane, the Ertel potential vorticity is written as
follows

q = qr + qz = −
∂vθ
∂z

∂b
∂r
+ (ζ + f0)

∂b
∂z

(30)

We normalize these quantities by gVm /(HR) and compute the ratio R = qr /qz using the normalized quantities
introduced earlier, so that.

R =
qr
qz
=

qr
qz

(31)

Journal of Geophysical Research: Oceans 10.1029/2023JC020422

BARABINOT ET AL. 20 of 32

 21699291, 2024, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JC

020422 by Ifrem
er C

entre B
retagne B

lp, W
iley O

nline L
ibrary on [20/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



=
− δ2Ro(rδ− 1eze− r

δ
)
2

(δRorδ− 2 (1 − rδ) eze− rδ + 1)(γξeξz + eze− rδ)
(32)

where Ro = Vm
f0R

is the Rossby number. Equation 32 is the complete analytical expression for the limit of this
generic surface eddy described by the α − criterion. As r tends to 0, R also tends to 0; this is consistent with the
results obtained with the EUREC4A‐OA observations. However, the most interesting parameter is the limit of the
eddy, mathematically when r tends to 1. Note that the denominator is a strictly positive regular function and thatR
is defined for all r in R and for all z ∈ ] − ∞; 0]. In particular.

R(r = 1,z) =
− δ2Ro
Fξ,γ (z)

(33)

Fξ,γ (z) = γξez(ξ− 2)− 2 + e1− z (34)

As before, the denominator Fξ,γ is strictly positive, regular, and diverges when z tends to − ∞. As mentioned
above, R is negative. Note that the boundaries of the eddy depend on the square of the slope of the velocity field,
the Rossby number, the size of the buoyancy anomaly, and the ratio of the two characteristic length scales of the
stratification (at rest and perturbed). The larger ρ0 is compared to ρ1, the largerRwill be. And the further apart the
isopycnals are, the smaller H is with respect to D and the larger R will be. This dependence is interesting because
these terms are related to the baroclinicity of the eddy (related to the slope of the eddy velocity and the deviation
from the background stratification due to the presence of the eddy) and to the nonlinearity of the velocity field.
These properties determine the strength of the eddy boundaries (in terms of permeability for water exchange and
dissipation) and thus control the cohesiveness or coherence of the eddy.

Taking into account the regularity of the denominator, R is bounded and:

|R(r = 1,z)| ≤
δ2Ro

min]− ∞;0] Fξ,γ (z)
(35)

A more thorough study of the denominator shows that for ξ ≤ 2, its derivative with respect to z is negative and
consequently Fξ,γ decreases at ] − ∞; 0] to reach its minimum at z = 0, that is, at the surface. In this case the upper
limit given by Equation 35 is δ2Ro

γξe− 2+e. The influence of the density anomaly parameters is clearly visible in this

expression. For ξ > 2, Fξ,γ decreases at ] − ∞; z0] to reach a minimum at z0 = 3− ln γξ(ξ− 2)
ξ− 1 . We can show that this

quantity is always negative regardless of the value of γ.

In the literature, ξ depends on the ocean basin and the type of eddy, but an order of magnitude between 1.5 and 3 is
given. In the case where ξ = 3, two isopycnals that were initially 50 m apart are now 150 m apart in the perturbed
stratification. In parallel, ρ0 and ρ1 also depend on the eddy type and the ocean basin. As an application, for the
subsurface AE sampled during the EUREC4A‐OA eddy studied in parts 4.2 and 4.3, ρ1 is 26 kg/m3 while ρ0 is
0.1 kg/m3 (see Figure 2 panel (c)), which means that γ is 260. Taking δ = 15 (see the model in Section 4.3),
γ= 260, ξ= 2, and Ro= 0.6, we getR(r = 1,z)≤ 1.9. This value is consistent with Figure 10, where almost 100%
of the surface is characterized by a value of α less than 1.

5.2. Curvature of Isopycnals

In this section we provide a geometric interpretation of the α − criterion. In Figure 4, the boundaries of the
vortices appear to coincide vertically with the inflection points of the isopycnals. Using theoretical considerations,
we try to find out when this coincidence is verified.

Consider an isopycnal surface that is vertically displaced by the presence of an oceanic eddy in the f − plane. On
this isopycnal surface, the variations of the b‐field are zero:
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db =
∂b
∂r

dr +
∂b
∂z

dz = 0 (36)

Let us note zb the geopotential level of this isopycnal of value b. By definition, its variation with respect to r
depends on horizontal and vertical gradients such that:

dzb
dr
=
− ∂b/∂r
∂b/∂z

(37)

Searching for an inflexion point leads to the following condition:

d2zb
dr2
=

1
∂b/∂z

(−
∂2b
∂r2
+

∂b
∂r

∂2b/∂z2

∂b/∂z
) = 0 (38)

which can be re‐written:

∂2b
∂r2

∂b
∂z
=

∂2b
∂r∂z

∂b
∂r

(39)

Assuming that the eddy is in geostrophic equilibrium, the radial buoyancy gradient can be expressed as a function
of the velocity gradient using the thermal wind equation.

∂2b
∂r2
= f0

∂2vθ
∂r∂z

(40)

∂2b
∂r∂z

= f0
∂2vθ
∂z2

(41)

Re‐injecting those expressions in Equation 39 leads to:

∂2vθ
∂r∂z

∂b
∂z
=

∂2vθ
∂z2

∂b
∂r

(42)

This reflects the link between the buoyancy field and the velocity field at an inflection point.

Now, we can apply the α − criterion. On the α − boundary of the eddy, we have:

|qr| − α|qz|≥ 0 (43)

which can be simplified because ζ ≈ 0 at the boundary. Developing Equation 43, the buoyancy and velocity fields
are thus linked by:

|
∂vθ
∂z

∂b
∂r
| ≥ |αf0

∂b
∂z
| (44)

Then, we can compute the ratio between Equations 42 and 44, which leads to:

|
∂2vθ/∂z2

∂vθ/∂z
| ≤ |

∂2vθ/∂r∂z
αf0

| (45)

As in the previous section, we introduce the scales associated with each quantity:H for z, Vm for vθ, and R for r. In
order of magnitude, the isopycnal curvature corresponds to α − criterion in regions where

α≤Ro (46)
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where Ro is the Rossby number. We find the result of the previous section when it was shown that the ratio R is a
linear function of Ro. This result is also consistent with Figures 4 and 10, when we found values of α close to the
Rossby numbers of studied mesoscale eddies. For example, for the subsurface AE sampled during EUREC4A‐OA
of Figures 2, figure 10 (blue curve) showed that 98% of the boundary zone was characterized by a α lower than
0.6, consistent with a maximum Rossby number of 0.61.

5.3. Relation to the Richardson Number

To complement this theoretical approach, we establish the relationship between α and the Richardson number,
more precisely the locally defined gradient Richardson number. The gradient Richardson number Ri, often used to
describe the stability of stratified shear flow (Monin & Yaglom, 1971), is defined as the ratio of the buoyancy
frequency N2 squared to the vertical shear squared, such that:

Ri =
N2

(∂zvθ)
2 (47)

where N2= ∂zbwith the previous notation and ∂zvθ is the vertical shear for an axisymmetric and isolated vortex. It
quantifies the relative importance of stratification on velocity shear. Vertical turbulent mixing has been observed
to be greatly enhanced in regions of low (<1) Richardson number both in the laboratory (Thorpe, 2005;
Turner, 1973) and in the ocean (Peters et al., 1988; Toole & Schmitt, 1987). This number is also involved in the
symmetric instability (Buckingham et al., 2021; Thomas et al., 2013) and can be related to the theoretical elements
above. For an axisymmetric vortex under geostrophic equilibrium, EPV can be rewritten so that:

q = −
1
f0
(
∂b
∂r
)

2

+ (ζ + f0)N2 (48)

As a result, after some computation, the gradient Richardson number Ri can be written as a function of α such that:

Ri =
1

α(Rod + 1)
(49)

with Rod = ζ
f0
the dynamical Rossby number (Stegner & Dritschel, 2000). According to Hoskins (1974), a

necessary condition for symmetric instability is:

Ri<
f0

ζ + f0
=

1
Rod + 1

(50)

which is equivalent to,

Ri(Rod + 1)< 1 (51)

and finally,

α> 1 (52)

which gives an upper bound for α values in order the boundary be stable.

Figure 12 contrasts the Richardson number with the α − criterion. For in‐situ data, the vertical shear is
approximated by ∂zVo, where Vo is the velocity orthogonal to the ship track. For cruises with horizontal resolution
less than 10 km, the minimum of the Richardson number coincides with regions where α is large, consistent with
theory. Although data noise creates artificial color patches, eddy boundaries are also characterized by Ri < 1,
which are known to be regions subject to symmetric instabilities.
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6. Conclusion
To gain insight into the nature of oceanic mesoscale eddies, whose dynamical properties, evolution and
“coherence” are not yet well understood, we study a set of relatively high‐resolution observations of seven

Figure 12. Relationship between Richardson number and α: (a) Surface AE of EUREC4A‐OA, (b) Subsurface AE of EUREC4A‐OA, (c) Surface CE of M160,
(d) Surface CE of M124, (e) Both surface AEs of M124, (f) Subsurface AE of KB2017606. Magenta dots indicate locations of CTD/uCTD vertical profiles, cyan lines
are locations where ζ= 0 s− 1 (due to data noise there is no unique extremum) and dark lines are isopycnals. Vertical hatching indicates regions where α is greater than a
fraction of the Rossby number. Note that the coarse resolution of the M124 data was not sufficient to obtain a faithful Richardson number.
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mesoscale eddies collected during four field experiments (EUREC4A‐OA, M124, M160, and KB2017606).
While mesoscale eddies have been previously studied from satellite observations, numerical simulations and
idealized geophysical fluid dynamics frameworks or sparse in‐situ profiles, these have limitations in correctly
reproducing mesoscale processes. Based on analyses of this unprecedented set of observations, our study provides
a detailed characterization of the core and boundaries of the observed eddies. We show that these structures are
well defined in their properties and are best characterized by the Ertel potential vorticity framework.

In this work, we have focused in particular on the eddy boundaries, which are key to the existence and coherence
of the eddies, since their strength and permeability control how they evolve and persist. Published studies have
used different criteria to characterize these eddy boundary regions. However, they either found boundaries that
were too narrow or relied heavily on a priori reference values. In this study, we propose a new criterion to
characterize them, including their upper and lower bounds. This criterion compares the vertical and horizontal
components of the Ertel potential vorticity. The eddy boundary is characterized by a relatively intense horizontal
component of the EPV. When applied, the threshold on this component identifies a relatively broad region rather
than a point boundary. The finite width of this region indicates that local turbulent processes are at work, allowing
water mass exchanges and mixing between the eddy boundaries and the background. The boundary or frontal
zone of the eddy is also characterized by steep isopycnal slopes and a baroclinic velocity field, upon which the
intensity of the criterion (and hence the boundary) depends.

We show that the relative intensity of the horizontal component to the vertical component of the EPV depends on
the slope of the velocity field, the Rossby number, and the vertical stratification anomaly, using a theoretical
framework for a generic AE. This criterion (“relative intensity equal to the α threshold”) coincides with the
inflection points of the isopycnal surfaces when α is of order Ro. These results suggest that the strength of the eddy
boundaries, and thus the ability of the eddy to remain coherent and not dissipate, is governed by the baroclinicity
of the eddy, the degree of ageostrophy, and the intensity of the thermohaline anomaly over the background
vertical stratification. This criterion can also be expressed as a function of the well‐known Richardson number,
which helped us to define a critical value of α for which instabilities can grow. To assess the robustness and
generality of these results, this needs to be explored in more detail in future work.

This study also highlights the critical importance of not only vertical, but also horizontal high‐resolution spatial
sampling of thermohaline and velocity eddy properties. This is necessary for the minimization of errors in the
criterion estimation as well as in the identification of eddy boundaries. Therefore, we recommend that future
ocean observations should include adequate sampling spacing between vertical profiles. This recommendation
also applies to the spatial resolution of numerical models.

Finally, future work should analyze other mesoscale ocean eddies that are well resolved in terms of observations
and numerical simulations to verify the generality of the α criterion we have defined. Comparisons with Eulerian
and Lagrangian criteria are also necessary for a better understanding and characterization of eddy coherence and
the various processes that control it.

Appendix A: The Semi‐Geostrophic Charney‐Stern Criterion and a Restriction of α
Values
The intensity of an eddy boundary depends on the Rossby number, the steepness of the velocity field, and the
buoyancy anomaly as shown previously. Therefore, α is usually less than one. However, one may wonder if an
upper bound on the α values can be found. In this section, we use the semi‐geostrophic Charney‐Stern criterion for
vortex instability with a focus on the eddy boundary to find an upper bound on α values.

In fact, as mentioned above, water recirculates vertically at the eddy boundary during frontogenesis or symmetric
instability, and EPVx and EPVz are key terms in semi‐geostrophic frontogenesis (Hoskins & Bretherton, 1972).

Here we follow the Kushner and Shepherd (1995) approach to derive a semi‐geostrophic Charney‐Stern criterion
for an isolated vortex on the f − plane. Initially, we tried to adapt the Kushner and Shepherd (1995) theory in
cylindrical coordinates by adding the cyclostrophic term to the equations. However, in polar coordinates, the
radial and orthoradial velocity components are not independent due to the radius of curvature r. In particular,
vθ = rθ̇ cannot be reduced to a generalized coordinate as in the Cartesian case because of this r dependence. As a
consequence, further assumptions were necessary.
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As in Section 5.1, consider an isolated but not necessarily axisymmetric eddy, at the surface of an infinite ocean.
The radius of maximum velocity is denoted R and the generic velocity field takes the following form:

v→(r,θ,z,t) = vr(r,θ,z,t)er→+ vθ(r,θ,z,t)eθ→+ vz(r,θ,z,t)ez→ (A1)

In cylindrical coordinates, the flow is governed by the following equations.

Dvr
Dt

− (f0 +
vθ
r
) vθ = − f0v

g
θ (A2)

Dvθ
Dt

+ (f0 +
vθ
r
) vr = f0v

g
r (A3)

1
ρw

∂p′
∂z

= b′ (A4)

1
r
∂(rvr)
∂r

+
1
r
∂vθ
∂θ

+
∂vz
∂z

= 0 (A5)

Db′
Dt

= 0 (A6)

D
Dt
=

∂
∂t
+ vr

∂
∂r
+ vθ

∂
r∂θ

+ vz
∂
∂z

(A7)

where, vg
r and vg

θ are the geostrophic velocity respectively in the radial and orthoradial directions. As before, the
prime denotes the buoyancy anomaly associated with the water mass trapped in the eddy core. Since instabilities
develop locally and R is very large, we assume that the flow can be described in a local Cartesian frame near the
eddy boundary (see Figure A1). Since we study small variations of r closed to R, we define the Cartesian variable
ɛ= r − Rwith ɛ ≪ R. The curvature is locally neglected and we define the second Cartesian variable y= Rθ. Thus,

we define the local Cartesian frame ( e→ε, e→y, e→z) and the associated velocity field v→(ε,y,z,t). We also define the

rotational velocity Ω =
vθ
r in the cylindrical system, which leads to ΩR(ɛ, y, z, t) in the local Cartesian frame. Note

that ΩR is a regular function of ɛ, since it cannot diverge near the vortex center or at infinity. Then there exists a
potential χ such that dχ

dε = ΩR. This will help us to define the generalized coordinates.

In this frame of reference, equations simply write:

Figure A1. Local Cartesian frame at the eddy boundary. The curvature is locally neglected.
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Dvε
Dt

− ( f0 + ΩR) vy = − f0v
g
y (A8)

Dvy
Dt

+ ( f0 + ΩR) vε = f0vg
ε (A9)

1
ρw

∂p′
∂z

= b′ (A10)

∂vε
∂ε
+

∂vy
∂y
+

∂vz
∂z

= 0 (A11)

Db′
Dt

= 0 (A12)

D
Dt
=

∂
∂t
+ vε

∂
∂ε
+ vy

∂
∂y
+ vz

∂
∂z

(A13)

Note that this system has some peculiarities in that it retains the cyclostrophic terms, which are small but
necessary for the global analysis.

Following Kushner and Shepherd (1995), we define the generalized coordinates, T = t, E = ε + vy
f0
+

χ
f0
,

Y = y − vε
f0
+ y Ω(0)

R
f0

and Z = b′
f 20
such that.

DY
Dt

= vy (A14)

DE
Dt

= vε (A15)

DZ
Dt

= 0 (A16)

In fact, we replaced ΩR with its constant value Ω(0)
R at ɛ = 0 and at t = 0. When t is large, the variable Y is

incomplete due to the cyclostrophic term, so we cannot obtain the desired form of the problem. To the best of our
knowledge, there has never been a generalized system of quasi‐Cartesian coordinates that corresponds to polar
coordinates. This is a consequence of the presence of cyclostrophic terms. Even if our variable change is
incomplete, it does not change the stability criterion. This is because in our Cartesian frame the basic flow is
oriented according to ey→. Then the Montgomery‐Bernoulli potential for the local frame can be defined as a
function of pressure p and velocities such that:

Ψ =
p
ρ0
− f 20 Zz +

1
2
( v2ε + v2y) (A17)

which gives,

vε = −
1
f0
∂Ψ
∂Y

(A18)

vy =
1
f0
∂Ψ
∂E

(A19)

The material derivative can also be expressed using these variables:

D
DT

=
D
Dt
=

∂
∂T
−

1
f0
∂Ψ
∂Y

∂
∂E
+

1
f0
∂Ψ
∂E

∂
∂Y

(A20)
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Then, the Jacobian of the transformation is proportional to the Ertel Potential vorticity q of the flow:

q∝
∂(E,Y,Z)
∂(ε,y,z)

(A21)

For a frontal vortex, we use the inverse of this quantity to avoid isopycnal pinching. We denote this quantity as
σ = 1

q. We assume that the vortex is isolated and that the flow is inviscid, incompressible and without forcing.
Under these conditions σ is conserved:

Dσ
Dt

= 0 (A22)

From the linearized equations of motion, we now derive the linear Charney‐Stern theorem for small per-
turbations of the corresponding steady state. We linearize the motion around the rotating flow, which be-
comes a meridional steady state vy(ε). In the initial state ∂ɛ = 0, and thus ∂E = 0. The velocity field has the
following form:

v→(ε,y,z,t) = v′ε(ε,y,z,t)eε
→+ ( vy( y,z) + v′y(ε,y,z,t)) ey

→+ v′z(ε,y,z,t)ez
→ (A23)

Now the problem is similar to that of Kushner and Shepherd (1995). By neglecting the boundary terms, the pseudo
momentum equation can be written as follows:

∂
∂t
∫

D

⎛

⎜
⎜
⎜
⎜
⎝

σ′2

2σ ∂σ
∂E

⎞

⎟
⎟
⎟
⎟
⎠
dD = 0 (A24)

where D is the infinite space. Denoting 〈⋅〉 the average on the ey→ direction, the equation takes the following form:

∂
∂t
∬

⎛

⎜
⎜
⎜
⎜
⎝

〈σ′2〉
2σ ∂σ

∂E

⎞

⎟
⎟
⎟
⎟
⎠
dεdz = 0 (A25)

As a result, the quantity σ ∂σ
∂E must change its sign and vanish in order for instability to occur. Considering this:

σ =
1
q

(A26)

∂σ
∂E

=
∂σ
∂ε

∂ε
∂E

(A27)

We obtain:

∂σ
∂E

= −
q
q4

∂q
∂ε

∂ε
∂E

(A28)

Therefore, the quantity q ∂q
∂ε

∂E
∂ε must change sign for an instability to grow. This necessary condition for instability

gathers three conditions:

• If q ∂q
∂ε retains its sign, then

∂E
∂ε = ωa/ f0, whereωa is the absolute vorticity, must change sign.We recover the

necessary condition for the anticyclonic ageostrophic instability (McWilliams et al., 2004);
• If ∂q

∂ε
∂E
∂ε retains its sign, then qmust change its sign, and as a consequence the Ertel potential vorticity must

change its sign. We recover the necessary condition for symmetric instability with f0 > 0 (Fjørtoft, 1950).
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• Finally, if q maintains its sign, then ∂q
∂ε

∂E
∂ε must change sign, which is the necessary condition for inertial

instability (Eliassen, 1983). In fact, ∂q∂ε represents the angular momentum and ∂E
∂ε its derivative with respect

to ɛ.

The second condition gives us a constraint on the α values. The regions in which the Ertel potential vorticity
becomes negative correspond to the regions in which α > 1. Therefore, from this theoretical necessary condition,
we expect α < 1 for a large part of the vortex boundary. This statement is consistent with Figure 10, which shows
that α is less than 1 for almost 100% of the eddy boundary area.

Data Availability Statement
In this study, we benefited from numerous data sets freely available and listed here. The concatenated RVs
Atalante and Maria S Merian hydrographic and velocity data (L’Hegaret Pierre & Sabrina., 2020) are freely
available on the SEANOE website: https://www.seanoe.org/data/00809/92071/, accessed on 15 March 2021.

The hydrographic and velocity measurements taken during the M124 cruise (Karstensen & Krahmann, 2016;
Karstensen, Speich, et al., 2016; Karstensen & Wölfl, 2016) of the RV Meteor are freely available on the
PANGAEA web site: https://doi.org/10.1594/PANGAEA.902947, https://doi.pangaea.de/10.1594/PANGAEA.
863015, https://doi.pangaea.de/10.1594/PANGAEA.869740.

The hydrographic and velocity data collected during the M160 cruise (Dengler et al., 2022a, 2022b; Dengler,
Fischer, et al., 2022) of the RV Meteor are freely available on the PANGAEA web site: https://doi.org/10.1594/
PANGAEA.943409, https://doi.org/10.1594/PANGAEA.943432, https://doi.org/10.1594/PANGAEA.943657.

Finally, hydrographic and velocity data collected during the RV Kristine Bonnevie KB2017606 cruise (Fer
et al., 2019) are freely available on the NMDC website: https://doi.org/10.21335/NMDC‐1093031037.
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