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Abstract : 

Environmental changes are predicted to impact fish ecology; specifically, the phenology of spawning and 
larval settlement, resulting adult and larval movement, and ultimately seasonal habitat utilization. Hence, 
warm or cold environmental conditions may cause early or late seasonal movement among habitats. 
However, resource surveys are typically designed to occur at approximately the same time each year, 
and this mismatch in timing between survey sampling and fish movement can cause a different proportion 
of population biomass to be available to the survey in different years. In this study, we demonstrate an 
application to minimize such impacts using yellowfin sole (Limanda aspera) in the eastern Bering Sea as 
a case study. We employed fishery-dependent catch-and-effort (also called catch per unit effort (CPUE)) 
data collected by observers on commercial vessels, which covered the months of March-October 
(whereas survey data were limited to June-August). We built a seasonal spatio-temporal model so that 
seasonal distribution could be used to better explain summer survey availability and movement timing as 
impacted by interannual temperature changes. Our results highlight (i) spawning movement phenology 
occurs earlier during warm years than cold years, (ii) spatial distribution is more constrained and biomass 
is lower during cold years than warm years, (iii) fish were more available to the summer survey during 
warm years than cold years, and (iv) phenology differed by sex with males staying longer on the spawning 
grounds than females. Finally, we computed an overlap index between the survey area and fishery CPUE 
data to be used as a catchability covariate within the yellowfin sole stock assessment. This index 
confirmed the changes in relative availability of this species by year as presently used in the assessment. 
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Highlights 

► Climate-driven phenology shifts has been inferred using seasonal spatio-temporal models and fishery-
dependent data. ► Spawning movement phenology occurs earlier during warm years than cold years. ► 
Spatial distribution is more constrained, and biomass is lower during cold years than warm years. ► Fish 
were more available to the summer survey during warm years than cold years because of earlier spawning 
migration during warm years. ► Phenology differed by sex with males staying longer on the spawning 
grounds than females. ► Fishery-dependent data can be used to compute a catchability covariate within 
the yellowfin stock assessment. 

 

Keywords : movement phenology, climate-driven phenology shifts, seasonal spatiotemporal model, 
fishery-dependent data, spatial availability, catchability, yellowfin sol 
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I. INTRODUCTION

Rapid environmental changes to fish habitat present several major challenges to fisheries 
ecology and management. In response to a changing climate, marine organisms can adapt to the 
new conditions within their current geographical range, can track their climatic niches in time 
and/or in space or can become locally extinct (García Molinos et al., 2016). This can lead to 
changes in the ecosystem structure and functioning across space and time. To track their niche in 
space and time, marine organisms have to adapt by changing the seasonal timing of many 
biological processes (termed “phenology”), including the timing of spawning and larval 
settlement, resulting adult and larval movement, and ultimately seasonal habitat utilization (Rogers 
and Dougherty, 2019). 

Accounting for such spatial and temporal aspects of climate responses can be critical to 
successfully manage fisheries. Previous studies have shown that spawning phenology, particularly 
spawning migration phenology, is sensitive to temperature in fish species conducting ontogenetic 
migration (McQueen and Marshall, 2017; Sims et al., 2004). For example, climate-induced 
changes in spawning phenology has been shown for striped bass (Morone saxatilis) (Peer and 
Miller 2014) in Chesapeake Bay, which led to higher than anticipated fishing mortality on 
spawning fish during cold years. Resource surveys for use in stock assessments are typically 
designed to occur at approximately the same time each year (NRC, 2000). However, warm or cold 
temperature conditions may cause early or late movement (Asch, 2015) into or out of the survey 
area causing differential “availability” of the resource (Staudinger et al., 2019). The ability to  
detect such climate impacts requires models that can use additional data and handle seasonal, 
interannual, and spatial processes, and these are rare (Sydeman et al., 2015; Thorson et al., 2020). 
Some movement phenology studies have focused on anadromous fish because of easier access to 
their spawning grounds and juvenile habitats in rivers (Kovach et al., 2015; Otero et al., 2014). 
For oceanic conditions, habitat and seasonal coverages are challenging. Fishery-dependent data 
can expand our “snapshot” survey data and improve understanding of essential fish habitat 
(Dambrine et al., 2021; Murray et al., 2013). The expanded seasonal and spatial coverage can then 
be useful to explore biological processes such as spawning within a large spatial domain 
(Neidetcher et al., 2014). But fishery-dependent data present some limits (Maunder et al., 2006) 
because those data might confound changes in fishing behavior with trends in abundance. 
Considering fishing behavior is then important to avoid biased estimates of biomass and distribution. 
Nevertheless, fishery-dependent have been widely used to provide inside about fishery ecosystems 
functioning (Pauly et al., 1998) and to characterize seasonal distribution and habitat use (Kneebone 
et al., 2020). Indeed, previous studies highlighted  that fishery-dependent and independent data 
might provide very similar patterns in term of fish spatio-temporal distributions (Pennino et al., 
2016). With respect to spatio-temporal models, previous authors have included seasonal variation 
in isolation (Grieve et al., 2017; Thorson et al., 2016) or included both changes in spatial 
distribution among years and among seasons (Akia et al., 2021; Bourdaud et al., 2017; Kai et al., 
2017; Kanamori et al., 2019). In particular, (Thorson et al., 2020) built seasonally explicit 
spatiotemporal models that included annual and seasonal variation in spatial distribution and 
density to identify interannual changes in phenology. Those models can be useful to identify 
climate-driven shifts in the seasonal timing of fish movement and ecosystem productivity but are 
expensive in terms of parametrization, and computation time. Spatio-temporal models that account 
for seasons when fit to fishery data may suffer from unbalanced designs and a lack of parsimony. 
In this study, we resolve this problem by an alternative approach accounting for seasonality 
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implicitly, using spatially varying catchability to represent seasonality. This allows us to explore 
migration timing and how interannual temperature changes impact seasonal migrations. 

We implemented this approach on yellowfin sole (Limanda aspera) from the eastern Bering 
Sea (EBS). This stock represents the largest flatfish fishery in the world by landed weight (Spies 
et al., 2019). Adults exhibit a benthic lifestyle and occupy separate spawning areas (in summer) 
and feeding areas (in late summer) on the eastern Bering Sea shelf. From over-wintering grounds 
near the shelf margins, adults begin a migration onto the inner shelf in spring each year for 
spawning and feeding (Nichol, 1995; Wakabayashi, 1989; Wilderbuer et al., 1992) (Fig.1). The 
directed fishery historically occurs from winter through autumn, and NMFS research surveys take 
place during the summer months (Wilderbuer et al., 1992). The availability of this stock has been 
shown to vary within the survey area (Nichol, 1998; Nichol et al., 2019) due to spawning 
migrations. Presently, the stock assessment model used for setting catch advice includes a 
temperature coefficient that impacts the availability of the stock to the survey gear (Wilderbuer et 
al., 2019). 

Figure 1: Distribution of wintering, spawning, and feeding areas for yellowfin sole in the Bering Sea, and observed 
regional grouping. Migration routes from wintering to feeding take place in spring, and the dates that Yellowfin Sole 
return to their wintering areas are unknown. Outer, middle, and inner shelf are defined for bathymetry between 200-
100 meters, 100-50 meters and <50 meters respectively. (Adapted from Wakabayashi (1989) and Spies et al. (2019))

As with other flatfish stocks where males remain on the spawning grounds longer than 
females (Arnold and Metcalfe, 1996; Hirose and Minami, 2007; Rijnsdorp, 1989; Solmundsson et 
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al., 2003), Nichol et al., (2019) also showed that male yellowfin sole remained on the spawning 
grounds longer than females and highlighted positive correlations between the proportion of 
females relative to male and annual estimated survey biomass. However, all those conclusions rely 
on data collected from scientific surveys designed to occur at the same time each year within the 
same restrained spatial domain, which precludes our understanding of changes in timing of 
spawning migration. No seasonal or interannual processes have been inferred to better understand 
the impact of interannual temperature changes on yellowfin sole movement phenology. In this 
paper, using fishery-dependent catch per unit effort data (CPUE), we propose to extend these 
previous findings (Nichol et al., 2019) by inferring seasonal movement and relationships between 
movement and interannual temperature changes. Because spatially explicit fishery CPUE data are 
available throughout multiple seasons and years, it can be used to build a model on a sub-seasonal 
interval to capture seasonal movement within a wide spatial domain. We developed a model which 
accounts for seasonality implicitly and explored how migration timing and interannual temperature 
changes can impact the spatiotemporal distribution of CPUE data. To this end, we estimated 
spatially varying catchability coefficients linking density, seasons, and interannual temperature 
changes. We specifically define early (March 19-May 21), intermediate (May 22-July 30), and late 
(August 1-September 24) fishing seasons for yellowfin sole. These seasons include 33.2%, 32.7%, 
32.6% respectively of the total fishery landings from 2001 and 2019. This study’s period (March 
19-September 24) corresponds to high fishing effort that brackets spawning timing and migration 
of yellowfin sole in the Bering Sea and includes the fishery-independent survey timing occurring 
during the intermediate season.

We address four key questions: 

[Q1] Does the timing of migration and progression of spawning impact the fishery CPUE 
and is the progression of spawning dependent on temperature changes in the EBS?

During warm years, we expect migrations to start earlier, with high CPUE in the middle shelf 
during the early season, and then again in the middle and outer shelf during the late season when 
back migration is more progressed (Fig. 2, second row). Inversely, during cold years, we expect 
migration to be delayed with high CPUE in the inner shelf and in the middle shelf during the 
intermediate and late season respectively, when back migration to wintering areas is delayed (Fig. 
2, second row).

[Q2] Does fish availability to survey change between warm and cold years?

During warm years, because migrations are more progressed, we expect substantial overlap 
between survey area and fisheries CPUE during the intermediate season (i.e. during the survey 
timing). By contrast during cold years, fish are expected to be in shallower water during the 
intermediate season and not available to the survey, so we expect lower overlap between survey 
area and fisheries CPUE during the intermediate season, while we expect a strong overlap during 
the late season when fish starts leaving spawning grounds to wintering areas (Fig. 2).

[Q3] Does phenology, that is the timing of spawning migration, change with sex?

We expect male yellowfin sole remain on the spawning grounds longer than females, because 
females appear to migrate out of the spawning areas earlier than males, based on analyses from 
survey data (Nichol et al., 2019).
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[Q4] Can we use fishery CPUE to account for change in availability to the survey to improve 
the yellowfin stock assessment?

The yellowfin stock assessment (Spies et al., 2019) includes the survey mean bottom temperature 
and survey timing across stations as covariates affecting survey catchability. We evaluate how an 
“overlap index” computed from seasonal fishery CPUE (derived from [Q2]) might improve the 
assessment of yellowfin sole in the eastern Bering Sea. 

Figure 2: Conceptual expectation about how temperature changes (warm or cold years) and seasons (Early, 
Intermediate, Late) may affect the spatial distribution of biomass. Survey area (brown lines) is represented when 
survey occurs during the intermediate season. Brown arrows represent the hypothesized ontogenetic migrations (the 
thickness represents the intensity of the migration in term of biomass).

II. MATERIALS AND METHODS

In this section, we will first present the spatiotemporal models in a general way so that it can be 
applied to other cases of study, then the data specific to our case study, and then the specific 
methodologies to address the questions posed above. 

II.1. Spatio-temporal model accounting implicitly for seasonal variations
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We developed spatiotemporal models which estimate the expected fisheries CPUE  (in 𝑏(𝑠𝑖,𝑡𝑖)
biomass per tow duration) for each sample , occurring at location  and year . 𝑖 𝑠𝑖 𝑡𝑖

To define the spatial resolution of the model, we adopted the SPDE (Stochastic Partial Differential 
Equation) spatial framework which represents continuous Gaussian fields as a discrete Gaussian 
Markov random field (Lindgren, 2012). The number of knots determines the spatial resolution of 
the model (and is specified by the user as a trade-off between the accuracy of the Gaussian Markov 
random fields representation and computational cost). We used a k-means algorithm to identify 
the location of knots to minimize the total distance between the location of knots and extrapolation-
grid cells (Fig. S1). The SPDE approximation involves generating a triangulated mesh that has a 
vertex of a triangle at each knot (here we used the package R-INLA (Lindgren, 2012)). Then spatial 
variables at location  are interpolated from knots to extrapolation grid using this triangulated 𝑠,
mesh (Fig. S1) (Grüss et al., 2020). Concerning the temporal resolution of the model, year  is 𝑡𝑖
defined as an integer {2001, 2002, …, 2019}. We calculate  using a Generalized Linear 𝑏(𝑠𝑖,𝑡𝑖)
Mixed Model (GLMM) while including random effects to describe additional variability from 
covariates not included in the process error terms (spatial and spatiotemporal variations, more 
details below in equation (1)). We specifically define a linear predictor that is then transformed 
via an inverse-link function. In the following we used a log-link function, so that all effects are 
additive in their impact on predicted fisheries log-CPUE, which also simplifies interpretation of 
covariate effects.
The model is a log-linked linear predictor as follows: 

,𝑙𝑜𝑔[𝑏(𝑠𝑖,𝑡𝑖)] = 𝛽(𝑡𝑖) + ∑𝑛𝑘

𝑘 = 1((𝜆(𝑘) + 𝜑(𝑠𝑖,𝑘))𝑞(𝑖,𝑘)) + 𝜔(𝑠𝑖) +𝜀(𝑠𝑖,𝑡𝑖) (1)

where  is the intercept for year , and represent, respectively, spatial, and 𝛽(𝑡𝑖) 𝑡𝑖 𝜔(𝑠𝑖) 𝜀(𝑠𝑖,𝑡𝑖) 
spatiotemporal variation in fishery CPUE; and  is an element of matrix  composed of  𝑞(𝑖,𝑘) 𝑞 𝑛𝑘
measured catchability covariates that explain variation in catchability,  is the estimated impact 𝜆(𝑘)
of catchability covariates for this linear predictor,  is zero-centered spatial variation in that 𝜑(𝑠𝑖,𝑘)
slope term. The model was designed to predict fishery CPUE as a function of temporal variation, 
spatial variation, and spatiotemporal variation effects, as well as catchability covariates. It accounts 
for these spatio-temporal dynamics as follows:

1. Spatial variation: the spatial variation terms, ω(s), in Equation (1) represent unmeasured 
spatial variation in the linear predictor that is stable over time;

2. Spatio-temporal variation: the spatiotemporal variation terms ε(s,t), represent unmeasured 
spatial variations in the linear predictors that changes between years;

3. Temperature-mediated drivers represented as catchability:  in Equation (1) 𝜑(𝑠,𝑘)
encompasses the spatially varying effect of covariates on fisheries CPUE. A part of the 
spatial variation is then attributed to catchability covariates. For each catchability 
covariate (indexed by k) tested, we implemented corner constraints only for the linear 
effect and not for the spatially varying effect . 𝜆(𝑘),  𝜑(𝑠𝑖,𝑘)

These spatial and spatio-temporal terms can be modelled as random effects following a 
multivariate normal distribution (Gaussian random fields):
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𝛚~𝑀𝑉𝑁(𝟎,𝜎2
𝜔𝐑ω)

𝛆(𝑡)~𝑀𝑉𝑁(0,𝜎2
𝜀𝐑ε)

     𝛗(𝑘)~𝑀𝑉𝑁(0,𝜎2
𝜑𝐑ε) (2)

where  is the estimated pointwise variances of the spatial variation in CPUE;  is the estimated 𝜎2
𝜔 𝜎2

𝜀
pointwise variances of the spatio-temporal variation in CPUE;  is the estimated pointwise  𝜎2

𝜑
variances of the spatial effect for each covariate k; is the correlation between location  𝐑(𝑠1,𝑠2) 𝑠1
and location  for spatial and spatiotemporal terms and is approximated as following a Matern 𝑠2
function:

𝐑(s1,s2) =
1

2ν ― 1Γ(𝜈)
× (𝜅|(𝑠1 ― 𝑠2)𝐇|)ν × 𝐾𝜈(𝜅|(𝑠1 ― 𝑠2)𝐇|) (3)

where  is a two-dimensional linear transformation representing geometric anisotropy,  is the 𝐇 𝜈
Matern smoothness (fixed at 1.0), and  governs the decorrelation distance.κ

Finally, in this study, we analyzed fisheries dependent data, in particular those CPUE data that did 
not include zeros, and we assumed CPUE by location to be lognormally distributed. Code for 
model M3 is available online on Github (https://github.com/MaxOlmos/Flat_fish_2021).

II. 2. Data

Fishery-dependent catch-and-effort (CPUE)

We used catch (biomass in kg) and effort (tow duration) data collected by observers on Bering 
Sea-Aleutian Islands commercial bottom trawl vessels from 2001 to 2019 between March 19-
September 24. For each commercial catch, observers record geographical position (longitude and 
latitude) and total catch of yellowfin sole, extrapolated from a sample. Sample locations are 
defined as the centroid of one of 105 polygons defined by the Alaska Department of Fish and 
Game (called ADFG cells, one degree of longitude by half degree latitude), where these cells 
encompass the spatial domain of yellowfin sole fishery in the eastern Bering Sea (Suppl. Mat. Fig. 
S2, S3). We aggregated all observed sets within a given year, season (early/intermediate/late), and 
ADFG spatial cell to a single observation. We aggregated from observed sets to unique year-cell-
season combinations in two ways:

1. Average ratio: We present results based on this method by calculating the ratio of catch and 
effort for each observed set, and then averaged across these. This “average ratio” has also 
been done in model-based analyses and allows to correct for effects of changes in the 
distribution of fishing fleets and activity (Walters, 2003; Walters and Hilborn, 2005)

2. Ratio estimator: As a sensitivity analysis, we separately summed the catch and effort for all 
observed sets, and then taking the ratio of these sums (Swain and Wade, 2003). This is 
conceptually similar to “ratio estimators” (Myers and Worm, 2003);

In practice, we found that results were not highly sensitive to the choice of aggregation method 
(Suppl. Mat. Fig. S5, S6) so the spatio-temporal model was fit to these aggregated data (using the 
average ratio method). Also, this aggregating process is designed to mitigate the potential bias 
arising from preferential sampling (Alglave et al., 2022; Conn et al., 2017), by ensuring that areas 
with a disproportionately higher CPUE of observed sets are still aggregated to a single fitted 
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observation. As a preliminary check and as suggested by Alglave et al. (2022), we explored the 
relationship between sampling intensity and biomass to diagnose any potential strong preferential 
sampling. Our results suggested that preferential sampling is low (Suppl. Mat. Fig. S4), so we did 
not account for any preferential sampling in our model. 

Catchability covariates

We sought to understand how the spatiotemporal distribution of CPUE changed depending on 
warm or cold temperature years. Thorson, (2019a) has assessed the impact of temperature and cold 
pool on yellowfin sole. But this study relied on survey data that are only defined for the 
intermediate season. Unfortunately, no temperature associated with fishery CPUE samples are 
available. So, based on Nichol et al. (2019) and the time variation in cold pool extent (Suppl. Mat. 
Fig. S7, akgfmaps package (https://github.com/afsc-gap-products) we approximated interannual 
temperature changes in the Bering Sea using temperature as a discrete variable with two levels: 
nine cold years (2006-2013, 2017) and ten warm years (2001-2005, 2014-2016, 2018, and 2019). 
We encourage future work using other covariates to approximate interannual temperature changes 
in the Bering Sea such as temperature (continuous variable, yearly or seasonally defined) and cold 
pool extent. 

The season covariate is discrete with three levels which were based on the migration ecology of 
yellowfin sole (Nichol, 1998; Spies et al., 2019; Wilderbuer et al., 1992): early (March 19-May 
21), intermediate (May 22-July 30), and late seasons (August 1-September 24), where these 
seasons include 33.2% , 32.7% and 32.6%, respectively of the total fishery landings between 2001 
and 2019, and the survey occurs during the intermediate season (between 2001 and 2019, more 
than 99.9% of the survey tows occurs during the intermediate season).

To implicitly estimate changes in movement phenology depending on temperature changesin the 
EBS we considered the combined effect of interannual temperature changes and season on fishery 
CPUE data. 

Different models for the spatiotemporal variation of fishery CPUE were tested (Table 1). In the 
reference model M3, we inferred whether the timing of migration (i.e., season) changes with 
different environmental conditions (i.e., for years with warm or cold years). Three models of lower 
complexity were also considered (M0, M1, M2, Table 1) to test if accounting implicitly for 
seasonal movement (i.e., season and temperature effects) better explains the spatiotemporal 
variations in fishery CPUE data. We used Akaike’s Information Criterion (AIC) for model 
selection as a measure of model parsimony to identify the level of complexity that likely minimizes 
the combination of bias (Akaike, 1974).

https://github.com/afsc-gap-products
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Table 1: Summary of the hypotheses tested, the associated model configurations and AIC values attributed to each model. ∆AIC is the difference in AIC score between the best model and the model being 
compared

Models

Spatiotemporal 

variations in CPUE 

are explained by

Ecological hypothesis Equations
AIC∆

M0

Year effect, Spatial 

main effect, and year 

spatial effect

Does not account for 

seasonality and 

interannual temperature 

changes

𝑙𝑜𝑔[𝑏(𝑠𝑖,𝑡𝑖)] = 𝛽(𝑡𝑖) + 𝜔(𝑠𝑖) + 𝜀(𝑠𝑖,𝑡𝑖) 658

M1
M0 + spatial effect of 

seasons u, on CPUE 

Account for seasonality, 

(i.e changes in 

movement phenology) 

but not interannual 

temperature changes

𝑙𝑜𝑔[𝑏(𝑠𝑖,𝑡𝑖)] = 𝛽(𝑡𝑖) + ∑((𝜆(𝑘𝑢) + 𝜑(𝑠𝑖,𝑘𝑢))𝑞(𝑖,𝑘𝑢)) + 𝜔(𝑠𝑖) + 𝜀(𝑠𝑖,𝑡𝑖)

With u =c(Early, Intermediate, Late)

654

M2

M0 + spatial effect of 

interannual 

temperature changes 

v

Account for impact of 

interannual temperature 

changes, but not for 

seasonality 

𝑙𝑜𝑔[𝑏(𝑠𝑖,𝑡𝑖)] = 𝛽(𝑡𝑖) + ∑((𝜆(𝑘𝑣(𝑡)) + 𝜑(𝑠𝑖,𝑘𝑣(𝑡)))𝑞(𝑖,𝑘𝑣(𝑡))) + 𝜔(𝑠𝑖) + 𝜀(𝑠𝑖,𝑡𝑖)

With v = c(Cold, Warm)
170

M3

M0 + spatial effect of 

the interaction of 

seasons u and 

interannual 

temperature changes 

v

Account for changes in 

movement phenology in 

response to interannual 

temperature changes

𝑙𝑜𝑔[𝑏(𝑠𝑖,𝑡𝑖)] = 𝛽(𝑡𝑖) +  ∑((𝜆(𝑘𝑢,𝑣(𝑡)) + 𝜑(𝑠𝑖,𝑘𝑢,𝑣(𝑡) ))𝑞(𝑖,𝑘𝑢,𝑣(𝑡))) + 𝜔(𝑠𝑖) + 𝜀(𝑠𝑖,𝑡𝑖)

With v = c(Cold, Warm) and u =c(Early, Intermediate, Late)

0
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Male and female data 

Fisheries CPUE were apportioned into male and female categories using female proportion data 
from observer data. For some locations, female proportions do not exist (17% of the locations). In 
this case we attributed to this location the value of the closest neighbor for a given year and a given 
combination of covariates (i.e., all combinations of levels constituting the seasons covariates) 
(Suppl. Mat. Fig.S8).

II.3. Estimation and model fitting

Parameters are estimated using release 3.8.2 of the Vector Autoregressive Spatio-Temporal 
(VAST) package (Thorson, 2019), which is publicly available online (https://github.com/James-
Thorson/VAST) and runs within the R statistical environment (R Core Team, 2017). Spatial terms 
were estimated using the SPDE approximation (Lindgren et al. 2011), such that we estimate the 
value of each spatial variable at a set of knots. 

The marginal log likelihood was computed using the Laplace approximation implemented by the 
R package ‘TMB’ (Kristensen et al., 2016) through an approximation of the integral across all 
random effects. Finally, VAST employs the generalized delta method implemented in TMB to 
calculate the standard errors of all the fixed and random effects, as well as the standard errors of 
the derived quantities (Kass & Steffey 1989). In some cases, we also calculated standard errors 
(SEs) for entire vectors of output (e.g.,  for the spatially varying term ).  In these 𝑠𝑒(𝜑(𝑠,𝑘)) 𝝋
cases, we extracted the joint precision matrix (e.g., matrix of 2nd derivatives) of fixed and random 
effects evaluated at their maximum likelihood estimates and conditional upon the data.  We then 
generated 250 samples from this joint precision matrix, recompute all quantities for each sample, 
and then calculate the standard error as the standard deviation of these samples. This 
approximation had lower accuracy than the generalized delta method but is computationally 
efficient when calculating standard errors for quantities calculated as a nonstandard function of 
parameters.  

II.4. Model validation and evaluation

We assessed model convergence by checking that the gradient of the marginal log-likelihood is 
less than 0.0001 for all fixed effects, and that the Hessian matrix of second derivatives of the 
negative log-likelihood is positive definite. We checked model residuals and validated the model 
using the DHARMA framework (Hartig, 2022) within VAST by computing QQ-plot residuals 
(Suppl. Mat. Fig. S10), plotting how residuals vary with magnitude of the predictions (Suppl. Mat. 
Fig. S10), and spatial map of quantile residuals (Suppl. Mat. Fig. S11). None of our diagnostics 
highlight any strong patterns in residuals and does not indicate any strong inconsistencies between 
the models and the data.
Model M3, which accounts for changes in movement phenology in response to interannual 
temperature changes has the lowest AIC value so appears to be the best descriptor to represent 
spatiotemporal variations in CPUE and was therefore retained in the subsequent analyses (Table 
1).

https://github.com/James-Thorson/VAST
https://github.com/James-Thorson/VAST
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II.5. Derived quantities and model specifications

Here we describe the methodology used to find evidence in support of each of our fundamental 
questions, using results from fitting the model (Eq. 1, model M3) to the data, as described above.

[Q1] Does the timing of migration and progression of spawning impact the fishery CPUE 
and is the progression of spawning dependent on interannual temperature changes in the 
EBS?

We compared spatial distribution of fishery CPUE between cold and warm years. We first 
calculated the average predicted biomass CPUE for each season (u) in warm vs. cold years :𝑣(𝑡)

𝑏(𝑠,𝑡,𝑢) ≡ 𝑏(𝑠,𝑡) × 𝜑(𝑠,𝑘𝑢,𝑣(𝑡)) (4)

𝑏(𝑠,𝑢,𝑣 ∗ ) =
∑𝑛𝑡

𝑡 = 1𝐼(𝑣(𝑡) = 𝑣 ∗ )𝑏(𝑠,𝑡,𝑢)

∑𝑛𝑡

𝑡 = 1𝐼(𝑣(𝑡) = 𝑣 ∗ )
(5)

where  is the covariate associated with season  and temperature ,  is the temperature for 𝑘𝑢,𝑣 𝑢 𝑣 𝑣(𝑡)
each year , and  is an indicator function that equals  when year  is associated with 𝑡 𝐼(𝑣(𝑡) = 𝑣 ∗ ) 1 𝑡
temperature  and  otherwise. So,  is the predicted fishery CPUE for each knot location 𝑣 ∗ 0 𝑏(𝑠,𝑡,𝑢) 
s, in year  within season u  and  is the average fishery CPUE in season  for all years 𝑡 , 𝑏(𝑠,𝑢,𝑣 ∗ ) 𝑢
with temperature Then, for a given season and a given temperature, we generated and compared 𝑣. 
cumulative maps of biomass (kg.min-1) by identifying the areas that encompassed the top 95th 
percentile of total biomass across the modeled spatial domain.

Additionally, we assessed the significance of the spatial effect  for each location s, season u, 𝜑𝑢,𝑣,𝑠
and temperature v, by computing a two-sided Wald test of significance. We computed the p-value 
assuming that the ratio   follows a Chi-squared distribution with one degree of freedom 

𝜑(𝑠,𝑘𝑢,𝑣)2

𝑠𝑒(𝜑(𝑠,𝑘𝑢,𝑣))2

(Wald Chi-Squared test). We consider the effect significant if p-value <0.05.

[Q2] Does fish availability to survey change between warm and cold years?

We investigated how the spatial distribution of fisheries CPUE overlap with the survey area 
depending on seasons and temperature. We computed an overlap index  for each year t, 𝑂𝐼(𝑡,𝑢)
each season u and each temperature v(t). This overlap index  is defined by calculating the 𝑂𝐼(𝑡,𝑢)
predicted fisheries biomass for all locations in the survey area ( , and the predicted 𝑠 ∈ 𝐴𝑇𝑜𝑡)
biomass in the entire fished area ( , and then calculating their ratio:𝑠 ∈ 𝐴𝐸𝐵𝑆)

𝑂𝐼(𝑡,𝑢) =  
∑

𝑠 𝜖𝐴𝑇𝑜𝑡
𝑏(𝑠,𝑡) × 𝜑(𝑠,𝑘𝑢,𝑣(𝑡))

∑
𝑠 𝜖𝐴𝐸𝐵𝑆

𝑏(𝑠,𝑡) × 𝜑(𝑠,𝑘𝑢,𝑣(𝑡)) (6)
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Because the predicted biomass  accounts for interannual variation via parameter  (see 𝑏(𝑠,𝑡,𝑢) 𝛽(𝑡)
Eq. 1) we also derived an overlap index from the expected spatial main effect (i.e. defined as the 
product between  and ), as a sensitivity analysis (Suppl. Mat. Fig.S9): 𝜔(𝑠) 𝜑(𝑠,𝑘𝑢,𝑣)

𝑂𝐼𝜔(𝑢,𝑣) =  
∑

𝑠 𝜖𝐴𝑇𝑜𝑡
𝜔(𝑠) × 𝜑(𝑠,𝑘𝑢,𝑣)

∑
𝑠 𝜖𝐴𝐸𝐵𝑆

𝜔(𝑠) × 𝜑(𝑠,𝑘𝑢,𝑣) (7)

This sensitivity shows that the overlap index is not sensitive to the choice of Eqs. 6 or 7, so in the 
following analysis we calculated it from  (Eq. 6).𝑏(𝑠,𝑡)

[Q3] Does phenology, i.e the timing of spawning migration, change with sex?

We used the modelling framework defined in section II.1 (M3) to run two independent 
spatiotemporal models, one for males and one for females. We extracted the predicted average 
fishery CPUE, , in season  for all years with temperature , for both males and 𝑏(𝑠,𝑢,𝑣) 𝑢 𝑣(𝑡)
females, to investigate if movement phenology changes between males and females depending on 
temperature. We also extracted  for both males and females to investigate if availability to 𝑂𝐼(𝑡,𝑢)
the survey changes with sex.

[Q4] Can we use CPUE (results from [Q1], [Q2] and [Q3]) to account for change in 
availability to the survey to improve the yellowfin stock assessment. 

We evaluated the overlap index relative to current covariates used to model survey “availability” 
in the operational stock assessment used for management (Nichol et al., 2019). The yellowfin stock 
assessment (Spies et al., 2019) includes the survey mean bottom temperature  and survey timing 
across stations as covariates on survey catchability, q:

𝑞 = 𝑒 ―𝛼 +  𝛽1𝑇 +  𝛽2𝑆 +  𝛽3𝑇𝑆 (8)

where T is survey mean bottom temperature, S is survey timing, and TS is the interaction of T and 
S. The parameter α is the estimated intercept and  are the estimated coefficients of the 𝛽1, 𝛽2𝑎𝑛𝑑 𝛽3
effect of temperature, survey timing and the interaction of temperature and survey timing on 
catchability, respectively.

Presently, the assessment model code requires a covariate for every survey year. The 2021 base 
accepted model was modified such that the current covariate anomaly values from 1982-2019, and 
2021 were set to zero (no anomaly) except for the same years from the overlap index: 2001-2019. 
Each covariate was normalized for the period where the overlap index is available. Three stock 
assessment model (SAM) configurations were deemed reasonable to show for the evaluation: 

SAM.1: Temperature, survey timing, and their interaction as covariates on catchability (Eq. 8).

SAM.2: Overlap index during the survey season, , as a covariate on catchability (Eq. 𝑂𝐼(𝑡,𝑢 = 𝐼𝑛𝑡.)
6).

We ran MCMC sampling from the posterior distribution using the ADNUTS R package 
(Monnahan et al., 2019; Monnahan and Kristensen, 2018).
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III. RESULTS

[Q1] Does the timing of migration and progression of spawning impact the fishery CPUE 
and is the progression of spawning dependent on temperature in the EBS?

The model can predict the spatial distribution of fisheries CPUE for each year and each season 
(Fig. 3, Suppl. Mat. Fig.S12). Our results highlight that CPUE is affected by the season and 
progression of spawning migration. The model estimates a strong effect of seasons on the spatial 
distribution of yellowfin sole CPUE (Fig.3, 4, 5). During the early season, CPUE are mostly 
distributed across all EBS, whereas during the Intermediate season, CPUE are distributed in the 
Inner Shelf, close to the spawning areas (Fig. 3). Finally, during the late season, CPUE are more 
distributed across the inner and middle shelf where yellowfin soles have started their migration 
back to the wintering areas in the outer shelf. 

Figure 3: Seasonal spatiotemporal distribution of CPUE. Seasons are defined as Early, Intermediate (Int.) and Late) (Years 
2006, 2009, 2012, 2017 (cold years) are chosen as example because seasonality changes are more pronounced for cold 
years). Full panels are in Suppl. Mat. Fig. S12.
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Additionally, our results highlight that the seasonal distribution of CPUE is dependent on 
temperature. The spatiotemporal model estimates the effect of seasonality and temperature on 
fisheries CPUE (Fig. 4, see Suppl. Mat. Fig. S13 for the significant effects). During the early 
season, cold temperature conditions show elevated CPUE in a broad band of the outer and southern 
middle domain while warm years show elevated CPUE in a small hotspot in the outer domain. 
During the intermediate and late seasons, cold temperature conditions are associated with elevated 
CPUE in the shallowest waters of the inner shelf (intermediate) or the middle domain (late), while 
warm temperature conditions show less association with inner-domain CPUE (Fig. 4). 

Figure 4: Spatial variation covariate effects  on fisheries CPUE. Covariates represent the combined effect of 𝜑
season and temperature (ColdEarly, ColdIntermediate, ColdLate, WarmEarly, WarmIntermediate, WarmLate). 
Black crosses represent the spatial distribution of the data for each combination of season and temperature when 
aggregating across years. The model uses a log-link such that a location with value 0.1 is expected to have a 
exp(0.1) ≈10% higher expected CPUE than a location with value 0.  

Seasonal distribution of CPUE is then different during warm and cold years (Fig. 5). The most 
significant differences appear during the intermediate seasons, where yellowfin soles are 
concentrated in the shallowest water in the inner shelf close to the spawning areas during cold 
years, while they are less constrained and distributed in the middle shelf during warm years. 

Collectively, our results show that spawning movement phenology is more progressed during 
warm years than cold years. Specifically, biomass hotspots are confined to shallow waters during 
the Intermediate season (and to a lesser degree the Late season) during cold compared with warm 
years (Fig. 5, see middle and right panels).  
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Figure 5: Seasonal spatial biomass distribution of yellowfin sole averaged for warm years (red) and cold years 
(blue). Red and blue polygons represent the cumulative biomass including 95% of the total biomass (  Eq. 𝑏(𝑠,𝑢,𝑣 ∗ )
5) across the entire spatial area for warm and cold years respectively and for each season. Brown polygon represents 
the survey area.

[Q2] Does fish availability to survey change between warm and cold years?

Our results highlight that movement phenology in relation to interannual temperature changesin 
the EBS affects availability of these species to the survey. During the intermediate season (which 
corresponds to the survey season), the spatial distribution of fisheries CPUE is significantly 
different between cold and warm years (Fig. 5). During cold years, CPUE are in the shallowest 
water of the inner shelf close the spawning areas, mostly outside of the survey area, whereas during 
the warm years, CPUE are found in both middle and inner shelf within the survey area. 

Our result also suggest that yellowfin sole are more available to the survey during warm years than 
in cold years (Fig. 6). Interannual temperature changes in the EBS impact the overlap between 
fisheries CPUE and the survey grid, the strongest difference between warm and cold years 
occurring during the Intermediate season (i.e., the survey season). During the survey season, warm 
years are associated with high overlap values (~0.73 on average) whereas cold years are associated 
with lower overlap (~0.68 in average). Finally, during late season, Fig. 6 also shows that overlap 
is stronger during cold years suggesting that yellowfin sole has migrated back to the middle/outer 
shelf from the inner shelf. 
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Figure 6: Time series of the overlap between spatial distribution of fishery CPUE biomass and survey spatial footprint 
during the different seasons (columns) Thick lines represent the averaged overlap across years (thickness of the line 
represents the standard deviation). 

[Q3] Does phenology, that is the timing of spawning migration, change with sex?

In terms of total biomass, female biomass is larger than male biomass across the time-series (except 
in 2013, Suppl. Mat Fig. S14). Both males and females present a seasonal pattern in their spawning 
migration. (Fig. 7). Our results also highlight some differences. During the intermediate season, 
males are concentrated in the spawning grounds, so very few males are available to the survey, 
whereas females are more distributed across the inner and middle shelf, so more available to the 
survey than males (Fig. 7). Overlap with the survey area is more important for females than males 
for all seasons (Fig. 8), males staying longer in the inner shelf that females (Fig. 7, 2nd row, 
columns 2 and 3).
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Figure 7: Mean seasonal spatial biomass distribution of yellowfin sole for cold years (1st row) and warm years 
(second row) for females and males.  Green and orange polygons represent the cumulative biomass including the 
95% of the total biomass across the entire spatial area for females and males respectively and for each season. 
Brown polygon represents the survey area.

Both males and females movement phenology is impacted by temperature (Fig. 7). In particular, 
during the intermediate seasons, fish were more aggregated in the inner shelf during cold years 
than warm years. Also, temperature impacted the overlap index for both males and females but 
with approximately the same magnitude. Indeed, both males and females present a higher 
overlap index during warm than cold years, but the difference between male and female overlap 
index does not change with warm or cold years (Fig. 8). Standard deviations are higher in cold 
years due to temporal variability in temperatures and cold pool extend; with some years being 
colder than other (i.e 2012, 2013 are colder than 2011, 2017, Figure S7), which could generate 
greater variability in terms of overlap within cold years (Fig. 5 and Fig. 7).
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Figure 8:  Time series between spatial distribution of fishery CPUE biomass and survey spatial footprint for females 
(orange) and males (green) during the different seasons (columns) and in cold and warm years (rows). Thick lines 
represent the average overlap across years (thickness of the line represent the standard deviation).

[Q4] Can we use fishery CPUE to account for change in availability to the survey to improve 
the yellowfin stock assessment?

We evaluated the overlap index relative to currently used covariates (mean bottom temperature, 
survey timing, and their interaction). For model SAM.1, both main coefficients were greater than 
zero indicating that when the temperatures were warmer and the survey start date later, the relative 
abundance as indexed by the standard survey area covered a greater fraction of the resource (Fig. 
9a). This also demonstrates that the coefficient of the interaction term (of temperature and timing) 
was negative; this would reduce the value for catchability in years where waters were warm, and 
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migration was later than normal. When we applied the overlap index alone as a covariate (SAM.2), 
the coefficient was also significantly greater than zero which is consistent with the notion that the 
YFS resource distribution overlaps with the survey area (Fig. 9b). 

a) 

b)

Figure 9: Posterior densities of coefficients as estimated from the stock assessment model (Spies et al. 2021) for model 
SAM.1 (panel a), and for the new overlap index, SAM.2, “beta_overlap” (panel b). These coefficients affect survey catchability 
(availability) applied to zero-centered anomalies.
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IV. DISCUSSION

In this study, we inferred movement phenology and relationships between movement and 
interannual temperature changesusing spatially explicit, year-round fishery dependent CPUE data. 
We fit a novel spatiotemporal model that included a sub-seasonal component to these data, which 
allowed for us to infer seasonal movement patterns. Applying this model to yellowfin sole in the 
Bering Sea as an example, our results highlight evidence for shifts in movement phenology based 
on seasonal temperature conditions, where spawning migration occurred earlier in warm 
conditions. We also demonstrated these climate-related shifts in movement phenology can have 
notable impacts on interpretation of other data sources used in stock assessment modeling (e.g., 
survey data) and specification of catch limits. For yellowfin sole, this was demonstrated by 
computing an index of overlap at the time of the summer survey and using this index as a 
catchability covariate to improve the assessment. The use of a sub-seasonal spatio-temporal 
modeling approach fit to year-round, spatially-explicit fishery dependent data could be used to 
explore other aspects of climate-related phenology that may be occurring for many species 
worldwide. 

Consequences of climate-driven shifts in phenology on harvested populations

As climate change has been impacting all ecosystems on the globe (Hoegh-Guldberg and Bruno, 
2010; Parmesan and Yohe, 2003; Poloczanska et al., 2013) climate-driven shifts in phenology are 
an essential concern in fisheries ecology. There is a need to account for environmental changes 
that impact the phenology of migration to provide effective management measures. First as 
highlighted in this study, shifts in phenology impact the fishery independent survey, designed to 
occur at approximately the same time each year and to provide annual indices of abundance for 
stock assessments. So, any climate-driven mismatch in timing between the survey and seasonal 
movement dynamics can cause a different proportion of population biomass to be available to the 
survey in different years. Long-term warming of the Bering Sea is likely to cause directional shifts 
in seasonal movement, in turn causing long-term changes in availability to surveys. Based on our 
results, we urge stock assessment scientists to investigate if drastic changes in stock abundance 
represent sustained population conditions, or instead signal changes in timing of ecological events, 
such as spawning migration. 

Secondly, ignoring climate-driven changes in phenology when managing fisheries might lead to 
potential overharvesting or missed harvesting opportunities. Such changes in phenology might 
strongly impact the reproductive success of some stocks. A shift in spawning migration induced 
by changes in temperature conditions can lead fisheries to catch adults before they could spawn 
leading to unanticipated changes in fishing mortality (Peer and Miller, 2014). For anadromous 
fish, accounting for phenology shifts is critical because fisheries management for those species 
rely on expected time of fish arrival in harvested areas (Mundy and Evenson, 2011). However, 
warm conditions lead to early migration which might be mistaken as large abundance and could, 
in turn, lead to overharvesting. Climate-driven shifts in phenology are leading to incorporation of 
temperature conditions in defining closed areas and fishing seasons. Zacher et al. (2018) 
highlighted how important it is to account for the differences in red king crab (Paralithodes 
camtschaticus) distribution with temperature regime to evaluate the effectiveness of a closed area 
to protect crab from bycatch in trawl fisheries. Crabs were aggregated within closed areas during 
warm years and outside closed areas during cold years, and therefore more susceptible as bycatch 
during cold years (Zacher et al., 2018). For Pacific halibut (Hippoglossus stenolepis), mortality 
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applied during spawning and feeding migrations might impact biomass distribution. Changing 
environmental conditions is altering the timing of those migrations and current fishing season 
might be too short to protect those periods. As a consequence, allowing harvesting by seasonal 
interception fisheries too early might impact the spawning success and the stock productivity 
(Loher, 2011).

Mechanisms underlying changes in spawning movement phenology, spatial constraints and 
biomass

By further examining the mechanisms underlying the yellowfin sole example, we argue that our 
study provides insight into other species whose spatial distribution phenology may be affected by 
climate. Our study highlights how interannual temperature changes impact the timing of spawning 
movement but also the location and biomass of fish. During warm years the yellowfin spawning 
migration occurs earlier with a less constrained distribution (Fig. 5) and high biomass (Fig. S14). 
Whereas during cold years, yellowfin movement occurs later, the spatial distribution is more 
constrained in the inner shelf, and total biomass is lower than during warmer years. Those results 
seem to be in accordance with previous studies (Bartolino et al., 2011; Nichol et al., 2019; Porter, 
2022). Both density dependent and independent mechanisms can affect the biomass and 
distribution of bottom-fish (Spencer, 2008) and explain such patterns. Considering density-
independent mechanisms, the difference in spatial extent of the spawning area related to 
temperature could be the result of yellowfin sole adults tracking the temperature of their preferred 
habitat (between 1 and 7 °C, Bartolino et al. (2011); Porter (2022)). So, when bottom temperatures 
are warm, the spawning area might extend to the western part of the inner shelf following favorable 
temperatures that extend to the middle shelf as the cold pool contracts. Whereas cold years may 
constrain yellowfin in shallow waters in the inner shelf (Nichol et al., 2019; Porter, 2022). 

Our results also match patterns resulting from density-dependent mechanisms. According to the 
theory of density-dependent habitat selection, expansion of area occupied is expected to be the 
result of an increase in population size which reduces habitat suitability and increases competition 
(Spencer, 2008). Our results suggest that the presence of density-dependent mechanisms seem to 
be dependent on temperature conditions, and occur mostly during warm years. When bottom 
temperatures are favorable (warm years), our results show an increase in density linked with an 
increase in area occupied during the intermediate season, resulting from an expansion to suitable 
habitats. Such mechanisms linking increase in density and spatial expansion are quite common for 
marine species and have been observed in many systems (Scotian Shelf juvenile haddock 
(Marshall and Frank, 1995), Atlantic cod in the southern Gulf of St. Lawrence (Swain and Wade, 
1993), and walleye pollock (Bacheler et al., 2009)). Future studies could integrate density-
dependent responses with the same modelling framework used here (Thorson, 2022). 

In addition to density independent mechanisms, a decrease in total biomass and a more constrain 
distribution in the inner shelf during cold years can be explained by density-dependent 
mechanisms. Indeed, between warm and cold years prey availability for yellowfin sole can change 
in the EBS. During cold years, the cold pool extends over the middle shelf during the summer 
season, and thus acts as a physiological barrier. Yeung et al. (2013) showed that this thermal barrier 
displaces three flatfish species, flatfish yellowfin sole (Limanda aspera), Alaska plaice 
(Pleuronectes quadrituberculatus) and northern rock sole (Lepidopsetta polyxystra) in the inner 
shelf, intensifying competition for prey resources between those species during cold years.
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Another potential mechanism to consider is the effect of local depletion on abundance. During 
warm years the fishing fleet is more diffuse (less sea ice and a greater portion of the shelf open for 
trawling), and there is less of an effect of local depletion. However, in cold years, when yellowfin 
are more aggregated, the fishing effort and fish vulnerability increase and then local scale 
harvesting might have a negative effect on local fish density (Bartolino et al., 2012). 

Our results also highlight differences between males and females which are in accordance with 
previous studies (Bartolino et al., 2011; Nichol et al., 2019). First, female distribution is more 
expanded than male distribution and goes through the middle shelf. Then female biomass density 
is higher than male density. Such results are in accordance with the fact that for many flatfish 
species females grow to a larger size than males (van der Veer et al., 2001). So density-dependent 
habitat expansion for females might be more important because of their higher energetic 
requirements (Bartolino et al., 2011). In our study males also seem to stay longer in the spawning 
area (especially during the warm years) than females (Nichol et al., 2019) a phenomenon largely 
observed for flatfish (Rijnsdorp, 1989; Solmundsson et al., 2003) which results in higher overlap 
between the survey area and fisheries CPUE for females. This can be taken into account in the 
stock assessment by modeling sex-specific availability. 

A step forward to combine fishery and survey CPUE within a seasonal time step 

In this study, we developed a spatiotemporal model on a sub-seasonal interval to capture seasonal 
movement based on fishery CPUE data. CPUE fishery data are of great interest to understand key 
demographic processes and their relationship with environmental changes, and to characterize 
essential habitats (Dambrine et al., 2021), which survey data cannot do (Suppl. Mat. S15). Fishery 
CPUE is typically available over a large spatial domain and seasonal range, which allowed us to 
detect phenology and time-varying availability. Fishery CPUE data were important to infer 
spatiotemporal changes in spawning migration dynamics occurring outside the survey period. 
These data can also be extremely useful to assess populations occurring in untrawlable habitat, 
such as with many species of Sebastes. Untrawlable habitat can be a problem for estimating indices 
of abundance from bottom trawl surveys (Jones et al., 2012, 2021; Thorson et al., 2013; 
Zimmermann, 2003). Through cooperative research using fishing industry and community 
knowledge of fish distribution and behavior, fishery CPUE data has the potential to improve 
interpretation of survey-based indices of abundance (Johnson, 2011; Ressler et al., 2009). 

However, fishery CPUE can present some limits. Fishery CPUE data might confound changes in 
fishing behavior with trends in abundance and then are not proportional to the actual abundance. 
We did not explicitly account for fishing behavior in this study, but we made sure that preferential 
sampling of yellowfin fishery CPUE was low. We acknowledge that some bias might exist with 
the actual abundance due to difference in catchability. But the goal of this study is not to provide 
an unbiased index of abundance, rather to highlight how movement phenology, represented here 
as seasonal hotspots in wintering, spawning, and feeding areas might change depending on 
temperature. Accounting for scientific survey data within our approach could be complementary 
to CPUE fishery data and provide an additional data source to estimate unbiased fish spatial 
distribution and key demographic processes. Resource surveys for use in stock assessments are 
typically designed to occur at approximately the same time each year (NRC, 2000), and cover a 
large geographic area accounting for areas of few or null abundance. They also sample most of the 
life stages of the populations providing information for characterizing the age structure and 
population dynamics of the stocks. By using a standardized effort, they provide unbiased quantities 
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on stocks. A spatio-temporal model fitted simultaneously to fishery and survey data could be used 
to create a joint abundance index. The joint abundance index could then be included in 
assessments; in the example of yellowfin sole, the joint index would be an alternative to include a 
structural linkage between summer bottom temperature and catchability. 

Some previous studies have combined survey and fishery CPUE, accounted for seasonality, and 
improved the estimation of the spatial distribution and abundance index of marine species 
(Bourdaud et al., 2017; Pinto et al., 2019; Thorson, 2019b). More recently, integrated population 
models have been developed to account for seasons explicitly (Thorson et al., 2020) and have 
combined both fishery and survey data to account for preferential sampling in fishery CPUE data 
(Rufener et al., 2021). Future work should focus on integrating all those data (seasonal, fishery 
and survey CPUE, and environmental variables) within spatio-temporal models on a sub-seasonal 
interval to capture seasonal movement. Such models will estimate the spatial distribution of each 
species in relation to temperatures year-round, and will form the basis for a spatio-temporal 
modeling approach to standardize the survey biomass data for each assessment. Those models 
might also inform forecasts of future stock distribution and habitat usage under various future 
climate and fishing pathways. In addition, the spatio-temporal modeling approach developed for 
this project could be applied to other economically important species to inform future prediction 
of habitat usage and distribution. In terms of management implications, this could have major 
impacts on fishing operations and could improve our ability to estimate accurate reference points 
in assessments.

Conclusion

Our study incorporates the effects of species distribution shifts into climate-ready ecosystem-based 
fisheries management. Fishery management under global change is challenging because if 
environmental variability ignored this could lead to overharvesting or missed harvesting 
opportunities, changes in stock productivity, changes in life history and reductions of spawning 
success. Our study provides a framework that could be used in climate monitoring and impact 
analysis on fisheries. Species distribution models with spatially varying coefficients linking 
density and environmental covariates have to be promoted to represent the response of fish to 
environmental changes with a spatial structure (Bartolino et al., 2012, 2011; Porter and Ciannelli, 
2018; Thorson, 2019c). Future research should be done to apply our framework to other highly 
mobile species like flathead sole (Hippoglossoides elassodon), crab species in the EBS, Atlantic 
bluefin tuna (Thunnus thynnus), Mediterranean albacore (T. alalunga), and bullet tuna (Auxis 
rochei.) (Reglero et al., 2012; Zacher et al., 2018) to infer changes in movement phenology and 
account for changes in availability within stock assessment to provide management approaches 
that reduce climate-induced variability.
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HIGHLIGHTS

 Climate-driven phenology shifts has been inferred using seasonal spatio-temporal models 
and fishery-dependent data

 Spawning movement phenology occurs earlier during warm years than cold years

 Spatial distribution is more constrained, and biomass is lower during cold years than 
warm years

 Fish were more available to the summer survey during warm years than cold years 
because of earlier spawning migration during warm years

 Phenology differed by sex with males staying longer on the spawning grounds than 
females. 

 Fishery-dependent data can be used to compute a catchability covariate within the 
yellowfin stock assessment.
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