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Blackfin tuna (Thunnus atlanticus) is a small tuna distributed in the western Atlantic Ocean where it is exploited by growing recreational and
commercial regional fisheries. In this work, genome-wide genetic variation was analysed to investigate the occurrence of stock subdivision. A de
novo assembly of the blackfin tuna genome was generated using Illumina paired-end sequencing data and applied as a reference for population
genomic analysis of specimens from nine localities (average sample size per locality n = 72) spanning most of the blackfin tuna distribution range.
A total of 2139 single-nucleotide polymorphisms were discovered and genotyped using the double-digest restriction associated DNA sequencing.
Pairwise exact homogeneity tests were significant in 24 out of 36 population pairs and significant spatial autocorrelation of genotypes was
observed for specimens collected within 2250 km of each other. However, divergence among locality samples was very low (pairwise FST range
0.0002–0.0025) and significant temporal variations were detected in localities sampled multiple times. Approaches to detect cryptic groups
de novo were unsuccessful. Additional sampling is warranted to determine if multiple stocks need to be defined for management and assess
temporal and spatial patterns of gene flow connecting them.
Keywords: blackfin tuna, double-digest RAD sequencing, population genetics, single nucleotide polymorphism, stock structure, Thunnus atlanticus.

Introduction

Tunas (family Scombridae) are highly specialized fast-
swimming pelagic predators known to migrate large distances
annually (Mariani et al., 2016; Pecoraro et al., 2016; Reglero
et al., 2017). Their adaptations to fast swimming and long
distance travel (Graham and Dickson 2004) suggest popula-
tions could be connected over broad distances, possibly at the
scale of entire oceanic basins. While some smaller bodied tu-
nas such as the skipjack tunas have a circumglobal distribu-
tion (Ely et al., 2005) and could display long distance con-
nectivity as shown in large tunas, others such as the blackfin
tuna and the longtail tuna have more restricted ranges (West
Atlantic and Indian-West Pacific Ocean, respectively; Collette
and Nauen, 1983), suggesting that the spatial scope of con-
nectivity is more limited due to behavioural or physiological
capacity.

The blackfin tuna (Thunnus atlanticus) is a small tuna
growing to approximately 100 cm and weighing up to 21 kg
(Collette et al., 2022), making it the smallest of the Thunnus
genus. The species occupies the narrowest geographic range
of all Atlantic true tuna species. It is restricted to the western
Atlantic basin where it has been reported from Massachusetts
to as far south as Brazil, although it is mostly found in trop-
ical and sub-tropical waters where the temperature is likely

to exceed 20◦C. In the United States, blackfin tunas are abun-
dant throughout the Gulf of Mexico and South Atlantic Bight
regions (Collette and Nauen, 1983). They can be found at
depths between 20 and 700 m but are most common between
40 and 50 m (Maghan and Rivas, 1971). They are known
to form large schools with skipjack tuna and their distribu-
tion has been linked to several factors such as water clarity,
steepness of the continental shelf, and plankton concentra-
tions correlated with terrestrial runoff and upwelling zones
(De Sylva et al., 1987). Their diet consists of surface and deep-
sea fish, squid, and arthropods including amphipods, shrimps,
and crabs (Frimodt and Dore, 1995; Collette et al., 2022).
Spawning occurs from late spring to early fall when water
temperatures are at or above 27◦C, with a peak of activity in
the early summer months (Idyll and De Sylva, 1963; Juárez,
1978; Richardson et al., 2010; Bezerra et al., 2013).

Blackfin tunas are harvested by commercial and recre-
ational fisheries across their range (Mathieu et al., 2013). His-
torically, they were not popular for recreational fishing in
the United States, but they have been increasingly targeted
in recent years by recreational fishers (Saillant et al., 2022)
with most landings occurring along the US east coast, off the
Florida Keys and around Puerto Rico (Personal Communica-
tion of the National Marine Fisheries Service, Fisheries Statis-
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tics Division). Commercial landings in the United States are
negligible (Saillant et al., 2022), although the species may be
captured as bycatch of other tuna fisheries. It is harvested com-
mercially using longlines and purse seines in the Caribbean
and South America with highest landings recorded in Cuba,
the Dominican Republic, the Lesser Antilles, Venezuela, and
Brazil (Mathieu et al., 2013). Blackfin tunas are managed at
the basin level under the international jurisdiction of the Inter-
national Commission for the Conservation of Atlantic Tunas
(ICCAT, https://www.iccat.int/en/#) for international waters
and is of high interest to the Western Central Atlantic Fish-
eries Commission because of importance to artisanal/small-
scale fisheries by members relayed by domestic management
entities such as the highly migratory species division of the
National Oceanic and Atmospheric Association (NOAA) in
the United States for captures within the Exclusive Economic
Zone. Considering the rising popularity of blackfin tunas in
the United States and other countries exploiting them in west-
ern Atlantic waters, stock structure needs to be documented
to design appropriate units for management. However, there
is currently no clear information on population subdivision in
this species.

Based on available records of sexually mature individu-
als, eggs, or larvae, Mathieu et al. (2013) suggest that black-
fin tunas reproduce over most of their distribution range,
thus possibly forming a metapopulation composed of many
demes. Mark—recapture studies by Luckhurst et al. (2001) in
Bermuda and Singh–Renton and Renton (2007) in St. Vin-
cent and the Grenadines revealed some instances of seden-
tary behaviours where some blackfin tunas were recaptured in
the tagging area, sometimes after very long periods (4 years).
However, long-distance movement was also suggested by
Luckhurst et al. (2001) for individuals tagged in the Bermuda
Islands where recaptures only occurred during the summer
months while blackfin tunas were absent during cold months
and hypothesized to move south during those periods. These
results suggest that gene flow across geographic populations
of blackfin tuna may be partially restricted by some degree of
sedentary behaviour.

Information on genetic stock structure is limited to a study
by Saxton (2009), comparing the Gulf of Mexico and the US
east coast using six microsatellites and sequence of the con-
trol region of mitochondrial DNA and a more comprehensive
study by Saillant et al. (2022) using 13 microsatellite markers
surveyed in nine geographic population from Brazil to North
Carolina. Saxton (2009) reported significant divergence be-
tween the US east coast and the Gulf of Mexico. Saillant et
al. (2022) reported very weak divergence across the sampling
surface with a possible isolation of the Brazilian population
from the rest of the range and a weak pattern of isolation by
distance. Both studies were limited by the small numbers of ge-
netic loci used, which prevented assessing potential adaptive
patterns, and by the lack of or incomplete temporal replica-
tion of sampling. The advent of next-generation sequencing
and the development of genotyping by sequencing methods
have enabled cost-effective generation of high-density genome
scans including thousands of genetic loci (Peterson et al.,
2012). The Restriction site-associated DNA (RAD) sequenc-
ing methods have become the most popular genotyping option
in molecular ecology studies due to their immediate applica-
bility to non-model species (O’Leary et al., 2018). The reliabil-
ity of genotyping and the number of polymorphic loci that can
be recovered are dependent on rigorous data filtering and are

improved when a reference genome is available and used to
map RAD sequencing reads (Shafer et al., 2016), an approach
implemented in studies of other tuna species (Laconcha et al.,
2015; Pecoraro et al., 2018; Vaux et al., 2021).

This study addresses the limitations of previous popula-
tion genetic studies of blackfin tuna by employing high-density
genome scans to describe the genetic variation in geographic
populations across the species’ distribution range and multiple
sampling years. A draft reference genome was developed and
used to map RAD sequences obtained from population sam-
ples and both neutral and non-neutral patterns of structure
were investigated to assess comprehensively genetic structure
accounting for local adaptation of populations.

Methods

Development of a draft reference genome
assembly

Fin tissue from a single representative individual captured
in the north central Gulf of Mexico was used to isolate ge-
nomic DNA using the MagBind Blood and Tissue kit (Omega
Bio-Tek, catalogue number M6399-01). The sample was se-
quenced on the Illumina NovaSeq6000 platform to obtain
150 bp paired end reads.

The raw Illumina reads were trimmed using fastp (v0.20.0,
Chen et al., 2018) as described in Supplementary Materials
File S1. The filtered reads were then used to estimate the size of
the blackfin tuna genome using the k-mer frequency counting
method (https://bioinformatics.uconn.edu/genome-size-estim
ation-tutorial/). The k-mer frequency distribution in illumina
reads was calculated using the program jellyfish (Marçais and
Kingsford, 2011), for k-mer sizes varying from 17 to 25.

Trimmed short reads were assembled using SparseAssem-
bler (Ye et al., 2012), with a k-mer size of 90. DB2OLC (Ye
et al., 2016) was then used on the short-read contigs to per-
form a consensus with a k-mer size of 31. The trimmed raw
reads were mapped onto the assembly using BWA-MEM (Li
and Durbin, 2009) and then used to polish the consensus with
Pilon (Walker et al., 2014). The trimmed short reads were then
mapped onto the assembly again and used to identify and re-
move haplotigs using purge_haplotigs (Roach et al., 2018).
Finally, trimmed short reads were mapped to the obtained as-
sembly for a final round of polishing with Pilon. Details of
each assembly step are provided in Supplementary File S1.
Assemblies were assessed using metrics produced by Quast
(Gurevich et al., 2013). Genome completeness was assessed
using the Eukaryota database of Benchmark Universal Single
Copy Orthologs (BUSCO, Simão et al., 2015).

Sampling from blackfin tuna populations

A total of 650 adult blackfin tuna samples from nine ge-
ographic localities were analysed during the study (Figure
1, Table 1). Localities surveyed were offshore the US east
coast (South Carolina—SCA), the Florida Keys (KEY), the
north central Gulf of Mexico in the area of Pensacola (PNS),
the Western Gulf of Mexico in the area of Corpus Christi
(TX), the US Caribbean (offshore Puerto Rico—PR), the
French Antilles (La Martinique—MRT), Venezuela (southern
Caribbean—VZ), and Brazil (offshore Baía Formosa, and St.
Peter and St. Paul Archipelago—BRZ and BRZ_SP) providing
samples from across the species range. Samples were taken
post-mortem from fish carcasses through fishery dependent
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Figure 1. Sampling localities for blackfin tuna.

Table 1. Number of samples obtained for each locality and sampling year. Values in parenthesis reflect the number of samples remaining after sequence
quality filtering.

Locality ID 2015 2016 2017 2018/19

South Carolina SCA – 50 (23) 49 (29) –
Florida Keys KEY – 48 (32) – 41 (24)
Pensacola PNS – 46 (30) – –
Texas TX – – 51 (28) –
Puerto Rico PR – 44 (23) 34 (16) –
La Martinique MRT – 64 (39) – –
Venezuela VZ 50 (31) 50 (14) – –
Brazil Baia Formosa BRZ – 46 (6) – 49 (17)
Brazil St. Peter/Paul BRZ-SP – – – 28 (14)

sampling. Localities were sampled between 2015 and 2019,
aiming to sample each locality in two consecutive years within
that range to allow assessing temporal stability of spatial pat-
terns of structure, with a target of 50 specimens per locality
per year (thus, 100 samples per locality). The actual sample
sizes per locality and sampling year are reported in Table 1.
The two northern Gulf of Mexico localities, La Martinique
Island, and St. Peter and St. Paul archipelago could only be
sampled once (in 2016 for La Martinique and Pensacola, 2017
for Texas, and at the end of 2018 for St. Peter and St. Paul).
Available capture coordinates are archived with genotype data
in the University of Southern Mississippi public online repos-
itory Aquila (doi: 10.18785/rwpg.ds.01). Exact coordinates
were not known for samples collected during port sampling

from fishermen. Captured location was assumed proximal to
the landing port in those cases (within ∼100–150 km, the typ-
ical range of offshore fishing trips in US waters). Tissue sam-
ples, a 1 cm2 fin clip or 0.5 cm3 muscle sample, were taken
from each fish and stored in either 20% DMSO-EDTA, 95%
ethanol, or Sarkosyl urea lysis buffer (8 M urea, 1% Sarkosyl,
20 mM sodium phosphate, and 1 mM EDTA) until DNA isola-
tion. Sampling targeted fish of reproductive size (FL > 50 cm).

Sequencing

DNA was isolated using either the Blood & Tissue DNA HDQ
96 Kit or the EZ-96 tissue kit (Omega Bio-Tek, catalogue
number D1196-01). After DNA isolation, each sample was
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allocated to one of nine pools of sequencing libraries; each
pool received an equal number of samples from each sam-
pling location and year to minimize the impacts of sequenc-
ing bias that could occur if samples from individual locali-
ties and year were sequenced on separate sequencing runs.
Samples were prepared for sequencing using a modified ver-
sion of the Double Digest Restriction Associated DNA pro-
tocol (ddRAD-Seq; Peterson et al., 2012). The modifications
to the protocol include the use of EcoRI and MspI restric-
tion endonucleases (New England Biolabs), along with custom
adapters fitted with 6 bp unique barcodes allowing multiplex-
ing up to 100 unique individuals in the same sequencing run
and an 8 bp Universal Molecular Identifier (UMI, EuroFins)
to isolate PCR duplicates in downstream analyses. The bar-
code was included in both the P1 (“forward”) and P2 (“re-
verse”) adapters to ensure proper demultiplexing of reverse
sequencing reads and prevent errors due to “barcode hop-
ping” (van der Valk et al., 2020). Samples were pooled and
size selected using a 300–500-bp window on a Pippin Prep
(Sage Science), and the DNA concentration and fragment size
distribution of the pool were assessed on a NanoDrop 2000
and an Agilent 2100 BioAnalyzer DNA chip system, respec-
tively. The obtained libraries were sequenced at the University
of Colorado Genomics and Microarray Core facility to gen-
erate on average 6 million paired-end reads (150 bp × 2) per
individual using the Illumina NovaSeq6000 platform.

Data filtering

The raw sequence data were demultiplexed at the sequenc-
ing facility and processed using the dDocent pipeline (Puritz
et al., 2014). Briefly, raw sequences were trimmed to remove
adapter sequences and filtered to remove low quality bases
using a sliding window approach in fastp (Chen et al., 2018).
Reads were then mapped on the draft reference genome us-
ing BWA (Li and Durbin, 2009) and SNPs were called using
FreeBayes (Garrison and Marth, 2012). The settings used for
read mapping and SNP discovery in dDocent are available in
Supplementary File S1.

The resulting raw SNP dataset were initially filtered using
VCFtools (Danecek et al., 2011) to retain loci with less than
50% missing data, a minimum genotype quality value as es-
timated by FreeBayes of 30, a minimum depth of 10, and a
minimum allele frequency of 10−6, and to remove individuals
with more than 20% missing data. dDocent_filters (provided
by dDocent) was then used to remove sites with extreme al-
lelic balance, improperly paired reads, and SNPs called from
overlapping forward and reverse reads. The vcfallelicprima-
tives transformation from vcflib library (https://github.com/v
cflib/vcflib) was used to deconstruct multi-nucleotide poly-
morphisms into SNPs. Once markers were decomposed into
SNPs, indels and multi-allelic SNPs were removed in VCFtools
and a maximum missing data tolerance of 20% was applied.
Individuals with significantly high or low heterozygosity were
identified using χ2 tests in vcftools and subsequently removed.
Loci departing significantly from Hardy–Weinberg equilib-
rium within localities were identified in vcftools and removed.
The Benjamini–Hochberg false discovery rate correction (Ben-
jamini and Hochberg, 1995) was applied to determine signif-
icance of within-population exact tests of Hardy–Weinberg
equilibrium with an alpha (-h) of 0.0055 to account for the
nine tests (nine locality samples) performed simultaneously
for each locus. This method was applied as it calculates het-

erozygosity on a per-locality basis to minimize the influence of
the Wahlund effect on allele frequencies if structure is present.
The data was then filtered to retain only loci with a minimum
minor allele frequency of 0.01. Close kin dyads were iden-
tified with the methods presented below and removed from
the dataset, followed by a final treatment of thinning SNPs
within 10 kb of each other to reduce possible effects of linkage
disequilibrium. A combination of the software PGDSpider2
(Lischer and Excoffier, 2012), and Julia package PopGen.jl
(Bezanson et al., 2017; Dimens and Selwyn, 2022) were used
to convert the datasets between file formats for subsequent
analyses.

Population genetic analysis

Relatedness
Studies of other tunas have revealed the presence of close-kins
in the same geographic samples (Anderson et al., 2019a). The
presence of groups of close kins in regional samples in this
study would affect inferences on population structure by con-
founding the similarity of members of the same sibling with
the similarity of specimens from the geographic population
they originate from when compared to other regions. To ad-
dress this potential source of bias and describe the distribution
and frequency of close kins in blackfin tuna samples, pairwise
relatedness was estimated using PC-Relate (Conomos et al.,
2016), which builds on the KING method (Manichaikul et al.,
2010) and is robust against the presence of population struc-
ture (Conomos et al., 2016). The pairwise relatedness matrix
was partitioned into related and unrelated individuals using
PC-Air (Conomos et al., 2015) with default parameters and
PC-Relate was performed on the unrelated set of individuals.
The resulting eigenvalues were projected onto the subset of re-
lated individuals to obtain the relatedness coefficients for each
sample pair. The results were validated by simulating 1000 of
pairs each of full siblings, half siblings, and unrelated indi-
viduals using the PopGenSims.jl Julia package (Dimens and
Selwyn, 2022) and performing the full analyses on those sim-
ulated data.

The mean number of alleles and expected heterozygosity
in each locality sample were computed using Arlequin v.3.5
(Excoffier and Lischer, 2010).

Population structure
Loci potentially impacted by natural selection were identified
using an outlier analysis implemented in outFLANK (Lotter-
hos and Whitlock, 2015) using a q threshold of 0.05. We
performed a second outlier analysis using Bayescan (Foll and
Gaggiotti, 2008, prior odds 100 and 10000 bootstrap itera-
tions) with p-values were adjusted for multiple testing using
FDR correction and a false discovery rate of 0.05. A third
analysis was also performed with Baypass (Gautier, 2015,
10000 burn in iterations, 10000 evaluations, pilot run length
1000; Olazcuaga et al., 2020), comparing empirical results to
results using the same parameters on 10000 randomly simu-
lated loci and evaluating significance at a confidence interval
of 99%.Pairwise FST estimates (Hudson et al., 1992; Bhatia
et al., 2013) were computed and their significance assessed
using 10000 permutations of alleles in Arlequin v.3.5. Hierar-
chical analyses of molecular variance (Excoffier et al., 1992)
were conducted in Arlequin accounting for geographic local-
ities and sampling year within locality. Significance of covari-
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ance components was assessed based on 10000 permutations
of haplotypes.

Structuring according to an isolation by distance model
was first assessed by calculating the least-cost paths between
localities using the R package marmap (Pante and Simon-
Bouhet, 2013), followed by testing the correlation between ge-
netic and geographic distances using a Mantel test in Genalex
6.5.1 (Smouse et al., 1986; Peakall and Smouse, 2012). Ge-
netic distance was estimated using the multilocus distance of
Smouse and Peakall (1999). The logarithm of geographic dis-
tance was used in the computations to account for disper-
sal in a 2-dimensional habitat. Occurrence of spatial structur-
ing was also examined using spatial autocorrelation analysis
in Genalex. This analysis allows detecting patterns of spatial
structure (through analysis of correlation of genotypes) even if
variation does not follow the strict isolation by distance model
across the entire distance range sampled as assumed in Man-
tel tests. The multilocus spatial autocorrelation coefficient (r),
was computed based on geographic least-cost distance and the
multilocus genetic distance described by Smouse and Peakall
(1999). When spatial autocorrelation is occurring, the esti-
mated value of r among proximal samples differs significantly
from zero and decreases with increasing geographic distance.
Because the estimation of spatial autocorrelation is influenced
by the size of the distance class (Peakall et al., 2003), r was
computed based on a series of increasing distances between
sampling locations. The distance at which r no longer differs
significantly from zero provides an approximation of the dis-
tance at which genetic divergence (population structure) can
be inferred (Peakall et al., 2003). Significance of r was deter-
mined via 1000 random permutations of genotypes among
distance classes; significance of spatial autocorrelation coeffi-
cients was inferred when the observed estimate of r lied be-
yond the upper 95% limit of the distribution of r values ob-
tained during the 1000 permutations (Peakall and Smouse,
2012).

A Discriminant Analysis of Principal Components (DAPC)
was implemented using the R package Adegenet (Jombart,
2008; Jombart et al., 2010; R Core Team, 2013). The opti-
mal number of principal components to retain was determined
using the cross-validation method on samples grouped by
locality-year with 100 iterations accounting for 1–300 com-
ponents. DAPC was first conducted grouping samples a priori
in regions (northwestern Atlantic (US East coast samples) Gulf
of Mexico (Texas, Florida Keys, and Pensacola), Caribbean
Sea (Puerto Rico, La Martinique, and Venezuela), and Brazil
(St Peter and St Paul, Baía Formosa) to describe differentiation
between these groups.

The following analyses were conducted to discover popula-
tion clusters within the data set de novo. A Principal compo-
nent analysis was performed on the data using the R language
package ape (R Core Team, 2013; Paradis and Schliep, 2019).
A spatial principal component analysis was performed using
the R packages ape and adegenet (Jombart, 2008), where dis-
tances were calculated using a minimum spanning tree (type
4) and geographic distance estimated in marmap as described
above (spatial autocorrelation analysis). A DAPC was con-
ducted without a priori grouping samples in localities or re-
gions, but instead inferring the optimal number of genetic
clusters present in the data de novo by applying k-means
clustering. The optimal number of principal components in-
ferred from cross-validation was used in k-means clustering
and the DAPC was then performed on the samples with groups

Table 2. Characteristics of the T. atlanticus de novo genome assembly.

Metric Value

# contigs (≥0 bp) 203 667
# contigs (≥1 000 bp) 74 166
# contigs (≥5 000 bp) 26 463
# contigs (≥10 000 bp) 13 084
# contigs (≥25 000 bp) 3 117
# contigs (≥50 000 bp) 454
Largest contig 158 390 bp
Total length 514 764 407 bp
Total length (≥1 000 bp) 478 919 186 bp
Total length (≥5 000 bp) 365 013 046 bp
Total length (≥10 000 bp) 270 573 561 bp
Total length (≥25 000 bp) 117 994 980 bp
Total length (≥50 000 bp) 29 616 960 bp
N50 11 597 bp
N75 4 773 bp
L50 10 887
L75 27 556
GC content 39.68%
# N’s 47
BUSCO Full (eukaryota) 44.55%
BUSCO Partial (eukaryota) 18.81%

reclassified by their K-cluster assignments. Cryptic structure
within the sampled range was also examined using model-
based Bayesian clustering in fastStructure (Raj et al., 2014)
accounting for a range of one to nine clusters.

Results

Genome sequencing and assembly

Illumina sequencing produced 730100108 raw reads for
a total of 110245116308 bp. Sequence filtering retained
710740790 reads for a total of 107321859290 bp. The total
length of the assembly was 514764407 bp in 203667 contigs
with a GC content of 39.71%. A large fraction of the assem-
bly was in small contigs with only 365013046 bp in contigs
over 5 kb. The N50 and L50 were 10873 bp and 11820 bp,
respectively and the largest contig was 158390 bp (Table 2).
The estimate of the size of the Blackfin tuna genome using
the k-mer frequency spectrum counting method obtained with
varying k-mer sizes were all between 773 and 791 mb (μ =
785121418 bp, σ = 5416115). According to this estimate, the
assembly included approximately 65% of the Blackfin tuna
genome and sequencing covered the genome at a depth of
139X with filtered reads. BUSCO assessment of the complete-
ness of the assembly indicated that it contained 44.55% and
18.81% full and partial orthologs for the eukaryota database,
respectively, suggesting an approximate 63% assembly com-
pleteness.

Population genomics analysis

The filtering process reduced the data to 2139 biallelic SNPs
across 334 samples (Supplementary Table S1). The numbers
of individuals retained per geographic population averaged 36
and ranged between 14 and 57.

The KING and PCRelate analyses were performed us-
ing four principal components and identified four full-sibling
pairs, and one half-sibling pair (Figure 2). Among these ob-
served kin pairs, all full sibling pairs consisted of samples that
were in adjacent position in the sample set. These pairs were
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Figure 2. Pairwise relatedness (r) estimates between 334 Blackfin tunas collected from nine localities in the western Atlantic Ocean. The distribution of
estimates of r (x-axis) is represented as a function of the estimated probability of sharing no alleles (k0, x-axis).

conservatively removed as they possibly reflected contamina-
tion during sampling or processing.

OutFLANK detected 55 outlier SNPs (Figure 3) although
only eight of these had expected heterozygosity values > 0.1
and were the most robust candidate outliers (Whitlock and
Lotterhos, 2015). Bayescan identified five SNP outlier, three
of which were also putative outliers identified by outFLANK
discussed above. Baypass analysis identified 58 putative SNP
outliers, none of whom were corroborated by either Bayescan
or outFLANK, and whose heterozygosities were all < 0.1.

Pairwise FST estimates (Table 3) ranged from 0.0007 (VZ-
PNS) to 0.006 (TX-BRZSP). The corresponding exact homo-
geneity tests were significant (ɑ = 0.05) for 24 (of 36) popula-
tion pairs after FDR correction accounting for a false discov-
ery rate of 5% (Table 3).

Analyses of molecular variance revealed very weak spatial
and temporal components of molecular variance (0.04% of
molecular variance, p = 0.253 for geographic locality, 0.22%
of molecular variance, p = 0.012 for year of capture nested in
locality), which was consistent with the very low FST estimates
reported above.

The Mantel test yielded a non-significant correlation be-
tween genetic distance and the logarithm of geographic dis-
tance (r = 0.02, p = 0.083). Spatial autocorrelation analysis
runs using variable distance classes in increments of 250 km
revealed that the highest correlation of genotypes was ob-
served when samples were aggregated within a 500 km dis-
tance and decreased rapidly for distance classes above 750 km
(Figure 4). Spatial autocorrelation remained significant for
distances up to 2250 km.
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Figure 3. Outlier loci scans using three methods: outFLANK, Bayescan, and Baypass. Points denote loci, with heterozygostiy (x-axis) plotted against FST

(y-axis). The vertical line represents He = 0.1.

Table 3. Pairwise FST estimates of SNP data (below diagonal) and associated p-values (above diagonal) comparing samples of Blackfin tuna geographic
populations. FST values are rounded to four decimal places.

BRZ BRZSP KEY MRT PNS PR SCA TX VZ

BRZ ∗0.021 ∗0.002 ∗0.001 ∗0.018 0.2543 0.1471 ∗0.001 0.0791
BRZSP 0.0032 ∗0.002 ∗0.013 0.4655 ∗0.033 0.035 ∗0.002 0.1461
KEY 0.0028 0.0049 ∗0.014 ∗0.024 ∗0.006 ∗0.008 ∗0.001 ∗0.013
MRT 0.0033 0.0042 0.0014 0.1792 ∗0.001 ∗0.003 ∗0.013 ∗0.025
PNS 0.0021 0.0017 0.0016 0.0011 0.038 0.2883 ∗0.001 0.5445
PR 0.0016 0.0038 0.0017 0.0024 0.0016 ∗0.007 ∗0.001 0.1481
SCA 0.0018 0.004 0.0013 0.0018 0.0011 0.0017 ∗0.001 0.2012
TX 0.0051 0.0062 0.0045 0.0022 0.0042 0.005 0.0037 ∗0.001
VZ 0.0019 0.0031 0.0013 0.0014 0.0007 0.0011 0.0008 0.0039

An asterisk (∗) denotes a p-value significant at ɑ = 0.05 after FDR correction.

Figure 4. Correlograms illustrating the influence of geographic distance on spatial autocorrelation. Correlation (r) of genotypes sampled in proximal
locations estimated when the first distance class increases 100 km increments (x-axis) visualized against spatial autocorrelation (r, y-axis). 95%
bootstrapped confidence error bars for r (black). Red dash symbols represent upper and lower bounds of a 95% CI for r generated under the null
hypothesis of a random geographic distribution of samples.
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DAPC accounting for geographic regions taken as a priori
groups visualized a weak degree of differentiation of the South
Carolina samples and the Brazilian samples (southwestern At-
lantic) that both diverged from a central group that included
the Gulf of Mexico and Caribbean sample groups that ap-
peared to show a greater degree of overlap (Supplemental File
S2).

Approaches to detect structure de novo (principal compo-
nent analysis, spatial principal component analysis, k-means
clustering followed by DAPC, Bayesian clustering in FAST-
Structure) did not reveal interpretable cryptic units within the
dataset. The results of these approaches are illustrated in Sup-
plemental File S2.

Discussion

In this work, samples from localities spanning most of the
Blackfin tuna’s distribution range were characterized using
2139 SNP loci, providing substantially improved inference
power compared to previous studies of genetic variation in
this species. The dataset also provided a first assessment of
loci putatively under divergent selection.

All pairwise FST values were very low (<0.007) indicat-
ing divergence among geographic populations was very weak
across the sampled range, a finding consistent with past sur-
veys of Blackfin tuna populations using microsatellite markers
alone (Saillant et al., 2022) or in combination with mtDNA
sequence variation (Saxton, 2009). Weak divergence across
large geographic areas is common in tunas (Barth et al., 2017;
Pecoraro et al., 2018; Anderson et al., 2019b) and other large
pelagics and likely reflects high gene flow facilitated by their
ability to travel long distances, combined with reduced ef-
fects of genetic drift. Blackfin tuna display high levels of ge-
netic diversity (Antoni et al., 2014), which suggest they har-
bor large population sizes and their differentiation under ge-
netic drift is, therefore, expected to be slow. Blackfin tunas, as
other species in the region, are presumed to have expanded
their range following the last glacial maxima ∼20 kya (Ely et
al., 2005; Pruett et al., 2005). Accordingly, some geographic
populations may be currently isolated, but not have accumu-
lated enough genetic difference to be detectable with present
methods, especially if populations experience periodic resid-
ual gene flow (Pruett et al., 2005). This scenario is plausi-
ble for Blackfin tuna due to the species’ high mobility during
early life stages (passive dispersal) and adult life stages (active
migration).

Clustering methods to detect population structuring de
novo did not reveal occurrence of major groups. Spatial struc-
turing was detected during spatial autocorrelation analyses
suggesting structuring was related in part to geographic dis-
tance. In this study, the slope of the isolation by distance model
was not significantly different from zero, but significant spa-
tial autocorrelation of samples collected within 2250 km was
observed and the correlation was highest among samples col-
lected within 500–750 km of one another. Isolation by dis-
tance was also inferred from the study of variation at mi-
crosatellites in a previous study (Saillant et al., 2022) and is
consistent with the site fidelity of adults observed in tagging
studies and/or limited dispersal at the larval stage. Tagging
studies to date were conducted in Bermuda (Luckhurst et al.,
2001) and the Southern Caribbean (Singh–Renton and Ren-
ton, 2007) and indeed indicated site fidelity of tagged fish
(Luckhurst, 2014), tentatively suggesting that site fidelity of

adults could contribute to the isolation of geographic stocks
and isolation by distance.

The 750 km distance at which spatial structure was highest
is close to the maximum distance separating the main geo-
graphic areas (US east coast, Gulf of Mexico, Caribbean Sea,
and Brazil). Disentangling the role of isolation by distance
and that of possible discontinuities within the range is diffi-
cult with this dataset because of the distribution of the sam-
pled localities. Characterizing additional localities within the
range to increase sampling density would be helpful to for-
mally determine whether discontinuities occur between the
four groups or if the genetic structure is truly primarily ex-
plained by an isolation by distance model. For example, di-
vergence of the Brazilian group from the northern hemisphere
populations was suggested by previous microsatellite data
(Saillant et al., 2022) and was suggested by the pairwise FST

involving the two Brazilian localities and the DAPC using a
priori groups. Sampling blackfin tuna populations between
north Brazil and the Southern Caribbean Sea would be use-
ful to assess whether a discontinuity is occurring and fur-
ther assess patterns and rates of gene flow between these two
regions.

Information on the geographic location of capture was lim-
ited for some of the localities where samples were obtained
from fishing boats at landing who did not communicate the
exact coordinates of captures (captures were assumed to have
occurred within 150 km of the landing port in those cases).
Therefore, comparisons of genotypes collected at small dis-
tances were lacking from the dataset and may have prevented
detection of isolation by distance in Mantel tests. In non-
equilibrium situations, isolation by distance establishes first at
short distance scales (Robledo–Arnuncio and Rousset, 2010)
and reaches a plateau when geographic distance between sam-
ples exceeds 0.56σ /

√
2μ, where σ is the standard deviation of

parental position relative to offspring position and μ is the
mutation rate (Rousset, 2008). Future studies incorporating a
larger number of proximal localities with accurate capture co-
ordinates would be valuable to refine the isolation by distance
model and estimate dispersal distance parameters.

Divergence between the US East coast and the Gulf of Mex-
ico was suggested by an earlier study using mitochondrial
DNA and six heterologous microsatellites (Saxton, 2009) but
not confirmed in the study of Saillant et al. (2022) with 13
homologous microsatellites, who only reported a weak isola-
tion by distance pattern and no subdivision within Blackfin
tunas sampled north of Brazil. This study showed marginal
divergence between Gulf of Mexico and US east coast dur-
ing pairwise homogeneity tests. These inconsistencies likely
reflect, in part, that previous datasets had insufficient power to
detect the very fine divergence between the two groups. Con-
nectivity between the Gulf of Mexico, Caribbean and East US
coast could occur at the larval stage through passive transport;
Thunnus larvae tend to be widely distributed in the continen-
tal shelf and the continental slope in the north central Gulf
of Mexico (Cornic et al., 2017). The loop current which be-
comes the Florida current and then the Gulf Stream (http://oc
eancurrents.rsmas.miami.edu/atlantic/atlantic.html) was dis-
cussed to promote favourable conditions for Thunnus larvae
when it extends farthest north (Cornic et al., 2017). Larvae
distribution overlapped with the current itself and some larvae
(e.g. located East of the Mississippi river) could, therefore, be
transported to the Florida Keys or the east coast of the United
States. Survival of Thunnus larvae is hypothesized to be pro-
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moted in frontal zones (Lang et al., 1994) where food is avail-
able, and if spawning occurs near these mesoscale structures,
proximity to eddies promotes continued passive larval disper-
sal along with suitable foraging habitat for early life stages
(Bakun, 2006). Eddies spinning off the loop current promote
opportunities for movement as they propagate, typically west-
ward (i.e. from central Gulf to the western Gulf (Damien et
al., 2021), but larvae caught within the main Loop Current
and transported over long distances towards the US east coast
would be expected to be outside of the favourable conditions
promoted by eddies and may have low survival. Accordingly,
recruitment would be promoted in the northern Gulf (yet with
mixing within the Gulf), contributing to isolate this group
from the US east coast.

The low FST between localities was a major challenge in
this study and likely contributed to the lack of significance in
most of the spatial analyses. Low FST has been shown to create
clustering inaccuracies (Miller et al., 2020) and FST values in
the range of those obtained here are incompatible with detec-
tion of subdivision in structure (Chen et al., 2007). This issue
can be overcome in future studies by increasing the sampling
density as discussed above as the power to detect isolation
by distance patterns is improved when samples separated by
short distances are included during estimation (Leblois et al.,
2003). Increasing the density of the genome scan with meth-
ods such as low coverage whole genome sequencing (Clucas
et al., 2019) would also improve the likelihood of detecting
structure related to local adaptation when it occurs. Popula-
tion structure of other tunas was indeed revealed by markers
under selection, even when groups were homogeneous at neu-
tral markers (e.g. Pecoraro et al., 2018).

In this study, only eight outlier loci identified in outFLANK
had heterozygosity > 0.1 and can be considered robust can-
didate loci experiencing selection (Whitlock and Lotterhos,
2015). The small number of candidate outlier loci found in
this work suggests that, if they exist, the genomic regions af-
fected by divergent selection and local adaptation may be very
limited. However, considering the number of loci surveyed in
this genome scan (2139) and estimates of the size of blackfin
tuna genome (774 Mb), the average interval between markers
was expected to be 362 kb such that a selected locus would be
expected to be within 181 kb of one of the markers surveyed
in this study. Genomic regions affected by selection may have
remained undetected considering the average size of linkage
blocks in studies of other fish is only a few kilobases (Lowry
et al., 2017). We note that three pairs of the 55 candidate out-
liers identified by outFLANK were SNPs defined on the same
genomic contigs, which strengthens the inference of selection
at these loci. Increasing the density of the genome scan is war-
ranted to capture a greater fraction of adaptive variation in the
species. The estimates of pairwise FST identified in this work
are on average 27.5 times higher in the outlier dataset than
the neutral dataset, and sampling a greater proportion of the
genome not only will provide more information on local adap-
tation but will also improve the power to detect population
subdivision. Greater genomic sampling can be achieved with a
more complete genome assembly and a larger set of loci across
the entire genome such as those derived from low coverage
whole-genome sequencing (Therkildsen and Palumbi, 2017;
Clucas et al., 2019). Information on the genomic proximity
of genetic loci would also allow performing a sliding window
analysis where FST is assessed in groups of markers located
in the same genomic regions. This approach is expected to

reduce the occurrence of false positive outliers by observing
the lack of signal in neighboring loci (Hohenlohe et al., 2010;
Bourret et al., 2013). The draft reference assembly generated
in this study was incomplete and highly fragmented due to the
type of sequencing data used to generate the assembly and in-
formation on the genomic proximity of candidate outlier loci
was limited to only those sharing the same contig. A more
complete genome assembly would also facilitate performing
sliding window analyses to identify putative genomic regions
of selection, if they exist.

The marginal evidence for divergent selection and local
adaptation may also be related to the high levels of gene flow
in blackfin tuna. High gene flow is expected to counterbal-
ance the differentiation caused by divergent selection and local
adaptation, effectively preventing local adaptation from oc-
curring, or limiting it to loci affected by strong selective pres-
sures (Lenormand, 2002; Conover et al., 2005; Cheviron and
Brumfield, 2009). Genomic studies of other marine species
revealed the occurrence of outliers in metapopulations that
were also exhibiting structure at neutral markers (Nielsen et
al., 2009; Bradbury et al., 2010; Limborg et al., 2012; Lacon-
cha et al., 2015). However, outlier loci were also discovered
in metapopulations where no significant spatial structure was
observed at neutral loci (Lamichhaney et al., 2012; Pujolar et
al., 2014; Grewe et al., 2015). It is possible that blackfin tu-
nas utilize their high capacity for movement to select habitats
with favourable characteristics across their range leading to
little or no local selection, although the wide range utilized
by the species suggests that regional populations would differ
by some environmental characteristics such as the differences
in reproductive season timing discussed above for the South
American group.

Finally, while a few close-kin pairs were identified (four full
siblings, one half sibling), the full sibling pairs identified were
all adjacent samples in our sample set. Each of the four sib-
ling pairs co-occurred in the same locality, which could indi-
cate true co-location of siblings bit could also reflect sample
contamination. The remaining half sibling pair (SCA—VZ)
may be a true close-kin pair, which would suggest dispersal
between the US east coast and northern South America.

A mechanisms potentially contributing to the incidence of
co-located kins include some behavioural cohesion (“close
kin co-dispersal”), where larvae spawned by the same par-
ents remain together through early life stages and in some
cases may stay together through sexual maturity (Anderson
et al., 2019b). Another potential explanation is a sweepstake
recruitment where cohorts of a regional population include
a disproportionate contribution of a few siblings (Hedgecock
and Pudovkin, 2011). Further sampling to investigate patterns
of relatedness across various life stages is warranted to better
evaluate the occurrence of co-located close-kins in blackfin
tuna.

In conclusion, this study indicates very weak divergence
among geographic stocks and no clear cryptic subdivision in
major groups within the sampled range. Isolation by distance,
although weak, seems to be a structuring factor as spatial
autocorrelation was found in this and a previous studies of
blackfin tuna but needs to be formally evaluated with a more
even sampling. Increased sample sizes in regional populations
and higher marker density would be valuable to evaluate if
discrete units occur within the range that would warrant sep-
arate management and describe their temporal and geographic
distribution.
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