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Abstract

Many applications in seismology require to isolate earthquake clusters from a background activity. Relative declustering methods

essentially find a 2D representation of an earthquake catalogue that distinguishes between two classes of events: crisis and non-

crisis events. However, the number of statistical and/or physical parameters to be used is often limited due to the difficulty of

concatenating the information onto a physically meaningful 2D grid. In this study, we propose to alleviate the declustering task

by using the ability of unsupervised artificial intelligence to model complex spatio-temporal relationships directly from data.

Through a data-driven approach, we define an easily transferable declustering model that provides declustering results with

fewer assumptions and no prior selection of thresholds. We first obtain this model by training a self-organising neural network

(SOM) that learns to cluster data points according to their feature similarity on a 2D map. We then assign each SOM cluster

a label (crisis or non-crisis class) using an agglomerative clustering procedure. We quantify the classification uncertainty by

developing a probabilistic function based on the projection learned by SOM. Our method is applied to a synthetic dataset and

to real catalogues from the Gulf of Corinth, Central Italy and Taiwan. We discuss the validity of the method by estimating its

classification accuracy. For real data, we qualitatively compare our results to previous declustering attempts. We show that

our approach is easy to handle, provides a fairly new representation of earthquake catalogues and has the potential to reduce

classification ambiguities between nearby events.
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Abstract14

Many applications in seismology require to isolate earthquake clusters from a background15

activity. Relative declustering methods essentially find a 2D representation of an earth-16

quake catalogue that distinguishes between two classes of events: crisis and non-crisis17

events. However, the number of statistical and/or physical parameters to be used is of-18

ten limited due to the difficulty of concatenating the information onto a physically mean-19

ingful 2D grid. In this study, we propose to alleviate the declustering task by using the20

ability of unsupervised artificial intelligence to model complex spatio-temporal relation-21

ships directly from data. Through a data-driven approach, we define an easily transfer-22

able declustering model that provides declustering results with fewer assumptions and23

no prior selection of thresholds. We first obtain this model by training a self-organising24

neural network (SOM) that learns to cluster data points according to their feature sim-25

ilarity on a 2D map. We then assign each SOM cluster a label (crisis or non-crisis class)26

using an agglomerative clustering procedure. We quantify the classification uncertainty27

by developing a probabilistic function based on the projection learned by SOM. Our method28

is applied to a synthetic dataset and to real catalogues from the Gulf of Corinth, Cen-29

tral Italy and Taiwan. We discuss the validity of the method by estimating its classifi-30

cation accuracy. For real data, we qualitatively compare our results to previous declus-31

tering attempts. We show that our approach is easy to handle, provides a fairly new rep-32

resentation of earthquake catalogues and has the potential to reduce classification am-33

biguities between nearby events.34

Plain Language Summary35

One of the main approaches to removing some of the biases from earthquake cat-36

alogues and facilitating the decoding of the information they contain is to decluster them.37

There are many declustering methods in the literature, each producing significant dif-38

ferences in the resulting declustered catalogues. The reason why there are so many meth-39

ods is that each of them takes into account new or additional statistical and/or phys-40

ical features that may better describe the behaviour of earthquakes in the specific seis-41

motectonic context for which they are applied.42

In this study, we propose a flexible relative declustering methodology capable of43

handling all desired seismic features while reducing subjective assumptions and thresh-44

old effects. This declustering procedure is based on an unsupervised machine learning45

approach that uses an artificial neural network called a self-organising map (SOM). Through46

a clustering process, the SOM neural network is able to non-linearly map large input spaces47

onto a 2D grid, which hopefully preserves the topological and metric relationships of the48

data. Thanks to this reduction in dimensionality, high-dimensional datasets of seismic49

features can be easily visualised and interpreted in a 2D representation, as shown here50

with synthetic data and real earthquakes catalogues from Greece, central Italy and Tai-51

wan.52

1 Introduction53

Earthquake catalogues are key datasets widely used by the scientific community54

for understanding the statistical behaviour of earthquakes, their spatio-temporal evo-55

lution and their triggering factors. They can also highlight the 3D geometry of seismi-56

cally active structures, contribute to the quantification of seismic hazard and improve57

earthquake forecasting (Zhu et al., 2023). In addition, new generations of high-definition58

seismic catalogues are being built with more powerful detection procedures. Unprece-59

dented levels of details can then be achieved to reveal finer spatio-temporal seismic pat-60

terns that were previously undetectable (Beroza et al., 2021; Herrmann et al., 2022; Mancini61

et al., 2022).62
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However, the exploration of all these earthquake catalogues remains actually dif-63

ficult to operate due to their high dimensionality and intrinsic heterogeneity (e.g. spatio-64

temporal evolution of seismological networks, changes in recording and/or processing pro-65

cedures). The representation of fundamental earthquake properties through these datasets66

is therefore challenging and affected by many biases (Weatherill et al., 2016).67

One of the main approaches to remove some of these biases and to facilitate the68

decoding of information from earthquake catalogues is to decluster them (Zaliapin & Ben-69

Zion, 2022). Seismicity declustering is indeed commonly used in seismological analyses70

to extract recurrent seismic features and to solve complex problems such as estimating71

the evolution of seismic locations prior to large earthquakes (Zaliapin & Ben-Zion, 2022)72

or relating earthquake depth distributions to the mechanical strength properties of the73

crust (Scholz, 2002; Albaric et al., 2009; Cheng & Ben-Zion, 2019).74

Declustering methods usually provide distinct sub-catalogues containing two cat-75

egories of seismic events: ”independent” events, which are related to long-term defor-76

mation processes and referred as background seismicity, and ”dependent”, transient events77

(swarms, foreshock or aftershock sequences), which are wholly or partly triggered by pre-78

vious events and exhibit clustered spatio-temporal behaviours (Pisarenko & Rodkin, 2019).79

However, there are many different methods of declustering, each creating dissimilarities80

in their resulting declustered catalogues (van Stiphout et al., 2012), (Gurjar & Basu, 2022).81

We may cite for instance those based on the Epidemic Type Aftershock Sequence (ETAS)82

model (Iacoletti et al., 2022; Zhang & Huang, 2022; Mizrahi et al., 2022; Field et al., 2021,83

2022; Hainzl, 2022), on nearest-neighbour distances (Zaliapin et al., 2008; Zhuang et al.,84

2002) or on supervised machine learning (Aden-Antoniow et al., 2022; Pavez O & Es-85

tay H, 2021; Seydoux et al., 2020). The reason why there are so many methods is that86

each of them takes into account new or additional statistical and/or physical features87

that are assumed to better describe the behaviour of earthquakes in the specific seismo-88

tectonic context for which they are applied (Zaliapin & Ben-Zion, 2021).89

A more homogeneous and less subjective approach is therefore needed for more in-90

depth analyses of earthquake clustering with complex and heterogeneous catalogues. Among91

the available declustering methods, relative declustering, as opposed to declustering based92

on stochastic models such as the ETAS model (Ogata, 1988, 1998, 2004; Zhuang et al.,93

2004), creates a two-dimensional (2D) representation of the dataset, assuming the ex-94

istence of two classes in a catalogue: dependent and independent events. To obtain a human-95

interpretable 2D space of a two-event class seismic catalogue, these relative methods must96

perform a physically meaningful concatenation of all the seismic features used, which lim-97

its the number of seismic features to be taken into account.98

In this study, we propose a more flexible relative declustering methodology that99

is able to handle all desired seismic features while reducing the number of subjective as-100

sumptions and threshold effects. This declustering procedure is based on an unsuper-101

vised machine learning approach that uses an artificial neural network called a self-organising102

map (SOM). A SOM neural network is indeed capable of non-linearly mapping large in-103

put spaces onto a 2D grid through a clustering process, which hopefully preserves the104

topological and metric relationships of the data. Through this reduction in dimension-105

ality, high-dimensional datasets of seismic features can easily be visualised and interpreted106

in a 2D representation.107

We therefore first train a SOM neural network to produce a data representation108

with as many seismic feature inputs as desired. We then use hierarchical agglomerative109

clustering to identify clusters in the 2D SOM grid. We finally classify them as contain-110

ing background events, aftershocks or swarms, using a probabilistic approach based on111

the seismic features we select to train the SOM network (inter-event space-time distances112

and b-value, average magnitude, density of events). To estimate the classification un-113

certainty and confidence level of our declustering approach, we develop a probabilistic114

–3–
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function based on the projection learned by the SOM. To evaluate the reliability and po-115

tential of our machine learning approach, we apply our SOM declustering method to sev-116

eral datasets: first, a synthetic seismic dataset and second, real earthquake catalogues117

from the Corinth Rift (RESIF, 1995; Evangelidis et al., 2021), Central Italy (Chiaraluce118

et al., 2022) and Taiwan (Peng et al., 2021). The real data were selected to represent a119

wide range of criteria such as the size of the study area, the tectonic regime, the degree120

of magnitude completeness, the duration and the detection and location procedures used.121

The consistent declustering results obtained with these datasets show that our machine122

learning-based declustering approach has a strong generalisation capability, even when123

using only information contained in standard catalogues.124

2 Towards a Spatio-Temporal Declustering of Complex and Hetero-125

geneous Catalogues using Self-Organising Maps126

The two categories of events we seek to identify through the declustering process127

are the so-called crisis and non-crisis events. We define a crisis event as an event that128

is directly triggered by another event (e.g. aftershocks and swarms) and a non-crisis event129

as an event that is seemingly uncorrelated to the neighbouring seismic activity (e.g. back-130

ground events).131

2.1 First Approach: Spatial Representation of Seismic Events132

The first and simplest way to represent a seismicity catalogue is through a 2D ge-133

ographical map (longitude and latitude). This representation allows a quick visual iden-134

tification of areas with a denser number of seismic events as well as earthquake propa-135

gation patterns in the same direction or around a same location. A first declustering ap-136

proach could be carried out on the basis of this information. However, it would not take137

into account the temporal dimension, which would result in the loss of many background138

events in the process.139

2.2 Second Approach: Spatio-Temporal Representation of Seismic Events140

Using Cumulative Curves141

The third temporal dimension is needed to improve the declustering of seismic cat-142

alogues, as they reflect the natural occurrence of multiple distinct seismic sequences over143

time. For example, the cumulative number of seismic events over time can provide ad-144

ditional information about event productivity. In combination with 2D maps, space-time145

windows can be created around a seismic crisis, reducing loss and missing classification146

on the background event class during declustering.147

Single-Link cluster analysis is an example of declustering approach (Frohlich & Davis,
1990) that exploits the spatio-temporal information included in the seismic catalogues
by calculating temporal (∆ti,j) and spatial (ri,j) distances:

di,j =
√
ri,j + Cst2(∆ti,j)2 (1)

Equation (1) is applied for each event i and j of a given catalogue to obtain an inter-148

event distance metric. An empirical distance threshold (see Equation 1), applied on the149

smallest values of di,j found for each event i in the catalogue, is used to obtain the fi-150

nal declustering. However, the use of a single threshold is a limitation, as there is no guar-151

antee that the best threshold is the same over time or space. Furthermore, this space-152

time declustering approach requires a uniformly sampled catalogue in order to maintain153

the same relative distance distribution in each window. However, in reality, the density154

of detected events in time and space can change as a function of inter-station and epi-155

central distances, especially when operational changes are made (e.g. detection system156

or instrumentation).157
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2.3 Third Approach: Time-Magnitude Representation of Seismic Events158

Magnitude information from seismic catalogues can also be used to more accurately159

identify the onset of mainshock-aftershock sequences. According to Omori’s law (Utsu160

et al., 1995), these sequences theoretically all start with a large mainshock, followed by161

aftershocks whose number and magnitude decrease with time. Plotting the magnitude162

distribution of events as a function of their origin time can be useful to distinguish af-163

tershocks from mainshocks. However, we must assume that the spatial windowing cho-164

sen is good and includes all necessary information.165

To find the tail of aftershock sequences, it is possible to weight the probability of166

an event being in the tail of a sequence by a factor depending on the magnitude of the167

event (mi) and the b-value of the given sequence, assuming a pure Omori’s law (Utsu168

et al., 1995):169

factor = 10−b∗mi (2)

2.4 Fourth Approach: Nearest-Neighbour Approach in a Space-Time-170

Magnitude domain171

Combining the above-mentioned features, some authors (e.g. Zaliapin and Ben-Zion172

(2021)) have developed a declustering method using relative spatial and temporal dis-173

tances, weighted by a b-value and a magnitude factor function that describes the dis-174

tribution of events relative to their first neighbours:175

Tj = ∆ti,j ∗ 10−b∗mi/2 (3)

Rj = rCst
i,j ∗ 10−b∗mi/2 (4)

ηj = Rj ∗ Tj (5)

The graphical representation of all the temporal Tj and spatial Rj distances shows176

two distinct lobes: the first lobe, described by the smallest average values of Tj and Rj ,177

corresponds to crisis events and the other lobe to non-crisis events. This approach is very178

robust when relatively homogeneous spatial and temporal calculation windows are se-179

lected. However, it becomes more unstable as the diversity of crises in a catalogue in-180

creases: a b-value must be calculated for each crisis to obtain a rigorous result, each cri-181

sis having a specific b-value (Mesimeri et al., 2019). In addition, the systematic search182

for an optimal space-time window is necessary to correctly differentiate the two lobes.183

2.5 Fifth Approach: Rupture Process of Swarms and Aftershocks184

The methods described above correctly identify the sequences of mainshocks and185

aftershocks observed in the catalogues, but have difficulties in identifying swarms which186

have a different distribution in space, time and magnitude. Moreover, swarm activity can187

occur in the vicinity of mainshock-aftershock sequences, making difficult to distinguish188

between all these sequences. We therefore need to add dimensions that can provide new189

information on the physics of nucleation, such as a b-value, a finer temporal or spatial190

distribution with neighbouring events (i.e. more than one nearest neighbour) or other191

criteria such as waveform similarity (Barani et al., 2007; Seydoux et al., 2020).192

A combination of several seismic features is therefore needed to efficiently solve the193

declustering problem: relative space-time distances, magnitude values, magnitude dis-194

tribution (e.g. b-value), or features linked to the physics of nucleation.195

However, the difficulty of correctly extracting information from a seismic catalogue196

increases with the number of seismic features to be concatenated into a human-interpretable197
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Figure 1: Architecture of our declustering methodology summarised in different steps.
The numbers in bold refer to the different sections of the article. The acronym KDM is
the name given to the whole workflow of our method: KDM stands for Kohonen Map
Declustering Method.

2D space. The axes of the resulting 2D representation must be physically meaningful to198

allow a more objective assignment of the correct class of events to each cluster represented199

in 2D space.200

3 Declustering Methodology Based on Self-Organised Maps and Ag-201

glomerative Clustering202

In this section, we present step by step the machine learning methodology we use203

to solve the declustering problem. This methodology is based on a set of higher dimen-204

sional seismic features in order to obtain a robust and interpretable 2D representation205

of a seismic catalogue. The different steps are summarised in Figure 1. To achieve this206

goal, we perform a SOM dimensionality reduction, followed by an agglomerative clus-207

tering performed on the SOM generated map.208

3.1 Learning Architecture of Self-Organising Maps209

3.1.1 Definition of Self-Organising Map210

SOM ( Vesanto, J. & Alhoniemi, E., 2000) is an unsupervised neural network-based211

dimensionality reduction algorithm used to represent a high-dimensional dataset as a low-212

dimensional (usually 2D) discretised pattern. The dimensionality reduction is performed213

while maintaining the topological structure of the input data. The neural network is trained214

by competitive learning, as opposed to error-correction learning (e.g. back-propagation215

with gradient descent). After dimensionality reduction by SOM, each dataset used, rep-216

resented by vectors of p features measured in n observations, is visualised on a 2D SOM217

–6–



manuscript submitted to JGR: Solid Earth

map by clusters of observations. Observations in the proximal clusters have more sim-218

ilar feature values than observations in the distal clusters.219

The SOM neural network is based on a purely mathematical process that aims to220

find a new topological space to represent the hidden distribution of input features. This221

process is comparable to the Principal Component Analysis (PCA), which is often used222

to analyse datasets with a large number of dimensions. As with SOM, PCA reduces the223

output space of the dataset while retaining as much of its properties as possible to pro-224

vide the best representation of each class in the dataset. However, PCA only linearly projects225

the dataset onto the best principal component, while SOM creates a complete new topo-226

logical space. Unlike PCA, SOM is an injection (multiple inputs give the same output)227

that projects the input vectors of the dataset into a new space that uses each compo-228

nent of the input space.229

3.1.2 Self-Organising Map Learning Process230

The learning process of the SOM is a repetition of a few steps :231

1. The SOM algorithm models an input space with a fixed grid of nodes.232

2. Each node in the grid has the same dimensions (i.e. the same values) as the in-233

put vectors. Random scalars are assigned to nodes in the input vector value range.234

3. For each input vector, the algorithm searches for the Best Matching Unit (BMU),235

which is equivalent to finding the smallest Euclidean distance between the input236

vector and the nodes.237

4. The BMU and its neighbouring nodes within a certain radius are modified, so that238

the nodes values are slightly adjusted to reduce the Euclidean distance to the in-239

put vector.240

5. The last two steps are repeated in the learning process: with each new iteration,241

the radius and the maximum allowed change in node values decrease.242

By running through all the input vectors in the dataset, the entire grid of nodes243

ends up reaching the shortest distance between the nodes and the dataset, with simi-244

lar nodes (i.e. inputs to the dataset) being grouped together in one area, and dissimi-245

lar nodes being separated. The dataset can then be visualised on a 2D map where each246

input vector is assigned to its best matching nodes.247

3.2 Self-Organising Map Training Process248

We aim to explore the dataset by calculating the relative distances of each data point249

to its neighbours as multiple features. The first step is to define the distance scoring func-250

tion between two input feature vectors.251

3.2.1 Neighbourhood Function252

To find the nearest neighbours j of each seismic event i in the catalogue, we develop253

the following neighbourhood function:254

Di,j =

√(
haversine(eventi, eventj)

D

)2

+

(
∆T (eventi, eventj)

T

)2

(6)

In Equation 6, T and D are constants that define the third quartile of all tempo-255

ral (T) and spatial distances (D) between events in the catalogue. We design these con-256

stants to make the temporal and spatial dimensions comparable: each inter-event dis-257

tance is normalised by the third quartile, so that the resulting statistical parameters are258

less dependent on catalogue size and length.259
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3.2.2 Feature Input Vectors260

We note here that it is possible to add as many coordinates as possible to each in-261

put vector (i.e. the feature values that define the problem to be solved), allowing cus-262

tomisation of features adapted to each study.263

For our study, we use 25 features. The first 20 features are the spatial Rjn and tem-264

poral Tjn distances between an event j and its n nearest neighbours (n = 10). The fol-265

lowing four features are calculated over a sliding window centred on the event, whose length266

is proportional to the duration T and the distance D (T and D are constants defined267

in section 3.2.1). In a window of duration T and distance D centred on the event j, we268

calculate the number of events and the average magnitude. We normalise the magnitude269

and the number of events obtained by an average of the same quantity measured over270

a larger window of duration 2T and distance 2D. We thus obtain a magnitude ratio us-271

ing an approach equivalent to the calculation of the signal amplitude ratio between a Short-272

Term Average window (STA) and a Long-Term Average window (LTA) that is used to273

classically detect seismic events (Trnkoczy, 2009). We also use the average magnitude274

value without normalisation. We finally calculate the b-value over a window of 10T and275

distance of 10D.276

The last feature is the coefficient of determination R2 of the ten closest temporal277

distances (in ascending order) with a linear extrapolation, to check whether they follow278

an increasing law or not. This feature measures the linear relationship between the spa-279

tial and temporal distances of each event j from its neighbours i. If event j is indepen-280

dent of its neighbours i, the possibility of such a linear space-time relationship is less likely.281

In the case of a very dense catalogue, we use a spatio-temporal window of 2 days for T282

and 2 km for D to ensure a significant number of events.283

3.2.3 Hyperparameter tuning284

To optimise the SOM learning process, three hyperparameters are fine-tuned : the285

number of grid nodes, the number of iterations to achieve optimal clustering results, and286

the number of training samples used to converge to a good learning performance. To find287

the best values for these hyperparameters (Table 1), we use two scoring metrics: Topo-288

logical Error (TE) and Quantisation Error (QE) (Tsai et al., 2017):289

→ QE measures the mean distance error of each input vector from its associated neu-290

ron. Its values range from 0 to ∞, with smaller values of QE corresponding to the291

definition of a model that fits the dataset perfectly.292

→ TE is a global indicator that measures how well the structure of the input space293

is modelled by the map. More precisely, it evaluates the local discontinuities of294

the mapping. Thus, if two input vectors are neighbours in the dataset (their fea-295

ture values are close) and they are neighbours on the map, then TE is 0, other-296

wise TE is 1. Taking the average value of TE for each input vector gives a value297

between 0 and 1, with TE close to 0 indicating a model that preserves the topol-298

ogy of the dataset.299

The search for the best hyperparameters is therefore equivalent to finding a local300

minimum for TE and QE. To obtain these local minima, we perform several tests by re-301

cursively setting two hyperparameters to a fixed value and studying the variations of the302

third. To do this, we proceed in the following three steps until the values of the hyper-303

parameters values converge:304

1. We first set the number of training samples to the maximum available and the num-305

ber of iterations to the largest possible based on the dataset, and then iteratively306

search for the best number of nodes needed for optimal clustering (maximum dis-307

tance between clusters).308
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2. Once we have obtained the optimal number of nodes, we keep the number of train-309

ing samples at the previous value, and we find the best number of iterations that310

will make TE and QE converge to a flat growth.311

3. We finally use the optimal number of nodes and iterations found in the previous312

steps to find the best number of training samples that no longer increases the QE313

value without too much cost on the TE value.314

Maintaining the trade-off between TE and QE ensures good learning of the neu-315

ral network, since TE is a global parameter that quantitatively measures the degree of316

preservation of the original topology of the dataset, while QE is a relative parameter that317

measures the average Euclidean distance between an input vector and its best match-318

ing nodes.319

Hyperparameter Taiwan Synthetic GOC Italy Cat1 Italy Cat2

Size (in nodes) 150x150 150x150 150x150 150x150 150x150

Samples for training 7500 10000 10000 28000 140000

Iterations 10000 15000 15000 40000 200000

Table 1: Optimal hyperparameters used in the SOM training process.

3.3 Post-hoc Analysis of the Trained Self-Organising Map320

3.3.1 Identification of SOM Clusters Through Agglomerative Cluster-321

ing322

We train the SOM with a 25-dimensional training dataset. Each seismic event is323

described by an input vector containing the values of the 25 features described above.324

The SOM learning process leads to the creation of a reduced 2D space representing the325

high-dimensional dataset. We exploit the 2D SOM space by identifying each cluster dis-326

played on the SOM map with an agglomerative clustering procedure (Pedregosa et al.,327

2011; Hubert & Arabie, 1985).328

Agglomerative clustering is a type of hierarchical clustering used to group objects329

into clusters based on their similarity. Each cluster identified on the 2D SOM map should330

therefore contain only seismic events that share similar feature values.331

3.3.2 Probabilistic Classification of SOM Clusters Identified by Agglom-332

erative Clustering333

3.3.3 Probabilistic Approach334

Once the clusters have been identified by agglomerative clustering (Pedregosa et335

al., 2011; Hubert & Arabie, 1985), we classify each SOM cluster. This interpretation of336

the SOM output gives a new representation of the studied catalogue by assigning each337

event to a class: crisis class or non-crisis class.338

To obtain a relevant classification of each event class, we develop a centroid-based339

probabilistic approach. For each event class (crisis and non-crisis classes), we define a340

reference centroid which corresponds to the centre of mass of an imaginary cluster. Whether341

the location centroid is real or imaginary, its coordinates are usually defined as the av-342

erage feature values of all points in the cluster.343
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We assume that a seismic event j belongs to the crisis class if it has a high num-344

ber of close neighbours i, if it is associated with a high magnitude ratio and a high b-345

value (larger proportion of small events), and if it is close in space and time to its neigh-346

bours i. Conversely, an event j belongs to the non-crisis class if it has a low number of347

close neighbours i, if it is associated with a low magnitude ratio and a low b-value (fewer348

proportion of small events), and if it is distant in space and time from its neighbours i.349

For the crisis or non-crisis class, the coordinates of the reference centroid are there-350

fore the feature values that will best define each class. These feature values are selected351

from all the coordinates of the real centroid clusters identified in the 2D SOM map.352

Thus, for the non-crisis (crisis) class, the best feature values correspond to the low-353

est (highest) possible number of nearest neighbours, the lowest (highest) possible mag-354

nitude ratio and the highest (lowest) possible average space-time inter-event distance.355

For the b-value, we consider that the best feature value is 1, which is the classical b-value356

encountered during a quiet seismic period in a given area.357

We then compare each real k-centroid identified in the 2D SOM map to each of the358

two reference centroids by calculating a relative deviation from each reference centroid359

coordinate (Equations 8 and 9). For all features, if a given k-centroid is further away from360

the reference centroid corresponding to the crisis class than from the reference centroid361

corresponding to the non-crisis class, it is classified as belonging to the non-crisis class.362

Conversely, if this k-centroid is closer, then it is classified as belonging to the crisis class.363

We develop the probabilistic function according to the previously explained centroid-364

based approach. This function is presented in the following. In Equation 8, the variable365

ECmax is the relative deviation of each k-centroid coordinate (i.e. number of nearest neigh-366

bours, magnitude ratio, spatial or temporal distances between events) from the corre-367

sponding maximum coordinate found among the two reference centroids, while the vari-368

able ECmin is the relative deviation of each k-centroid coordinate from the correspond-369

ing minimum coordinate found among the two reference centroids. In Equation 9, the370

variable EC1 corresponds to the relative deviation between the b-value of a given k-cluster371

and the reference value of 1. The variations from a b-value of 1 is supposed to be asso-372

ciated with the ability of an earthquake rupture to propagate (b-value lower than 1) or373

not (b-value higher than 1) once nucleated (Taroni & Akinci, 2020; Narteau et al., 2009;374

Mesimeri et al., 2019).375

ECmax(Y, k) = |max(Y )−Yk|
max(Y ) (7)

ECmin(Y, k) = |min(Y )−Yk|
min(Y ) (8)

EC1(Y, k) = |1−Yk|
1 (9)

For each SOM cluster k, we define Ak and Bk (A and B for for crisis and non-crisis376

events respectively, see Equations 10 and 11). The variable Ak (or Bk) represents the377

sum of the relative distances between the coordinates of a given centroid k and the co-378

ordinates of the reference centroid corresponding to the crisis (or non crisis) class.379
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A given SOM cluster k is then classified according to the highest value of Ak or Bk380

obtained. The values of Ak and Bk are between [0, inf]. If, for a given cluster of the SOM381

grid, the value of Ak is the highest, then this cluster is classified as belonging to the cri-382

sis class. Conversely, if Bk has the highest value, the cluster in question is classified as383

belonging to the non-crisis class.384

Ak = ECmax(R̄j , k) + ECmax(T̄j , k) + ECmin(Nn, k) + ECmin(Mn, k)

+EC1(Bval, k) + ECmax(r
2Tj , k)

(10)

Bk = ECmin(R̄j , k) + ECmin(T̄j , k) + ECmax(Nn, k) + ECmax(Mn, k)

−EC1(Bval, k) + ECmin(r
2Tj , k)

(11)

In Equations 10 and 11, any ȳ is the arithmetic mean equal to
∑N

j
yj

N . We recall385

that the coordinates of each cluster k are equivalent to the average feature values of all386

points in that cluster. Therefore, Tjk, Rjk, Nnk, Mnk, Bvalk and r2Tjk denote respec-387

tively the average temporal distances, the average spatial distances, the average num-388

ber of neighbours, the average magnitude ratios, the average b-value and the average co-389

efficient of determination of the 10 closest temporal distances of all points in a given clus-390

ter k.391

We use a softmax function σ to interpret the values of Ak and Bk as probabilities,392

since this function is designed to transform the values into values between 0 and 1 (see393

Equation 12). In Equation 12, e is the exponential function, β a weighting factor (fixed394

to one in our study) and zi the coordinates i of the vector z (in our case z = (Ak, Bk)395

) :396

σ(z)i =
eβzi∑K
j=1 e

βzj
(12)

Applying Equation 12 to Equations 10 and 11 yields two probability equations (13397

and 14) for each SOM cluster k:398

Pcrisis(k) = eAk

eAk+eBk
(13)

Pnon crisis(k) = eBk

eAk+eBk
(14)

To discretise our probability values on the entire 2D SOM space (i.e. the SOM node399

grid), we extrapolate the probability values from the centroid of each cluster k (see Equa-400

tion 15).401

C =
x1 + x2 + · · ·+ xk

k
(15)

In Equation 15, C is the centroid of a given cluster k containing a set of k points402

x. The centroid corresponds to the point that minimises the Euclidean distance to ev-403

ery point in the set of k points x.404

This extrapolation allows us to obtain two probability values for each node of the405

SOM grid: Pcrisis(k) defines the probability that an event belongs to the class of crisis406

events and Pnoncrisis(k)) the probability that the event is a non-crisis event. We do not407

choose to calculate the two probability values for each node of the SOM grid individu-408

ally, as we want to keep the continuity of our 2D space and select the most informative409

values from the nearby points.410
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Tj,i Temporal distances between each event j and its ten nearest neighbours i

Rj,i Spatial distances between each event j and its ten nearest neighbours i

ConcentrationofEnergy Average magnitude in a window of duration T and width D

Concentration of Energy norm or Mn Average Magnitude in a window of duration 2T and width 2D divided by Concentration of Energy

Nnear or Nn Number of events normalised in a window of duration T and width D

bval The b-value in a window of duration T and width D

r2T j R-Squared with a linear regression of the ten Tj

Table 2: Names and meaning of the features used.

3.3.4 Confidence Level of the Probabilistic Classification411

We calculate a confidence level of the probabilistic classification obtained for each412

node (see Equation 16). This confidence level represents the decisiveness of the classi-413

fication.414

Confidence =
|0.5−max(Pcrisis, Pnon crisis)|

0.5
(16)

The main advantage of using a probabilistic approach for the classification of each415

SOM cluster is that, in the case of a complex catalogue with many clusters highlighted416

by the agglomerative clustering procedure, we can deduce the class of each SOM clus-417

ter by comparing the coordinates of the centroid of each cluster with the coordinates of418

the reference centroids calculated for each class (crisis and non-crisis).419

3.3.5 Estimation of Feature Importance420

After obtaining a probabilistic classification of each SOM cluster, we analyse the421

impact of the input features on the resulting classification using three complementary422

scoring metrics:423

1. The significance provides an intrinsic spatial measure of feature importance on the424

2D SOM map. The significance is the variance of the features divided by the num-425

ber of features used.426

2. The meaningfulness provides a class-specific measure of the importance of a fea-427

ture in the classification, allowing the distinctive features (with a specific range428

of values) to be deduced for one of the classes. The meaningfulness is calculated429

as the maximum value of features minus the difference between the maximum and430

minimum value of features in one class divided by the maximum value of features.431

3. The correlation of feature values to the final class gives a relative measure of the432

importance of features in the overall classification.433

By using these feature importance measures, we want to better understand the over-434

all SOM decision process and the relative importance of each dimension (feature) used435

on the 2D SOM projection. As the process is unsupervised, this is the only way to un-436

derstand what information determines the position of the input feature vector on the SOM437

map and thus the inferred event class. In addition, studying how feature importance changes438

as we add new ones or remove others help us to select the best features for our appli-439

cation, with the objective of obtaining a global classification of crisis and non-crisis events440

that works for multiple catalogues and geographical areas.441

–12–



manuscript submitted to JGR: Solid Earth

4 Datasets Used442

4.1 Synthetic Catalogue443

To measure the absolute accuracy of our method, we use a ”ground truth” dataset444

(i.e. a dataset labelled with 100% accuracy). However, such a dataset does not exist with445

real data, since the labelling is obtained from a preliminary declustering of the catalogue.446

Although the variations in the declustering results produced by different methods are447

actually small (see for example the variations in the ETAS model Mizrahi et al. (2022)),448

the fact that they are highly dependent on subjective choices of declustering parame-449

ters adds considerable uncertainty to the event class labelling.450

Therefore, in order to avoid arbitrary and model-dependent relative comparisons,451

we create a synthetic dataset by generating classes of known events: seismicity crises (i.e.452

aftershock sequences and swarms) and non-crisis events (i.e. background events).453

4.1.1 Catalogue Generation454

We generate a deliberately simple catalogue in order to better analyse the 2D SOM455

map and to more easily highlight the limitations of the SOM learning process. In the456

following, we summarise the different steps and assumptions we use to produce our syn-457

thetic dataset (see also Figure 2).458

Figure 2: Pseudo-code used to generate the synthetic dataset. The numbers in bold refer
to the numbers in the list summarising all the steps leading to the synthetic catalogue and
described in the section 4.

We first create a 20-year catalogue containing events belonging to the non-crisis459

class.460

1. These events are generated in a 2D map space of 1°x1° degree. Their origin times461

(in decimal years) and locations are evenly distributed over the entire time inter-462
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val. The origin times follow a uniform law bounded by 2000 and 2020 and their463

latitude and longitude follow a uniform law bounded by 0 and 1 degree.464

2. We assign each event a moment magnitude (Mw) using an exponential distribu-465

tion of rate λ = 0.7.466

We then generate aftershock sequences for each identified mainshock:467

3. We assign to each non-crisis event a probability of triggering a sequence of after-468

shocks (i.e. of being the first event in a new crisis sequence) equal to 0.1 ∗Mw469

if Mw < 5 otherwise 1.470

4. Each aftershock sequence has a random duration that is a function of the mag-471

nitude of the mainshock.472

5. The magnitudes of the aftershock sequence decrease exponentially with time and473

follow an exponential distribution law of rate λ = 0.8.474

6. Each aftershock sequence has a longitude and a latitude that follow a normal dis-475

tribution, with a mean µ equal to the latitude or longitude of the mainshock and476

a variance σ2 equal to 4 + ϵ, where ϵ is a random value between -2 and 2.477

We finally add 5 swarm sequences:478

6. We assume that the swarms can occur uniformly over the 20-year catalogue.479

7. Their magnitude Mw follows an exponential law of rate λ = 0.8.480

8. The swarms are generated in N random phases (a uniform law bounded by 20 and481

400) which produce a number of events according to a uniform distribution bounded482

by 1 and 10. The phases represent ”bursts” of activity within a swarm crisis. Swarms483

are then represented by a succession of bursts in a spatially and temporally shifted484

location.485

9. Each swarm is spaced in time by a random interval Dt of 0 to 3 days from the last486

swarm produced. Their spatial coordinates follow a normal distribution with a mean487

µ equal to the centroid (equation 15) of the previous swarming phase and a vari-488

ance σ2 equal to 10 + ϵ, ϵ being a random value between 0 and 4.489

When generating the synthetic catalogue, we ensure that each seismic sequence is490

unique in terms of spatial distribution (i.e. inter-event distances) and event density (i.e.491

number of events per km2). Each random variable used is therefore renewed at each new492

sequence (for swarms and aftershocks) and phase (for swarms).493

4.2 Real Data: Study Areas494

In the following, we briefly present the four earthquake times series we selected to495

test the ability of our approach to accommodate different deformation regimes and seis-496

mogenic patterns (Figure 4). These datasets are defined by wide time ranges, hetero-497

geneous completeness magnitude and contrasting tectonic settings.498

4.2.1 Gulf of Corinth (GOC)499

The Gulf of Corinth is a continental rift with high seismicity rates and extensional500

deformation (Zelt et al., 2005). Numerous swarm sequences and frequent aftershocks fol-501

lowing earthquakes of low to moderate magnitude (magnitudes of 5 and above are rare502

in recent catalogues) are recurrently recorded (Mesimeri et al., 2019).503

The data used consist of 33,916 manually picked seismic events detected between504

2010 and 2021 by a well-covered network of 46 three-component broadband seismome-505

ters maintained by the National Observatory of Athens (NOA) (Evangelidis et al., 2021)506

and the French Seismological and Geodetic Network (RESIF, 1995). The moment mag-507
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Figure 3: Spatial distribution of synthetic events generated using the procedure described
in the section 4. In the legend, 0 corresponds to non-crisis events, 1 to aftershock se-
quences and 3 to swarms.

Figure 4: Maps of the four datasets used (before declustering). Each pink cricle indicates
an earthquake of any magnitude. a) Italian catalogue CAT1 (Chiaraluce et al., 2022) b)
Italian catalogue CAT4 (Chiaraluce et al., 2022) c) Taiwan catalogue (Peng et al., 2021)
d) Corinth rift (GOC) catalogue (Evangelidis et al., 2021; RESIF, 1995).

nitude (Mw) of these events range from 0 to 5. The magnitude of completeness is equal508

to 1.2.509
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4.2.2 Taiwan510

The island of Taiwan is the result of the collision between the Chinese continen-511

tal margin and the Luzon volcanic arc. Due to the rapid subduction systems to the south512

and north of Taiwan, deformation rates across the island are extremely high, producing513

a large number of earthquakes in a wide range of magnitudes (Dadson et al., 2003). As514

in the GOC, this region has many swarms that are thought to be triggered by phenom-515

ena other than inter-earthquake triggering (such as fluid migration), as evidenced by earth-516

quake clusters that deviate from Omori’s law (Nishikawa & Ide, 2017).517

The Taiwanese seismic data come from a recent study published by (Peng et al.,518

2021) who worked with a catalogue mainly from the Taiwan Central Weather Bureau519

Seismic Network. For consistency, we only use data from 2000 to 2020 in the entire Tai-520

wan region (between 21.5°—25.5° longitude and 119.5°—122.9° latitude), including the521

nearest subduction zones. The maximum event depth is 50 km to ensure that most earth-522

quakes occur either in the thickened continental crust or the upper oceanic lithosphere.523

The completeness magnitude and the minimum magnitude of the catalogue is 3.524

4.2.3 Central Italy525

The Italian peninsula is a fold-and-thrust belt undergoing a recent post-orogenic526

extension. Intense seismicity is recorded with low to moderate magnitude events and some-527

times strong earthquakes. The Central Apennines have experienced numerous histori-528

cal and instrumental earthquakes, mainly normal fault earthquakes (at least 16 events529

of magnitude greater than 6 before 2016), highlighting the predominance of the current530

extensional tectonic regime (Falcucci, E et al., 2016).531

For this study, we use the two Italian seismic catalogues (called CAT1 and CAT4)532

provided by (Chiaraluce et al., 2022). Both catalogues (CAT1, CAT4) are published in533

the study area between [12.5, 14] degrees longitude and [42, 44] degrees latitude. The mon-534

itored sequence belongs to a 150-km long normal fault system. (Papadopoulos et al., 2017).535

CAT1 covers the period between 2016−08−24 and 2018−01−17, and contains536

82,356 manually reviewed events. This catalogue has a completeness magnitude of 1.5.537

CAT4 covers the period between 2016−08−24 and 2017−08−31, and contains 390,334538

events detected shortly after the first mainshock of the Amatrice sequence of August 24,539

2016 reaching magnitude 6. Its minimum completeness magnitude is estimated at 0.4.540

5 Results541

5.1 SOM methodology applied to synthetic data542

For simplicity, we call ”KDM” (see figure 1) our exploratory classification method-543

ology based on the exploitation of SOM maps.544

5.1.1 Classification Performance of the SOM-Based Method545

After training the SOM network with the synthetic dataset, we obtain a 2D SOM546

map represented in Figure 5. A total of three SOM clusters are identified by the agglom-547

erative procedure, each cluster representing similar feature input vector characteristics.548

These clusters are classified using the probabilistic approach we previously described in549

section 3.3.2. One cluster is classified as containing non-crisis events with high certainty550

and high confidence, while the other two are classified as containing crisis events, one551

with high confidence and the other one with low confidence (Figure 7). As we only have552

three clusters in our SOM map, we have extrapolated the probability values and con-553

fidence level using nearest neighbour interpolation to represent the boundary between554
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Figure 5: Confusion matrix obtained by comparing KDM predictions with ground truth
labelling of synthetic events.

the two classes (four points are needed to interpolate linearly using the Qhull algorithm555

(Barber et al., 1996)).556

In order to assess the classification accuracy of our method, we compare the clas-557

sification results obtained with the ”ground truth” labelling of each event class. As shown558

by the confusion matrix presented in Figure 5, our method presents a good average clas-559

sification accuracy: 85% of events are correctly classified. While only 0.16% of non-crisis560

events are misclassified, our procedure seems to have more difficulties in classifying cri-561

sis events: about 15% of them are misclassified.562

Our synthetic data contain two types of seismic sequences: mainshock-aftershock563

sequences and swarms. Looking at the classification accuracy for both sequences, we find564

that most of them are correctly classified (85% of accuracy) by our method. The errors565

are primary on swarms and can be explained by the nature of the crises we generated:566

swarm events are less concentrated in space and show a large variation in spatial and567

temporal inter-event distances. To better classify this type of events, it would probably568

be necessary to use a criterion other than their spatio-temporal distribution to relate them569

(for instance, the inter-correlations between waveforms).570

The other factor causing misclassification of crisis events concerns events that oc-571

cur in the vicinity of dense seismic clusters. Our method has some difficulty in deter-572

mining whether an event close to a cluster in time and space is part of that cluster or573

not. This limitation actually stems from the choice of whether a non-crisis event can oc-574

cur during a crisis period. Based on the assumptions chosen to generate our synthetic575

data (non-crisis events are equiprobable in time and space, swarms are episodic and ran-576

domly shifted, and aftershock sequences decrease exponentially in time and magnitude),577

we accept the occurrence of non-crisis events along with crisis events. However, based578

on the features we use to decluster our catalogue, these events are actually classified as579

crisis events. Our KDM method considers that in a crisis period, the conditional prob-580

ability that an event close to a crisis is a non-crisis event is quite low. A rigorous dis-581
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tinction would require additional information that is not contained in the catalogues so582

far, such as fault plane solutions or the stress field.583

The SOM 2D map shows three clusters that can be classified either according to584

the type of events encountered in the catalogues (i.e. background events, aftershocks,585

swarms) or according to the class of events that our study aims to identify (non-crisis586

and crisis classes). In the latter case, the third cluster could be defined as an indeter-587

minate class. In fact, we observe that 90% of the non-crisis events belong to cluster 2588

and 95% of the crisis events belong to cluster 1 (aftershocks and swarms classified with589

good confidence, see Figure 7). In addition, most of the swarms (63%), which are de-590

fined by inter-event space-time distances that can match both classes, belong to cluster591

3. This observation could explain why the classification confidence of cluster 3 is low.592

Therefore, these results can invalidate the cluster classification based on event type and593

confirm that the SOM declustering approach is better suited to a classification based on594

two event classes: crisis events and non-crisis events.595

Figure 6: (left) 2D SOM map output for the synthetic dataset, each point is a vector and
each colour is a SOM cluster (right) Classification of the resulting clusters using agglomer-
ative clustering.

Figure 7: Probabilistic classification and confidence level for synthetic data: (left) prob-
ability of an event being a non-crisis event, (middle) probability of an event being a crisis
event, and (right) classification confidence
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5.2 Application to Real Data596

5.2.1 SOM Representation597

Unlike the 2D SOM map obtained from the synthetic data, the 2D SOM maps re-598

sulting from the real data (Gulf of Corinth, central Italy and Taiwan) contain more than599

three clusters. Each 2D SOM map gives a unique representation of SOM cluster patterns600

for each dataset (see Figure 8). The number of clusters obtained in the 2D SOM maps601

depends on the intrinsic complexity of the dataset, i.e. the size of the study area, the602

duration of the catalogues, the quality of the event locations, the number and density603

of the seismic sequences. However, in all cases, the 2D space manages to represent each604

dataset with clusters that can be easily classified as non-crisis or crisis events.605
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Figure 8: (left) 2D SOM maps obtained for the real data, each point is a vector and each
colour is a SOM cluster (right) Resulting classification of identified clusters.
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Figure 9: Probabilistic classification and confidence level for real data: (left) probability
of an event being a non-crisis event, (middle) probability of an event being a crisis event,
(right) confidence in the classification. Figures a,b,c are made using linear interpolation
on the cluster centroid, figure d is made using nearest interpolation; this figure has only 2
cluster centroids.
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Figure 10: Cumulative curves obtained for the real datasets after applying our KDM
methodology. For each dataset, the dashed line corresponds to the whole catalogue, the
dotted and solid lines to the crisis and non-crisis events respectively.(a) (b) The vertical
dotted lines refer to the date of the mainshocks Michele et al. (2020) (c) The vertical dot-
ted lines refer to the beginning of the largest crises considering the number of events Peng
et al. (2021) (d) The vertical dotted lines refer to the start of the seismic crises according
to Papadimitriou et al. (2022) and Bountzis et al. (2020)
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5.2.2 Cumulative Curves606

By analysing the cumulative curves of the number of events versus time for each607

study area (figure 10), we observe that our declustering method leads to a classification608

of events with staircase behaviour for crisis events, as expected, while the temporal evo-609

lution of the number of non-crisis events does not seem to be correlated with the steps.610

To further validate our results for the Corinth rift region, we perform a qualitative611

comparison with previous studies that have already described the major seismicity crises612

of 2021, 2017 and 2013-14. Our results are consistent with what was found in these stud-613

ies (e.g. (Michas et al., 2021), (Bountzis et al., 2020), (Papadimitriou et al., 2022): each614

step observed in our cumulative curves are indeed identified after the start of each cri-615

sis (Figure 10). We also compare our results to seismic clusters described in (Mesimeri616

et al., 2019) which contain a total of 1560 crisis events. We find less than 1% differences.617

All the crises presented in their study and occurring during the period covered by the618

catalogue we extracted are identified by our method.619

For the Taiwan region, we compare our results with those published by Peng et al.620

(2021). We find eighty-three percent similarity. Our method is consistent with the au-621

thors’ classification of non-crisis events. However, when we compare the SOM classifi-622

cation of crisis events to the authors’ classification, we find that our classification results623

are closer to the results obtained with their composite model than with their pure ETAS624

model. Their composite model combines three distinct declustering approaches (a mod-625

ified ETAS model of Marsan et al. (2013), a nearest-neighbour method of Zaliapin and626

Ben-Zion (2013) and the classical approach of Reasenberg (1985)) and is used to improve627

swarm detection.628

When our classification results disagree with those of Peng et al. (2021), our method629

often tends to classify mainshocks as crisis events if a low-magnitude event occurs nearby,630

whereas the approach of Peng et al. (2021) labels them as non-crisis events. Indeed, the631

magnitude of the precursor influences the number and magnitude of the hypothetical af-632

tershocks in ETAS-based models (Console et al., 2010).633

For the Central Italy region (Chiaraluce et al., 2022), each step observed on the634

cumulative curves corresponding to the two catalogues CAT1 and CAT4 is correlated635

with the occurrence of the mainshocks of the Amatrice sequence described in Michele636

et al. (2020) (see Figures 10 and 10). Overall, we observe that the cumulative curves of637

the non-crisis events corresponding to CAT1 and CAT4 are non-stationary and show a638

slightly variable growth rate. The non-stationarity observed reflects the absence of a quiet639

period before the Amatrice sequence in the catalogue. This curve shape confirms that640

our method does not alter the inherent properties of the dataset. For example, by forc-641

ing a linear background rate, in some cases, this non-stationarity may also indicate a change642

in the seismic productivity of the region.643

5.3 Overall Feature Importance644

Finally, we need to examine what are the most important features in the classifi-645

cation process (Figure 11). The average normalised magnitude appears to be quite sig-646

nificant: however, this only means that this dimension is dominant in the 2D SOM space.647

The correlation metrics show that the classification is mainly correlated with the rela-648

tive spatial and temporal distances between events with a decrease in importance after649

the five nearest neighbours. The magnitude features, the coefficient of determination of650

the ten nearest temporal distances (in ascending order) and the local b-value feature also651

remain important, mainly for the classification of background events as shown by the mean-652

ingfulness values (Figure 11). These features are useful for distinguishing between nearby653

and related events.654

–23–



manuscript submitted to JGR: Solid Earth

Figure 11: Estimation of feature importance using three metrics: meaningfulness, sig-
nificance and correlation. The results are calculated for all datasets (Central Italy, Gulf
of Corinth, Taiwan, and synthetic data). The blue boxes correspond to the temporal dis-
tance features, the red boxes to spatial distance features, and the purple boxes to the
windowed features (number of nearest neighbours, magnitude ratios, b-value, coefficient of
determination of the ten nearest temporal distances).

6 Discussion655

6.1 Comparative Analysis of Declustering Results for Real Data656

The datasets used in this study are very different, both in their geodynamic con-657

text and in the completeness of their magnitude. These differences likely explain why658

we obtain different ratios of crisis and non-crisis events.659

In this study, we considered all classifications independently of their confidence level.660

Thus, depending on the complexity of the catalogue (i.e. the complexity of the seismic661

sequences that occurred), the ratio between crisis and non-crisis events could be influ-662

enced by the confidence threshold. For example, it is more difficult to detect background663

events than crisis events (Figure 5) because the spontaneity criteria classically used to664

describe background events can be ambiguous and variable in time and space, especially665

between very heterogeneous catalogues.666

In addition, the ratio of growth rates between the cumulative non-crisis curve and667

the cumulative crisis curve observed for each dataset (Figure 10) strongly depends on668

the initial selection of the catalogues by their authors. For example, the Taiwanese cat-669

alogue lacks low magnitude events, while the Italian catalogues are dominated by small670

events. It is therefore expected that a greater number of crisis events will be detected671

in the Italian catalogues than in the Taiwanese catalogue.672

The GOC dataset contains 10 times less recorded events, but has a duration 10 times673

longer than the Italian datasets. As a result, the 2D SOM map for the Corinth region674

clearly identifies two clusters, each representing a class of events, either crisis or non-crisis675

(Figure 8). These two clusters are scattered due to the diversity of seismic sequences recorded676

in the GOC catalogue over 10 years. Despite the lower overall number of events, this cat-677
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Dataset Number of Crisis Events Number of Non-crisis Events T (days) D (km)

Taiwan 8036 13839 9.20 19.66

SyntheticData 21901 8099 4.37 15.0

GOC 18392 13608 2.53 8.79

Italy CAT1 69538 12122 1.03 0.38

Italy CAT4 117745 272257 0.47 0.05

Table 3: Classification of event classes for each dataset used. The lower probability thresh-
old for the classification of events as crisis events is 0.5

.

alogue covers a quiet seismological period (in terms of seismic activity). With this dataset,678

our KDM method has the ability to learn more efficiently the relationships between fea-679

tures and labels of non-crisis targets. The duration of the catalogue therefore seems to680

be a more critical factor than its size for a successful declustering.681

Finally, the Taiwan dataset, with a minimal magnitude of 3 but a duration of 20682

years and a more complex geodynamic setting, is difficult to interpret. The 2D SOM map683

shows many clusters compared to the number of events recorded in the catalogue. These684

multiple clusters suggest the existence of several types of crisis sequences with varying685

inter-event relationship characteristics (spatial distances, temporal distances, magnitude686

distribution). Moreover, the absence of low magnitude events in the catalogue makes the687

crisis sequences incomplete, artificially increasing the spatial and temporal distances be-688

tween events in the same sequence. Although the distinction between non-crisis events689

and crisis events is difficult to manage in terms of spatial and temporal distribution, we690

can clearly highlight the different crisis sequences in the cumulative curves, with a back-691

ground curve that increases with the average evolution of the number of events. Again,692

the duration of the catalogue determines the learning quality of the SOM network, be-693

cause this quality is improved with a greater diversity of data distributions in time, space694

and magnitude. Catalogue duration is therefore a key factor in obtaining the most ac-695

curate classification, although classification uncertainty is highly variable.696

However, regardless of the dataset used, cumulative curves should be interpreted697

with caution. The non-crisis and crisis curves cannot be completely independent from698

each other owing to the relaxation and reloading process that occurs between and at the699

same time as the crisis sequences. Therefore, the non-linear behaviour of the cumula-700

tive curves corresponding to the Italian catalogues cannot be interpreted as mere errors.701

Indeed, it remains an open question whether a linear trend in the number of non-crisis702

events over time should actually be expected, even more so around periods of occurrence703

of swarms, foreshocks and aftershocks, i.e. before or after a crisis sequence (Lombardi704

et al., 2010; Llenos & Michael, 2019).705

6.2 Potential Future Applications of the Method706

The method developed here uses little memory and works quite quickly, even on707

a laptop. For a dataset of 100,000 events, it takes about 20 minutes. This makes it an708

easily accessible tool, even for non-specialists.709

Our KDM workflow, from input features to probabilistic formula, is very flexible:710

all users can add their own features or weights without any additional research work. The711
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method we propose can even be applied to the classification of more specific events de-712

pending on the user’s classification goals.713

As the selection of neighbours is only done backwards in time when calculating the714

inter-event distances, the procedure is applicable in real-time, which increases the ap-715

plicability of this method.716

The method makes only relative use of the catalogue information, so that spatial717

features related to uncertain event locations do not bias the SOM training. In addition,718

no preliminary threshold is required for classification, allowing users to have interpretable719

crisis and non-crisis classes without subjective assumptions or instabilities in the clas-720

sification results that could be obtained by changing the threshold.721

Our method does not require manual post-windowing. On the other hand, the larger722

and more geodynamically diverse the area, the better the SOM is able to learn.723

With our method, we first explore the datasets by calculating the relative distances724

in time, space, magnitude variations, without having to assume any type of distribution725

for any of the event classes.726

However, the classification accuracy of the method depends on the length of the727

dataset (e.g. time period and spatial coverage) to achieve statistical robustness of the728

SOM decision response. For shorter datasets, this limitation could be resolved by man-729

ually inspecting the clusters highlighted by the SOM and determining for each the prob-730

ability of being linked to crisis events.731

Another shortcoming of the method is the difficulty in detecting background events732

that are close in space and time to extended space-time seismic clusters or swarms. To733

improve the method, further research on potential features that can measure the link be-734

tween rupture physics and earthquake propagation is underway. We propose to use wave-735

form inter-correlations as an indicator. This would not really increase the computational736

time as many catalogues are relocated using cross-correlation approaches, so this dor-737

mant information would be readily available.738

7 Conclusions/Perspectives739

In this study, we sought to build a more homogeneous and less subjective declus-740

tering approach than previous declustering attempts in order to improve catalogue anal-741

yses. The KDM method we propose is an unsupervised process that learns directly from742

input features without the need for a human-labelled dataset. This unsupervised ma-743

chine learning approach can therefore reveal new hidden patterns from datasets that are744

less biased by human input.745

As KDM does not learn from the posterior labelling of events established by an-746

other existing declustering method, it offers the possibility of declustering catalogues with747

fewer assumptions (no spatial distribution or productivity rate is assumed), and hope-748

fully new insights. For example, our method does not impose an initial background rate749

or productivity rate for swarms, since it relies only on a relative comparison of param-750

eters with respect to spatial and temporal neighbours. Furthermore, the SOM approach751

used here greatly increases the “distances” on its map representation, providing an easy-752

to-read distribution figure. As shown by the results obtained with synthetic data and753

real catalogues from Greece, Italy and Taiwan, 2D SOM maps provide a fairly new rep-754

resentation of the spatio-temporal distribution of earthquakes, useful for identifying and755

discussing the different modes (Zaliapin & Ben-Zion, 2022) present in a catalogue.756

Our KDM declustering method taught us that the space-time distances between757

events are the most important features, not only for the first neighbours, but also for the758

other ones, as the probability of being a crisis event increases with the number of nearby759

events. However, we still need additional features that are not a function of space and760

time to better classify crisis events. In particular, the addition of new features will re-761

duce classification ambiguity between nearby events that are not crisis events and events762

that are actually part of a crisis, especially in the tail of crisis sequences.763
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Our systematic way of interpreting the 2D representation provided by the SOM764

network is based on a probabilistic approach that allows users to decide on the degree765

of accuracy they wish to achieve depending on their use. This method can be applied766

at any scale, as it has been designed to work on datasets of different sizes. Finally, this767

method does not rely on strong assumptions, so that it is possible to compare the back-768

ground rate or the productivity rate without the bias of commonly used declustering ap-769

proaches.770

Open Research Section771

For this study, we use the SOM python libraries from V (2018), and Pedregosa et772

al. (2011), McKinney (2010), (Harris et al., 2020) for the data management, useful in-773

terpolating function and random number generator.774

The Greek catalogue used in this paper is available from Evangelidis et al. (2021)775

and RESIF (1995) via https://eida.gein.noa.gr/webdc3/,https://seismology.resif776

.fr/fr/constructeur-de-requetes-dataselect/#/. The catalogues of Central Italy777

(Cat1 and Cat4) are freely available in Chiaraluce et al. (2022). The catalogue of Tai-778

wan was obtained by contacting the corresponding author (see (Peng et al., 2021)).779
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