
 

 

1 

 

Supplementary Information for 

 
Reliable Food and Water Resources of Late Pleistocene-to-Holocene Lesotho, Southern 

Africa, Facilitated Human Upland Habitation. 
 

Robert Patalano*, Charles Arthur, William Christopher Carleton, Sam Challis, Genevieve Dewar, 

Kasun Gayantha, Gerd Gleixner. Jana Ilgner, Mary Lucas, Sara Marzo, Rethabile Mokhachane, 

Kyra Pazan, Diana Spurite, Mike W. Morley, Adrian Parker, Peter Mitchell, Brian A. Stewart, and 

Patrick Roberts* 

 

*Email: patalano@bryant.edu, roberts@shh.mpg.de 

 

This PDF file includes: 

 

Supplementary Discussion 

Figures S1 to S5 

Table S1 

Replication for Age-Depth Model of Ha Makotoko and Figure S6 

SI References  

 

Other supplementary materials for this manuscript include the following:  

 

Dataset 1 

 

 

 

 

 

 

  



 

 

2 

 

Supplementary Information Text 

 

SI Discussion 

 

Plant Wax Biomarkers. The ubiquitous, well-preserved nature of lipid biomarkers allows for 

their distribution to differentiate between sources of production1,2. Generally, short-chain 

homologues (C17-C21 n-alkanes) characterize aquatic algae3, mid-chain homologues (C21-C25 n-

alkanes) characterize submerged and floating aquatic macrophytes4-6, and long-chain homologues 

(C27-C35 n-alkanes) characterize terrestrial vegetation7. All Ha Makotoko samples were dominated 

by long-chain compounds. The C31 n-alkane is the most abundant compound in all 16 samples, 

and of these, eight samples have C31 followed by C33, C29, C35, and C27, four samples have a relative 

abundance distribution of C31, C33, C29, C27, and C35, three samples have C31, C29, C33, C27, and 

C35, and one sample has C31, C29, C27, C33, and C35 (Fig S3). Although these distributions are not 

diagnostic of the specific plant types that produced them, grasses tend to produce higher chains 

(C33, C35) than co-occurring shrubs or trees8. Furthermore, the relative abundance of specific n-

alkanes can correlate with temperature and aridity9-14, so caution must be taken when using chain-

length distributions as a diagnostic biomarker for plant ecological composition. 

 

Plant Wax Isotope Ratios. Compound-specific isotope analyses is necessary to make inferences 

on plant community composition and the main sources of plant waxes to depositional 

environments. The n-alkane δ13C values provide information on plant type and photosynthetic 

pathway15, the intensity and duration of sunlight16, canopy structure and wax production17, plant 

taxonomy18, and the total concentration of atmospheric CO2
19. In terrestrial contexts, variations in 

δ13C are influenced by biological differences in photosynthetic pathways and the degree to which 

different plant types discriminate against 13C during carbon fixation, which leads to distinct and, 

for the most part, non-overlapping values between C3 and C4 plants15,20,21. C3 plants typically have 

bulk leaf δ13C ranging between -20 to -35 ‰. C4 plants, which do not discriminate against the 

heavier 13C to such a large degree, have values that span from -7 to -15 ‰20. Plant wax n-alkanes 

are further depleted from their bulk values by about -5 ‰ to -7 ‰ for C3 vegetation and -8 ‰ to -

10 ‰ for C4 types. Therefore, depending on plant ecological lifeform, water availability, canopy 

structure, and other factors, C3 terrestrial plant n-alkane values can range from -25 ‰ to -42 ‰ 

(average -35 ‰), while C4 plants range from about -14 ‰ to -26 ‰ (average -21 ‰)15,22-25. 

However, this can be complicated by some emergent plants, such as Typha angustifolia, having n-

alkane distributions that also maximize at C31
26. To complicate matters further, Typha has a C4 

isotopic signal with values around -21 ‰26, and though this value is easily distinguished from C3 

terrestrial plant n-alkane δ13C, Typha wax deposits in paleo-archives could be misinterpreted as a 

C4 plant signal. 

Increases in the relative abundance of Typha have been documented in the Holocene in 

southern Africa. Both phytolith results and δ13C values indicate an expansion of Typha during 

locally warm and humid conditions in coastal Mpondoland during the early Holocene27. There is 

no evidence in the phytolith assemblage for the expansion of Typha during the Holocene along the 

Phuthiatsana River, however (Parker et al., In prep.). Through our data, we therefore infer an 

increase in C4 grasses with warm and humid conditions in the later Holocene at Ha Makotoko (see 

main manuscript). 

Carbon isotope ratios are also indicators of plant water-use efficiency (WUE), the ratio of 

the rate of carbon assimilation (photosynthesis) to the rate of water loss (transpiration) in 
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plants21,28. In terms of carbon-13 isotope values, plants with greater WUE are proportionally 

enriched in 13C than well-watered analogs18,21,29. WUE is a function of plant type and physiological 

mechanism, and depends on such climatic factors as humidity, sunlight exposure, and 

temperature14,28,30. Plants with higher WUE have also been shown to synthesize plant waxes with 

lower δD (c.f. 25,31), due to reduced transpiration rates during photosynthesis28. 

Ultimately, source water hydrogen is the primary signal recorded in the δD values of n-

alkanes and other plan wax biomarkers25,32-35. Although variability exists in the δD of plant waxes 

in regard to source water14,18,34,36,37, regional meteoric water δD is the primary control on plant 

wax signatures25,32,38. In Lesotho, precipitation δD is influenced by the rainout process39,40 with 
2H-depleted moisture falling during the rainy months (Fig S4). However, as the wettest months are 

also the warmest, heightened temperature and evapotranspiration can also influence the δD of plant 

wax biomarkers. Lesotho receives most (~80 %) of their mean annual precipitation (MAP) 

between October and March, sourced from the Indian Ocean and brought by tropical easterlies. 

This is referred to as the summer rainfall zone (SRZ). 

 

Plant Type Distribution and Ecology. In general, C4 plants will outcompete C3 analogs under 

conditions of aridity coupled with intense irradiation, high temperatures, fire history, or low CO2 

concentrations21,41,42. On the other hand, water availability is the dominant factor dictating forest 

and woodland development in southern Africa, as woody vegetation composition and structure is 

a function of amount of precipitation, evapotranspiration, availability of groundwater, soil 

structure, and seasonality of precipitation43. However, in areas with high geomorphological and 

hydrological variability, topography-induced micro-climates and environments can form on small 

spatial scales, such as in stream channels, where severe temperature inversions in deeply incised 

valleys can enhance/diminish growing conditions for certain plant types (Patalano et al., In prep). 

For example, woody plants notably grow within stream channels in Lesotho warmer valleys.  

Today, Lesotho is covered by a mosaic of grassland, with the number of vegetation types 

reflecting the severity of temperature and precipitation seasonality43. The Drakensberg Grassland 

is the dominant bioregion of central and eastern Lesotho while the Mesic Highveld Grassland 

bioregion, in which Ha Makotoko is found, extends throughout western and northwestern Lesotho 

and in major river valleys (Fig. 1B, main manuscript)43. Due to its high elevation, the Drakensberg 

Grassland bioregion is dominated by C3 grasses, whereas the Mesic Highveld Grassland bioregion 

has a high number of C3 and C4 vegetation types with both greater grass and herb diversity, 

especially in undulating terrain and along streams and rivers that drain the foothills of the 

Drakensberg. Tall and often dense, broad-leaved shrubland is common in areas with abundant 

rainfall or surface water, specifically within stream valleys.  

Generally, from an ecological sense, the Maloti-Drakensberg can be separated into 

Montane, Subalpine, and Alpine vegetation altitudinal zones, with transitions between zones 

occurring lower or higher on slopes according to aspect43-45. Themeda triandra (C4 grass) tends to 

be more important at the lower and middle elevations while Festuca caprina (C3 grass) dominates 

at higher altitudes, although there is considerable altitudinal overlap between these species46. The 

medium-tall grass Merxmuellera macowanii occurs along water courses and drainage lines, like in 

the Phuthiatsana Gorge, but herb species in the Asteraceae family increase alpha diversity 

considerably. 

In Lesotho, temperature variations linked to altitude and aspect produce particularly sharp 

gradients of C4 to C3 vegetation regardless of water availability47,48, and observed changes in past 

altitudinal distributions of these plant types have been used to document past temperature shifts 



 

 

4 

 

and the influence on human populations49-51. Mean annual precipitation in Lesotho’s Mesic 

Highveld Grassland bioregion is around 720 mm while mean annual potential evaporation can 

exceed 1,900 mm yearly43. Mean annual temperature is around 14° C, but temperature records 

indicate that southern Africa has experienced significant 21st century warming with an average 

increase of nearly 0.8 °C52,53. At Metolong, roughly 1.0 km from Ha Makotoko, annual 

precipitation can exceed 900 mm and mean annual temperature is around 17° C (Fig. S4). 

Therefore, past temperature shifts can be inferred by the contraction (cold shifts) or expansion 

(warm shifts) of the proportional C4 contribution to sedimentary biomarkers (as interpreted 

through δ13C). 

There are, however, a number of plant families that contain species which exhibit 

crassulacean acid metabolism (CAM) photosynthesis, in addition to combined C3-CAM and C4-

CAM photosynthesis. Not all are necessarily known, but rather, are assumed based on other species 

in the same families which are found outside of Lesotho. Whilst some are classified as constitutive 

CAM plants, some of these species might also show some degree of plasticity in CAM expression 

in response to environmental conditions. For example, those in the Aizoaceae family, unlike many 

other succulents, do not rely solely on CAM photosynthesis, but instead, switch back and forth 

between C3 and CAM, presumably to improve plant water-use efficiency. A number of succulents 

in the Asphodelaceae family, like Aloe species, use CAM photosynthesis but generally do not 

make up large portions of the vegetation in this part of Lesotho. With regard to δ13C, some CAM 

and most facultative CAM species54 have overlapping values with C3 plants in their C29-C33 n-

alkanes, which therefore causes issues with understanding ecosystem scale C3-C4 proportions. 

Nevertheless, seeing as Ha Makotoko is located in the Mesic Highveld Grassland bioregion, which 

is dominated by grasses, who do not think our precipitation and temperature change interpretations 

are misguided and that the overall contribution of CAM plants is minimal. This is also confirmed 

by phytolith work in the region46,51. 

The perceived power of isotope analyses in Lesotho is currently based on bulk δ13C 

measured on grasses from four altitudinal transects between 1,600 and 2,600 m a.s.l. in 1994/550, 

and assumptions coming from fluctuations seen in palaeoenvironmental records of soil organic 

matter and mammalian tooth enamel46,49,51,55. There is currently no reference of bulk soil organic 

matter (SOM), nor have compound specific n-alkane δ13C measurements been undertaken in the 

region. 
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Fig. S1. Compound-specific and bulk isotope values from Ha Makotoko. (A) Plant wax δ13C values 

of the individual C29-C33 n-alkanes and the weighted average. (B) Plant wax δD values of the 

individual C29-C33 n-alkanes and the weighted average. (C) Bulk sedimentary organic matter δ13C 

(Reference 14 in main manuscript). 
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Fig. S2. Correlation between carbon and hydrogen isotopes and CPI and ACL. C29-C33 

weighted average δD and δ13C versus carbon preference index (CPI) and average chain 

length (ACL) of the C25-C35 n-alkanes. Linear correlation (R2 on plots) and the Spearman’s 

correlation (rs = -0.804, p = <0.001. See Table 1 in Main Manuscript), between δD and CPI 

is interesting and needs to be investigated further.  

 
  



 

 

3 

 

 

Fig. S3. Plant wax n-alkane compound distributions for the 16 Ha Makotoko samples. C31 

is the dominant compound in all samples. (A) Eight samples (50 %) have a C31, C33, C29, 

C35, and C27 distribution; (B) four (25 %) have C31 followed by C33, C29, C27, and C35; (C) 

three (19 %) have C31 then C29, C33, C27, and C35; and (D) one (6 %) sample has a 

distribution of C31, C29, C27, C33, and C35. Distributions may represent differences in plant 

ecology.  
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Fig. S4. Modern climate parameters of Ha Makotoko. Average monthly precipitation and 

temperature of Metolong, Lesotho, and δD estimations of precipitation from the Online 

Isotopes in Precipitation calculator (OIPC56) for Ha Makotoko (-29.3258°, 27.8047°, 1,640 

m.a.s.l.). Both precipitation amount and temperature influence precipitation and plant wax 

δD, but in opposite directions. While increased precipitation lowers δD, increased 

temperature raises δD. Lesotho does not have a Global Network of Isotopes in Precipitation 

(GNIP) station, nor have modern calibration studies using precipitation or plant wax δD 

been performed, so caution must be taken with using precipitation δD values from the 

OIPC.  
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Fig. S5. Ha Makotoko stratigraphic profile. Profile is of the main excavation trench (see 

references 17, 27, and 53 in main manuscript for full description of the site and the 

archaeological excavations). Samples analyzed in this study came from an adjacent 

geoarchaeological column that had direct stratigraphic relationships to those in the open 

excavation area. Additional samples (n=5), however, were taken as loose sediment during 

excavation from Ha Makotoko’s main trench and used for bulk carbon isotope analyses 

(see reference 14 in main manuscript).   
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Table S1. Tie-point samples of the 6 radiocarbon-dated layers and “modern” top layer. 

Sample ID 14C Age StDev Context No. Depth Thickness Curve 

NA 0 30 5 0.03 0.06 Normal 

UGAMS-8984 9110 30 23 0.5 0.01 shcal20 

UGAMS-8985 9320 30 32 0.55 0.01 shcal20 

UGAMS-8986 10060 30 136 0.62 0.01 shcal20 

UGAMS-8987 9870 30 93 0.62 0.01 shcal20 

UGAMS-8988 40100 230 60 0.66 0.01 shcal20 

 
  



 

 

7 

 

Extended Data (separate file). Interpolated ages, biomarker metrices, and carbon and 

hydrogen isotope values and standard error of the mean are presented for each sample. 
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Replication for Age-Depth Model of Ha Makotoko 
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Fig. S6. Age-depth model. Plot of the age-depth model that includes upper and lower 

uncertainty estimates based on the 5-95 % quantile ranges for interpolated ages. The plot 

was also produced in R with ggplot257. The R code and data used to produce the age-depth 

model can be found on Github (https://github.com/wccarleton/hm_agedepth).  
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