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Abstract
Visual localization plays an important role in the positioning and navigation of robotics systems within previously visited
environments. When visits occur over long periods of time, changes in the environment related to seasons or day-
night cycles present a major challenge. Under water, the sources of variability are due to other factors such as water
conditions or growth of marine organisms. Yet it remains a major obstacle and a much less studied one, partly due to
the lack of data. This paper presents a new deep-sea dataset to benchmark underwater long-term visual localization.
The dataset is composed of images from four visits to the same hydrothermal vent edifice over the course of five years.
Camera poses and a common geometry of the scene were estimated using navigation data and Structure-from-Motion.
This serves as a reference when evaluating visual localization techniques. An analysis of the data provides insights
about the major changes observed throughout the years. Furthermore, several well-established visual localization
methods are evaluated on the dataset, showing there is still room for improvement in underwater long-term visual
localization. The data is made publicly available at seanoe.org/data/00810/92226/.
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Introduction

With the advent of Autonomous Underwater Vehicles
(AUVs) and Remotely Operated Vehicles (ROVs), there
is a need to enable these vehicles to localize themselves
accurately in an underwater environment. This paper
addresses the problem of visual localization which consists
in estimating the 6 degrees-of-freedom (6DOF) pose of a
camera given its image and previous observations made in
the area. It has received a lot of attention over the last
decade with the rise of self-driving cars. This task becomes
more difficult when the environment is subject to important
changes, as it is the case for images acquired during
successive visits in deep ocean. Long-term localization
methods aim to deal with major changes in the environment,
e.g., snow during winter (Sattler et al. 2018).

Most of the databases used to evaluate these methods
are made up of terrestrial data. They cover a wide range
of environmental changes such as day-night, seasons and
weather conditions (Griffith et al. 2017; Sattler et al. 2018;
Burnett et al. 2023).

Because underwater images have different sources of
technical and environmental variability, existing datasets
are not suitable for evaluating long-term localization
performance in such scenarios. Indeed, the characteristics
of the underwater medium cause many visual perturbations
related to light and color absorption, turbidity and back-
scattering. Furthermore, in deep-sea scenarios, underwater
vehicles must be equipped with artificial lighting systems in
order to illuminate the absolute darkness of the environment.
While this allows the use of cameras to record what
lies on the seafloor, it also creates strong differences in

Figure 1. Trajectories along the Eiffel Tower hydrothermal vent.
Camera poses were retrieved using COLMAP (Schönberger
and Frahm 2016). 3D model was meshed and textured using
OpenMVS (Cernea 2020).
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illumination depending on the distance between the robot
and the scene. In addition to these short-term perturbations,
long-term changes occur in these environments, e.g., changes
in the distribution of microbial and animal communities or
topographical changes.

Some localization methods rely on deep retrieval and
feature matching networks to be robust to large sources
of variability. However, these networks, e.g., NetVLAD
(Arandjelovic et al. 2016), have only been pre-trained on
terrestrial data. Applications of these models in underwater
environments may not be straightforward due to the domain
shift associated to the specificity of underwater imaging.

Previously published underwater datasets targeting online
localization (Ferrera et al. 2019; Mallios et al. 2017) span
over very short temporal ranges, i.e., data were acquired
during the same day. Thus, they do not cover the long-term
changes that can appear in these environments, leaving a gap
in methods and datasets available to treat multiannual deep-
sea image sequences.

This paper presents a new dataset for long-term visual
localization in a deep-sea environment. It is composed of
four different visits of the same hydrothermal edifice over
five years (Girard et al. 2020) (Figure 1). More specifically,
it provides the following data:

• Images of the vent for all four visits.
• Navigation data in the form of latitude, longitude and

altitude information.
• 3D models of the scene estimated using Structure-

from-Motion (SfM) for each visit year.
• A global 3D model including all images in a common

reference frame.

The data presents changes over time related to all the
aforementioned underwater imaging factors. It also presents
some peculiar characteristics, like the occurrence of black
and white smokers that emit hot hydrothermal fluid.
Moreover, due to the numerous sources of variation present
in this dataset, it may also be used for detecting long-
term changes that take place in deep-sea environments. This
paper makes the following contributions: i) it provides a new
publicly available dataset for long-term visual localization
in a deep-sea environment; ii) it presents an analysis
of environmental and topographic changes between the
different visits; iii) it benchmarks several visual localization
methods on the given dataset.

Related work
Datasets used for benchmarking visual localization algo-
rithms are mostly terrestrial, including Aachen Day-Night,
RobotCar Seasons and CMU Seasons introduced by Sattler
et al. (2018) as well as Cambridge (Kendall et al. 2015),
7-Scenes (Shotton et al. 2013) and 12-Scenes (Valentin
et al. 2016). 7-Scenes and 12-Scenes are collected in an
indoor setting, while the others are composed of outdoor
environments. Sattler et al. (2018) datasets exhibit some
difficult localization scenarios, like day-night observations.
Similar datasets to benchmark the visual localization task
under water are rare due to the cost of data collection.

Existing underwater datasets (Mallios et al. 2017; Ferrera
et al. 2019) focus on providing data for the development of

Figure 2. Location of the Lucky Strike vent field on the
Mid-Atlantic Ridge (Sources: Esri, GEBCO, NOAA, National
Geographic, DeLorme, HERE, Geonames.org).

underwater SLAM algorithms. AQUALOC dataset (Ferrera
et al. 2019) provides underwater monochromatic images
synchronized with inertial and depth data for three different
sites off Corsica. One of the sites is a harbor lying at a
depth of 3 to 4 m and the other two are archaeological
sites that lie at depths of 270 m and 380 m. While
sequences follow different trajectories, all different visits
occurred during the same day, not covering all the possible
changes that can happen in this environment, e.g., salinity
variation that can alter the pinhole model, increased turbidity,
sedimentation or marine population changes. Nielsen et al.
(2019) evaluated PoseNet (Kendall et al. 2015), an end-to-
end visual localization neural network, on an underwater
dataset acquired in a pool where camera poses were
obtained with an underwater motion capture system. Other
underwater datasets that focus on different tasks, e.g.,
dehazing (Akkaynak and Treibitz 2019; Li et al. 2019;
Berman et al. 2021), do not provide images of the same site
over long periods of time.

Campos et al. (2015) already published image data of the
2015 visit of the Eiffel Tower vent. The authors presented
a novel method for surface reconstruction of underwater
structures. To benchmark their algorithm, they used a point
cloud resulting from a SfM on the images of the 2015 dive.
The current work also exploits SfM to produce the reference
poses and scene geometry on this collection, and completes
it with similar data from three other dives of the same site in
different years, capturing long-term changes.

Visual localization benchmarking datasets require refer-
ence camera poses for each image, which can be constructed
in different ways. Most common methods to access such
information as well as the scene’s geometry rely on SfM or
depth-based SLAM (Brachmann et al. 2021). In most deep-
sea missions, the use of motion capture is discarded due to
the difficulties in deploying such a system. Standard RGB-D
sensors cannot directly be used underwater because of the
absorption of infrared light in water, making depth-based
SLAM harder to set up. Thereby, SfM offers a practical
solution for estimating camera poses and scene geometry in
the underwater environment. Nevertheless, Brachmann et al.
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(a) SIFT using brute-force matching.

(b) SIFT using brute-force matching. Matches are then filtered after estimating the fundamental matrix within a RANSAC scheme.

(c) SuperPoint (DeTone et al. 2018) followed by SuperGlue (Sarlin et al. 2020).

Figure 3. Feature matching between cross-year images using different methods.

(2021) showed that the performance of a localization method
on a given dataset is greatly affected by the method used to
build the “ground truth” of this dataset. Indeed, methods that
minimize the same error as the algorithm used for estimating
the ground truth poses have the advantage of leading to the
same local minima. For this reason, methods that favor SfM-
based ground truths may perform better on our dataset.

Data collection

The EMSO-Azores deep-sea observatory on the Mid-
Atlantic Ridge supports the long-term monitoring of the
Lucky Strike hydrothermal vent field (Figure 2) since 2010.
During the annual maintenance cruises (Cannat and Sarradin
2010), a ROV operated by the French National Institute
for Ocean Science (Ifremer) has been used to study the
evolution of the hydrothermal circulation and the associated

Table 1. Cameras settings.

Year Resolution Frame rate

2015 1920x1080 px 25 fps
2016 1920x1080 px 25 fps
2018 1920x1080 px 25 fps
2020 3840x2160 px 30 fps

fauna communities over several years (Matabos et al. 2022).
Within this field, the hydrothermal vent edifice Eiffel Tower,
located at 1700 m beneath the surface, has been extensively
studied since its discovery in 1992 (Langmuir et al. 1993).
Four dives, in 2015, 2016, 2018 and 2020, were dedicated to
the 3D reconstruction of the structure enabling quantitative
monitoring of vent community distribution and dynamics
(Girard et al. 2020).
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Figure 4. Structure-from-Motion pipeline to match images across years. Models are first built independently for each year. They
are then registered in a common reference frame, i.e., 2020 reference frame, using TEASER++ (Yang et al. 2021) and ICP (Zhou
et al. 2018). Finally, a model embedding images of all years is computed using spatial matching based on the camera poses of
individual models that now share a common reference frame.

Table 2. Reconstruction statistics. For each model, we report the number of registered images, the number of triangulated 3D
points, the mean track length (number of images in which a 3D point is observed), the mean number of 2D observations per image
as well as the mean reprojection error in pixels.

Model Nb. of images Nb. of 3D points Mean track length Mean obs. per image Mean reproj. error

2015 4,914 525,522 8.48 906.4 1.35 px
2016 3,699 520,320 5.85 823.5 1.32 px
2018 5,493 618,421 7.09 798.1 1.31 px
2020 3,976 464,331 8.35 975.5 1.33 px

Global 18,082 1,971,726 8.24 898.7 1.39 px

During the different dives, synchronized videos and
navigation data were acquired using the ROV sensors.
Videos were captured using two different cameras, whose
characteristics are presented in Table 1. Images were
acquired through a specifically designed dome port with
corrective lenses to account for underwater refraction. As
these lenses largely compensate the distortion induced by
the air-glass-water mediums, a second order radial distortion
model with k1 and k2 distortion coefficient was used to
calibrate the cameras underwater. The ROV incorporated
an artificial lighting system consisting of 12 LED panels
delivering 20,000 lumens each. It also embedded an Ultra-
Short Baseline acoustic positioning system (USBL), an
Inertial Navigation System (INS), a Doppler Velocity Log
(DVL) and a depth sensor that were fused similarly to
Guerrero-Font et al. (2016) to compute the navigation data
which provide an estimate of the position of the vehicle. This
position is composed of the latitude, longitude and altitude of
the ROV as well as its yaw, pitch and roll angles. However,
navigation data are only consistent within each visit due to
the uncertainty of the USBL, which can exhibit offsets of
several meters between the frames of the different visits.

Camera poses and scene geometry
This visual localization dataset offers images and their 6DOF
poses expressed in a common frame of reference. COLMAP

SfM (Schönberger and Frahm 2016) was used to obtain
camera poses and intrinsic parameters, as well as 3D scene
geometry.

From the videos captured each year, one image was
extracted every 3 seconds to create the input data of the
dataset. Some images were polluted on their border with
small navigation overlays that were removed using an
inpainting technique (Telea 2004). In addition, images were
inspected manually to discard irrelevant ones, e.g., images
only capturing the water column.

Several issues were encountered when attempting to use
COLMAP directly on images from all years. Firstly, to create
image pairs, COLMAP relies on image retrieval methods
like vocabulary tree (Schönberger et al. 2016) or NetVLAD
(Arandjelovic et al. 2016). While these methods successfully
match images of the same year, they show poor performance
at pairing images across different years. Secondly, to perform
feature matching between image pairs, COLMAP uses SIFT
descriptors. However, as shown on Figure 3, hand-crafted
descriptors fail to produce satisfactory matches between
images of different years.

To overcome these issues, we adopted the SfM pipeline
described on Figure 4*. We first built a model for each year

∗The code used to compute the different steps of the presented SfM pipeline
is available at github.com/clementinboittiaux/sfm-pipeline.

https://github.com/clementinboittiaux/sfm-pipeline
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Table 3. Percentage of paired features indexed by the years in
which the two images are taken. The table is normalized so that
rows add up to 100%. It shows the amount of cross-years
coverage of observations used to perform the SfM.

Observation year 2015 2016 2018 2020

2015 65.9% 10.7% 15.2% 8.12%
2016 20.3% 50.9% 16.2% 12.6%
2018 16.1% 9.05% 63.1% 11.8%
2020 9.79% 8.00% 13.5% 68.8%

independently. For each individual model, image retrieval
was performed using navigation data. However, navigation
data are missing for 3,178 images of the 2015 dive. In
this case, image retrieval was achieved using NetVLAD
(Arandjelovic et al. 2016). Within the same visit, NetVLAD
proved to be efficient to retrieve similar images. Instead
of hand-crafted descriptors, we used SuperPoint (DeTone
et al. 2018) and SuperGlue (Sarlin et al. 2020) for feature
matching. We then registered the resulting 3D point clouds
of each individual model to the 2020 point cloud using
TEASER++ (Yang et al. 2021) and refined the result with
ICP (Zhou et al. 2018). This way, we obtained a coarse
estimation of the camera intrinsics and poses of each year in
the same reference frame. We then paired cross-year images
using these poses and matched these images with SuperPoint
and SuperGlue. Finally, we used COLMAP to obtain a global
model embedding all images.

The scale of each model was retrieved by aligning
camera poses in Sim(3) with available navigation data using
Umeyama’s algorithm (Umeyama 1991). For the global
model that includes all observations, the alignment was
performed using only 2020 navigation data. At this point,
we have the 6DOF pose of each viewpoint as well as a 3D
point cloud of the full vent in the same reference frame at
real scale for every year.

Table 2 reports statistics about the reconstructions
obtained with COLMAP as a way to illustrate the certainty
level of the proposed ground truth. Table 3 reports the
percentage of 3D points matched between each year in the
resulting SfM. While the majority of 3D points observations
are contained within the same year, a significant proportion
of them were matched across different years. This ensures
that the scene geometry and camera poses are consistent
between the different visits.

Dataset format
The Eiffel Tower dataset is composed of images of the
dives and a global COLMAP model embedding all visits.
For reproducibility purposes, we also provide individual
COLMAP models for each visit and interpolated navigation
data for each image when available. The dataset architecture
is detailed in Figure 5.

Each image is named after the date at which it was
acquired in the format YYYYmmddTHHMMSS.fffZ, where
YYYY is the four digit year, mm is the month, dd is the day,
HH is the hour in the 24 hours format, MM are the minutes, SS
the seconds and fff the milliseconds. A COLMAP model
embeds scene geometry, camera intrinsics and poses. It is
composed of 3 files: cameras.txt contains the camera
intrinsics; images.txt provides camera poses as well as

EiffelTower

global

sfm

cameras.txt

images.txt

points3D.txt

2015

images

sfm

navigation.txt

2016

2018

2020

Figure 5. Dataset file organization. For each year, images,
navigation data and an individual SfM are provided. A global
SfM embedding all years for benchmarking visual localization
methods is also available.

lists of 2D keypoints associated to their 3D observations
for each image; points3D.txt consists of the positions
and colors of the 3D points. The specificities of COLMAP
output format can be found in the documentation†. Moreover,
COLMAP provides scripts to easily read models in C++,
Python and MATLAB‡. Navigation data are provided in the
following text format:

image001.png lat1 lon1 alt1
image002.png lat2 lon2 alt2
...

where lat, lon and alt are the latitude, longitude and altitude
of the vehicle.

Characterizing changes across years
This dataset contains numerous appearance changes across
visits that present important challenges for the visual-
based localization task. These alterations are of different
nature, i.e., topographic, environmental or modifications in
the ROV’s equipment. A number of changes observed and
measured over the period reflect a modification of the edi-
fice’s local geomorphology over the years (Van Audenhaege
et al. 2023). Chimney collapse, outcrop/boulder detachment
or slide resulted in a loss of material, while vent active
areas grew through mineral accretion creating new outcrops,
flanges and spires. Material build-up was twice as important
as the loss, suggesting that the volume of the edifice is
increasing over time. While these changes can be locally
drastic and affect the registration of 3D models over the
years, they represent only 5% of the total surface and

†colmap.github.io/format.html
‡github.com/colmap/colmap/blob/dev/scripts

https://colmap.github.io/format.html
https://github.com/colmap/colmap/blob/dev/scripts
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Figure 6. Illustration of a topological modification. The left image shows a point cloud distance between 2015 and 2020 models.
We notice a piece from 2015 missing in 2020. This modification is visible on the right images.

Figure 7. Evolution of the south-east façade of the vent. A growth in the mussels’ population significantly alters the visual aspect of
the scene, making it difficult to match specific 2D points.

are localized in areas of active venting. Local changes in
hydrothermal activity also result in distinct mineralization
processes, hence deposits, the color of which will vary
depending on the temperature and chemical composition of
the fluid. Figure 6 reveals a modification in the topography
of the scene. A chimney visible in 2015 is missing in 2020,

and a temperature sensor, absent in 2015, was deployed in
the vicinity in 2020.

Biological changes were more important and mainly
localized in areas of topographic changes. They result from
mussel populations that grow and migrate to colonize newly
created habitats (143.97 m2 from 2015 to 2020) (Van
Audenhaege et al. 2022). Moreover, mussels are dynamically
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(a) West façade. (b) South-east façade.

Figure 8. Distribution of 3D points that are triangulated between images of different years on the Eiffel Tower edifice. 3D points
resulting from cross-years triangulation are more scarce on the south-east façade due to biological changes.

(a) East-Up View. (b) East-North View. (c) North-Up View.

Figure 9. Area covered by the ROV during the different dives.

(a) Red channel. (b) Green channel. (c) Blue channel.

Figure 10. Comparison of pixel intensity histograms for each year on each color channel.

reoriented on a daily basis. Furthermore, the period from
2015 to 2020 showed an overall disappearance of white
microbial mats over the whole edifice (-72.85 m2). Although
these changes do not affect the general topography of the
structure, they strongly modify the color and texture of
the model. Figure 7 illustrates how the mussels’ population
evolution over the years can alter both the topography of
the scene and the colors of the vent. Also, because of these
organic modifications, there are no real matching 3D points

between different years on most of the chimney. This makes
it difficult to match specific 2D points. Figure 8 shows how
these biological changes affect the global 3D reconstruction
of the edifice. While the vent is overall well matched across
different years, some specific areas like the south-east façade
suffer from this source of variability and the model mostly
relies on matches between images of the same year.

Figure 9 displays the area covered by the ROV each year.
We notice that the vehicle covered uneven regions over the
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Table 4. Median localization errors and percentage of poses localized within given thresholds in meters and degrees.

Method Median errors 1 cm, 1° 2 cm, 2° 3 cm, 3° 5 cm, 5° 25 cm, 2° 50 cm, 5° 500 cm, 10°

PoseNet 1.98 m, 10.73° 0.00% 0.00% 0.00% 0.02% 0.24% 3.58% 45.75%
Homoscedastic 1.32 m, 6.27° 0.00% 0.00% 0.00% 0.00% 0.79% 10.20% 62.03%
Homography 1.23 m, 8.30° 0.00% 0.00% 0.00% 0.02% 0.53% 8.47% 57.83%
hLoc 0.09 m, 1.11° 15.04% 28.37% 36.04% 43.49% 53.87% 57.94% 60.07%
PixLoc 6.55 m, 41.00° 0.41% 1.75% 3.50% 6.49% 13.76% 15.16% 18.46%
hLoc+PixLoc 0.08 m, 1.10° 13.41% 28.18% 35.80% 44.08% 53.95% 57.94% 60.07%

different years. The 2015 dive covered the least amount of
ground compared to all other years.

Figure 10 compares the histograms of pixel intensities
in all images of each year. First, we observe that the red
channel has an overall lower pixel intensity when compared
to the green and blue channels. This is easily explained
by the attenuation difference of the wavelengths due to
the underwater environment (Akkaynak and Treibitz 2019;
Berman et al. 2021). We also notice a shift in pixel intensity
for the 2020 dive, which is likely due to the change of
camera.

Visual localization benchmark
Train and test sets were separated based on the area covered
by the ROV each year. As seen on Figure 9, the total area
covered in 2016, 2018 and 2020 contains almost all the area
covered in 2015. As a result, we chose 2016, 2018 and 2020
as the train set and 2015 as the test set.

Using the aforementioned train/test split, we benchmarked
the Eiffel Tower dataset on renowned visual localization
methods: PoseNet with different losses (Kendall et al. 2015;
Kendall and Cipolla 2017; Boittiaux et al. 2022), hLoc
(Sarlin et al. 2019) and PixLoc (Sarlin et al. 2021). PoseNet
trains a different neural network for each scene, while hLoc
and PixLoc rely on deep-learning based features trained on
terrestrial datasets. We detail below the parameters used for
each of the methods.

PoseNet §: The network as described in (Kendall
et al. 2015) is re-implemented, except for replacing the
GoogLeNet backbone with a more modern MobileNetV2
(Sandler et al. 2018). For PoseNet loss, we used β = 500 as
suggested in (Kendall et al. 2015) for the outdoor Cambridge
dataset. We initialized the Homoscedastic loss as suggested
in (Kendall and Cipolla 2017), i.e., ŝx = 0.0 and ŝq = −3.0.
For the Homography loss, we selected local xmin and xmax

as the 2.5th and 97.5th percentile, as presented in (Boittiaux
et al. 2022).

hLoc : We use the pipeline presented in (Sarlin et al.
2019), i.e., NetVLAD for image retrieval and SuperPoint
alongside SuperGlue pre-trained on outdoor scenes for local
matching.

PixLoc : We used weights of the network pre-trained on
the MegaDepth dataset (Li and Snavely 2018).

hLoc+PixLoc : The pose of the camera is first retrieved
using hLoc and then refined with PixLoc. This pipeline is
presented by Sarlin et al. (2021).

Results on the dataset for all aforementioned methods are
reported in Table 4 and can be used as a baseline for the

comparison of other long-term visual localization methods.
Unlike hLoc and Pixloc, PoseNet based methods are end-
to-end networks. Consistent with the results presented by
Sattler et al. (2019), end-to-end networks obtain the least
accurate pose estimates. Moreover, since the ground truth
was constructed using SfM, methods that replicate this mode
of operation, e.g. hLoc, have an advantage because they
optimize the same metric (Brachmann et al. 2021).

hLoc and PixLoc are based on networks trained on
terrestrial data, and we can expect better results by training
these networks on aquatic data. However, this remains
a challenge because the amount of data needed exceeds
what is readily available for the underwater environment.
For example, NetVLAD is trained on Google Street View
Time Machine. Another approach would be to minimize
the changes due to physical phenomena induced by the
underwater environment to get closer to terrestrial images,
using for example algorithms like Sea-thru (Akkaynak and
Treibitz 2019) or SUCRe (Boittiaux et al. 2023).

Conclusion

This paper presented a novel dataset to evaluate visual
localization methods in deep-sea environments. Unlike pre-
existing datasets, Eiffel Tower presents long-term changes
in underwater scenarios, e.g., topography, population and
species distribution, backscatter and color attenuation. We
analyzed these changes and evaluated several localization
pipelines on the proposed dataset. The obtained results can
be used as a baseline for future work on underwater visual
localization systems. Besides its use for visual localization,
this dataset can also be employed to detect changes in the
scene’s geometry in deep-sea environments. More generally,
it may also be useful to study the effects of water on various
computer vision algorithms.
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