
CONTRIBUTED RESEARCH ARTICLE 6

knitrdata: A Tool for Creating Standalone
Rmarkdown Source Documents
by David M. Kaplan

Abstract Though Rmarkdown is a powerful tool for integrating text with code for analyses in a single
source document exportable to a variety of output formats, until now there has been no simple way
to integrate the data behind analyses into Rmarkdown source documents. The knitrdata package
makes it possible for arbitrary text and binary data to be integrated directly into Rmarkdown source
documents via implementation of a new data chunk type. The package includes command-line and
graphical tools that facilitate creating and inserting data chunks into Rmarkdown documents, and the
treatment of data chunks is highly configurable via chunk options. These tools allow one to easily
create fully standalone Rmarkdown source documents integrating data, ancillary formatting files,
analysis code and text in a single file. Used properly, the package can facilitate open distribution of
source documents that demonstrate computational reproducibility of scientific results.

Introduction

The basic principles of open science are that the data, research methodologies and analysis tools (e.g.,
the specific computational tools) used for scientific research should be made publicly available so that
others can confirm and validate scientific analyses. Open science is particularly important for studies
and disciplines for which true experimental replication is often difficult or impossible due to spatial,
temporal or individual specificity [e.g., we cannot replicate Earth; Powers and Hampton (2019)]. In
these cases, computational reproducibility, i.e., the ability to reproduce analytic results given the
original data and analysis code, can still be achieved and can provide significant credibility to results
(Powers and Hampton 2019). Though scientists, governments and journals often place great emphasis
on access to raw data (Cassey and Blackburn 2006; Lowndes et al. 2017), it is important to remember
that computational reproducibility can only be assured if data, methods, computational tools and the
relationships between these are all openly accessible. Even when data are made publicly available,
there are often significant gaps between the Methods section of a publication and the raw data that
complicate reproducibility without access to the detailed code used to generate results. It is, therefore,
essential for computational reproducibility that the code used to generate results be distributed along
with the data and the publication itself. Though there are a number of potential ways to distribute all
these elements together, probably the most common current approach is to place the data in a publicly
accessible data store (e.g., Dryad) and to associate the code with the publication via the supplementary
material and/or by including it in the data store. Though this is a perfectly viable approach that
can greatly enhance transparency of research, it physically separates data from analysis code and
interpretation of results, potentially leading to confusion and/or loss of information regarding how
these different element interrelate. At times, it would be more convenient, transparent and/or effective
to join all the elements into a single document. The R package presented here, knitrdata (Kaplan
2020a), provides tools for doing just that - integrating data directly into Rmarkdown source documents
so that data, code for analyses and text interpreting results are all available in a single file.

Rmarkdown (Allaire, Xie, McPherson, et al. 2022) has become an increasingly popular tool for
generating rich scientific documents while maintaining a source document that makes explicit the
relationship between text and specific analyses used to produce results (Xie 2014; Lowndes et al.
2017). In a nutshell, Rmarkdown source documents are text documents comprised of two major
elements: structured text that make up the headings and paragraphs of the document, and blocks
of code (typically, but not exclusively, R code) for doing analyses and generating figures and tables.
Rmarkdown source documents can be processed into a variety of final output formats, including
PDF documents formatted for scientific publication. During this processing, the blocks of code in the
source document are executed and used to augment the final output document with figures, tables
and analytic results. In addition to providing a single source document that includes both written text
and code for carrying out analyses, Rmarkdown has other benefits for open science, such as requiring
the user to provide fully functioning code that runs from start to end without errors and facilitating
reuse and updating of documents when new data arrives.

Until now, however, it has been difficult to integrate the raw data itself that are the bases for
analyses directly into Rmarkdown source documents. Typically, data are placed in external files that
are accessed via R code contained in the Rmarkdown source document that is executed during the
knitting. As previously mentioned, this has the disadvantage of physically separating data from
analysis code and text contained in the Rmarkdown source document, potentially leading to confusion

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://datadryad.org
https://CRAN.R-project.org/package=knitrdata

CONTRIBUTED RESEARCH ARTICLE 7

and/or information loss. Furthermore, on a practical level, it often can be extremely convenient to
merge all pertinent information into a single source document (e.g., to facilitate collaboration on an
Rmarkdown source document). knitrdata provides a simple mechanism for integrating arbitrary text
or binary data directly into Rmarkdown source documents, thereby allowing one to create standalone
source documents that include all the elements necessary for conducting analyses. This integration is
done with minimal additional formatting of the data (e.g., allowing one to insert comma-separated
value (CSV) data without escaping quotation marks directly into Rmarkdown documents) and in
a way that clearly visually separates data from R code, thereby facilitating comprehension of the
different elements that contribute to analyses. knitrdata also facilitates encryption of data integrated
into Rmarkdown source documents, thereby allowing one to merge data with analysis code and text
even in cases where industrial or ethical privacy constraints restrict data access to a specific group of
individuals.

Below, I briefly provide a conceptual overview of how knitrdata works, presenting some simple
examples of its use and the tools available to facilitate integrating data into Rmarkdown source
documents. I then discuss typical use cases and workflows for development of Rmarkdown source
documents with knitrdata, as well as a number of potential caveats for its use. I conclude by reflecting
on the value of knitrdata for achieving computational reproducibility and its place within the growing
pantheon of tools that make Rmarkdown an increasingly essential tool for research.

knitrdata installation and usage

The knitrdata package is available on CRAN, though the latest version can be installed from github
using the remotes (Csárdi et al. 2021) package:

remotes::install_github("dmkaplan2000/knitrdata",
build_vignettes=TRUE)

Once the package has been installed, all that is needed to use the functionality provided by the
package in a Rmarkdown source document is to load the library at the start of the document, typically
in the setup chunk:

library(knitrdata)

Conceptual overview of knitrdata

To understand how knitrdata works and the functionality it provides, one must first understand
some of the terminology and functioning of Rmarkdown itself. As previously mentioned, Rmarkdown
documents are a combination of text written in markdown, a simple, structured text format that can
be translated into a large number of final output formats, and code for doing analyses that can
augment the final output document with analytic results, tables and figures. The code is contained in
specially delimited blocks, referred to as chunks. For example, adding the following to an Rmarkdown
document:

```{r}
plot(-5:5,(-5:5)^2,type="l")
```

would add a plot of a parabola to the final output document. The process of translating a
Rmarkdown document into a final output document is known as knitting, and this process is carried
out using (often implicitly via RStudio) the knitr package (Xie 2015).

Though code chunks typically contain R code, knitr supports a large number of other language
engines, allowing one to integrate analyses in a number of other computer languages, including C,
Python and SQL. For example, one could use the SQL language engine to import the contents of a
database table into the R environment by including the following chunk in a Rmarkdown source
document:

```{sql connection="dbcon",output.var="d"}
SELECT * FROM "MyTable";
```

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://cran.r-project.org/package=knitrdata
https://github.com/dmkaplan2000/knitrdata
https://CRAN.R-project.org/package=remotes
https://CRAN.R-project.org/package=knitr

CONTRIBUTED RESEARCH ARTICLE 8

During knitting, this will create in the R environment a variable d containing the contents of the
table MyTable accessible via the (previously created) active R database connection dbcon. Note that
the name of the database connection and the name of the output variable are supplied in the chunk
header via what are known as chunk options. Though this database table could be imported into the R
environment without the SQL language engine using R code:

```{r}
d = dbGetQuery(dccon,"SELECT * FROM \"MyTable\";")
```

the use of the SQL language engine has both practical and conceptual advantages. On the practical
side, it avoids the need to escape quotation marks and allows text editors to recognize and highlight
the code as SQL, both of which becoming increasingly valuable as the length and complexity of SQL
queries increase. On the conceptual side, using the SQL engine visually separates database queries
from R code and text, thereby better communicating the structure and functioning of analyses in
Rmarkdown documents.

The knitrdata package works in many ways analogously to the SQL language engine, adding a
new data language engine to the list of language engines known to knitr that is specifically designed
to import raw “data” into the R environment and/or export it to external files. Here the term “data” is
used in a very wide sense, including not only standard data tables (e.g., CSV text files) or binary data
(e.g., RDS files, NetCDF files, images), but also text and formatted text (e.g., XML files, BibTeX files).
For example, placing the following chunk in a Rmarkdown source document will, during the knitting
process, create in the R environment a data frame d containing the contents of the comma-separated
values (CSV) data in the chunk (provided that the knitrdata package has been previously loaded as
described above):

```{data output.var="d",loader.function=read.csv}
name,score
David M. Kaplan,1.2
The man formerly known as "Prince",3.4
Peter O'Toole,5.6
```

As with the SQL language engine, the name of the output variable for the chunk is supplied with
a chunk option and in this example a loader.function option instructs knitrdata how to translate
the contents of the chunk into a usable R object (in this example the R function read.csv is used to
translate the CSV data into a data frame).

There are of course a number of other ways that such a simple data table could be imported into
the R environment, including via an external data file or directly in R code, one approach to which
might be:

```{r}
d = read.csv(textConnection(
"name,score
David M. Kaplan,1.2
The man formerly known as \"Prince\",3.4
Peter O'Toole,5.6
"))
```

However, using the data language engine has much the same practical and conceptual advantages
as the SQL data language engine, avoiding the need for escaping certain characters and visually
separating data from code, both of which become increasingly valuable as dataset size increases.

Incorporating binary data into Rmarkdown source documents is a bit more complicated as the
data must first be encoded as ASCII text (see the Section below on Binary data chunks for details),
but the basic principles are the same - encoded binary data is incorporated into a data chunk and
chunk options are used to tell knitrdata how to decode the data and load it into the R environment
during knitting (see Table 1 for a full list of data chunk options). There is also the possibility of
saving data chunk contents out to external files using the output.file chunk option. This option is
particularly useful for integrating into Rmarkdown source documents ancillary text files used in the
final formatting of the output of the knitting process, such as BibTeX files with references, LaTeX style
files for PDF output and CSS style files for HTML output. For example, the following chunk would
export a BibTeX reference to a file named refs.bib, taking care not to overwrite an existing file with

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 9

the same name [though note that similar functionality can also be achieved with the cat language
engine; Xie, Dervieux, and Riederer (2020)]:

```{data output.file = "refs.bib", eval=!file.exists("refs.bib")}

@book{allaireRmarkdownDynamicDocuments2020,
title = {Rmarkdown: {{Dynamic}} Documents for r},
author = {Allaire, JJ and Xie, Yihui and McPherson, Jonathan and Luraschi, Javier and Ushey, Kevin and Atkins, Aron and Wickham, Hadley and Cheng, Joe and Chang, Winston and Iannone, Richard},
year = {2020}

}
```

As code chunks are processed during knitting before generating the final output document, these
files can be generated at any point during the knitting process using data chunks (in particular, it is
often most practical to place this information at the end of a Rmarkdown document).

Table 1: Full list of knitrdata chunk options.

Chunk option Description

decoding.ops A list with additional arguments for data_decode. Currently only
useful for passing the verify argument to gpg::gpg_decrypt (Ooms
2022) for gpg encrypted chunks.

echo A boolean indicating whether or not to include chunk contents in
Rmarkdown output. Defaults to FALSE.

encoding One of 'asis', 'base64' or 'gpg'. Defaults to 'asis' for
format='text' and 'base64' for format='binary'.

eval A boolean indicating whether or not to process the chunk. Defaults to
TRUE.

external.file A character string with the name of a file whose text contents will be
used as if they were the contents of the data chunk.

format One of 'text' or 'binary'. Defaults to 'text'.
line.sep Only used when encoding='asis'. In this cases, specifies the character

string that will be used to join the lines of the data chunk before export
to an external file, further processing or returning the data. Defaults to
knitrdata::platform.newline().

loader.function A function that will be passed (as the first argument) the name of a file
containing the (potentially decoded) contents of the data chunk.

loader.ops A list of additional arguments to be passed to loader.function.
max.echo An integer specifying the maximum number of lines of data to echo in

the final output document. Defaults to 20. If the data exceeds this
length, only the first 20 lines will be shown and a final line indicating
the number of ommitted lines will be added.

md5sum A character string giving the correct md5sum of the decoded chunk data.
If supplied, the md5sum of the decoded data will be calculated and
compared to the supplied value, returning an error if the two do not
match.

output.file A character string with the filename to which the chunk output will be
written. At least one of output.var or output.file must always be
supplied.

output.var A character string with the variable name to which the chunk output
will be assigned. At least one of output.var or output.file must
always be supplied.

Using data chunks, just about any data or information that would typically be stored in external
files can be integrated directly into Rmarkdown source documents. In particular, this permits creating
standalone Rmarkdown source documents that can be knitted without need for external data files,
thereby uniting text, code and data in a single source document.

Note that this is different from the self_contained YAML header option permitted by some
Rmarkdown output formats, notably HTML output formats. This option attempts to create a single
output file that contains everything needed to visualize the final output document (e.g., in the case
of HTML documents, the output HTML file will contain any CSS styles, javascript libraries and/or
images used by the document), but it says nothing about whether or not external files are needed to

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=gpg

CONTRIBUTED RESEARCH ARTICLE 10

knit the Rmarkdown source document (i.e., it is relevant to the output side of knitting, not the input
side). In fact, a source document can be standalone in that all data and formatting files needed for
knitting are incorporated within it using data chunks, but the final output (HTML) document may not
be self contained because it relies on external files or libraries for visualization, and vice-versa (i.e.,
standalone source documents and standalone output documents are two separate and independent
concerns).

Under the hood, the way knitrdata works is by adding (using the knitr::knit_engines$set()
function) to the list of language engines that knitr maintains internally a data entry that points to a
function inside the knitrdata package that processes data chunks (specifically the eng_data function,
though users would typically not interact directly with this function). When knitting a Rmarkdown
document, knitr will call this function each time a data chunk is encountered, passing it both the
textual contents of the chunk and any chunk options. The function then uses this information to process
the chunk, decoding it if necessary (via the format and encoding chunk options) and returning it as
either a variable in the R environment (output.var chunk option) and/or an external file (output.file
chunk option) after any additional processing has been carried out (via, e.g., the loader.function
chunk option).

Text data chunks

Though a basic example of a data chunk containing CSV tabular data has been presented in the
previous section, it is useful to develop that example a bit more to better understand the functioning of
knitrdata. The simplest data chunks contain plain text that is read, but not processed by knitrdata.
For example, omitting the loader.function chunk option from the previously presented data chunk
with CSV data produces a different outcome:

```{data output.var="txt"}
site,density
a,1.2
b,3.4
c,5.6
```

During the knitting process, this will place the text contents of the chunk into a R variable named
txt, but no further processing of the text will be carried out (i.e., the variable txt will contain the
literal text contents of the chunk, excluding the header with the chunk options and the tail). One could
later convert the text into a R data.frame using the read.csv command in a R chunk placed after the
data chunk:

```{r}
d <- read.csv(text=txt)
```

The loader.function chunk option used in the initial data chunk example above causes knitrdata
to combine into one process the two steps of (1) reading in the chunk contents and (2) converting
them into a usable R data object. Whereas the first of these steps, reading the chunk contents, is
carried out for all data chunks, the second only occurs if the loader.function chunk option is given.
loader.function should be a function that takes in the name of a file containing the chunk contents
and returns the processed contents. Though read.csv is likely to be a common choice, there are
many other possibilities including readRDS, read.csv2, scan, png::readPNG and custom, user-defined
functions. One can also supply a list of additional input arguments to the loader function using
the loader.ops chunk option (e.g., one could change the expected separator in CSV data using
loader.ops=list(sep="|")).

Binary data chunks

Though text data chunks can integrate into Rmarkdown source documents many small- to medium-
sized tabular data sets, binary data formats, such as RDS files, are more convenient for more com-
plicated and/or larger data sets. Incorporating binary data into Rmarkdown documents requires
additional steps relative to text data: encoding the binary data as text and telling the data chunk how
to decode the encoded data. knitrdata provides tools for simplifying these two steps that currently
support encoding and decoding of two widely-used encodings: base64 and gpg. base64 is a standard
format for encoding binary data as ASCII text based on translation of 6 bits of information into one

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://en.wikipedia.org/wiki/Base64

CONTRIBUTED RESEARCH ARTICLE 11

of 64 alphanumeric and symbolic ASCII characters. Base64 encoded data looks like a somewhat
intimidating jumble of characters, but the format is extremely widely used behind the scenes in many
common web applications, such as email attachments and embedding images in HTML pages. In
particular, base64 is widely supported by a number of software packages and programming languages,
including R, Python, Matlab and Julia, so base64 encoded data is highly readable and likely to remain
so for a very long time.

gpg, standing for GNU Privacy Guard, is a standard protocol for encrypting information so that
only those with specific decryption keys can have access. This format can be used to ensure that only
specific individuals can actually read and utilize the data contained in a Rmarkdown source document,
as might be necessary when dealing with confidential (e.g., medical or trade-secret) data. Here, I
focus primarily on base64 encoding as this is the simplest and likely most common format for binary
data chunks, and a full description of the configuration and use of GPG is beyond the scope of this
document. The detailed use of gpg is, however, described in the package vignette.

Though knitrdata users rarely need to encode data by hand as the package provides graphical
tools for this, it is instructive to have a basic understanding of the underlying functions for encoding
and decoding data: data_encode and data_decode. data_encode takes the name of the file containing
the data and the name of the encoding format, and it returns the encoded data that one would
incorporate into a data chunk, either to the R command line or to a file. For example, if one saves the
data frame d created in the previous section to a binary RDS file:

saveRDS(d,"data.RDS")

then one can encode this data as base64 using:

b64 = knitrdata::data_encode("data.RDS","base64")
cat(b64)

#> H4sIAAAAAAAAA12OvQ+CMBDFKx+DGNTExPk2J1lc3HQwLsbIgInrBUokQmsKkbj5
#> PzsrXrEMekn72l/f693JY4zZzLEsZrt0ZO4x2s6XxCZ0sWiNvwbWJx1t8JYlsA9g
#> h9cchcEQnTkUKCCVquAqv8NFyFoAlhCqTMTc+PyQV1zBYRZJmXMCQ/336rloaz0w
#> Ok3bYjQVvfdM2BVY8NIMZBnoaNgZylgq/p+Kcyy7VAe9BCsMUqWzv/a+knXQNfJ1
#> owdtTdO8SN4fPb8RnS0BAAA=

This jumble of characters starting with "H4sI" is the base64 encoded contents of the binary file
that one would place in a data chunk. For large files, it is often more practical to output the encoded
data to a file by supplying the output argument:

knitrdata::data_encode("data.RDS","base64",
output="data.RDS.base64")

GPG encoding works similarly to base64 encoding, but one must change the format from "base64"
to "gpg" and specify the encryption key (i.e., the receiver ID) to be used to encrypt the data.

Once one has the encoded data, one can use it in a data chunk by supplying the format="binary"
chunk option and, optionally, an appropriate loader.function to convert the data into a R object:

```{data format="binary",output.var="d",loader.function=readRDS}
H4sIAAAAAAAAA12OvQvCMBDFz48OKn6A4Hybk11c3HQQFxE7VHA9aopimkgiFjf/
Z2etl5oOesO93I/3crdvA0ADmnXuAT8h2MWryYynIQ9MYfA1QIu1v6Tb6YCbENd0
kaQ8xvgoMCOFqTaZMPKOZ6VzhWQxMieVCO/rRuIqDG7HsdZSMOi5v+fPaVmLjtdR
WhaUV0HNhwNFmbD+oLqHTQcrg020Ef+pRJKtUhVsH+hKYWpc9tfeMjoPq0Vdt+jB
rSiKF8v7A6bdy9EtAQAA
```

During knitting, this chunk will be processed, decoding the encoded binary RDS file and loading
it into the variable d using the readRDS function. knitrdata will by default assume that the encoding
is base64 when format="binary", but one can also specify the chunk option encoding="base64" for
increased clarity. For GPG encoded data, one would use encoding="gpg". As with text data chunks,
one can alternatively output the decoded contents of the chunk to a file (output.file option) or return
it to the R session as a raw binary vector (by not supplying a loader.function).

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://gnupg.org/

CONTRIBUTED RESEARCH ARTICLE 12

(a) (b)

Figure 1: The (a) ’Insert filled data chunk’ and (b) ’Remove chunks’ RStudio add-ins included with
knitrdata. The dialogues will open when selected from the ’Addins’ menu of RStudio. They allow
one to (a) insert a data chunk containing the contents of an existing external data file into an open
Rmarkdown document, and (b) delete one or more chunks from an open Rmarkdown document.

RStudio add-ins for creating data chunks

As manually encoding data and creating data chunks can be complicated, particularly for large data
files, knitrdata includes graphical RStudio add-ins that do all the hard work of incorporating data in
Rmarkdown documents. The principal add-in is called Insert filled data chunk (Fig. 1a). Though
its use is meant to be largely self-explanatory, an instructional video is available on YouTube (Kaplan
2020b). The basic idea is that one opens a Rmarkdown source document in the RStudio editor, places
the cursor at the location one wants to insert a data chunk and then activates the add-in. The add-in
prompts for the name of the data file to be incorporated, as well as values for various data chunk
output and processing options. Based on the type of data file selected, the add-in will attempt to select
or suggest various appropriate options. For example, if a RDS file is chosen, then format will be set to
binary, encoding will be set to base64 and the loader function will be set to readRDS. These defaults
can be manually modified if not appropriate. The add-in also greatly facilitates and encourages the
use of MD5 sum data integrity checks. After all options have been set, one clicks on Create chunk and
an appropriately-formatted data chunk will be inserted in the active Rmarkdown source document at
the cursor location.

knitrdata also provides a Remove chunks add-in that allows ones one to quickly delete unwanted
(data and non-data) chunks (Fig. 1b), as well as a set of functions for command-line examination,
creation and removal of chunks from Rmarkdown documents (e.g., create_chunk, insert_chunk,
list_rmd_chunks, remove_chunks).

If one is not using RStudio to edit and knit Rmarkdown documents, then one can invoke the Skiny
dialog to create data chunks directly from the command line using the create_data_chunk_dialog
function contained in the knitrdata package. In this case, chunk contents will be (silently) returned
on the command line for later insertion in a Rmarkdown document.

Use cases

There are a number of use cases for the functionality provided by knitrdata, primary among them
providing a single source for public diffusion of all information related to a publication or report,
and/or making collaboration on Rmarkdown source documents simpler by eliminating or reducing

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 13

the need for external files. A simple example of the prior is the Rmarkdown source document used to
generate this publication, which includes text data chunks for the tabular data in Table 1, as well as the
ancillary formatting files associated with the document (BibTeX and LaTeX style files), and encoded
binary data chunks for the PNG images in Figs. 1 & 2.

A more complicated example is the Rmarkdown source document for Wain et al. (2021), publicly
available on github. In this case, we wished to provide a permanent public record of the methods used
in the paper and ensure that results could be verified, while at the same time respecting confidentiality
agreements with respect to fine scale fishing activity data used in the paper. To achieve this we
integrated the fine scale data in the Rmarkdown source document as an encrypted GPG data chunk.
This approach may have value for a wide number of other studies using sensitive economic, social
or medical data. To provide a complete record of the paper in a single document, we also integrated
the Rmarkdown source document for the online supplementary materials into a data chunk within
the Rmarkdown source document for the paper itself. As this supplementary materials document
contains Rmarkdown chunks that would otherwise confuse the knitting process if integrated as raw
text inside a data chunk, we base64 encoded this source document before including it in a data chunk.
The document also contains data chunks for small data tables and for exporting to external files the
ancillary formatting files required for knitting the document (BibTeX references, the LaTeX style file,
the CSL citation style file, etc.). Finally, during the knitting process, the document also generates a
lightweight version of itself that does not include the main data chunk, using the functionality of the
knitrdata package to remove large data chunks. Overall, knitrdata provided a convenient way of
generating a single document that contained all the necessary information for generating the final
publication, thereby demonstrating computational reproducibility for the publication.

The uses of data chunks tend to fall into one of four general, not mutually-exclusive use cases:

1) Integration of ancillary formatting files into the Rmarkdown source document, thereby reducing
the number of external files needed to knit a document

2) Inclusion of small- to medium-sized tabular data used in analyses and/or for tables
3) Inclusion of larger data sets using encoded binary data
4) Inclusion of confidential data using GPG-encrypted data chunks

Though the first of these use cases, integration of ancillary formatting files, can also be achieved
with the cat language engine that is included with the knitr package (Xie, Dervieux, and Riederer
2020), knitrdata provides functionality that make this task easier and more secure. First, knitrdata
allows for integrity checks on chunk contents that can control for unintentional modification of chunk
contents (see the section on data integrity below). Second, RStudio add-ins provided by the knitrdata
package facilitate the integration of data into Rmarkdown source documents and the use of integrity
checks. Finally, encoding of text documents permits integrating files that contain Rmarkdown chunks
or other formatting that would otherwise be problematic within a cat chunk.

The second of these use cases, tabular data, can also in principle be achieved using other tools in
R, such as a textConnection as shown above or via functionality in the tibble package (Müller and
Wickham 2022). Nevertheless, the use of data chunks is generally more ergonomic and flexible for
anything but the smallest data tables as it allows the user to format data exactly as it would be in an
external CSV file, without additional markup or the need to escape quotation marks. As an example,
the information contained in Table 1 was implemented in the source document for this paper as a data
chunk as it contains lots of quotations and formatting that would have been tedious to include using
other approaches.

The third and fourth use cases for data chunks, involving encoded binary data, are unique to
knitrdata and allow for integration of complex data sets that would otherwise be very difficult to
include in a Rmarkdown source document.

Workflow

When and in what ways to use the functionality provided by knitrdata during the development of
a Rmarkdown source document requires some thought and depends to some degree on the project
goals. If the goal is to create a final Rmarkdown source document that demonstrates computational
reproducibility of a set of results, then it may not be necessary or practical to use data chunks during
the development stages of the project as the use of data chunks necessarily weighs down a Rmarkdown
source document with information (e.g., binary data) that may not be immediately useful to authors
during development. In this case, it may be best to work initially as one has always done, relying
on external files for data and formatting. External data and formatting files can be incorporated in
data chunks at the end of development when it is time to generate a final archival/public version of a
Rmarkdown source document.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://github.com/dmkaplan2000/knitrdata_examples/blob/e5f59b7475a542bef41c60e8ee6652f656c9e377/2020-knitrdata.Rmd
https://github.com/dmkaplan2000/knitrdata_examples/blob/e5f59b7475a542bef41c60e8ee6652f656c9e377/wain.et.al.2020.standalone.Rmd
https://github.com/dmkaplan2000/knitrdata_examples/blob/e5f59b7475a542bef41c60e8ee6652f656c9e377/wain.et.al.2020.standalone.Rmd
https://CRAN.R-project.org/package=tibble

CONTRIBUTED RESEARCH ARTICLE 14

On the other hand, if the objective of using knitrdata also includes reducing the complexity of
collaborating on a Rmarkdown source document by reducing the number of external files necessary
for knitting a document, then certain types of data chunks can be incorporated in a Rmarkdown
source document during the initial phases of development with little impact on authors. Small- to
medium-sized tabular data sets can be incorporated and this can have the benefit of making the tabular
data visually available during the development process. Similarly, most ancillary formatting files can
be placed at the very end of the Rmarkdown source document as these are only used after all chunks
have been processed and, therefore, will not encumber the development process. Larger data sets, and
in particular binary data sets, are a bit more problematic as they necessarily appear in the Rmarkdown
source document before the data is used for analyses and will introduce significant amounts of text
that are not human readable into the Rmarkdown source document. For this reason it may be best to
leave incorporation of these data until the final stages of development, though see the sections below
on file size and readability for workarounds to these issues.

This latter workflow involving incorporation of data chunks in two distinct stages of development
is what was used when creating the source document for Wain et al. (2021). Small data tables and
formatting files were incorporated directly into the document from the start, but the larger data set
that was the basis for statistical analyses and the Rmarkdown source document for the supplementary
materials were only incorporated at the end of development to provide an archival source document
for the paper capable of demonstrating computational reproducibility.

Caveats and concerns

There are a number caveats and concerns with respect to the use of knitrdata, all of which have some
validity, but for which a number of simple approaches exist to limit their impact. Below, I discuss four
of them: file size, document readability, data integrity and security.

Won’t this create huge Rmarkdown files?

Incorporation of large data sets into data chunks will significantly increase the file size of Rmarkdown
source documents, potentially making them more difficult to work with. Though it is unlikely to be
practical to place extremely large data sets in Rmarkdown source documents, there are many contexts
where data sets are sufficiently small so as to be included directly in a Rmarkdown source document.
For example, the 8 years of fine scale fishing data used in Wain et al. (2021) added about 2 MB to
the size of the Rmarkdown document when incorporated as a (compressed) RDS file, a size that is
manageable and well within the limits of typical email attachments. RStudio currently will not open
Rmarkdown documents larger than 5 MB in size, effectively limiting the amount of data that can be
placed in a document unless one is willing to forgo graphical editing tools (larger documents can be
rendered from the command line using the rmarkdown::render function, but not the more convenient
and common “Knit” button of RStudio). Despite being in the era of big data, many scientific studies
use primary data sets that are smaller than this size limit. As for Wain et al. (2021), many experimental
or field studies may rely on data sets that are relatively small, and building a standalone Rmarkdown
source document for these studies is an effective approach to documenting all quantitative information
needed to reproduce results.

Won’t Rmarkdown source documents become unreadable?

Large amounts of encoded binary data are undoubtedly not pretty to look at, but readability is not
necessarily the primary benefit of using Rmarkdown. Rather, completeness and the articulation of
text and analyses are the strengths of Rmarkdown, benefits that data chunks enhance as opposed to
diminish. Many Rmarkdown documents are already a complex mix of text and code that is difficult to
read and manage without the tools RStudio and other editors provide to navigate the document, such
as the ability to jump between sections and chunks. data chunks are no different in this sense, and use
of informative chunk labels can greatly facilitate document navigation. Furthermore, RStudio includes
the possibility of hiding chunk contents with a single click (Fig. 2), which can be quite practical when
dealing with large data chunks. Once hidden, data chunk contents can be ignored, allowing one to
edit the document unhindered.

Won’t a misplaced keystroke mess up my data?

It is possible to unintentionally corrupt a data chunk due to a misplaced keystroke, particularly if the
data is encoded and not readily human readable. However, the use of navigation tools and hiding

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 15

Figure 2: Images demonstrating before (top) and after (bottom) a data chunk has been hidden from
view in the RStudio editor. The top image shows two base64-encoded data chunks, one of which is
hidden, whereas the other is visible. In the bottom image, both chunks have been hidden. The control
for hiding chunk contents (top) and an indicator of a hidden chunk (bottom) are highlighted with red
boxes.

of data chunk contents as described above (Fig. 2) can drastically reduce interaction with chunk
contents, thereby limiting the possibility for error. Furthermore, there are a number of methods to
validate chunk contents, the simplest of which is to do a MD5 sum check using functionality included
in knitrdata. A MD5 sum is a very large number (typically encoded in hexadecimal) derived from a
file’s contents that has a vanishingly small probability of being equal to that of another file if the files
are not identical. data chunks can include a md5sum chunk option that specifies a MD5 sum that will
be checked against that of the decoded chunk contents, generating an error if the two do not match.
In this way, data corruption can be swiftly identified and corrected. The Insert filled data chunk
RStudio add-in will by default calculate and include a MD5 sum check when inserting binary data
chunks (and such a check can be optionally requested for text data chunks) so that users can easily
benefit from these checks without having to worry about the details.

Are there security concerns when using knitrdata?

Any time one runs code from a third party, there are security risks. Typically, code can write files
to disk, potentially modifying essential files or installing malicious software. Rmarkdown source
documents using the functionality of knitrdata are no different in this sense, though the practical risks
may be more important as knitrdata may encourage users to knit entire documents to gain access to
raw data and arbitrary data may be encoded in formats that are not human readable. Reducing these
risks involves responsibilities for both the authors and the users of Rmarkdown source documents.
For authors, the primary responsibilities are to assure that source documents cannot be modified by
third parties between the author and the user, and to use best practices when carrying out file input
and output during the knitting process. Integrity of source documents can be protected by using
reputable websites with established security protocols for publishing Rmarkdown source documents,
including, but not limited to, github, Zenodo and the Dryad. Authors can also publish MD5 sums
for Rmarkdown source documents so users can verify the integrity of those documents, though the
security of those MD5 sums is only as strong as the websites on which MD5 sums and Rmarkdown
source documents are published. Best practices for file input and output include using temporary files
and/or relative paths entirely within the base directory containing the Rmarkdown source document
when writing files to disk, using file names that are unique (e.g., avoiding generic names like data.csv)

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://github.com/
https://zenodo.org/
https://datadryad.org

CONTRIBUTED RESEARCH ARTICLE 16

and performing checks for the existence of files with the same name before writing information to
disk. The Insert filled data chunk RStudio add-in provided by knitrdata encourages the use of
file existence checks in the eval chunk option controlling whether or not to process data chunks that
write data to disk using the output.file chunk option, thereby avoiding overwriting existing files.

For users of Rmarkdown source documents, there are a number of simple steps one can take to
avoid the most severe security risks. Knitting Rmarkdown source documents from an unprivileged
user account and placing Rmarkdown source documents in new, empty directories can reduce the
risks of the most malicious attacks. Users should also familiarize themselves with the workings of
Rmarkdown source documents before knitting them and check for potentially problematic actions,
such as use of absolute file paths and/or communication with external internet resources. This includes
examination of the chunk options associated with data chunks (in particular, the output.file and
loader.function). If one is primarily interested in just the raw data contained in data chunks within
a Rmarkdown source document, then RStudio permits manual execution of individual chunks. This
includes execution of data chunks, which can be processed individually using the Run current chunk
button of RStudio once the knitrdata library has been loaded.

Conclusion

knitrdata provides a simple, but effective, tool for integrating arbitrary data into Rmarkdown source
documents. If used appropriately, this can help assure computational reproducibility of many scien-
tific documents by allowing one to integrate all relevant external files and data directly into a single
Rmarkdown source document. Anyone who has attempted to validate the results in a publication by
requesting the associated data has potentially encountered, if they managed to get the data, a set of
one or more data tables with limited metadata and only the publication itself as documentation of the
methods. Validating publication results under these conditions is often difficult and time consuming.
By encouraging the integration of data, code for carrying out analyses, and text interpreting results
in standalone Rmarkdown source documents, Rmarkdown with knitrdata can make it much easier
to understand, reproduce and validate the details of scientific analyses. This combination can be
particularly powerful when combined with other enhancements to Rmarkdown that make it possi-
ble to produce a wide variety of sophisticated scientific documents entirely within the confines of
Rmarkdown, such as bookdown (Xie 2022), rticles (Allaire, Xie, Dervieux, et al. 2022) and starticles
(Kaplan 2022) for producing books and scientific publications with Rmarkdown, citr (Aust 2019) for
bibliographic citations, and kableExtra (Zhu 2021) for producing sophisticated data tables.

Online supporting information

The Rmarkdown source documents for this publication and Wain et al. (2021) are available online
at https://github.com/dmkaplan2000/knitrdata_examples. Additional examples and the package
vignette are available in the knitrdata package itself.

Acknowledgements

I would like to thank my colleagues at the MARBEC laboratory in Sète, France for numerous conversa-
tions that encouraged me to develop the knitrdata package. I would also like to thank Yihui Xie for
advice and encouragement regarding the development of the package. The handling editor and an
anonymous reviewer provided valuable feedback that significantly improved the manuscript.

References

Allaire, JJ, Yihui Xie, Christophe Dervieux, R Foundation, Hadley Wickham, Journal of Statistical
Software, Ramnath Vaidyanathan, et al. 2022. Rticles: Article Formats for r Markdown. https:
//github.com/rstudio/rticles.

Allaire, JJ, Yihui Xie, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron Atkins, Hadley Wick-
ham, Joe Cheng, Winston Chang, and Richard Iannone. 2022. Rmarkdown: Dynamic Documents for r.
https://CRAN.R-project.org/package=rmarkdown.

Aust, Frederik. 2019. Citr: RStudio Add-in to Insert Markdown Citations. https://github.com/crsh/
citr.

Cassey, Phillip, and Tim M. Blackburn. 2006. “Reproducibility and Repeatability in Ecology.” BioScience
56 (12): 958–59. https://doi.org/10.1641/0006-3568(2006)56%5B958:RARIE%5D2.0.CO;2.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=bookdown
https://CRAN.R-project.org/package=rticles
https://CRAN.R-project.org/package=starticles
https://CRAN.R-project.org/package=citr
https://CRAN.R-project.org/package=kableExtra
https://github.com/dmkaplan2000/knitrdata_examples
https://github.com/rstudio/rticles
https://github.com/rstudio/rticles
https://CRAN.R-project.org/package=rmarkdown
https://github.com/crsh/citr
https://github.com/crsh/citr
https://doi.org/10.1641/0006-3568(2006)56%5B958:RARIE%5D2.0.CO;2

CONTRIBUTED RESEARCH ARTICLE 17

Csárdi, Gábor, Jim Hester, Hadley Wickham, Winston Chang, Martin Morgan, and Dan Tenenbaum.
2021. Remotes: R Package Installation from Remote Repositories, Including GitHub. https://CRAN.R-
project.org/package=remotes.

Kaplan, David M. 2020a. Knitrdata: Data Language Engine for Knitr / Rmarkdown. https://github.com/
dmkaplan2000/knitrdata.

———. 2020b. “Using Knitrdata to Create Standalone Rmarkdown Documents in Rstudio.” https://www.youtube.com/watch?v=xX4YRAXYFxE.
———. 2022. Starticles: A Generic, Publisher-Independent Template for Writing Scientific Documents in

Rmarkdown. https://github.com/dmkaplan2000/starticles.
Lowndes, Julia S. Stewart, Benjamin D. Best, Courtney Scarborough, Jamie C. Afflerbach, Melanie

R. Frazier, Casey C. O’Hara, Ning Jiang, and Benjamin S. Halpern. 2017. “Our Path to Better
Science in Less Time Using Open Data Science Tools.” Nature Ecology & Evolution 1 (6): 1–7.
https://doi.org/10.1038/s41559-017-0160.

Müller, Kirill, and Hadley Wickham. 2022. Tibble: Simple Data Frames. https://CRAN.R-project.org/
package=tibble.

Ooms, Jeroen. 2022. Gpg: GNU Privacy Guard for r. https://github.com/jeroen/gpg.
Powers, Stephen M., and Stephanie E. Hampton. 2019. “Open Science, Reproducibility, and Trans-

parency in Ecology.” Ecological Applications 29 (1): e01822. https://doi.org/10.1002/eap.1822.
Wain, Gwenaëlle, Loreleï Guéry, David Michael Kaplan, and Daniel Gaertner. 2021. “Quantifying

the Increase in Fishing Efficiency Due to the Use of Drifting FADs Equipped with Echosounders
in Tropical Tuna Purse Seine Fisheries.” ICES Journal of Marine Science 78 (1): 235–45. https:
//doi.org/10.1093/icesjms/fsaa216.

Xie, Yihui. 2014. “Knitr: A Comprehensive Tool for Reproducible Research in R.” In Implementing
Reproducible Computational Research, edited by Victoria Stodden, Friedrich Leisch, and Roger D.
Peng. Chapman; Hall/CRC. http://www.crcpress.com/product/isbn/9781466561595.

———. 2015. Dynamic Documents with R and Knitr. 2nd ed. Boca Raton, Florida: Chapman; Hall/CRC.
https://yihui.org/knitr/.

———. 2022. Bookdown: Authoring Books and Technical Documents with r Markdown. https://CRAN.R-
project.org/package=bookdown.

Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020. R Markdown Cookbook. 1st edition. The R
Series. Boca Raton, Florida: CRC Press.

Zhu, Hao. 2021. kableExtra: Construct Complex Table with Kable and Pipe Syntax. https://CRAN.R-
project.org/package=kableExtra.

David M. Kaplan
MARBEC
Univ Montepllier, CNRS, Ifremer, IRD
Sète, France
Institute de Recherche pour le Developpement (IRD)
UMR MARBEC
av. Jean Monnet
CS 30171
34203 Sète cedex, France
https://www.davidmkaplan.fr
ORCiD: 0000-0001-6087-359X
david.kaplan@ird.fr

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=remotes
https://CRAN.R-project.org/package=remotes
https://github.com/dmkaplan2000/knitrdata
https://github.com/dmkaplan2000/knitrdata
https://github.com/dmkaplan2000/starticles
https://doi.org/10.1038/s41559-017-0160
https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=tibble
https://github.com/jeroen/gpg
https://doi.org/10.1002/eap.1822
https://doi.org/10.1093/icesjms/fsaa216
https://doi.org/10.1093/icesjms/fsaa216
http://www.crcpress.com/product/isbn/9781466561595
https://yihui.org/knitr/
https://CRAN.R-project.org/package=bookdown
https://CRAN.R-project.org/package=bookdown
https://CRAN.R-project.org/package=kableExtra
https://CRAN.R-project.org/package=kableExtra
https://www.davidmkaplan.fr
https://orcid.org/0000-0001-6087-359X
mailto:david.kaplan@ird.fr

	knitrdata: A Tool for Creating Standalone Rmarkdown Source Documents
	Introduction
	knitrdata installation and usage
	Conceptual overview of knitrdata
	Text data chunks
	Binary data chunks
	RStudio add-ins for creating data chunks

	Use cases
	Workflow
	Caveats and concerns
	Won't this create huge Rmarkdown files?
	Won't Rmarkdown source documents become unreadable?
	Won't a misplaced keystroke mess up my data?
	Are there security concerns when using knitrdata?

	Conclusion
	Online supporting information
	Acknowledgements
	References

