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Abstract : 

Small pelagic fishes such as sardine and anchovy are among the richest species in essential fatty acids 
that are eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), whose bioavailability may 
depend on its esterification to polar or neutral lipids. The EPA and DHA quantities in neutral and polar 
lipids were compared in sardine (from the English Channel) and anchovy (from the Bay of Biscay) fillets, 
and in red and white muscle separately. Sardine fillets had the highest EPA+DHA content (760±670 vs 
370±510 mg/100 g in anchovy fillets), mainly because of their largest proportion of lipid-rich red muscle 
and its relatively high lipid content. However, DHA esterified to polar lipids was higher in anchovy than in 
sardine fillet (270±60 vs 230±30 mg/100 g). EPA+DHA content were higher in red than white muscle for 
both species. This study highlights the nutritional interest of red muscle to provide essential dietary fatty 
acids to consumers, and the necessity to consider its importance in nutrition studies. 

Highlights 

► Small pelagic fish are important sources of essential dietary fatty acids ► EPA+DHA contents are 
higher in sardine than in anchovy fillet ► EPA+DHA contents are higher in red that in white muscle ►
DHA bounded to phospholipids is higher in anchovy than in sardine fillet
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Abstract  

Small pelagic fishes such as sardine and anchovy are among the richest species in essential 

fatty acids that are eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), whose 

bioavailability may depend on its esterification to polar or neutral lipids. The EPA and DHA 

quantities in neutral and polar lipids were compared in sardine (from the English Channel) 

and anchovy (from the Bay of Biscay) fillets, and in red and white muscle separately. Sardine 

fillets had the highest EPA+DHA content (760±670 vs 370±510 mg/100g in anchovy fillets), 

mainly because of their largest proportion of lipid-rich red muscle and its relatively high lipid 

content. However, DHA esterified to polar lipids was higher in anchovy than in sardine fillet 

(270±60 vs 230±30 mg/100g). EPA+DHA content were higher in red than white muscle for 

both species. This study highlights the nutritional interest of red muscle to provide essential 

dietary fatty acids to consumers, and the necessity to consider its importance in nutrition 

studies. 

Key words: dark muscle, neutral lipids, polar lipids, fatty acids, European sardine, anchovy, 

biomolecule 

 

1.  Introduction 

Omega-3 and -6 long-chain polyunsaturated fatty acids (n-3 and n-6 LC-PUFA), and 

especially eicosapentaenoic acid (EPA; 20:5n-3), docosahexaenoic acid (DHA; 22:6n-3) and 

arachidonic acid (ARA; 20:4n-6) are among essential dietary biomolecules involved in 

physiological functions in humans, such as cardiac and brain functioning, hormone synthesis, 

and immune response (Calder, 2018; Swanson et al., 2012). Due to the insufficient de novo 

synthesis capacities of these molecules by humans (Burdge and Calder, 2005), the World 

Health Organisation recommends a dietary daily intake of 250−500 mg of EPA+DHA, 

including to reduce oxidative damage of the brain (Butt and Salem, 2016; FAO/WHO, 2010).  

Bioavailability is the degree of absorption and utilization of a nutrient contained in a food, 

varying depending the physiological state of the organism. It is affected by the chemical form 

and interactions with other food components. In the case of DHA, some recent research 

suggests that its chemical binding form may affect its bioavailability: a higher fraction of 
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dietary DHA would reach the brain when esterified to (lyso)phospholipids  (i.e., polar lipids, 

that constitute cell and organelle membranes) rather than to triglycerides (i.e., neutral lipids, 

that constitute energetic reserve) (works reviewed by Ahmmed et al., 2020; Sugasini et al., 

2019). Although not systematically observed in humans (e.g., Ulven et al., 2011), such a 

difference could change the nutritional interest of a food. However, literature about the 

distribution of DHA between phospholipids and triglycerides is scarce in small pelagic fish. 

Small pelagic fish such as European sardine (Sardina pilchardus, Walbaum 1792) and 

European anchovy (Engraulis encrasicolus, Linnaeus 1758) are among the richest species in 

EPA and DHA (ca. 400−1700 mg/100g) (Gladyshev et al., 2018). They are the largest group 

of species landed in marine fisheries (ca. a quarter of global landings; FAO, 2020), and 

intended to supply these molecules to the human population through direct and indirect 

consumptions as oils and meals for animal rearing (Gladyshev et al., 2018; Tacon and 

Metian, 2013). In the same way as most teleosts, small pelagic fish have two types of 

muscles: the red (or dark) muscle used during slow (aerobic) swim, and the white (or light) 

muscle used in fast (anaerobic) swim. Red muscle has a better ability to beta-oxidise lipids 

for metabolic energy than the white muscle. It is also present in a higher proportion than the 

white muscle in mobile fish species (McLaughlin and Kramer, 1991; Teulier et al., 2019). It 

constitutes a fifth to a third of the total muscular mass in pelagic fish such as Clupeidae 

(including anchovies and sardines) and Scombridae (Greer‐Walker et al., 1975; Teulier et al., 

2019). In some Clupeidae (e.g., Peruvian anchovy), the red muscle is richer in total lipids and 

in DHA (in g/100g) than the white muscle (Albrecht-Ruiz and Salas-Maldonado, 2015). In 

spite of its relatively high nutritional quality, the red muscle is sometimes whitened during 

industrial processes (e.g. Zaghbib et al., 2017) or removed before human consumption 

because of its distinctive taste and its poorer conservation caused by its high myoglobin and 

haemoglobin contents (Videler, 2011). However, in fillets of European sardine and anchovy, 

little is known on the contribution of the red muscle to the overall EPA+DHA content and on 

the proportion of DHA esterified to phospholipids. 

In this study, we tested the hypothesis that the content in n-3 LC-PUFA of fish fillet varies 

according to species (European sardine and anchovy), muscle type (red and white muscles), 

and lipid fraction (neutral and polar lipids). To this end, we compared fish fillets, considering 

the relative proportion of white and red muscles (which varies according to species), and 

white and red muscle separately. For all samples, we considered polar and neutral lipids 

separately and total lipids sum of the neutral and polar lipids). 
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2.  Material & Methods 

2.1. Fish and tissues sampling 

Fifteen sardines S. pilchadus were caught during fishery surveys carried out by Ifremer in the 

English Channel (CGFS, September 2020) and 15 anchovies E. encrasicolus were caught in 

the Bay of Biscay (EVHOE, October 2020), where both species were in non-reproductive 

periods (Petitgas et al., 2010). In the Bay of Biscay anchovy mainly spawn between May and 

July (Motos et al., 1996), whereas sardines from the English Channel mainly spawn in April 

to June and can present a second spawning period in late October (Stratoudakis et al., 2007). 

Fish were dead by the time of sampling. 

Their fillets, containing red and white muscles, were removed and stored at -80°C on-board. 

Once ashore, frozen red muscle and dorsal white muscle of fillets were isolated and stored 

back at -80°C before subsequent analysis. 

2.2. Moisture analysis 

Moisture was determined by gravimetry, weighing muscle samples before and after a 72-

hours freeze-drying period (Christ Alpha 1-2 LD Plus lyophilizer). Immediately after freeze-

drying, samples were homogenised with a manual mortar and pestle and stored back at -80°C 

before lipid extraction.  

2.3. Lipid extraction and fatty acid analysis 

Lipid extraction and FA analysis were performed as described in Mathieu-Resuge et al. 

(2020) with slight modifications detailed below. Total lipids were extracted from ca. 10 mg 

of dry tissue with 6 mL of CHCl3:MeOH (2:1, v:v) into glass vials. The neutral and polar 

lipids were then separated by solid phase extraction (SPE) at low pressure on a silica gel 

micro-column with elution by 10 mL of CHCl3:MeOH (98:2, v/v) and 20 mL of MeOH, 

respectively. After addition of an internal standard (23:0, in free FA form), both lipid 

fractions were dried in an EZ-2 evaporator (Genevac). After hydrolysis in 1 ml of KOH-

MeOH (0.5 M) for 30 min at 80°C, samples were transesterified with 1.6 mL of 

MeOH:H2SO4 (3.4%; v/v) for 10 min at 100°C. FA methyl esters (FAME) were recovered in 

hexane and analysed on a TRACE 1300 gas chromatograph programmed in temperature and 

equipped with a splitless injector, a ZB-WAX column (30m×0.25mm IDx0.2μm) and a 

flame-ionisation detector (GC-FID, Thermo Scientific), using hydrogen as vector gas. 
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Obtained chromatograms were processed with Chromelon 7.2 (Thermo Scientific). Fifty-five 

FAME were identified by comparing their retention time with references from three 

commercial mixtures (37 components FAME, PUFA1 and PUFA3, Sigma), and in-house 

standard mixtures from marine bivalves, fish and microalgae GC-MS certified. Quantification 

of FAME was based on the internal standard recovery, and then FA contents were expressed 

in mass fraction of wet weight (mg g
-1

 ww and mg/100g ww) and in percentage (%) of total 

FA. Finally, the loss of fatty acids during the separation of neutral and polar lipids was 

verified by quantifying fatty acids on total lipids: the recovery rate was 91.6 ± 10.0% (n=9).  

2.4. Data analysis 

The differences in the FA composition (in %, considering only the FA representing >1% of 

total FA) were analysed by permutational analysis of variance (PERMANOVA, Anderson 

2014) using Euclidean distances as dissimilarity values among individuals and considering 

species, muscle tissues and lipid fractions as factors. Principal component analyses (PCA) 

were performed to visualise the variation in FA profile composition between species (sardine 

and anchovy), muscle tissues (white and red muscles) and lipid fractions (neutral and polar 

lipids).  

The FA content of fish fillet was calculated as follows, considering the relative proportions of 

red and white muscle:  

(Eq.1) FAfish fillet = a * FAwhite muscle + (1-a)* FAred muscle 

with a=0.71 for sardine and a=0.83 for anchovy to consider the relative proportions of red 

and white muscles of each species (Greer‐Walker et al., 1975), assuming that these values 

remain constant over time, and FA designated the FA of interest (either total FA, EPA+DHA 

or DHA contents).  

Contents in total FA, EPA+DHA, and DHA (in mg g
-1

) were independently compared 

between species (sardine and anchovy), muscle tissues (fish fillet, white and red muscles), 

and lipids fraction (total, neutral and polar lipids) with Wilcoxon tests (non-parametric, with 

W the statistic of the test) because conditions of normality-distributed data (Shapiro-Wilks 

test) and homoscedasticity (Bartlett test) were not respected. All statistical analyses and 

graphics were performed with R, with packages Vegan (Oksanen et al., 2020), stats (R Core 

Team, 2020) and ggplot2 (Wickham, 2016).  

 

3.  Results 
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The FA profile (%) differed between the lipid fractions (PERMANOVA, df=1, r²=0.82, 

p<0.001), between the species (df=1, r²=0.04, p<0.01), between the lipid fractions of each 

species (df=1, r²=0.02, p<0.01), and to a lesser extent between the muscle tissues (df=1, 

r²=0.003, p<0.05). The two first axes of the principal component analysis explained 57% of 

the total inertia (39% on the first and 18% on the second component, respectively; Fig. 1). FA 

profiles of neutral and polar lipids were discriminated on the first principle component, while 

the two species were discriminated on the second principle component (Fig. 1). Polar lipids 

of both species were characterised by high proportions of LC-PUFA, such as ARA, n-6 DPA 

(docosapentaenoic acid, 22:5n-6) and DHA, while neutral lipids contained high proportions 

of monounsaturated FA (MUFA) and C18 PUFA.  

Using Eq. 1 and results provided in Table 1, we found that the total FA content of sardine 

fillets was on average 2.9 times higher than that of anchovy (37.8 ± 15.1 vs 12.9 ± 7.9 mg g
-1

, 

respectively; n=15 for each species, W = 9, p < 0.01; Fig. 2a). This difference was primarily 

due to neutral lipid FA content of fillets which was on average 3.3 times higher in sardine 

than in anchovy (25.4 ± 14.1 vs 7.7 ± 7.3 mg g
-1

, respectively;  W = 20, p < 0.01, Fig. 2a), 

while sardine fillets’ polar lipid FA content was 0.9 times lower on average than that of 

anchovy (5.1 ± 0.7 vs 5.6 ± 1.2 mg g
-1

, respectively;  W = 157, p < 0.05, Fig. 2a). The total 

EPA+DHA content in fish fillet was on average 2.0 times higher in sardine than in anchovy 

(7.6 ± 6.7 vs 3.7 ± 5.1 mg g-1, respectively; W = 1372, p < 0.001; Fig. 2b). Again, this result 

was primarily due to neutral lipids EPA+DHA content which was on average 3.3 times 

higher in sardine than in anchovy fish fillets (10.5 ± 8.1 vs 3.2 ± 6.3 mg g-1, respectively;  W 

=191, p < 0.01; Fig. 2b) while there were no differences in polar lipids EPA+DHA contents 

between species (4.5 ± 2.8 and 4.1 ± 3.5 mg g-1, for sardine and anchovy respectively;  W = 

580, p = 0.43; Fig. 2b). The total DHA content in fish fillet was on average 1.4 times 

significantly higher and more variable in sardine than in anchovy (5.8 ± 7.7 vs 4.1 ± 1.6 mg g
-

1
, respectively; W = 175, p < 0.01; Fig. 2c). The DHA content in neutral lipids of the fish 

fillet was on average 2.4 times higher in sardine than in anchovy, while in polar lipids it was 

1.2 lower in sardine than in anchovy (neutral lipids: 3.6 ± 1.6 vs 1.5 ± 1.3 mg g
-1

; W = 172, p 

< 0.01; polar lipids: 2.3 ± 0.3 vs 2.7 ± 0.6 mg g
-1

, respectively; W = 41, p < 0.01; Fig. 2c).  

In both species, the total FA content of the red muscle was always significantly higher 

than in the white muscle, whatever the lipid fraction considered (Table 1; Wilcoxon tests). 

Specifically, EPA+DHA content were higher in the red muscle than in the white muscle: 

EPA+DHA content in neutral lipids was significantly 13.6 and 4.4 times higher in the red 
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muscle compared to the white muscle for anchovy and sardine, respectively (Table 1; W = 

332, p < 0.01 and W = 222, p < 0.01, respectively). The same difference was observed in 

polar lipids, with 4.7 and 3.7 times significantly higher EPA+DHA content in the red muscle 

than in the white muscle, for anchovy and sardine, respectively (Table 1; W = 450, p < 0.01 

and W = 210, p < 0.01). Finally, DHA content in neutral lipids was 14.5 and 5 times higher in 

the red muscle than the white muscle for anchovy and sardine, respectively (Table 1; W = 

336, p < 0.01 and W = 224, p < 0.01), and in polar lipids it was 4.8 and 3.5 higher (Table 1; 

W = 450, p < 0.01 and W = 201, p < 0.01). 

4.  Discussion 

Sardine fillets have clear nutritional interests due to their high EPA+DHA contents compared 

to anchovy fillets (760 ± 670 vs 370 ± 510 mg/100 g ww), with a large proportion of these 

FA as part of the neutral lipids. Contents in EPA and DHA of both lipid fractions were higher 

in the red than in the white muscle in both species, being a good source these essential FA. In 

particular, DHA esterified to polar lipids was about 4 times higher in red than in white 

muscle for both species, highlighting its high nutritional quality and the interest to retain it for 

before human consumption.  

Fatty acid contents vary according to fish species and muscle types 

In this study, sardine fillets contained about three times more of FA (or lipid) than those of 

anchovy. This may be explained by the higher proportion of the lipid-rich red muscle in 

sardine compared to anchovy. However, some environmental (e.g., season), and biotic (e.g., 

period of reproduction) factors can also influence the lipid content of both muscles between 

species. The influence of seasonality on the lipid content of fish from a given geographic area 

is commonly known and affected by the phenology of the species (Luzia et al., 2003; 

Pethybridge et al., 2014). It is also known that during the non-reproductive period (as it is the 

case for the studied individuals) clupeid species generally store lipids into muscles, which can 

then be mobilised toward gonads during the reproductive period (Brosset et al., 2015; 

McBride et al., 2015). These seasonal differences, largely documented for the white muscle 

(e.g. Pethybridge et al., 2014), may also occur in the red muscle. For instance, the red muscle 

of the Peruvian anchovy E. ringens is 2-fold richer in EPA+DHA during fall than during 

winter (Albrecht-Ruiz and Salas-Maldonado, 2015), probably linked to its reproductive cycle. 

Moreover, regardless of the season, the Peruvian anchovy contained a similar amount of 

EPA+DHA as the European anchovy in white muscle (ca. 0.8−1g/100g dw vs 1 g/100g dw 
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here) and red muscle (ca. 2.4−5.3 g/100g dw vs 4.6 g/100g dw here). It is thus necessary to 

consider the effect of seasonal changes on total lipid and EPA+DHA contents when 

examining the fish fillets as a source of LC-PUFA.  

 

The muscles of the small pelagic fish were not equivalent sources of LC-PUFA. The red 

muscle had a greater nutritional interest than the white muscle, due to its largest amount of 

EPA and DHA. Similarly, in sardinella, the red muscle is systematically fattier and richer in 

EPA+DHA than the white muscle: EPA+DHA content of the Madeiran sardinella Sardinella 

maderensis and of the round sardinella S. aurita was 925 and 445 mg/100g ww in the white 

muscle, and 2877 and 2460 mg/100g ww in the red muscle, respectively (Njinkoué et al., 

2002). However, the respective contribution of red and white muscles to EPA and DHA 

supply is difficult to generalize for all small pelagic fish as available data remain scarce, as 

well as information on the influence of seasonal, spatial and nutritional conditions on 

variations in the proportions of red and white muscles. Red muscle also contains more polar 

lipids than white muscle, which has been observed in other species (e.g. tropical tuna 

(Sardenne et al., 2017), and attributed to a greater amount of mitochondria and a difference in 

cell size, but this remains to be clarified in small pelagic fish. Moreover, the red muscle is 

richer in other micronutrients than white muscle, in particular in iron (20-fold higher for E. 

ringens; Albrecht-Ruiz & Salas-Maldonado, 2015), for which deficiencies are prevalent in 

several human populations (Hicks et al., 2019). For all these reasons, the red muscle of 

sardine and anchovy seem to be of high interest for human nutrition and it would be advisable 

to optimise its valorisation.  

 

Although our study focused only on lipid and FA contents, it is important to take into account 

other elements such as persistent organic pollutants and trace metal elements to fully address 

the benefit-risks balance of the consumption of these fish fillets (Noger-Huet et al., 2022; 

Romanić et al., 2021; Sardenne, et al., 2020). Different levels of essential micronutrients and 

heavy metals were observed between white and red muscles of several species but the 

direction of this variation was species-specific, requiring more investigation for small pelagic 

fishes (e.g., yellowfin tuna, Bosch et al., 2016; striped bass and northern pike, Charette et al., 

2021). Moreover, studies revealing that small pelagic fishes are safe for human consumption 

and represent a valuable source of essential FA have generally not compared independently 

the red and white muscles FA and pollutant contents, and are perhaps missing structural 

information on the origin of both FA and pollutants.  
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Distribution of fatty acids between lipid fractions 

While both lipid fractions are ingested by consumers, they may not have the same degree of 

assimilation and it could be of interest to consider them separately when comparing the 

nutritional values of food sources. In this study, polar lipids had a lower quantity and 

diversity of FA than neutral lipids. However, they were dominated by LC-PUFA such as 

ARA, 22:5n-6 and DHA, highlighting the high quality of their composition and supporting 

the nutritional interest of this fraction. In fat fish (~2% ww or 8% dw) the proportion of polar 

lipids (as % of total lipids) is lower than in lean fish (Rincón-Cervera et al., 2020; Sardenne 

et al., 2020), which may give the misleading impression that lean fish fillets are equivalent or 

better sources of DHA esterified to polar lipids. For instance, we found similar %DHA in 

polar and neutral lipids of anchovy and sardine: regardless of the muscle type, neutral lipids 

contained 18-19% vs 13-15% of DHA, and polar lipids 48% vs 42-46% of DHA in anchovy 

and sardine, respectively. Nevertheless, our quantitative results indicate that sardine fillet (fat 

at the sampled season here) was a slightly better source of DHA esterified to polar lipids than 

anchovy fillet (leaner in comparison to studied sardines). Nonetheless, further intensive 

investigation is required to confirm the higher beneficial health effects of DHA esterified to 

polar lipids for humans before any food recommendation can be drawn by nutritional 

institutions. 

 

Conclusion 

This study highlights the importance of the red muscle of European sardine and anchovy as a 

source of essential LC-PUFA, for human nutrition. Inter-species differences were observed in 

LC-PUFA contents, but to compare the nutritional benefits of small pelagic fishes, other 

factors are likely important to consider such as the seasonal cycle and the fishing location. 

There is also a crucial need to provide comparable quantitative units (e.g., in mg/g or in 

g/100g of wet or dry weight, giving moisture in the latter case) to express FA contents to 

allow for reliable comparisons between studies, as already highlighted by Gladyshev et al., 

(2018).  

Ethical approval 

Fish were sampled during the scientific surveys CGFS (September 2020) and EVHOE 

(October 2020), under European's data collection framework (DCF) and sampling 
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authorisation were provided by provided French national authorities (DPMA). Fish were dead 

by the time of sampling. 
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Figure 1. Principal component analysis (PCA) of the fatty acid composition (mass %) of 

neutral and polar lipids (displayed by dot shape), in red and white muscles (displayed by 

colours) of both species (sardine S. pilchardus and anchovy E. encrasicolus, displayed by 

colour intensity).  
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Figure 2. Total fatty acid, EPA+DHA and DHA contents (mg g
-1

) in total, neutral and 

polar lipids of sardine S. pilchardus and anchovy E. encrasicolus fillets (i.e. considering 

the relative proportions of white and red muscles in the fillets). Significant inter-specific 

differences are indicated with stars (Wilcoxon tests; * =p <0.05, ** =p <0.01, *** =p 

<0.001). 

Table 1. Fatty acid compositions of neutral and polar lipid fractions (mean ± SD; mg g
-1

 wet 

weight) in red and white muscles of anchovy E. encrasicolus and sardine S. pilchardus. 

Capital letters indicate significant differences (p < 0.05) within polar lipids and minuscule 

letters indicate significant differences within neutral lipids, between both muscles for each 

species independently (Wilcoxon tests).  

 Anchovy Sardine 

Red muscle White muscle Red muscle White muscle 

Fatty 

acids 

Neutral lipids Polar lipids Neutral 

lipids 

Polar 

lipids 

Neutral lipids Polar lipids Neutral lipids Polar 

lipids 

ARA 0.3 ± 0.4 
a 

0.2 ± 0.1 
A 

0.0 ± 0.0 

b 

0.0 ± 0.0 

B 

0.7 ± 0.2 
a 

0.2 ± 0.0 
A 

0.1 ± 0.1 
b 

0.1 ± 0.0 

B 

EPA 2.9 ± 3.6 
a 

1.0 ± 0.3 
A 

0.2 ± 0.2 

b 

0.3 ± 0.1 

B 

6.7 ± 2.5 
a 

1.6 ± 0.6 
A 

1.7 ± 1.5 
b 

0.3 ± 0.1 

B 
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DHA 5.8 ± 5.7 
a 

7.6 ± 1.9 
A 

0.4 ± 0.4 

b 

1.6 ± 0.4 

B 

10.5 ± 3.6 
a 

5.6 ± 0.9 
A 

2.1 ± 1.6 
b 

1.6 ± 0.3 

B 

EPA+DHA 8.7 ± 9.2 
a 

8.7 ± 2.2 
A 

0.6 ± 0.5 

b 

1.8 ± 0.4 

B 

17.2 ± 5.6 
a 

7.3 ± 1.2 
A 

3.9 ± 3.0 
b 

1.9 ± 0.3 

B 

Σ n-3 10.7 ± 11.6 
a 

9.1 ± 2.3 
A 

0.8 ± 0.7
 

b 

1.9 ± 0.5 

B 

21.6 ± 7.3 
a 

7.6 ± 1.3 
A 

4.9 ± 3.9 
b 

2.0 ± 0.3 

B 

Σ n-6 1.5 ± 1.7 
a 

0.7 ± 0.2 
A 

0.1 ± 0.1
 

b 

0.1 ± 0.0 

B 

2.6 ± 0.8 
a 

0.5 ± 0.1 
A 

0.5 ± 0.4 
b 

0.1 ±0.0 
B 

n-3/n-6 7.1 
a 

13.2 
A 

8.0
 b 

17.1 
B 

8.3 
a 

16.3 
A 

9.9 
b 

18.7 
B 

Σ SFA 12.0 ± 12.3 
a 

4.7 ± 1.2 
A 

0.8 ± 0.7
 

b 

1.1 ± 0.3 

B 

24.5 ± 8.7 
a 

4.0 ± 0.7 
A 

5.7 ± 4.8 
b 

1.1 ± 0.2 

B 

Σ MUFA 6.8 ± 6.9 
a 

1.3 ± 0.4 
A 

0.4 ± 0.4
 

b 

0.2 ± 0.1 

B 

20.6 ± 8.6 
a 

1.0 ± 0.2 
A 

4.5 ± 4.3 
b 

0.2 ± 0.1 

B 

Σ PUFA 12.6 ± 14.0 
a 

9.8 ± 2.5 
A 

0.9 ± 0.8
 

b 

2.0 ± 0.5 

B 

25.2 ± 8.4 
a 

8.1 ± 1.4 
A 

5.7 ± 4.5 
b 

2.1 ± 0.3 

B 

Σ LC-PUFA 9.9 ± 10.6
 a 

9.4 ± 2.4 
A 

0.7 ± 0.6
 

b 

2.0 ± 0.5 

B 

20.8 ± 6.8 
a 

7.9 ± 1.3 
A 

4.7 ± 3.7 
b 

2.1 ± 0.3 

B 

Total FA 31.7 ± 33.1 
a 

15.9 ± 4.0 
A 

2.1 ± 1.8
 

b 

3.3 ± 0.8 

B 

70.7 ± 24.5 
a 

13.2 ± 2.3 
A 

15.9 ± 13.7 
b 

3.5 ± 0.5 

b 

EPA, Eicosapentaenoic acid (20:5n-3); DHA, Docosahexaenoic acid (22:6n-3); SFA, saturated FA; MUFA, monounsaturated 

FA; PUFA, polyunsaturated FA; LC-PUFA, long chain polyunsaturated FA ≥ 20C (n=14 fatty acids) 
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Highlights 3 to 5 – (85 ch incl spaces) 

● Small pelagic fish are important sources of essential dietary fatty acids 

● EPA+DHA contents are higher in sardine than in anchovy fillet 

● EPA+DHA contents are higher in red that in white muscle 

● DHA bounded to phospholipids is higher in anchovy than in sardine fillet 
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