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Species identification by fish otoliths is an effective and appropriate approach. However, the allometric growth of otoliths can cause discrimination
confusion, particularly in juvenile otolith classification. In the Southern Ocean, Chionodraco rastrospinosus, Krefftichthys anderssoni, Electrona
carlsbergi, and Pleuragramma antarcticum are frequently caught together in krill fishery as bycatch species. Furthermore, the otolith shape of
these four species is relatively similar in juvenile fish, making the identification of fish species difficult. In this study, we tried and evaluated many
commonly used machine learning techniques to solve this problem. Eventually, by introducing a triplet loss function (function used to reduce
intraspecific variation and increase inter-specific variation), the discrimination confusion caused by the allometric growth of otoliths was reduced.
The classification results show that the neural network model with the triplet loss function achieves the best classification accuracy of 96%.
The proposed method can help improve otolith classification performance, especially under the context of limited sampling effort, which is of
great importance for trophic ecology and the study of fish life history.
Keywords: allometric effect, antarctic, neural network, otolith shape, wavelet transform.
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Introduction

Taxonomic studies of marine fish species are important for re-
source conservation and fishery management if those species
are of commercial importance. Therefore, it is necessary to
correctly identify species and evaluate their ontogeny and evo-
lutionary relationships (Bani et al., 2013). The techniques used
for such studies are often based on conventional shape mea-
surements of body and hard parts, colour patterns, and ge-
netics (Kartika and Herumurti, 2016; Marti-Puig et al., 2020;
Bernard et al., 2022). However, molecular and genetic ap-
proaches require a lot of time and money. The morphological,
structural, and chemical properties of hard parts, especially
otoliths, have been used widely for species or population dis-
crimination in the past decades as an effective and suitable
tool (e.g. Campana and Neilson, 1985; Campana, 1999; Zhu
et al., 2018; Duan et al., 2021; Wei and Zhu, 2022, among
others).

Fish have three pairs of otoliths (sagitta, lapillus, and as-
teriscus) located in different sacs of the inner ear, which are
important crystal structures that act as organs of equilibrium
and sound transduction (Campana and Casselman, 1993) and
are composed of calcium carbonate (98%), organic matrix
(2%), and a few other elements (Falini et al., 2005). Among
them, the shape of sagittal otoliths is influenced by genetic fac-
tors, age, and environmental conditions, especially high mor-
phological variations in genetics (Vignon and Morat, 2010).
Furthermore, the otoliths are simple to obtain, and the shape
can be efficiently extracted using dedicated software (Lin and
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l-Abdulkader, 2019a; Sadighzadeh et al., 2012). Therefore,
sing otolith to identify fish species has a more distinct and ir-
eplaceable significance in ecology and trophic studies (Lefka-
itis et al., 2006), which has been widely recognized and used
or the past decades.

Otolith shape is species-specific and often varies allometri-
ally during fish growth (Monteiro et al., 2005; Hussy, 2008;
uang et al., 2021; Wei and Zhu, 2022, among others). This

llometric growth brings about intraspecific variation of con-
pecific otolith (Lychakov and Rebane, 2000). When otolith
hape is used as a tool to discriminate fish species, allomet-
ic shape changes in otoliths create a discrimination contro-
ersy due to these ontogenetic variations could be confused
ith species variation. Few studies have quantified intraspe-

ific allometric changes in otolith shape or relative dimensions
Monteiro et al., 2005), with many of them so far focusing on
:O ratios (Lombarte, 1992; Aguirre and Lombarte, 1999; Si-
oneau et al., 2000). Other aspects of allometric shape mod-

fication have not been studied in detail, owing to the diffi-
ulty in extracting shape information from such a structure
ith few reference points that can be used as landmarks in

he modern toolkit of geometric morphometrics (Bookstein,
991).
Generally, allometric growth is a negative factor for species

dentification in otolith taxonomic studies. The key factor
s that the allometric effect of the otolith will cause signifi-
ant intraspecific variation that affects the accuracy of inter-
pecies discrimination (Wong et al., 2016). The tremendous
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Table 1. Sample information.

Species N
ML
(cm) N0 N1

Sampling
period Min.–Max. Average ± SD

ELC 42 7.6a 19 23 2018 Feb 6.0–9.3 7.69 ± 1.18
ANS 41 13.0b 17 24 2018 Mar 6.1–20.0 13.33 ± 5.54
KIF 40 30.0c 33 7 2016 Mar 11.8–37.9 21.32 ± 6.62
KRA 36 4.8d 11 25 2018 Jan 2.2–8.2 5.80 ± 1.38
Total 159

Size at 50% sexual maturity was introduced to ensure that the selected fish samples have at least two life-history stages (mature and immature). Superscripts
indicate references to body length at 50% sexual maturity, where a, b, c, and d are referenced to Mazhirina (1991), La Morales-Nin et al. (2000), La Mesa et al.
(2012), and Koubbi et al. (2003), respectively. N, Sample size. ML, Body length at 50% sexual maturity. N0, Immature sample size; N1, Mature sample size.
Min. and Max., Minimum and maximum standard length of samples. SD, Standard deviation. ELC, E. carlsbergi; KIF, C. rastrospinosus; ANS, P. antarcticum;
and KRA, K. anderssoni.
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nter-specific variation shows that almost only the otoliths of
dult fish can be effectively identified (Stock et al., 2021). Un-
ortunately, to date, few methods have been developed for re-
oving the negative effects of allometric growth when per-

orming otolith shape-based species identification. One of the
ew approaches is to use analysis of variance to remove shape
eatures significantly correlated with body size (Lombarte and
leonart, 1993; Tuset et al., 2021). However, the lack of suf-
cient features to describe the otolith shape may cause dif-
culties for the classifiers (Simoneau et al., 2000). Another
pproach is to adjust the values of shape features based on
ody size using the Lombarte and Lleonart method (1993).
hese methods are unsatisfactory because it has not treated
pecies specificity in many details. Moreover, no studies have
een conducted to verify the effectiveness of this method. To
hat end, effective species identification based on otolith shape
equires a solution that balances inter- and intraspecific differ-
nces, which places higher demands on the classifier’s recog-
ition ability to discriminate fish species.
In the Southern Ocean, Nototheniids (the main Teleost

amily in Antarctic waters) is characterized by rapid evolu-
ion (Eastman, 1991). The rapid and broad ecological di-
ersification of the family and the knowledge of its molec-
lar phylogeny (Bargelloni et al., 2000; Near et al., 2004)
enders it particularly attractive for otolith studies (Lom-
arte et al., 2010). The Antarctic silverfish Pleuragramma
ntarcticummay be the most abundant fish species in high
ntarctic waters, and its ecological significance may rival

hat of the Antarctic krill Euphausia superba —the keystone
pecies in the Southern Ocean (Radtke et al., 1993). Icefishes
family Channichthyidae) are unique among vertebrates be-
ause of their lack of hemoglobin. The ocellated icefish Chion-
draco rastrospinosus is the most common channichthyid, fre-
uently encountered in krill swarms and with some larval no-
otheniids, which represent their usual prey (Slosarczyk and
embiszewski, 1982). Lanternfish (family Myctophidae) are

he dominant fish within the global mesopelagic fish commu-
ity in terms of biomass and diversity, including the Southern
cean (Gjøsaeter and Kawaguchi, 1980). The electron sub-

ntarctic Electrona carlsbergi and the rhombic lanternfish Kr-
fftichthys anderssoni are two of the most abundant species of
he Myctophidae family living in the Southern Ocean (Hulley,
981; McGinnis, 1982; Piatkowski et al., 1994). The above-
entioned four species play an important ecological role in

he Southern Ocean’s open-ocean food web (Barrera-Oro,
002; Saunders et al., 2015b). Moreover, those species, includ-
ng E. superba, are themselves predators of macrozooplank-
on, such as copepods, amphipods, and euphausiids (Pakho-
ov et al., 1996; Williams et al., 2001; Shreeve et al., 2009).
herefore, they are frequently caught in krill fishery as bycatch
pecies (Wei et al., 2017). Moreover, it is urgent to find a so-
ution to identify fish species in the krill fishery because they
re frequently in the larval stages, and it is difficult to discrim-
nate them using body shape or other morphological features
Fulford and Allen Rutherford, 2000; Ward et al., 2009). Note
hat the otolith shape of these four species is relatively simi-
ar in juvenile fish, especially C. rastrospinosus, K. anderssoni,
nd P. antarcticum, which can make the identification of fish
pecies difficult. Recently, Wei and Zhu (2022) discovered that
he allometric effect occurs significantly for the otolith shape
f C. rastrospinosus, and the life-history stages of this species
an be identified based on the ontogenetic variation in otolith
hape throughout the life in the Bransfield Strait, Antarctic.
owever, such an allometric effect has potentially eroded the

erformance for discriminating this species from other Chion-
draco species (La Mesa et al., 2020). Motivated by these cir-
umstances, this study tested existing classifier models and de-
eloped a neural network (NN) approach to find a suitable
lassifier to relieve the difficulties of the allometric effect on
tolith shape-based fish species identification.

aterial and methods

tudy area and sampling

total of 159 fish samples were collected in this study (Table
), of which 36 K. anderssoni specimens were collected from
he waters around the Kerguelen Islands, East Antarctic, in
ebruary 2018, and the remaining fish specimens were col-

ected from licensed Chinese krill trawlers in the Antarctic
eninsula, West Antarctic (Figure 1). As the bycatch species

n krill fishery, information on the collection of those samples
as been reported to the Commission for the Conservation of
ntarctic Marine Living Resources under the protocol of the
cheme of International Scientific Observation. The otoliths
f K. anderssoni were extracted from the fish specimens on
he deck after performing the biometric measurements and
tored in the plastic vials. All other fish samples were stored
t −20◦ after collection and subsequently thawed in the labo-
atory at the Center for Polar Research, Shanghai Ocean Uni-
ersity, where standard length (SL; cm) was measured using
vernier caliper, and sagittal otoliths were extracted. Sagittal
toliths were chosen due to their high inter-specific variation
nd large size, and they are the most commonly used in com-
arative taxonomy works (Tuset et al., 2006). The extracted
agittal otoliths were washed in ultrapure water for 10 mins
efore being dried and finally stored in dry centrifuge vials at
oom temperature.
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Figure 1. Antarctic and Southern Ocean showing sampling locations and the topography. ELC, E. carlsbergi; KIF, C. rastrospinosus; ANS, P. antarcticum;
and KRA, K. anderssoni.
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The size range of the same fish species was selected as large
as possible for the subsequent analysis based on the pub-
lished studies (La Mazhirina, 1991; Morales-Nin et al., 2000;
Koubbi et al., 2003; La Mesa et al., 2012; Lourenço et al.,
2017) to ensure that the selected fish samples encompass dif-
ferent life stages of the species (Table 1).

Otolith shape analysis

Extracting otolith outline features requires the acquisition and
processing of otolith images. To avoid repetition, the right
otolith of fish was selected for further analysis in this study
(Volpedo et al., 2008; Saunders et al., 2021). We introduced
each step in detail.

For the otolith image acquisition, a microscope (OLYM-
PUS, SZX7) was used to capture otolith images. Following
previous works (Echreshavi et al., 2021), otoliths were placed
horizontally with the sulcus toward the bottom against a
black background using reflected light. The microscope had
an LC30 camera and a PC interface, which allowed for the
direct acquisition of high-contrast digital images of otoliths
(Figure 2).

For image processing, we read the otolith digital image
into R (version 4.0.3; R core team, 2020) and then used the
“ShapeR” package for otolith image binarization, otolith con-
tour extraction, contour smoothing, basic otolith measure-
ments, and wavelet analysis (Libungan and Pálsson, 2015).

Based on the scale of the image, ShapeR can be used to ac-
quire four basic measurements of the otolith, namely otolith
length (OL, mm), otolith width (OW, mm), otolith perime-
ter (P, mm), and otolith area (A, mm2) (Table 2) (Gauldie
and Physiology, 1988; Lombarte and Lleonart, 1993; Tuset
t al., 2003). The six shape indices of the otolith are then cal-
ulated and are shown in Table 3. Next, the otolith length
nd width are analysed to determine the extent of allometric
rowth. We used Huxley’s allometric equation (y = axb) to
t the relationship between fish length and otolith length and
idth (Huxley, 1924). Huxley’s allometric equation was es-

imated with the nonlinear least squares algorithm using the
nls” function in the R program (version 4.0.3, R core team,
020).

pecies classification using statistical classifiers

welve statistical classifiers were used to compare their perfor-
ances in discriminating fish species when experiencing the

hallenge of the allometric effect. These classifiers are divided
nto four groups.

1) Classical statistical model classifiers, which include
linear discriminant analysis (LDA) (Fisher, 1936),
quadratic discriminant analysis (QDA) (Srivastava et
al., 2007), and Gaussian Naive Bayesian (GNB) (Wi-
jayanto and Sarno, 2018). LDA and QDA are effec-
tive and popular otolith contour discriminant analysis
methods, which can achieve better classification results
in many cases. GNB is a probabilistic method based on
Bayes’ theorem.

2) Distance-based classifiers, include nearest centroid clas-
sifier machine (NC) (Levner, 2005), K-nearest neigh-
bour algorithms (KNN) (Keller et al., 1985), and radial
basis function support vector machine (SVM) (Hearst
et al., 1998). Among them, NC has a similar algorith-
mic idea to the KNN, which is an improvement of KNN
and is more efficient than KNN.
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Figure 2. Whole sagittal otoliths of standard length (a) 11.8 cm and (b) 37.9 cm C. rastrospinosus, (c) 2.2 cm and (d) 8.2 cm K. anderssoni, (e) 6.1 cm and
(f) 20.0 cm P. antarcticum, (g) 6.0 cm and (h) 9.3 cm E. carlsbergi.

Table 2. Shape index formula description.

Shape indices Formulaic description

Form factor (FF) FF = (4 × � × A)/P2

Rectangularity (R) R = A/(OL + OW)
Elipticity (E) E = (OL − OW)/(OL + OW)
Roundness (r) r = (4 × A)/(� × OL)2

Aspect ratio (AR) AR = OL/OW
Circularity (C) C = P2/A

OL, Otolith length. OW, Otolith width. P, Otolith perimeter. A, Otolith area.
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3) Linear classifiers, include ridge classifier machines (RC)
(Peng et al., 2020) and stochastic gradient descent
(SGD) (Bottou, 2010). SGD machines allow for the
flexible setting of loss functions to solve various
classification problems, and RC machines are more ca-
pable of dealing with multicollinearity problems than
the other linear models.

4) Decision trees (DT) (Safavian et al., 1991), random for-
est (RF) (Breiman, 2001), gradient boosting classifier
machine (GBC) (Friedman, 2001), and AdaBoost clas-
sifier machines (ABC) (Solomatine and Shrestha, 2004)
are examples of tree structure classifiers. The tree struc-
ture algorithm performs well with high-dimensional
noisy data. Furthermore, random forests, gradient
boosting machines, and AdaBoost machines are all en-
semble models that can overcome the shortcomings of
weak model generalization ability and achieve better
prediction performance.

Wavelet descriptors and shape indices describing the mor-
hology of the otolith are used as an input data in classifica-
ion. Most studies considered the wavelet function at the fifth
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Table 3. Shape index.

Species FF R r E C AR

ELC 0.789 ± 0.017 2.136 ± 0.242 0.276 ± 0.015 0.041 ± 0.031 15.937 ± 0.343 1.089 ± 0.068
ANS 0.811 ± 0.085 2.686 ± 0.952 0.354 ± 0.013 0.058 ± 0.014 15.782 ± 2.876 0.890 ± 0.026
KIF 0.761 ± 0.028 2.309 ± 0.600 0.289 ± 0.035 0.034 ± 0.043 16.335 ± 1.298 1.075 ± 0.098
KRA 0.719 ± 0.194 1.461 ± 0.304 0.255 ± 0.024 0.074 ± 0.074 21.497 ± 16.560 1.169 ± 0.137

FF: Form factor, R: Rectangularity, E: Ellipticity, r: Roundness, AR: Aspect ratio, C: Circularity. ELC, E. carlsbergi; KIF, C. rastrospinosus; ANS, P. antarcticum;
and KRA, K. anderssoni.

Figure 3. Illustration of the proposed NN structure. We introduced triplt loss (1) in the intermediate layer to reduce the intra-class feature differences of
the same fish species and increase the inter-class feature differences of different fish species. ELC, E. carlsbergi; KIF, C. rastrospinosus; ANS, P.
antarcticum; and KRA, K. anderssoni. The NN design is described in detail in section 2.4 of the main text.
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scale when selecting a wavelet harmonic number. However,
it has also been shown that the number of harmonics of the
wavelet transform used affects the classification model’s per-
formance (Lin and Al-Abdulkader, 2019). Therefore, in this
study, we tested 5th, 10th, and 20th wavelet descriptors as in-
puts to the classifier. The best number of wavelet descriptors
can then be used in combination with the shape indices as
input data to achieve the best classification performance. Fur-
thermore, to unify the order of magnitude between the input
data, we normalize the input data between 0 and 1. The data
were randomly divided into training and test sets ten times
to obtain more reliable results, with the 111 and 48 instances
selected as training and test sets, respectively. The classifier
performance was evaluated by averaging the results ten times.
The framework is shown in the Supplementary Figure S1.

Species classification using NN classification

NNs were first proposed ∼80 years before. Inspired by the
structure of neurons in the brain and its working principles,
the first NN model, the MCP model, was proposed (Mc-
Culloch and Pitts, 1943). NN typically consist of an input
layer, multiple hidden layers, and an output layer, and the
etwork parameters are generally updated iteratively by cal-
ulating the gradient of the loss function. By designing the
tructure of the hidden layers, activation, and loss functions,
he NN can show excellent predictive performance for spe-
ific classification problems. Therefore, we want to design
n NN that can effectively overcome the mass discrimina-
ion of fish species caused by allometric otolith growth in this
ase.

In general, NN solve image classification problems by tak-
ng the image as the input and expecting the NN to learn
he image’s semantic and low-level feature information. Im-
ge classification is aided by the learned discriminative fea-
ures. However, this requires a very large number of otolith
mages, otherwise it may lead to a high risk of model overfit-
ing in NN (Hawkins, 2004). Besides, the otolith images con-
ain simple semantic information as well as a large amount of
edundant background information. Actually, this redundant
nformation is noisy information for the otolith classification.
herefore, in this study, we feed the extracted features into
N. NN are expected to learn the potential feature relation-

hips and then classify the images. Similar to the statistical
lassifier, wavelet descriptors and shape indices are used as
N classifier input.
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Table 4. Evaluation metrics.

Evaluation
indicators Formulaic description

Accuracy Accuracy = TP+TN
TP+FN+FP+TN

Precision Precision = TP
TP+FP

Recall Recall = TP
TP+FN

F1-score F1 = 2 ×Precision×Recall
(Precision+Recall )

TP, True positive. TN, True negative. FN, False negative. FP, False positive.
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The proposed network structure (neural network with
riplet loss, NNT) is shown in Figure 3. It has an in-
ut layer, an output layer, and five hidden layers Xh =
Xhi , i ∈ (1, 2, . . . , 5)}. The network is connected through full
onnection layers and a linear unit activation function (Relu)
s used between the five hidden layers.

In addition, we find that the otolith shapes in the images are
bserved to have large intra-class variation and small inter-
lass variation, which is challenging for their classification.
owards this end, triplet loss function is introduced to con-
train the distance in the features in the NN training. The triple
oss was first proposed to solve the face recognition problem
n which one identity may have many different face images
Schroff et al., 2015). It was employed to embed input fea-
ures into feature space such that the squared distance between
aces of the same identity is small, while the squared distance
etween face images from different identities is large (Schroff
t al., 2015).

In this study, we mapped the extracted shape features
o a high-dimensional feature space through the NN. Next,
e used triplet loss to constrain the feature distances be-

ween the same species to be small and between different
pecies to be large. The constraint was achieved by intro-
ucing a triplet loss function to update the NN param-
ters through a back propagation algorithm, thereby ob-
aining the best feature extractor and classifier. Given a set
f otolith images R = {R1, R2, . . . , RN}, and labels L =
L1, L2, . . . , Ln|Li ∈ {A, B}}, as shown in Figure 3, and we
rst extract features X = {X1, X2, . . . , Xn} for each image
i, where Xi is the input of NNT and Xi ∈ R16. Triplet loss

unction then contrains the high-dimensional features Xhk =
X1

hk , X2
hk , . . . , Xn

hk | Xi
hk ∈ R512} extracted by the k − th hid-

en layer of the NN. Further, we iteratively sample feature
i
hk in Xhk as anchor a, and mine X j

hk as the positive example
corresponding to a and Xk

hk as the negative example N cor-
esponding to a. It is required that Li = Lj and Li �= Lk. The
onstraint objectives are as follows

L = max
(
d (a, P) − d (a, N) + margin, 0

)
,

here a, P, N ∈ R512. Margin indicates the distance of the
onstraint. d(a, P) indicates the distance between a and P and
(a, N) indicates that between a and N. In this study, the Eu-
lidean distance was introduced

d(a, P) = 1
k

k∑

i

‖ai − Pi‖2 ,

here ai and Pi indicate each item of a and P, respectively.
The NN is randomly initialized to map the otolith shape

eatures to the feature space. Figure 3(a) shows the original
eature space of the shape features after random initialization.
riplet Loss treats Class A as a positive sample and Class B
s a negative sample and matches an anchor for the positive
ample, as shown in Figure 3(b), and calculates the Euclidean
istance between the positive and negative samples and the
nchor, respectively. Each sample is selected as an anchor, in
hich the farthest sample distance of the same class, and the
earest sample distance of different classes are recorded. If the
istance between the positive sample and the anchor is less
han the margin, then the loss is 0. Otherwise, the loss is the
istance between the anchor and positive sample minus the
istance between the anchor and negative sample, plus the
argin. The triple loss and the cross-entropy loss functions
pplied to the softmax layer are accumulated as the total loss
or the training. Using gradient descent and backward prop-
gation the shape features’ mapping is updated, and the to-
al loss are reduced. Finally, the smaller intra-class distances,
arger inter-class distances are achieved [Figure 3(c)]. In this
tudy, a triplet loss function is used in Xh4 and a cross-entropy
oss function (De Boer et al., 2005) is used in the classification
ayer.

To show the role of the triplet loss function, ablation ex-
eriments were designed in this study, with Experiment 1 us-

ng only the cross-entropy loss function and Experiment 2 us-
ng both the cross-entropy loss function and the triplet loss
unction, with the same NN settings except for the loss func-
ion. To further validate the NN’s effectiveness, t-SNE (Van
er Maaten and Hinton, 2008) was performed on the test set.
he output eigenvalues from the trained NN’s fourth hidden

ayer, where triplet loss is used, were recorded and subjected to
-SNE dimensionality reduction. Default parameter values of
he t-SNE algorithm were used, with the number of iterations
et to 400.

Our experiments were conducted on a single Nvidia
eforce RTX2060 GPU. The model was implemented using
yTorch (Paszke et al., 2017), an open-source deep learning
ramework for Python. The epoch is set to 1000, the batch
ize to 128, the learning rate to 0.001, and the margin to 1.

odel evaluation and NN model overfitting test

o better visualize the classification performance of otoliths
ith varying degrees of allometric growth under different clas-

ifiers, we calculate accuracy, recall, precision, and F1-score
s metrics of model performance (Table 4). To test the risk
f overfitting in the proposed NN, the data were randomly
ivided into training, validation, and test sets ten times, with
he 95, 32, and 32 instances selected as training, validation,
nd test sets, respectively. In each training, we recorded the
raining and validation losses. In addition, we calculated the
verage accuracy of the validation and test sets.

esults

llometric growth in otolith

he allometric coefficient b differs in the four species (Table
). The allometric coefficient values of ELC (0.6661) and ANS
0.7216) are closer to 1, compared to KIF (0.5245) and KRA
0.2537), implying a smaller allometric growth. A smaller allo-
etric coefficient value indicates a greater growth rate change.
hus, KIF and KRA have more pronounced allometric growth
ffects, which would result in more shape variations in otoliths
f different body lengths.
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Table 5. Result of otolith length and width allometric equation model.

Species a1 b1 RSS1 a2 b2 RSS2

ELC 1.5537 0.6661 2.656 1.1539 0.7721 3.337
ANS 1.0305 0.7216 49.34 1.0729 0.7518 61.36
KIF 1.2931 0.5245 105.9 1.4810 0.4560 74.4
KRA 2.7619 0.2537 25.31 2.6143 0.1884 15.22

ELC, E. carlsbergi; KIF, C. rastrospinosus; ANS, P. antarcticum; and KRA, K. anderssoni. In the table, symbols a1 and a2 represent the proportionality
coefficients, b1 and b2 are allometric coefficients, and RSS1 and RSS2 represent the residual sum of squares of otolith length and fish length fitting model and
residual sum of squares of otolith width and fish length fitting model, respectively.

Figure 4. Line graphs of the classification accuracy. 5WT, The first five wavelet harmonics. 10WT, The first ten wavelet harmonics. 20WT, The first 20
wavelet harmonics. ABC, AdaBoost classifier machine. SGD, Stochastic gradient descent machine. SVM, Support vector machine. DT, Decision tree. NC,
Nearest centroid classifier machine. RC, Ridge classifier machine. GNB, Gaussian Naive Bayes. KNN, K-nearest neighbour. RF, Random forests. LDA,
Linear discriminant analysis. QDA, Quadratic discriminant analysis. GBC, Gradient boosting classifier machine. NN, Neural networks. NNT, Neural
networks with triplet loss function.
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Variability in otolith shape

To compare the difference in classification performances us-
ing the first 5, 10, and 20 wavelet harmonics, the accuracy
of 14 classifiers is calculated. The classification accuracy for
most classifiers of 10 wavelet harmonics is higher than those
of 5 and 20 harmonics (Figure 4). When only the first five
wavelet harmonics were used as input data for classification,
half of the classifiers obtained classification accuracy below
80%, with the the RF classifier achieving the highest classi-
fication accuracy (86%). Similar classification accuracy was
achieved by most classifiers using the first 10 vs. 20 wavelet
harmonics as input data. In contrast, higher accuracy was al-
ways obtained using the first ten wavelet harmonics for tree-
based (ABC, DT, GBC, and RF) and NN-structured classifiers.
KNN and SVM achieved the highest classification accuracy
(91%) using the first 20 wavelet harmonics. Therefore, using
he first ten wavelet harmonics is optimal because ten classi-
ers achieved the highest classification accuracy (mostly be-
ween 80 and 90%). Moreover, the highest classification ac-
uracy of 93% was obtained by NNT and QDA, using ten
avelet harmonics as input data. Therefore, 16 features con-

isting of the first ten wavelet harmonics and shape indices,
ere selected as input data for the subsequent analysis.

lassification performance

igure 5 shows the classification performance (accuracy, re-
all, precision, and F1-score) using the first ten wavelet har-
onics and six shape indices for each species. After adding

hape indices as input data, all classifiers (except QDA) ob-
ained classification accuracy not lower than those using
nly ten wavelet harmonics as input data (Figure 5, Sup-
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Figure 5. Heatmap of the five categories of classifiers. The horizontal axis represents the performance of the species (ELC, ANS, KRA, and KIF) on the
evaluation metrics (P, Precision; R, Recall; F, F1-score), e.g. “P-ELC” represents the precision of ELC. ACC, Classification accuracy, which is underlined to
highlight. C, Classical statistical classifier. D, Distance-based classifier. L, Linear classifier. T, Tree classifier. NN, Neural networks classifier. The vertical
axis represents the classifiers described in detail in sections 2.3 and 2.4 of the main text.
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lementary Table S2). Six classifiers obtained >90% classi-
cation accuracy, and NNT obtained the highest classifica-
ion accuracy (96%). Compared to using the cross-entropy
oss function alone, utilizing both the triplet loss and cross-
ntropy loss functions improves the classification accuracy
y 2%.
Considering the classification performance among differ-

nt species, most classifiers achieved good classification per-
ormance for ELC and ANS, the classification precision and
ecall were mostly above 0.85. F-score, as a composite of pre-
ision and recall, is also higher than KIF and KRA in terms
f ELC and ANS. The exceptions are ABC and SGD, which
ave a better classification performance on ANS only, and
heir classification accuracies were the lowest (0.71 and 0.66,
espectively). For most classifiers, KIF and KRA contributed a
igh proportion of the classification errors. For classification
recision, KIF (lowest: 67% and highest: 100%) was higher
han KRA (lowest: 52% and highest: 92%). For recall, KRA
howed a more variable range (from 42 to 100%), with over-
ll higher values (a total of ten classifiers above 80%) than
IF. Nine classifiers achieved a recall of not >80% for KIF.
enerally, ELC and ANS consistently achieved good preci-

ion, recall, and F1-score performance. With intense allomet-
ic growth, KIF and KRA performed poorly based on the F1-
core, the former owing to lower recall and the latter due to
ower precision (Figure 5). Figure 5 shows that the strong al-
ometric growth negatively impacts most classifiers.

For the five categories of classification models (Figure 5),
he performance of classifiers based on a tree structure is un-
table, and among them, performance of the RF algorithm is
xcellent with an accuracy of 89%. In the linear model-based
lassifiers, the accuracy of the RC (89%) far exceeds that of
he SGD (66%). Overall, classical statistical model-based clas-
ifiers, distance-based classifiers, and NN models are suitable
or classification. These three categories of classifiers were able
o overcome the negative effects of otolith allometric growth
o some extent, and the classification accuracy exceeded 85%.
n particular, the proposed NN classifier with triplet loss func-
ion presents the highest classification accuracy (96%), prov-
ng the validity of triplet loss.
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Figure 6. t-SNE visualization using ten wavelet harmonics and six shape indices features on the test set. (a) Original features, (b) fourth layer features for
the hidden layer after the NN training, and (c) fourth layer features for the hidden layer after the NN training with triplet loss. ELC, E. carlsbergi; KIF, C.
rastrospinosus; ANS, P. antarcticum; and KRA, K. anderssoni.

Figure 7. Learning curve plot. Training and validation losses over 1000 epochs during the NN training with triplet loss.
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Visualization and overfitting test of the network

T-SNE reduces the dimensionality of the test set by 2. Figure
6 shows the results of (a) t-SNE in the original features, (b)
the features trained by the NN, and (c) the features trained by
the NNT. The dimensionality reduction of the raw untrained
otolith shape features are mixed [Figure 6(a)], especially for
KIF, ANS, and KRA. After the NN training, all otoliths can
be better divided into three groups, where KIF is confused
with KRA and ANS [Figure 6(b)]. In Figure 6(c), the t-SNE
plots generated from the data trained by the proposed NN
showed the large separation between the four species of fish
otoliths, demonstrating the excellent effect of the triplet loss
function.

The average accuracy with the ten times random division
of the data set for the proposed NN is 0.972 (±0.027) on
the validation set and 0.962 (±0.029) on the test set (Sup-
plemenatry Table S1). Similar learning curve is observed in
ten times randomized experiments. Take one of them as an
example (Figure 7). The learning curves for the training and
validation sets show that the NN model did not overfit the
 a
ata. The plot of training loss decreases to a point of stability.
oreover, the plot of validation loss also decreases to a point

f stability and has a small gap with the training loss. How-
ver, there is an abrupt jump up and down in the training pro-
ess due to the learning rate and nature of the gradient descent
lgorithm.

iscussion

he abovementioned four species (ELC, ANS, KIF, and KRA)
lay an important ecological role in the Southern Ocean’s
pen-ocean food web (Barrera-Oro, 2002; Saunders et al.,
015c). They provide essential food sources for seabirds, seals,
etaceans, squid, and large predatory fish (Rodhouse et al.,
992; Olsson and North, 1997; Cherel et al., 2002; Collins
t al., 2007; Cherel et al., 2008). Therefore, otoliths of these
pecies are vital for studying piscivorous predators’ feeding
abits. Furthermore, alleviating the problem of species iden-
ification caused by otolith allometric growth provides more
ccurate feeding studies, which contribute significantly to our
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nderstanding of marine food webs, especially at the upper
rophic level (Dürr and González, 2002; Garcia–Rodriguez et
l., 2011).

In this study, we tested the classification performance of sev-
ral classifiers in the presence of drastic allometric growth.
ur results demonstrated that RF, SVM, and KNN have ex-

ellent classification performance despite the negative effect
f strong allometric growth. Besides, our study presents an
NT for identifying fish species based on otolith shape while

acing the challenge of significant allometric effect. In the ten
imes randomized experiments, the proposed otolith identifi-
ation model achieves 0.962 average accuracy on test set. The
se of the triplet loss function alleviates the problem of diffi-
ult otolith discrimination during the larval period, effectively
mproving the problem of the low success rate of discrimina-
ion of species mixed with otoliths of fish across different life-
istory stages. The triplet loss can reduce the distance between
he intra-group data and widen the inter-group gap data from
ifferent groups, allowing a small amount of data to produce
he ideal discriminant analysis effect, which is useful for per-
orming otolith-based species identification with a small sam-
le size.

election of shape feature

revious studies always used the first five harmonics of the
avelet transform to describe the otolith shape (Lombarte et
l., 2018; Tuset et al., 2018, 2020), but this study discovered
hat the first five harmonics could achieve certain results but
id not achieve the best classification performance. Most clas-
ifiers show a saturation result on the number of harmonics
fter a certain number of harmonics, and increasing the num-
er of harmonics can only slightly improve the classification
ccuracy in a few cases, such as NC and SGD. Moreover, in
ost cases, excessively increasing the number of harmonics
ill result in a lower classification accuracy, especially in tree-
ased classifiers and NN models (Supplementary Table S2).
his may be due to overfitting. Overfitting is one of the funda-
ental issues in NN, due to continuous gradient updating and

cale sensitivity of cross-entropy loss (Salman and Liu, 2019).
ree-based classifier fed with too many variables with insuffi-
ient information in training are likely to overfit data (dos San-
os et al., 2009). The principle of wavelet transform dictates
hat the higher the number of harmonics provides more de-
ailed information about the shape (Osowski, 2002), and that
art of the information is likely to be redundant in the classifi-
ation. Among the tree-based models, RF and GBC, the most
ommon ensemble methods, can effectively handle redundant
nformation (Aceña et al., 2022; Moore et al., 2022). Classifi-
ation performance significantly varies at different numbers of
avelet transform harmonics, suggesting that input features
ust be chosen more carefully and overfitting must be con-

idered when the sample size is small.
There is significant multicollinearity between shape indices.
oreover, the shape indices are too subjective and causes con-

usion with certain specific otolith patterns (Tuset et al., 2021).
herefore, using the shape index itself does not achieve satis-

actory classification performance. Many studies have shown
hat using multiple shape feature data provides a more com-
rehensive description of otolith shape and thus improves the
lassification performance (e.g. Bourehail et al., 2015; Wong
t al., 2016; Avigliano et al., 2018, among others). This phe-
omenon is observed in most classifiers selected for this study
Supplementary Table S2). With the inclusion of shape indices,
11 classifiers have an accuracy of >85%. The NN model
ith triplet loss proposed in this study improved the accu-

acy of otolith classification from 0.93 to 0.96 after incor-
orating the shape indices. In addition to the NN structure,
VM also shows great potential, and the classification accu-
acy is improved from 0.91 to 0.93. The great potential of
VM in otolith-based species identification was also reported
y Smoliński et al. (2020).

llometric growth and classification performance

he precision, recall, and F1-score of classification result re-
eals that the allometric growth of otoliths may cause diffi-
ulties in otolith-based species classification. The growth of
toliths is more stable and the shape change is not drastic
uring the whole life-history of ELC and ANS. Good precision
nd recall are obtained for all classifiers except SGD and ABC.
xperimental results show that the ABC and SGD are unsuit-
ble for solving otolith classification problems with strong al-
ometric growth. SGD classifier is rarely used in otolith clas-
ification studies. Its poor classification performance is most
ikely due to setting a large number of hyperparameters requir-
ng heavy parameter tuning (Bottou, 2012). ABC is proved
o be relatively stable concerning small training data changes
Ting and Zheng, 2003). However, it is inefficient in classify-
ng otoliths with complex shape variations.

For KIF and KRA, the large allometric growth introduces a
arge intraspecific variation, resulting in very low precision of
lassification in most classifiers. Furthermore, the recall of KIF
s also very low. These suggest that a portion of KIF otoliths
re misclassified as KRA. This misclassification may be due
o the high similarity of otoliths between KIF and KRA dur-
ng juvenile stage. Despite intense allometric growth bringing
reater classification difficulty, there are still many classifiers
hat have been shown to have learned effective classification
eatures. In the tree-based classifiers, both RF and GBC have
etter classification results. This is because they increase pre-
ision at the cost of reducing recall. KNN and RC behave
imilarly to achieve excellent classification performance. SVM,
DA, and QDA are commonly used classifiers in otolith classi-
cation studies and show extraordinary classification perfor-
ance in many studies. In this study, they demonstrated ex-

ellent classification performance despite the negative effect
f strong allometric growth. The three classifiers balance pre-
ision and recall better and make more reliable predictions.
n particular, the SVM classifier achieved an accuracy (93%)
econd only to the NN classifier. SVMs are widely used in
omputational biology due to their high accuracy and flexibil-
ty in modeling diverse data sources (Schölkopf et al., 2004;

üller et al., 2018). They allow the use of kernels to generate
onlinear decision boundaries. The domain knowledge inher-
nt in any classification task is captured by defining a suit-
ble kernel (Ben-Hur et al., 2008). This study used a nonlin-
ar RBF kernel to achieve a high classification performance.
t is somewhat surprising that the top four highest classifi-
ation accuracies were achieved with the nonlinear classifiers
NNT, NN, SVM, and KNN). Hence, it could conceivably be
ypothesized that nonlinear classifiers are robust to classifica-
ion difficulties caused by the allometric growth of otoliths. It
s noteworthy that GBC and RC were rarely used in previous
tudies, but they produced superior classification results. This
ives machine learning models more options for subsequent
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studies. RC, in particular, overcomes the negative effects of se-
vere multicollinearity in the otolith shape indices (Lieberman
and Morris, 2014; Duzan and Shariff, 2015). However, its po-
tential has received little attention in previous studies.

NN are classification algorithms characterized by flexibil-
ity, allowing for designing the network’s structure and select-
ing the appropriate loss function based on the actual situa-
tion. Therefore, NN classifiers can achieve satisfactory classi-
fication performance in most cases (Soom et al., 2022). How-
ever, one of the common issues with deep learning methods is
that they are extremely data-intensive. NNs usually require a
large amount of data to make useful predictions due to nu-
merous learnable parameters. A lack of data may lead to a
mismatch between the order of magnitude of the training set
and model complexity, resulting in a high risk of overfitting
(Hawkins, 2004). The issue can be considered as one of the
bottlenecks in small applications, limiting the development of
deep learning in life sciences. We approach this problem in
two ways. The first is to combine traditional feature extraction
with deep learning models to remove redundant information
and extract useful information from otolith’s contour. Feature
extraction reduces the complexity of the model, avoids the
risk of overfitting, and achieves excellent classification perfor-
mance. The second approach is to introduce the triplet loss to
embed the extracted shape features into a feature space, such
that intra-class separation is minimized and inter-class separa-
tion is maximized. Similarly, triplet loss has been used in many
classification applications (e.g. bioacoustic classification, clas-
sification of remote sensing scene, and face recognition) (Ye-
ung et al., 2017; Clementino and Colonna, 2020; Zhang et al.,
2020). It has been demonstrated to reduce the required sample
size by the NN (Thakur et al., 2019).

In future studies, the use of the triplet loss may be consid-
ered more often in cases where large intra-class differences
affect the inter-class discriminant analysis. More work can be
conducted to train the model on otoliths from different fish
species at different life-history stages to validate the effective-
ness of NN with triplet loss functions.
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