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Abstract :   
 
Sargassum C. Agardh is a highly diverse genus within the brown algae, with 615 currently recognized 
species, varieties and forms worldwide. This high level of species diversity led early taxonomists, using 
morphological-anatomical criteria only, to divide the genus into up to five sub-genera and several lower-
ranking taxonomic units (e.g., sections, tribes). With the advent of molecular data, subsequent authors 
revised this complex and archaic classification, with the genus now comprising only two sub-genera: 
Sargassum and Bactrophycus. Whilst most Sargassum species are benthic, only two are known to be 
holopelagic and responsible for strandings along tropical Atlantic coasts. The rest of the genus is 
cosmopolitan, occurring from tropical to temperate regions. Sargassum has not yet been reported in polar 
regions. Where Sargassum is present, macroalgal populations can grow in large quantities, and the 
resulting biomass can be valuable to the local communities for a variety of uses. Here we review the 
genus Sargassum from a taxonomic, ecological and physiological perspectives, and explore the different 
ways of taking advantage of this extraordinary biomass, which while becoming an invasive pest in some 
countries, could represent opportunities for coastal populations worldwide. 
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Introduction  

Nomenclature and taxonomy 

Valid scientific name 

Sargassum C. Agardh (1820) is a brown macroalgal genus of the family Sargassaceae (Fucales, 

Phaeophyceae). The first species was described from an English specimen under the name 

Fucus bacciferus Turner. Since this description, a very large number of species, varieties and 

forms, as well as infraspecific names, have been described (up to 973 are recorded by Guiry 

and Guiry 2022) as well as various sub-genera and sections. Most were established based on 

traditional morpho-anatomical characters, without prior knowledge of the significant 

polymorphic nature of the genus. At present, the genus Sargassum comprises 615 currently 

recognized species, varieties and forms (Guiry and Guiry 2022). 

 

Nomenclatural synonyms 

With the advent of molecular tools, particularly phylogenetic markers, and with larger 

geographical explorations, the genus Sargassum was considerably revised and presently 

accounts for 359 species and 256 infraspecific names that are currently accepted taxonomically 

(Guiry and Guiry 2022; noted C - “accepted taxonomically” on the Algaebase website). 

As a result, a significant number of species, varieties and forms are considered synonyms. 

Significant examples include S. ilicifolium (Turner) C. Agardh with 11 synonyms, or 

S. polycystum C. Agardh and S. aquifolium (Turner) C. Agardh, both with 13 synonyms. 

 

Vernacular names 

The common English name of the genus is Sargassum. It comes from the Portuguese sargaço. 

In Brittany (France), only one representative of the genus Sargassum is present, and is called 

‘spern-mor Japan’, in reference to the Japanese species S. muticum. In Japan, members of the 

community working on Sargassum species commonly use the name ホンダワラ (hondawara), 

although it refers to the common name for S. fulvellum. Another common name for Sargassum 

is もく(moku) which is said for mokuzu, meaning debris of seaweeds. In China, the kanjis used 

for Sargassum are 马尾藻.  

 

Taxonomy 
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Sargassum C. Agardh is a brown macroalgal genus of the phylum Ochrophyta, class 

Phaeophyceae in the order Fucales and family Sargassaceae. The genus is currently subdivided 

in two sub-genera, i.e., Sargassum and Bactrophycus (Dixon et al. 2014, Liu et al. 2017). 

The first, sub-genus Sargassum, is further sub-divided into eight sections: Sargassum, 

Binderiana (Grunow) Mattio et al., Ilicifolia (J. Agardh) Mattio et al., Polycystae Mattio and 

Payri, Zygocarpicae (J. Agardh) Setchell, Johnstonii E.Y. Dawson ex J.N. Norris, 

Lapazeanum E.Y. Dawson ex J.N. Norris, Sinicola E.Y. Dawson ex J.N. Norris. The second, 

sub-genus Bactrophycus, is divided into four sections: Halochloa (Kützing) Yoshida, 

Hizikia (Okamura) Yoshida, Spongocarpus (Kützing) Yoshida, Teretia Yoshida (Mattio and 

Payri 2011, Dixon et al. 2014).  

Early workers on the genus Sargassum only had at their disposal fragments collected during 

multi-disciplinary voyages of discovery around the world, and without prior knowledge of the 

natural morphological variation in the field, numerous species, varieties and forms were 

described (about 1,000 according to Mattio et al. 2010). However, the advent of molecular 

taxonomy and more extensive collections throughout the geographic distribution of the genus 

shed new light on diversity and taxonomy, leading to a drastic reduction of taxa. A number of 

phylogenetic studies (e.g., Stiger et al. 2003, Mattio et al. 2009, Mattio and Payri 2010, Dixon 

et al. 2014, Camacho et al. 2015, Yip et al. 2018) produced significant taxonomic revisions and 

numerous species, varieties and forms are now considered synonyms (Guiry and Guiry, 2022), 

resulting in a total of 359 current epithets (Guiry and Guiry 2022). Notable examples include 

the works of Mattio et al. (2008) for French Polynesia, where only three species were retained 

out of 18 previously recorded taxa, Mattio and Payri (2009) for New Caledonia where only 

12 taxa were considered current out of the 45 records, or Mattio et al. (2013) for Mauritius 

where seven remain out of 44 records.   

 

Morphology and anatomy 

As for most genera of the family Sargassaceae, the traditional classification of the genus 

Sargassum relies mainly on external morphology (Fig. 1a,b) and the anatomy of reproductive 

organs (Fig. 1e). Macro-morphological characters include the shape and organization of the 

holdfast, axes, blades, vesicles and receptacles (Fig. 1a,b,c,d,e), while anatomical observations 

mainly focus on reproductive structures.  

 

Figure 1 
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Sargassum is usually tightly attached to the substratum (Fig. 1g) by a cone-shaped or discoidal 

holdfast (most species) or creeping axes (subgen. Sargassum sect. Polycystae). The only known 

exceptions are the two free living species in the tropical Atlantic Ocean: S. natans (Linnaeus) 

Gaillon and S. fluitans (Børgesen) Børgesen (Godínez-Ortega et al. 2021, Dibner et al. 2021, 

Fig. 1f). The overall shape of the thallus may be more or less linear (e.g., S. muticum, Arenas 

and Fernández 2000, Le Lann et al. 2012a, Engelen and Santos 2009 and S. horneri) or short 

and bushy (e.g., S. aquifolium in coral reef environments, Mattio et al. 2009), with one to several 

axes arising from the base and differentiating into branches of several orders. Stipes can be 

cylindrical, more or less flattened and three-sided (subgen. Bactrophycus). The surface can be 

smooth, wrinkled or bear spine-like appendages. Axes bear leaf-like appendages (blades), 

commonly referred to as ‘leaves’ although they are not functionally similar to higher plant 

leaves. Blade shape is highly diverse depending on species, and can be simple, bifid or divided 

several times, round, turbinate, spatulate, lanceolate, linear or any intermediate form. The shape 

of the base and the apical section of the blade, as well as its margins (entire or serrated, …), 

presence and distribution of cryptostomata and midrib, as well as the length of the pedicel, are 

also of taxonomic importance. Vesicles (or aerocysts) may be spherical, ovoid, pyriform, or 

any intermediate shape. They are smooth or bear a mucron which may be simple or multiple, 

thin and spine-like, foliar, or forming a crown. For some species, the vesicle may develop in 

the middle of the leaf (phyllocyst). Receptacles (containing reproductive bodies) are either 

solitary or in tight to open clusters, simple, branched, bearing or not small vesicles and/or blades 

(mixed receptacles). Receptacle shape and aspect of the margins are also of taxonomic 

importance and can vary if they are male, female or dioecious. All morphological and 

anatomical characters of taxonomic importance are described and illustrated in detail by Mattio 

and Payri (2011). The high intraspecific morphological plasticity between populations and even 

within populations can be a source of considerable taxonomic confusion. For example, 

Kilar and Hanisak (1989) identified as many as 47 different morphotypes within the same 

S. polyceratium Montagne population in Florida. Morphological variability is also encountered 

depending on seasons, habitat type and exposure, e.g., exposed vs. sheltered, as reported in 

various regions (reviewed in Mattio and Payri 2011). 

 

Genetic data 



4 

 

 

A considerable number of molecular studies were dedicated to Sargassum since the earliest 

molecular analyses of Phillips (1998), which shed new light on the diversity and phylogenetic 

relationships between the various species, sections and sub-genera of the genus (e.g., Yoshida 

et al. 2000, Stiger et al. 2000, 2003, Mattio et al. 2010, Dixon et al. 2014, Camacho et al. 2015, 

Gonzalez-Nieto et al. 2020, Yip et al. 2020). As a result, the GenBank nucleotide database 

(searched on 15/09/2022) records a total of 5,386 Sargassum sequences for over 122 taxa and 

a number of unidentified specimens. They include sequences for markers of the three cellular 

compartments, mainly ITS2 (1,802 sequences, 139 different epithets), partial Rubisco 

(521 sequences, 92 different epithets), cox3 (919 sequences, 71 different epithets), 

cox1 (220 sequences, 53 different epithets), and to a lesser extent: 23S, psaA and psba, tufA, 

trnWI, atp9, nad1, an anonymous locus and various other loci. The most sequenced species are 

S. natans, S. polycystum and S. ilicifolium. The mitochondrial and/or chloroplast genomes of 

27 species are also available on the Genbank (searched on 15/09/2022).  

 

 

Distribution, ecology and metabolism 

Geographical distribution  

Specimens of the genus Sargassum are largely distributed in temperate and tropical areas and 

are absent from the two polar circles. Among the two sub-genera structuring the genus, species 

belonging to Bactrophycus have a more restricted distribution and are observed in Europe 

(with S. muticum the only representative of the sub-genus in the area), in the North-West 

Pacific, Southern Australia and at the tip of South Africa (Dixon et al. 2014) while the rest of 

temperate and tropical regions is colonized by specimens belonging to the sub-genus 

Sargassum (Dixon et al. 2014, Yip et al. 2020). Some species present a restricted distribution, 

for example, S. amaliae is endemic to tropical and sub-tropical Australia (Phillips and 

Blackshaw 2011) or S. quinhonense occurs only along the Central and South West coasts of 

Vietnam (Nguyen and Boo 2020). Similarly, S. fluitans and S. natans are the only 

representatives of holopelagic Sargassum species and they are restricted to the Atlantic Ocean 

(Butler et al. 1984, Schell et al. 2015, Wang et al. 2019, Johns et al. 2020, Goodwin et al. 2022). 

Conversely, with its invasive status, S. muticum native from Asia, colonized various areas 

around the world and is now also largely distributed in the North Pacific, i.e. from Alaska to 

Mexico (Aguilar-Rosas et al. 2007), and the Eastern Atlantic Ocean, with populations present 

from Morocco (Sabour et al. 2013) to Norway (Tanniou et al. 2014, 2015).  
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Ecology  

Sargassum species are canopy-forming brown macroalgae distributed in sublittoral waters, and 

usually form mono- or plurispecific underwater ‘grasslands/bush or forest’ (depending on their 

size) along the coasts of all continents and islands as illustrated by Fig. 2, showing S. coreanum 

and S. nigrifolium forming grasslands in Japan (Fig. 2a,b), S. macrocarpum and S. spinuligerum 

forming small marine forests in Japan (Fig. 2c) and New Caledonia, respectively (Fig. 2d) and 

S. polycystum presenting thalli up to 2 m long and forming a true marine forest in Tuvalu 

(Fig. 2e).  

 

Figure 2 

 

Species of Sargassum can settle in a wide range of habitats, including subtidal and intertidal 

zones in temperate areas and seagrass beds, mangroves and coral reefs in tropical areas. In the 

intertidal zone, since the species do not tolerate prolonged exposure, they favour foreshore 

rockpools, which allow them to be always submerged. This dense vegetation provides habitats 

for fish, shellfish, copepods, crustaceans and also other algae as epiphytes. Most of the 

Sargassum spp. are benthic, i.e., fixed to a hard substratum (rocks, rubbles, etc), with the 

exception of holopelagic species spending their entire life in a floating state. These holopelagic 

species form drifting rafts of Sargassum species and play important ecological roles in offshore 

waters, providing spawning grounds and nursery sites for juveniles of many fish species 

(Butler and Stoner 1984).  

Many species of Sargassum have the potential to float on the surface of the ocean, but unlike 

holopelagic species, they only float for part of their life-cycle. The thallus, and more often the 

laterals, are torn from their substratum and drift to/under the water surface. Examples are 

S. pacificum and S. polycystum in South Pacific (Zubia et al. 2015, Andrefouet et al. 2017), 

S. horneri in Asia (Komatsu et al. 2014, Liu et al. 2021), or S. muticum in the Mediterranean 

Sea (Benali et al. 2019) for the most famous species. In the South Pacific and also the central 

Atlantic Ocean, rafts of Sargassum species are so large that they can be seen on satellite images 

(Andrefouët et al. 2004, Komatsu et al. 2007, Gower and King 2011, Ody et al. 2019). Benthic 

Sargassum species are able to survive as floating rafts due to the buoyancy provided by the air 

vesicles. After being detached from the substratum, they form rafts that drift on the surface and 
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constitute true oases in the middle of the ocean as described for S. horneri in the China Sea by 

Komatsu et al. (2007), or other species in the South Pacific Ocean (Stiger and Payri 1999a, 

Andrefouët et al. 2004, Zubia et al. 2015). The majority of Sargassum species live attached to 

diverse types of substrata such as rocks, patches or rubbles of various kinds.  

Some Sargassum species are invasive. This is the case for example in the South Pacific atoll of 

Tuvalu, where S. polycystum (a species not previously reported in the literature from that 

locality) suddenly appeared and proliferated around the year 2010, with beds being found to 

occur predominantly on hard surfaces such as rocks, coral rubble and concrete/cement slabs 

and rubble in populated areas of the main atoll of Funafuti, subject to high anthropogenic 

nutrient inputs (N’Yeurt and Iese 2015b, Andréfouët et al. 2017). As the years progressed, an 

association was found between S. polycystum and Padina boryana Thivy, another possibly 

invasive brown macroalga, within 30 - 55 m from the shoreline (Iese and N’Yeurt 2018), 

indicating that over time, invasive populations of Sargassum are also subject to ecological 

competition and succession by other macroalgae. The abundance of S. polycystum decreased as 

the distance from the shore increased, with almost no S. polycystum occurring at 100 m from 

shore, possibly due to lesser influence from land-derived nutrient sources. In sandy bottom 

areas close to the shore, subject to transversal water currents creating concentric dunes, 

S. polycystum was found growing on the ridges only, creating a distinctive banded pattern of 

growth visible from the air. Since the genus Sargassum was assumed not to occur in the Central 

Pacific (Doty 1954) and S. polycystum had not been reported from a survey of Funafuti Atoll, 

Tuvalu by Chapman (1955) nor from neighbouring Kiribati (Tsuda 1964), there are strong 

suggestions that this species had recently spread from Fijian ports of entry to other islands via 

regional shipping routes, as it was observed in Wallis Island (N’Yeurt and Payri 2004) and in 

the Fiji Islands since the year 1970 or earlier (N’Yeurt et al. 1996). However, this has not yet 

been definitively resolved through population genetic studies of South Pacific species of 

S. polycystum. 

In Indonesia, Setyawidati et al. (2018a) combined fieldwork and satellite images to follow 

populations of brown macroalgae occuring around Libukang Island (South Sulawesi). 

They found that species of Sargassum, i.e., S. ilicifolium and S. polycystum, were abundant 

throughout the studied seasons, with a maximal percentage of cover of 84% during the dry 

season and a minimum of 60% during the wet season. Both species settled on heterogeneous 

and soft substrata around Libukang Island (South Sulawesi) and never on sandy substrata. 
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This was not the case for other brown macroalgae such as Turbinaria spp. and Padina spp. 

which mainly settled on coral debris and sand respectively (Setyawidati et al. 2018a).  

Sargassum species are known to have an impact on the surrounding marine communities. 

Salvaterra et al (2013) demonstrated the impacts of the introduced species S. muticum on 

the functioning of an Irish marine reserve, with important changes in native communities, 

including significant reduction of the primary production (by decreasing associated Fucus spp. 

biomass), a decrease of the native algal community and associated fauna in the shallow subtidal 

zone, and alteration of the structure of the faunal benthic community (including the arrival 

of several generalist species and a redistribution of top and intermediate predators). In various 

European coastal areas, many authors have demonstrated competition between the introduced 

and native species, as S. muticum reduced the abundance of the native canopy and understory 

algae, suggesting these effects were caused by competition for light (Britton-Simmons 2004, 

Sanchez et al. 2005, Olabarria et al. 2009, Baer and Stengel 2010).   

 

Metabolism 

Due to the variety of environments (pelagic/benthic and temperate/tropical) in which 

Sargassum spp. live, their metabolism and response to any environmental change will vary 

strongly depending on the site. Indeed, their photosynthetic characteristics reflect both the 

adaptation of the species to the general environmental conditions, and their ability to acclimate 

to seasonal changes within their geographical range of distribution (Falkowski and Raven 2007, 

Hurd et al. 2014). For example, the light saturation point of Sargassum horneri 

(80 µmol photons m-2 s-1; Bao et al. 2022) and S. macrocarpum (105 μmol photons m− 2 s− 1; 

Terada et al. 2020) from deeper waters (3m) was lower than that of S. fusiforme 

(391 μmol photons m− 2 s− 1; Kokubu et al. 2015), S. muticum (300 µmol photons m-2 s-1; 

Yan et al. 2021) and S. patens (289 μmol photons m− 2 s− 1; Terada et al. 2018) from shallower 

waters (0.5–2 m). Within these species, S. horneri could also survive floating at the surface of 

the ocean for months when detached (Komatsu et al. 2007). When both populations (benthic 

and pelagic) of S. horneri were compared, relative growth rates were significantly lower in the 

pelagic population than that in the attached; and all thalli from the pelagic population died 

in culture within 20 days (Bao et al. 2022).  

The growth of Sargassum spp. is also highly variable with 0.03 - 0.04 doublings d-1 for the two 

holopelagic species, S. fluitans and S. natans, which are considered as low productive (Lapointe 
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1986); and for benthic species, from 3-4% d-1 for S. cymosum (Costa et al. 2017) to 8% d-1 for 

S. muticum (Yan et al. 2021). There is however a strong temporal variation in biomass due to 

their marked seasonal growth (Plouguerné et al. 2006, Baer and Stengel 2010, Le Lann et al. 

2012a). When exposed to nutrient-enriched seawater, Sargassum spp. also showed different 

responses: S. natans and S. fluitans increased their growth and photosynthesis with P, but not 

N, addition (Lapointe 1986), whereas S. fusiforme and S. muticum increased their 

photosynthetic rate and growth under N-enrichment (Hong et al. 2021, Yan et al. 2021). Most 

species within the genus exhibit broad salinity tolerances: S. fulvellum can survive in salinities 

from 15-35 (Dawes and Tomasko 1988); Sargassum polycystum optimal growth was in the 

range of 24-36 (Zou et al. 2018); S. muticum germlings were able to survive in salinities as low 

as 5 (Steen 2004); and S. thunbergii germlings exhibited a strong tolerance to fluctuating 

salinity (Chu et al. 2012). Moreover, strong tolerance to dehydration and salinity stress provides 

S. fusiforme an advantage to grow in the intertidal zone (Yonemori et al. 2022). Under a 

temperature increase, a strong modulation of various metabolic pathways (i.e., amino acids, 

sugars, esters, organic acids, etc.) was observed in S. fusiforme that may contribute to the 

tolerance and adaptability of this species to high-temperature stress (Liu and Lin 2020). 

Similarly, S. muticum in its native area showed a high adaptation to a broad temperature range 

(8-28°C) and to desiccation that may explain its potentially high invasive capacity (Ito et al. 

2021). Ocean acidification was observed to have no negative effect on S. fusiforme (Wen and 

Zou 2021), nor S. vulgare (Kumar et al. 2017) and even in the latter an increase in 

photosynthesis and growth, as well as higher activities of oxidative metabolizing enzymes, were 

observed under acidified conditions, suggesting that these species could benefit from projected 

climate change impacts of increased atmospheric CO2 concentrations (Kumar et al. 2017). 

Indeed, these seaweeds do not need carbon-concentration mechanisms (CCMs) under increased 

CO2 levels allowing a reallocation of energy to growth which can also explain the dense 

populations of S. vulgare around volcanic vents in the Mediterranean Sea (Baggini et al. 2014). 

Due to their broad tolerance to many environmental parameters, many Sargassum species may 

have the ability to colonize and further spread in different environmental zones all around the 

world. This may occur naturally, or through anthropogenic vectors such as shipping and 

aquaculture activities. 

 

 

Life history 
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Life cycle  

The life cycle of Sargassum spp. is diplontic, where only the diploid generation is multicellular 

and dominant (Bringloe et al. 2020). The main phase in the life cycle of Sargassum species 

(Fig. 3a) is the diploid thallus, which produces haploid gametes, i.e., eggs within oogonia and 

antherozoids within antheridia, within conceptacles grouped together in receptacles.  

 

Figure 3 

 

Following fertilization, which occurs at the surface of the receptacles, a diploid zygote is 

produced. The fertilized eggs appear on the outside of the receptacle (ostiole) for one to several 

days, a period described as incubation which may play a role in the success of establishment 

of multicellular propagules. Small germlings with already developing rhizoids are then released 

into the seawater and dispersed with currents until they settle on an appropriate substratum. 

The time between fertilization of the oogonium (containing only one egg) and the release of the 

embryo is estimated at 4-5 days for the tropical species S. pacificum (Stiger and Payri 1999a), 

and 4 days in the temperate species S. vestitum (May and Clayton 1991). In the case 

of S. pacificum, it takes about 2-3 months for a zygote to become a young plantlet with two 

basal fronds and 9-10 months for this juvenile to become an adult thallus (Fig. 3a). In cultivation 

conditions, Hales and Fletcher (1989) and Steen (2004) showed that S. muticum germlings take 

one month to reach a length of 3-5 mm; similar results were reported for other cultivated species 

such as S. fulvellum and S. vacchellianum (Hwang et al. 2006, Chai et al. 2014).   

 

Reproduction 

Various Sargassum species reproduce via: (1) sexual and/or (2) asexual reproduction (Fig. 3).  

Sexual reproduction ensures genetic mixing that maintains genetic diversity within populations 

which gives a species adaptive potential. This type of reproduction is characterized by meiosis 

and fertilization, and then implies the production of gametes, i.e., eggs and antherozoids, and 

their fusion. A fertile thallus of Sargassum can bear many hundreds of small receptacles that 

liberate gametes. At maturity, gametes produced within conceptacles are emitted from the 

ostiole with the particularity for the oogonia to stay at the surface of the receptacle, fixed at the 

bottom of the conceptacle by an oogonial stalk, until the fertilization (May and Clayton 1991). 

Depending on the species, monoecy and dioecy exist within the genus.  
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In a monoecious species, only one type of individual is present which produces both female 

gametes (a single egg in an oogonium) and male gametes (64 antherozoids in an antheridium). 

As monoecious species, we can cite as examples Sargassum filicinum native from Japan and 

Korea and introduced in Mexico (Miller et al. 2007, Aguilar-Rosas et al. 2007), S. muticum 

native from Japan and invasive in many areas around the world (Critchley 1983, Loughnane et 

al. 2002, Plouguerné et al. 2006, Le Lann et al. 2012, Liu et al. 2013, Engelen et al. 2015), and 

S. pacificum (Stiger and Payri 1999b, Mattio et al. 2008).  

In a dioecious species, the sexes are separated and two types of individuals are present in the 

population, a female individual that produces female gametes (a single egg in an oogonium) 

and a male individual that produces male gametes (64 antherozoids in an antheridium). 

As dioecious species, we can cite as examples Sargassum horneri (Uchida 1993), S. fusiforme 

(Pang et al. 2008), S. ilicifolium and S. polycystum from New Caledonia (Mattio and Payri 

2009), S. mathiesonii from the Gulf of Mexico (Kilar 1992), and S. vestitum from Australia 

(May and Clayton 1991).   

Asexual reproduction produces one, or more, individuals genetically conforming to the 

parent(s). It often allows a production of offspring quantitatively larger than sexual 

reproduction, which brings to the population potentialities of colonization (Fig. 3b). Asexual 

reproduction was shown in some Sargassum species. In laboratory experiments, Uchida (1993) 

demonstrated that S. horneri was able to reproduce vegetatively with branches separated from 

a shoot that continue to grow. Also, regenerative ability of segments excised from thalli were 

demonstrated for S. muticum and S. tortile (Fletcher and Fletcher 1975, Tsukidate 1984). 

Regeneration of new shoots, which develop into primary axes, from a holdfast have been 

commonly observed in some temperate Asian Bactrophycus species such as S. miyabei, 

S. thunbergii and S. fusiforme (Yoshida 1983), as well as two species from the Philippines (Ang 

Jr 1985). Yatsuya et al. (2012) reported experimental regeneration of erect axes from holdfast-

excised, primary axis in 11 Sargassum species along the temperate coast of Japan. Moreover, 

S. stolonifolium produced axis equivalents to stolon/runners that allowed for the development 

of new thalli (Phang and Yoshida 1997), this phenomenon was also illustrated in S. polycystum 

on Fig. 3b. As another example, in S. fusiforme, primary axes are washed away after the 

reproductive season. Only filamentous holdfasts thrive following the high temperature season 

and regenerate new shoots when seawater temperature decreases. Such regeneration of erect 

axes from a filamentous holdfast has been utilized as a seedling method in mariculture (Hwang 

et al. 1999, Ito et al. 2009). Similarly, in S. macrocarpum, Yoshida et al. (2001) reported 
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spontaneous formation of adventive shoots on cauline leaves under culture condition and 

developed to utilize such adventive embryos as seedlings. Asexual reproduction is the main 

reproductive mode used by both holopelagic species S. fluitans and S. natans, as no receptacles 

have ever been observed on these two holopelagic species (Butler et al. 1984 and all the papers 

that have subsequently treated this topic in these species). In both species, vegetative 

multiplication through fragmentation is the only known reproductive mode (Kilar et al. 1992). 

 

Dispersal and recruitment 

For habitat colonization, Sargassum species present two modes of dispersal: (1) short-distance 

of germlings released by attached parental thalli, and (2) long-distance dispersal of germlings 

(released by whole or partial thalli) or entire/part of thalli drifting over many kilometers 

(Norton 1992). Short-distance dispersal, also called marginal dispersal, gives rise to 

a contiguous distribution of individuals around parents without much genetic mixing and 

intraspecific competition between recruits (Stiger and Payri 1999a). Conversely, long-distance 

dispersal, also called remote dispersal, allows for greater dispersal of individuals but is often 

accompanied by risks, such as the lack of partners in the case of dioecious species, and the lack 

of substrata to settle on for benthic species. Nevertheless, this type of dispersal allows the 

species to colonize distant sites and to increase their genetic diversity.  

In Sargassum species, the distances traveled by zygotes, after the incubation period on the 

surface of the parental thallus can be measured in the field by suctioning the substratum with 

a venturi suction pump (Kendrick and Walker 1991), or using fixed experimental plates (Stiger 

and Payri 1999a). Indeed, Kendrick and Walker (1991) estimated in Sargassum spinuligerum 

that the dispersal of propagules was highly localized (i.e., within 1 m) and declined 

exponentially with distance from parent thalli. Similar distances were obtained by Stiger and 

Payri (1999a) who estimated that the dispersal of germlings from S. pacificum was limited 

to within 90 cm of the parental thallus, with a sweep of germlings settling very close to the 

holdfast. 

 

Phenology 

The Pacific Ocean represents an area of great specific diversity for Sargassum spp. 

Accompanying this specific richness, Sargassum species show variations in their growth, and 

reproductive periodicity (as examples of phenological variables) during a year. In temperate 

waters around Japan, some Sargassum spp. show clear seasonal changes in biomass. Most 
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species show maximum values in thallus length and number of lateral branches in spring to 

early summer (Yoshida 1983, Murase and Kito 1998, Yoshida G 2005 and references listed 

therein). For S. horneri, one of the major components of seaweed beds along Japanese coasts, 

thallus length reaches 1-2 m and 30-80 g DW in winter to early summer (Uchida 1993, Yoshida 

G 2005), just before they become fertile. However, larger values of more than 7 m have been 

also reported for populations of this species in deeper habitats. In the case of annual species 

such as S. horneri, entire thalli including the holdfast are detached from the substrata and drift 

for long distances by ocean currents or are cast ashore nearby (Komatsu et al. 2007, Su et al. 

2018, Zhang et al. 2019). In case of perennial species, such as S. macrocarpum (Murase and 

Kito 1998) and S. thunbergii (Yoshida 1983), macroalgae form receptacles when the thallus 

length reaches its maximum and lateral branches begin to decay after maturation. 

The perennating holdfasts and primary axes remain and persist during the high temperature 

season and subsequently regenerate primary laterals. 

Although detailed studies have been limited to a few select species, clear seasonality in growth 

and maturation of temperate Sargassum spp. are explained in relation to photo-periodicity 

(Hales and Fletcher 1990, Uchida 1993, Hwang and Dring 2002, Yoshikawa et al. 2014). 

In S. horneri, for example, elongation of laterals can be observed under short-day condition and 

their transfer to long-day conditions (i.e., more than 14 h light period/ day) induced formation 

of receptacles (Yoshikawa et al. 2014). Being either annual or perennial species, it is thought 

that each species of Sargassum has a limited/defined duration reproductive season (Yoshida 

1983), hence photoperiodic control of growth and reproductive maturation would be more 

common amongst temperate members of the genus. Conversely, it is known that phenological 

shifts, i.e., differentiation in reproductive seasons, occur between sympatric, conspecific 

populations (Yoshida G et al. 2004, Yoshida G 2005, Homma et al. 2020). 

 

 

Chemical composition 

The composition of Sargassum species can be influenced by abiotic factors, such as 

geographical location, season, water temperature and salinity, but is also related to growth and 

maturity of the algal thallus (Gorham and Lewey 1984, Plouguerné et al. 2006, Kamiya et al. 

2010, Murakami et al. 2011, Le Lann et al. 2012a,b, Balboa et al. 2016, Zou et al. 2017) and 

importantly, to the method of extraction (Tanniou et al. 2013, Saldarriaga-Hernández et al. 

2021). The effects of the seasonal and spatial variations in S. muticum can be found in numerous 
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publications on this introduced, invasive species (Gorham and Lewey 1984, Núñez-López and 

Casas Valdez 1998, Plouguerné et al. 2006, Le Lann et al. 2012a, Balboa et al. 2016). Table 1 

summarizes the proximal composition of some Sargassum species reported in various studies.  

 

Table 1 

 

Inorganic constituents. The ash content in seaweeds accounts for 30-40% DW (Leandro et al. 

2020), but brown macroalgae show an affinity to accumulate metals (Patrón-Prado et al. 2011, 

Devault et al. 2021a). Seaweed can accumulate minerals and essential elements from the 

environment, and can be determined as ash content, particularly high for some Sargassum spp., 

with values between 24-60% (Machado et al. 2022, Damayanti et al. 2021, Saldarriaga-

Hernández et al. 2021, Milledge et al. 2020). This was found to depend on the collection site. 

On the other hand, the ash content showed seasonal variations for some species (Murakami et 

al. 2011), yet remained relatively constant for others (Gorham and Lewey 1984), and even 

species growing in the same area showed a different accumulation pattern (Davis et al. 2021). 

These highly variable parameters have significance for food applications due to their key roles 

in human health (Circuncisão et al. 2018). The main trace elements found in these brown 

seaweeds are iron, manganese, copper, zinc, cobalt, molybdenum, selenium, and iodine. The 

latter being necessary for human health in order to maintain correct functioning of thyroid 

hormones (Sun et al. 2021). Potassium, sodium, calcium and magnesium have been reported as 

the major macro-minerals components in members of the genus Sargassum (Thadhani et al. 

2019, Kumar et al. 2021). However, accumulation of some trace elements, i.e., arsenic or zinc 

in S. fusiforme, could represent a potential risk for human health (Zhu et al. 2022).  

 

Organic constituents 

Carbohydrates 

Total dietary fiber content increases with seaweed growth and maturity (Murakami et al. 2011). 

The distribution of soluble and insoluble fractions differs according to the estimation 

procedures; however, the soluble fraction can be 40-75% (Gómez-Ordóñez et al. 2010, Kumar 

et al. 2021). Brown macroalgae also contain alginate, laminarin(an), mannitol and fucoidan or 

other sulphated polysaccharides, which have attracted attention based on their biological 

properties, including antioxidant, anti-tumoral, anti-inflammatory, anti-obesity, and anti-

diabetic properties amongst others (Rushdi et al. 2020, Zhang et al. 2020). Mannitol was also 
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found in Sargassum species (Hernández-Bolio et al. 2021, Davis et al. 2021), accounting 

for 12% DW in tropical S. mangarevense (Zubia et al. 2008). The content of alginate has been 

reported as relatively constant (Zubia et al. 2008, Gorham and Lewey 1984, Davis et al. 2021), 

whereas mannitol and laminarin(an) contents were maximal during the growing period in many 

species (Gorham and Lewey 1984). Alginates, linear polysaccharides formed by mannuronate 

(M) and guluronate (G) acids with different ratios of M/G depending on the type of species, 

age, and location, are found in the cell walls of brown seaweeds, and in addition to their 

collative properties within the thallus, also provide protection from desiccation and flexibility 

(reviewed by Stiger-Pouvreau et al. 2016). According to its structure, different rheological 

properties of alginate, such as viscosity or elasticity, can be developed through chemical 

modification during the industrial extraction process. Alginates have been proposed in several 

biomedical applications, such as tissue engineering, encapsulation, hydrogels, wound-healing 

and drug delivery (Xie et al. 2022, Parente et al. 2022, Zamboulis et al. 2022). Fucoidans 

(fucose-containing polymers) are a group of polysaccharides mainly composed of fucose and 

sulphate groups, and other saccharides in minor content. The importance of the quantity and 

location of associated sulphate groups has been associated with the biological activity of this 

polymer (Shao-Hua et al. 2020, Hsiao et al. 2021). This is highly influenced by both 

composition and structure, and these characteristics are also defined by the techniques used for 

their extraction and depolymerization (Grosso et al. 2015, Flórez-Fernández et al. 2018). 

Laminarans(ins), neutral polysaccharides mainly comprising β-D-glucose, with β-(1→3) 

glycosidic bonds, are produced by photosynthesis (Zhang et al. 2020). These polymers 

have been demonstrated to have anti-viral and anti-tumoral properties (Jin et al. 2020, Cui et 

al. 2021, Claus-Desbonnet et al. 2022, Li et al. 2021). Additionally, the dietary inclusion of 

alginates can have a positive effect as a regulator of intestinal microbiota (Cui et al. 2021). 

 

Protein and amino acids 

Brown seaweeds contain lower levels of protein content than red and green seaweeds, ranging 

from 6-20 % (Matanjun et al. 2009, Murakami et al. 2011, Zheng et al. 2020, Machado et al. 

2022). In various Sargassum species, maximum protein content occurs during winter (Gorham 

and Lewey 1984, Dewinta et al. 2020, Kumar et al. 2021). These seaweeds exhibit a balanced 

amino acid composition, the most abundant being glutamic and aspartic acids, leucine and 

glycine (Tonon et al. 2022) and the minor methionine and tyrosine (Nazarudin et al. 2021). 

In addition to their nutritional value, these amino acids are determinants of flavor properties, 
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particularly the umami taste later synthesized as monosodium glutamate or MSG commonly 

used as a food condiment in Asian cuisine (Moerdijk-Poortvliet et al. 2022). However, the 

protein digestibility of Sargassum spp. can be reduced due to the presence of phenolic 

compounds. Improved digestibility may be achieved by boiling and steaming (Sun et al. 2021). 

 

Lipids and fatty acids 

Lipids are relatively minor components in brown macroalgae, with values as low as 1%, 

reaching a maxima of 4-6 % (Terasaki et al. 2009, Balboa et al. 2016, Matanjun et al. 2009, 

Murakami et al. 2011, Lee et al. 2022, Kumar et al. 2021, Munsu et al. 2021, Yang et al. 2021). 

Known seasonal variations occur (except in tropical areas), where neither the content nor the 

fatty acid profiles showed significant variations throughout the year (Santos et al. 2019). 

It has been suggested that the low lipid content of Sargassum spp. could be due to the relatively 

higher light intensity requirements of this seaweed in order to carry out photosynthesis 

(Dewinta et al. 2020). Despite a low lipid content, Sargassum spp. may contain higher levels 

of essential polyunsaturated fatty acids than terrestrial plants. The balanced ω-3:ω-6 ratio was 

also observed for Sargassum spp. (Terasaki et al. 2009, Balboa et al. 2016) which confers 

beneficial effects on health. In addition to dietary interest, these fatty acids have been reported 

as having functionality on anti-microfouling activity (Plouguerné et al. 2010). The degree 

of unsaturation depends mainly on seawater temperature; Sargassum spp. harvested in colder 

regions present a higher PUFA content and degree of unsaturation than those from tropical 

waters. Amongst the saturated fatty acids, palmitic acid is predominant, accounting for 35-39% 

in different species (Matanjun et al. 2009, Terasaki et al. 2009, Noviendri et al. 2011); a high 

content in oleic acid (18:1ω9) was also found, in S. polycystum, S. fusiforme/horneri/thunbergii, 

and S. binderi/duplicatum respectively. Amongst the ω-6 fatty acids, arachidonic and 

linoleic acids are the most abundant (Matanjun et al., 2009, Terasaki et al. 2009) and among 

the ω-3 fatty acids, are α-linolenic, eicosapentaenoic and eicosatrienoic acids (Terasaki et al. 

2009, Matanjun et al. 2009).  

 

Vitamins 

Vitamins are essential micronutrients involved in biological activities of humans and other 

organisms, and they are also associated with defenses against oxidative processes (e.g., ascorbic 

acid, vitamin E). Their relative content is related to sunlight, the content of vitamin C 

in S. thunbergii (Luo et al. 2019) showed promising levels for utilization. Tonon et al. (2022) 
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reported that vitamin E and vitamin B3 were the most abundant in pelagic Sargassum spp. 

biomass.  

 

 

Secondary metabolites 

Seaweeds represent a potential source of bioactives and contain secondary metabolites, 

phenolic compounds and terpenoids (Nie et al. 2021, Jayawardena et al. 2021). The production 

of phenolic compounds in marine brown macroalgae is generally assumed to be a chemical 

defense against grazers and bacterial colonization. The phenolic content of selected 

Sargassum spp. has been reported to vary by season, environment and geography, as well as 

species and distribution within the thalli (Gorham and Lewey 1984, Connan et al. 2006, Stiger 

et al. 2004, Plouguerné et al. 2006, Kamiya et al. 2010, Le Lann et al. 2012a,b, Davis et al. 

2021, Urrea-Victoria et al. 2022). Phenolics have been shown to increase in response to 

increased UV-B radiation (Plouguerné et al. 2006, Le Lann et al. 2012b) and their higher 

content at the beginning of growth maturation (ageing) and then decline could suggest their 

synthesis early in the growth cycle as a protection mechanism against grazers. 

Sargassum muticum contains high phenolic levels (6%), a value dependent on the conditioning 

of the raw material (Le Lann et al. 2008), the method and solvent used for extraction (Tanniou 

et al. 2013, Balboa et al. 2016), which usually correlated with an antioxidant activity (Connan 

et al. 2006, Stiger-Pouvreau et al. 2014). The xanthophyll fucoxanthin from Sargassum exhibits 

relevant biological activities (Kalasariya et al. 2021, Karpiński et al. 2022), which makes it 

interesting for cosmetics, functional food and pharmaceutical applications (Praiboon et al. 

2018, Morais et al. 2021, Hosokawa 2021).  

 

Inorganic constituents 

Another issue is the contamination of harvested raw material by various inorganic compounds. 

High levels of arsenic and other toxic elements, such as cadmium, make it difficult to 

straightforwardly use Sargassum biomass as a bio-fertilizer, compost or animal feed in produce 

or livestock meant for human consumption. It was shown that Sargassum is able to concentrate 

chlordecone and arsenic (Devault et al. 2022, 2021a,b, Ortega-Flores et al. 2022). Marine algae 

are known to concentrate the arsenate ion (AsO4
3-), the major chemical form of arsenic in 

seawater, probably because of its chemical similarity to the phosphate nutrient ion (PO4
3-) 

(Sanders 1979, Taylor and Jackson 2016, Gobert et al. 2022). Total arsenic concentrations in 
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marine algae are therefore high and generally range from 10 - 100 mg/kg, and reach up to 

200 mg/kg in Sargassum. While most algae convert inorganic arsenic from seawater into 

arsenic sugars or other low toxic organic forms, Sargassum can accumulate large amounts of 

inorganic arsenic, constituting up to 80% of the total arsenic (Milledge et al. 2018, Yokoi and 

Konomi 2012). There is also relatively little published information on the speciation of arsenic 

in holopelagic Sargassum, in particular on the proportion of the most toxic inorganic forms of 

this element, i.e., As(III) and As(V). For the Mexican-Caribbean coast, a comprehensive study 

by Rodríguez-Martínez et al. (2020) reported up to 28 elements found in both holopelagic 

Sargassum fluitans and S. natans, with spatial and temporal variations in concentrations. These 

authors also reported that about 86% of the samples they analyzed had total As concentrations 

above the maximum allowable level (i.e., 40 ppm DW) for use as animal feed under European 

regulations. Moreover, a report by ANSES (2017) mentioned analyses carried out by CEVA 

revealing levels of 40-70 mg/kg of inorganic arsenic in Sargassum from Martinique and 

Guadeloupe. However, no information is known about the geographic area where loading of 

arsenic occurred and the conditions which favor its concentration in Sargassum tissues.  

 

 

Harvesting, production and markets  

Harvesting of Sargassum species for their consumption/uses in Japan 

Sargassum fusiforme is one of the traditional seafood used in Japan, and its consumption has 

increased from the 1970's due to growing health awareness in Asia, although the levels 

of arsenic and iodine are too high for this biomass to be exported to Western countries given 

the stricter regulations. In Japan, domestic production of S. fusiforme is made up from 

harvesting of wild populations in spring (Ito et al. 2008) and until now, its cultivation is not 

common. More than 90% of the total consumption of this alga in Japan (e.g., ca. 12,000 tons 

DW in 2009; Ofusa 2011) are imported from China and Korea (Ofusa 2011), and most of this 

biomass is made up by mariculture. In this case, young thalli growing naturally are collected 

from winter to spring and clasped between culture ropes (Hwang et al. 1999, Ito et al. 2008). 

This seedling method, however, results in considerable damage to wild populations (Hwang et 

al. 1999, Pang et al. 2008), and therefore there has been a move to produce seedlings by 

regeneration from the filamentous holdfast (Hwang et al. 1999, Ito et al. 2009), as well as 

zygotes (Pang et al. 2008).   
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Total annual yields in some specific areas (selected examples) 

Additional biomass requirements of macroalgae can be obtained either by aquaculture 

(sustainable and scalable), or by harvesting from wild populations (finite resources requiring 

careful management). The current worldwide production of Sargassum spp. (mainly 

S. fusiforme) under cultivation is 304,000 tonnes (Cai et al. 2021) with two main producers: 

China (270,000 tonnes) and the Republic of Korea (34,000 tonnes).  

In the South Pacific Islands, people harvest macroalgae from wild populations. 

In French Polynesia, in order to valorise S. pacificum for applications in cosmetics and 

agriculture, biomass was estimated at between 0.133 ± 0.046 and 0.193 ± 0.067 kg DW m− 2, 

on Tahitian reefs using satellite data (Andréfouët et al. 2004). In the atoll nation of Tuvalu 

in the Central Pacific, wet S. polycystum biomass was estimated at between 0.45-3.56 kg m− 2, 

with an average of 1.68 kg m− 2 in Funafuti Lagoon (N’Yeurt and Iese 2015b). In Indonesia, 

which is the world’s leading producer of red macroalgae for industrial purposes, an awareness 

of the risks to Kappaphycus seaweed cultivation, due to an increasing number of diseases, led 

the government to take an interest in diversification amongst brown seaweeds, which are 

abundant on the country’s numerous coasts (Setyawidati et al. 2018). A vast program 

was developed in order to estimate the potential of some Indonesian bays to produce 

some brown macroalgae of commercial interest. Setyawidati et al. (2018a) demonstrated the 

potential of Malasoro Bay (South Sulawesi, Indonesia), to provide significant biomass 

of Sargassum species during the dry season, i.e., 1.19 kg DW. m-2. Interestingly, Setyawidati 

et al. (2018b) estimated the potential of alginate produced by both Sargassum 

and Turbinaria spp. within Ekas Bay (Lombok, Indonesia), averaging approximately 

207.61 ± 0.42 t DW for the Bay. 

In the Tropical Atlantic Ocean, large amounts of beached S. natans and S. fluitans 

have been observed since 2011. Along many Caribbean coasts, massive beach-cast 

holopelagic Sargassum biomasses occur from April to August. These have forced human 

populations to either suffer the inundation or make use of this enormous biomass, which 

represents an opportunistic harvest, as it is highly dependent on the random/stochastic arrival 

of rafting thalli (Stiger-Pouvreau and Zubia 2020). In the same region, García-Sánchez et al. 

(2020) estimated the maximum mean daily arrival of biomass in 2018 for the Mexican 

Caribbean area, at 17.3 ± 1.8 FW kg m− 2 and at 3.1 ± 0.7 FW kg m− 2 as a minimum in 2017. 
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The beached biomass varied considerably amongst and between the various years and seasons, 

with maximal biomasses in summer.  

In Europe, after the growth period of Sargassum muticum occurring in spring, a large biomass 

of lateral branches is present during the summertime. Seasonal harvesting of thalli (mainly for 

clearance and reduction of invasive biomass), mainly laterals, occurs from April - August all 

along the European coasts, from Portugal to Norway (Plouguerné et al. 2006, Engelen and 

Santos 2009, Le Lann et al. 2012a). During a three-year project named SNOTRA and co-funded 

by the Normandy Region (France), the potential for using the summer biomass of the temperate 

S. muticum was also estimated at an annual average quantity of 12,000 tons ≈ 24,000 m3 of fresh 

biomass (Bouasria et al. 2021, Pien et al. 2016), which could be used in sectors such as 

agriculture and cosmetics.  

 

Utilization of biomass 

This section summarizes the biological properties that could be the basis for several applications 

of Sargassum spp. biomass in relation to several domains, such as health and wellness, 

biostimulants, adsorbents, soil and energy. Based on the commercial uses of other brown 

seaweeds, different applications could be considered for a sustainable valorisation of the 

biomass of various species of Sargassum (Stiger-Pouvreau and Zubia 2020, Saldarriaga-

Hernández et al. 2021). In 2018, the largest single global algal bloom biomass of over 

20 million tonnes was produced by Sargassum spp. (Joniver et al. 2021). However, the high 

content of arsenic, particularly in pelagic Sargassum spp. limited the feed/food uses and 

a general lack of viability of biomass due to the low yields when compared to other brown algae 

(Davis et al. 2021), promoting the quest for non-food applications based on valorization of the 

biomass for its unique, bioactive compounds (Milledge et al. 2016, Pinteus et al. 2018, Pérez-

Larrán et al. 2019, Barbosa et al. 2021), as well as other non-health related applications. 

In the case of the invasive behavior of S. muticum in certain areas of Europe and of holopelagic 

Sargassum on Caribbean and African coastal areas, sustainable use of the available biomass 

is crucial in order to mitigate negative impacts of beached algae (López-Miranda et al. 2021, 

Yan et al. 2021). Drying could allow the seaweed biomass to be further processed, i.e., by air 

drying (Le Loeuff et al. 2021), or by processing in microwave hydro-diffusion and gravity 

equipment (Pérez et al. 2014). Alternatively, frozen storage has been proposed (Pérez-Larrán 

et al. 2019). The economic feasibility of these strategies remains to be analyzed. It has recently 
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been strongly suggested that Techno-Economic Analyses (TEAs) and Life Cycle Assessments 

(LCAs) need to be carried out worldwide on blooming algal species for their effective 

conversion into economically viable products (Joniver et al. 2021).  

 

Sargassum for human consumption 

In several parts of Asia, Japan and the Pacific Islands, species of brown macroalgae including 

Sargassum are commonly consumed as part of the traditional diet (Chapman and Chapman 

1980, Abbott 1991, Nisizawa et al. 1987, Novaczek 2001, Novaczek and Athy 2001, Singh 

2018). Trays of Sargassum horneri, sold fresh, can be found on the Japanese market (Fig. 4a). 

The most commonly known edible Sargassum species is S. fusiforme, previously known 

as Hizikia fusiformis (Harvey) Okamura or more commonly as Hijiki (ひじき). It is a common 

part of the daily diet in Japan. Sargassum fusiforme is sold either cooked as a supplement, 

as a ready-made dish in supermarkets (Fig. 4b) or freeze-dried (Fig. 4c). The thalli of 

S. fusiforme have a naturally bitter taste, and are therefore usually processed by boiling or 

steaming before being eaten. In addition to S. fusiforme, which has become popular throughout 

Japan, S. horneri and S. fulvellum have been utilized as a direct food along the coasts of the 

Japan Sea, China and Korea (Ikehara 1987, Hwang et al. 2007). For example, wild populations 

of S. horneri are collected in winter (i.e., end of January - early April), and the receptacles are 

eaten after a short period of boiling and chopping into small pieces. Recently, S. horneri 

has been recognized as a healthy food in all regions of Japan and in order to meet increased 

demand, mariculture of the species has started in various Prefectures of Honshu Island (Japan, 

Uwai S, com. pers.). 

 

Figure 4 

 

Of particular concern for uses related to human consumption, several studies have shown that 

S. fusiforme contains high levels of inorganic arsenic (Yokoi and Konomi 2012), with thallus 

levels of arsenate, arsenite, monomethylarsonic acid and dimethylarsinic acid comparable to 

that of arsenic poisoning following the intake of a single serving of Hijiki (Nakajima et al. 

2006). The highest levels of urinary arsenic from Hijiki consumption in Japan were in the form 

of dimethylarsinic acid (DMA) and arsenobetaine (AsBe) (Hata et al. 2007). While much of the 

inorganic arsenic was found to be excreted in urine (up to 38%), repeated intake of S. fusiforme 

could result in arsenic poisoning. It was reported that a pre-cooking treatment of the seaweed 
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through soaking in fresh water between one to six hours reduced the arsenic content by 36 and 

50%, respectively (Sugawa-Katayama et al. 2005) while soaking in warm water above 30° and 

up to 75°C reduced the inorganic arsenic content further by 70-80% (Ichikawa et al. 2006, 

Katayama and Sugawa-Katayama 2007, Katayama et al. 2008b, 2015). Boiling S. fusiforme in 

seawater (Yamashita 2014) or a combination treatment of heating in water to 90°C followed by 

soaking in 2% NaCl solution (Park et al. 2018) removed up to 92% of the inorganic arsenic, 

making it safer for human consumption (in Japan, hijiki is sold in freeze-dried form, requiring 

the seaweed to be boiled before consumption). A sequential processing consisting of hot water, 

citric acid, and fermentation by the bacteria Lactobacillus rhamnosus was also proposed to 

lower the arsenic content in S. fusiforme (Wang et al. 2022). Moreover, research using 

simulated digestion of pre-soaked Hijiki using peptide and pancreatin enzymes, suggested that 

very little, if any, of the remaining arsenic in the seaweed actually entered the digestive tract 

(Sugawa-Katayama et al. 2010). Higher than average content of arsenic than even Hijiki were 

found in branches of S. horneri (Akamoku) in Japan (Suzuki and Iwata 1990, Katayama et al. 

2008a). Using thermal neutron activation analysis of freeze-dried internal organs and the blood 

of rats fed on a S. horneri-rich diet, Katayama et al. (2019) found that the highest amounts of 

arsenic were transferred to the blood, spleen and lungs.  

While pre-consumption processing methods traditionally used in Japan reduce to a greater or 

lesser extent the arsenic content of S. horneri, there could possibly exist in the Japanese 

population some genetic variations or selection processes that impart immunity to higher levels 

of arsenic in food due to long-term exposure to this element (Hata et al. 2007). Outside of Japan, 

only a few localities report using Sargassum as part of the human diet. This could largely be 

due to the fact that unlike S. fusiforme, other species are usually leathery and fibrous, and as 

such not so palatable. Imaginative ways to consume some species of Sargassum as part of 

household meals have been developed in the Pacific Islands, including deep-frying entire algae 

in batter, making crispy chips from young leaves, used in curry mixed with pumpkin, a thick 

vegetable or miso soup and a slimming tea (Novaczek and Athy 2001). 

 

Animal feeds 

The earliest recorded use of algae in animal feeds dates back to 45 BC in Europe, when Greek 

cattle herders fed washed drift seaweeds to their animals in times of drought (Newton 1951). 

In the 1970s, research led to the discovery of beneficial chelated microminerals in seaweeds 

(Lunde 1970), opening the way for the use of marine algae as a source of complementary 
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minerals, iodine and vitamins in animal husbandry, but not as a source of energy replacing 

traditional fodders due to the indigestibility of complex carbohydrates found in algae. It was not 

until the early 2000s that it was shown that in low amounts of inclusion (<2%) the complex 

carbohydrates in seaweeds have a prebiotic effect promoting gut health, leading to improved 

immune response and higher productivity in farmed animals (Evans and Critchley 2013, Choi 

et al. 2020). For the brown macroalgae, Sargassum flavicans and Padina australis showed 

an in-vitro methane mitigation potential of 34 and 51%, respectively (Machado et al. 2014). 

The bioactive compounds known as phlorotannins (PTs) are marine phenolic compounds, only 

found in brown macroalgae, and have effective antimicrobial activities on rumen cellulolytic 

bacterium responsible for methane production (Abbott et al. 2020). The common tropical 

species S. polycystum has a high nutritional value and contains substantial amounts of protein 

(14.2%) and lipids (7.6%) (Perumal et al. 2019). The high inorganic arsenic content of some 

species of Sargassum (Milledge and Harvey 2016, Yokoi and Konomi 2012) poses a challenge 

when considering feed supplements for animals intended for human consumption, as the 

correct, well-defined dosage needs to be followed in order for the meat to stay within acceptable 

safety norms, which (of course) vary between countries and regions of the world. Nevertheless, 

several companies have developed portfolios of seaweed-based animal feeds, including 

Sargassum spp. which are marketed as nature-based (or nature-positive) solutions for farmers. 

 

Active ingredients (human health, well-being, cosmetic sectors) 

One of the most studied properties of Sargassum extracts is antioxidant activity, determined 

as reducing, chelating, radical scavenging capacity in chemical assays, as the ability to protect 

against oxidation in different emulsion systems (Balboa et al. 2014), also in cell assays (Wen 

et al. 2014, Balboa et al. 2015, Sobhani et al. 2015) and in in vivo studies (Balboa et al. 2019). 

This action can be mainly due to the phenolic or phlorotannin compounds, but also to fucoidans, 

lipids and carotenoids (Balboa et al. 2013, Terme et al. 2018, Yu et al. 2019, Manggau et al. 

2022). These bioactives are found in the extracts obtained by conventional solvent extraction 

(Terme et al. 2018), pressurized liquid extraction (Tanniou et al. 2013, Montero et al. 2016), 

supercritical carbon dioxide (Conde et al. 2015, Terme et al. 2018), or with assistance by 

ultrasound (Yu et al. 2019), microwave (Flórez-Fernández et al. 2019) or enzymes (Hardouin 

et al. 2014, Del Pilar Sánchez-Camargo et al. 2016). Abundant studies reported the potential 

for skin care and protection, including the potentiation of hair growth (Kang et al. 2016), skin-

lightening action to prevent hyper-pigmentation-related diseases (Kim et al. 2007), protection 
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against ultraviolet B-induced oxidative stress in human HaCaT keratinocytes (Piao et al. 2011, 

2014), UVA light photodamage attenuation and protection against intracellular ROS generation 

(Balboa et al. 2015), and protection against UVB radiation with anti-photoaging properties 

(Song et al. 2016, Ye et al. 2018, Fernando et al. 2020). 

The anti-inflammatory properties of several Sargassum spp. compounds and fractions have also 

attracted attention (Yoon et al. 2010, Kim et al. 2013, Manzoor et al. 2014, Jeon et al. 2019, 

Saraswati et al. 2019), the most active components being terpenoids, phlorotannins, 

fucoxanthin and fucoidans (Park et al. 2010, Chae et al. 2013, Yang et al. 2013, Casas et al. 

2016, Hwang et al. 2016, Sanjeewa et al. 2018, Yu et al. 2019). Other minor compounds have 

shown good anti-inflammatory properties, such as the norisoprenoid apo-9′-fucoxanthinone 

(Chae et al. 2013, Yang et al. 2013), or loliolide from S. horneri (Jayawardena et al. 2021). 

Anti-allergic properties have been described both for the alginate fraction, which protected 

against inflammation caused by fine dust in keratinocytes (Fernando et al. 2018), and for 

ethanolic extracts (Kim et al. 2020), which also showed in vivo protection, in mice, against 

ovalbumin and shrimp allergens as effectively as the anti-allergic drug disodium cromoglycate 

(Haider et al. 2009). Figure 4d presents an example of a moisturizing cream based on the use 

of extracts from Sargassum from Brittany (France). 

A relatively large body of information exists on bioactive and antiviral/cytotoxic activities from 

algal extracts, including Sargassum spp. (Hossain et al. 2003, Peng et al. 2012, Perumal et al. 

2019). Cytotoxic activity on human cancer cell lines has been observed for solvent extracts 

(Kim et al. 2009) and for fucoidans (Thinh et al. 2013, Usol’tseva et al. 2017, Fernando et al. 

2020, Torres et al. 2020). Further depolymerization of the fucoidan fraction was suggested to 

enhance the anti-proliferative potential (Flórez-Fernández et al. 2017), since the lower 

molecular weight fractions proved to be the most active (Álvarez-Viñas et al. 2019). Mannitol 

was found as the main constituent of S. micracanthum methanol extracts, which proved to be 

active against human head and neck squamous cell carcinoma (Ahn et al. 2022). 

Meroterpenoids from S. siliquastrum were found to be effective against human cancer cells 

(Lee et al. 2013) while the Asian species S. fulvellum was reported to have antioxidant, anti-

coagulant, anti-inflammatory, neuro-protective, immunomodulatory, anti-diabetic, and anti-

cancer effects (Liu et al. 2020). Ethanol-based extracts of S. fluitans demonstrated hepato-
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protective activities in rats against inflammation and fibrosis of the liver (Quintal-Novelo et al. 

2018).   

Anti-microbial activities of Sargassum spp. extracts have been ascribed to phenolics, fatty acids 

and sulphated polysaccharides (Kim et al. 2007, Setyati et al. 2018, Sudaryono et al. 2018, 

Arguelles et al. 2019; Herawati and Sumanik 2019), but also crude extracts showed in vitro 

antibacterial activity against Vibrio parahaemolyticus (Félix et al. 2020). However, 

when incorporated in the diet of the shrimp, Penaeus vannamei, for eight weeks, a post-

challenge infection did not impact survival. The antiviral activity of sulphated polysaccharides 

could be dependent on the sulphate content and molecular weight (Dinesh et al. 2016), and this 

action was reported by Nakamura et al. (1994), who described the anti-HIV action of the 50 kDa 

fraction of S. muticum extracts made in boiling water. The natural defenses against fouling may 

contribute to the invasion success of S. muticum (Schwartz et al. 2017) and could be 

an alternative to toxic, heavy metal-based paints currently used as anti-fouling agents. High 

activities have been reported for lipophilic fractions, against a number of marine fouling 

bacteria, fungi and biofilm-associated microorganisms (Plouguerné et al. 2008, 2010, Bazes et 

al. 2009), or for the control of harmful cyanobacteria, mainly due to the abundance of palmitic 

acid (Amrani Zerrifi et al. 2020). 

Other activities pertinent for health have been reported for multiple species of Sargassum. 

Anticoagulant action initially studied in fucoidans, was reported as a property that could be 

enhanced by fermentation of the whole thallus with marine, lactic acid-producing bacteria 

(Shobharani et al. 2013). Hepato-protective activity has been reported for fucoidan (Chale-Dzul 

et al. 2017), and also for S. polycystum alcoholic extracts, which improved antioxidant levels 

and prevented depletion of liver mitochondrial enzymes in rats (Raghavendran et al. 2005). 

Safhi et al. (2019) observed the hepato-protective role of methanolic extracts from S. muticum 

in streptozotocin-induced hepatic injury, and also on the minimized glucose levels. Solvent 

extracts from some Sargassum spp. showed neuro-protective effects on Alzheimer's (Syad et al. 

2013) and Parkinson´s (Silva et al. 2018) diseases. Immunomodulatory effects have been 

observed for the sulphated polysaccharides (Chen et al. 2012, Wang et al. 2013), for ethyl 

acetate fractions (Chandraraj et al. 2010) and for supercritical fluid extracts (Kim et al. 2019) 

from members of this genus. Anti-hypertensive activities, measured as angiotensin converting 

enzyme inhibitory potential, were reported for phlorotannins (Vijayan et al. 2018), for o-

heterocyclic analogues, isolated from the ethylacetate:methanol fraction of S. wightii (Maneesh 

and Chakraborty 2018), and for purified protein hydrolysates from S. mcclurei protein (Zheng 
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et al. 2020). Anti-glycative effects were described (Ismail et al. 2020), particularly in 

phlorotannin-rich S. muticum extracts (Barbosa et al. 2021). Anti-diabetic activity of 80% 

ethanol extracts (Lee and Han 2018) were published for plastoquinones (sargahydroquinoic 

acid, sargachromenol and sargaquinoic acid) (Ali et al. 2017) and fucoidan (Kwon et al. 2019). 

Polysaccharides show prebiotic actions, with potential for the formulation of functional food 

with beneficial effects on gut health (Chamidah 2018, Fu et al. 2018). Different metabolites 

were responsible for the anti-obesity action by reducing lipid accumulation and adipogenic 

differentiation, amongst them indole derivatives (Kang et al. 2017), meroterpenoids (Kwon 

et al. 2018), saringosterol (Lee et al. 2017), sargaquinoic and sargahydroquinoic acid and 

fucoxanthin (Kim et al. 2016). Fucoxanthin-rich extracts (Koyama 2011) and sargaquinoic and 

sargahydroquinoic acids (Kim et al. 2016) also showed anti-osteoporosis activity.  

Many of the above reported activities were enhanced when the extracted compounds 

were incorporated in nanoparticles. Sargassum muticum extracts have been successfully used 

as reducing and stabilizing agents allowing lower use of toxic reagents. Azizi et al. (2014) 

prepared zinc oxide hexagonal nanoparticles (30-57 nm) using aqueous extracts. González-

Ballesteros et al. (2021) also used water for the synthesis of homogeneous gold nanoparticles 

(15 nm). Madhiyazhagan et al. (2015) and Trivedi et al. (2021) proposed S. muticum extract 

as a capping agent for the formulation of bio-compatible, stable silver nanoparticles, which 

produced mosquito larvicidal and adult-icidal activities whilst inhibiting several bacterial 

strains of Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae and Salmonella typhi. 

Sanaeimehr et al. (2018) used S. muticum extracts to produce zinc oxide nanoparticles and 

reported cytotoxic effects through induction of apoptosis in human liver cancer cell line 

(HepG2), as well as inhibition of angiogenesis. Using aqueous extract of S. muticum, 

Supraja et al. (2018) synthesized spherical, hexagonal silver nanoparticles (40-65 nm) with 

anti-cancer activity against a breast cancer cell line. Harinee et al. (2019) used S. muticum 

as a reducing agent during the green synthesis of silver nanoparticles to improve the photo-

catalytic efficacy of methylene blue dye and anti-micro-fouling performance against 

Gram Positive and Gram-Negative bacteria strains.  

The cosmetic industry is also commonly using extracts from selected Sargassum species, which 

are formulated in several galenic forms. In French Polynesia, extracts of S. pacificum are used 

in a number of cosmetic products (e.g., monoi, cream, shampoo, shower gel, Stiger-Pouvreau 

and Zubia 2020). In Spain, Balboa et al. (2017) demonstrated the potential of an extract of 

S. muticum combined with thermal spring waters as good ingredients for the preparation of 
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a sunscreen which was well accepted by consumers. A Sargassum filipendula extract is used in 

several cosmetic formulations (Michalak et al. 2020), as skin protection agent, which prevents 

the harmful effects of external factors on the skin.   

 

Agriculture 

Adding various seaweed biomass to the soil has been traditionally used as a conditioner and 

aqueous extracts can be effective as beneficial plant biostimulatory applications. In particular, 

those Sargassum extracts prepared in acidic media (hydrolysis) enhanced mung bean root 

formation (Sharma et al. 2012).  Acid extracts of Sargassum muticum used as foliar feeds for 

Chinese cabbage (pak-choi) using a hydroponic system also had positive effects on rice and 

lettuce seed germination, general vegetative plant development and production. Other effects 

of Sargassum spp. extracts such as stress reduction at high salinity improved chickpea growth 

by providing enhanced activities of superoxide dismutase and peroxidase (Abdel Latef et al. 

2017). In general, seaweed fertilizers not only improve plant growth and vigor but also soil 

health by increasing moisture content, growth, and health of soil microbes (Mageswaran and 

Sivasubramaniam 1984, Begum et al. 2018). Fertilizers made from brown seaweeds contain 

alginates and fucoidans which are known to have extensive chelating properties, combined with 

the metallic ions present in the soil and form the chelates that absorb moisture and swell, and 

in so doing improve the growth of soil bacteria (Khan et al. 2009). However, further research 

is required in this area to ensure that safe levels of inorganic arsenic and heavy metals 

are present in food for human and animal use, including other seafood such as clams that come 

into contact with Sargassum spp. (Tremearne and Jacob 1941, Modestin et al. 2022). In Asian 

countries, applications of bio-fertilizers specifically made from Sargassum spp. have proven to 

be beneficial to staple food crops such as green gram (Kumar et al. 2012). In French Polynesia 

and Fiji, agronomical enrichment trials were conducted using mixed biomass from members of 

the Sargassaceae collected drifting algae then used as organic additives and good candidates to 

generate bio-pesticides. Zubia et al. (2015) demonstrated that low supplements of drifting 

tropical brown algae (at 1 and 3%) added to plant compost significantly improved the growth 

of maize. These authors noted significant increases of stem length, aerial portions of plants and 

root dry masses. In Fiji and Tuvalu, large amounts of Sargassum spp. biomass, due to coastal 

anthropogenic nutrient pollution, made them good candidates as fertilizer additives for 

agricultural practices (N’Yeurt and Iese 2015a). Working with common Pacific food crops, 

Soreh (2019) showed that liquid seaweed extracts made from S. polycystum contained 
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macronutrients useful for plant growth, namely potassium and phosphorus which promoted 

vegetative plant growth in terms of leaf count, fresh plant weight, height, root mass and 

the sugar content of leaves. Nitrogen content, however, was relatively low in S. polycystum. 

Recently, assays were carried out in order to make use of drift and floating Sargassum spp. 

in the Caribbean. This topic was recently extensively reviewed by Thompson et al. (2020). 

As an example, the project ECOSAR3, examined the use of stranded biomass of Sargassum 

spp. to make compost for the agricultural sector. Also, the company Holdex Environment
 
is 

making use of Sargassum spp. beachings as biomass for compost. Other examples of use exist, 

such as a small company on St Lucia, Algas Organics, awarded by the Commonwealth and now 

producing a liquid fertilizer/biostimulant product (Fig. 4e). As an alternative to traditional 

agrochemical fertilizers, seaweeds, having beneficial amounts of micro-, macronutrients 

vitamins and amino acids, with a multitude of applications, and can be used as biofertilizers, 

soil conditioners and enhancers of crop gain and resistance to stresses and diseases in the future 

(Kumar and Sahoo 2011, Arioli et al. 2015). The phyto-elicitor activity of three Caribbean 

species of seaweeds from Trinidad was demonstrated by Ramkissoon et al. (2017), who showed 

a suppression of infections in cultivated tomato plants. Enhanced resistance to fungal, bacterial 

and insect attack has been also observed with selected seaweed preparations (Arioli et al. 2015). 

Hydrolyzed algal extract, oligo- and polysaccharides can act as signals in eliciting plant 

defenses (Laporte et al. 2007) and several brown macroalgal molecules, i.e., terpenes and 

phenolic compounds, have been demonstrated to possess strong anti-microbial, anti-helminthic, 

and nematicidal activities (as reviewed by Sharma et al. 2014). It should be noted, however, 

that some species of Sargassum have been also reported to contain certain cytotoxic compounds 

that inhibit seed germination (Kuniyoshi 1985). It is hence prudent to carefully assess at which 

stage of plant growth algal fertilizers derived from Sargassum spp. are applied.       

Biomass for the biomaterial sector (bioplastics and cardboard) 

Components of Sargassum spp. can be good feedstock for the preparation of biomaterials. 

Davis et al. (2021) proposed the use of alginates in combination with arabic gum for riboflavin 

entrapment in gel beads for prolonged release in simulated gastric fluid. In other very different 

approaches, the pelagic Sargassum spp. biomass (i.e., S. fluitans and S. natans) 

has been assayed for civil construction materials (i.e., adobe and pavement) with potentially 

good results (Rossignolo et al. 2022). Also, Nadi et al. (2019) reported on the inhibition of 

S. muticum crude extracts, rich in alginate, against the corrosion of carbon steel. Azeem et al. 

(2019) proposed the utilization of S. muticum-based pigments in the textile industry, to provide 
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natural environmentally friendly dyes, e.g., phenolics being the dominant coloring agents which 

produced light brown shades of colour.  

Plastics are undeniably part of our daily lives. Their low price/cost and weight are the main 

attractions behind their universal use. Unfortunately, oceans and animals in the world suffer 

from huge quantities of waste plastics (Lavers et al. 2019). The most notable macroalgal-

derived bioplastic agents are starch and cellulose derivatives, as well as alginates from brown 

algae. Jantasrirad et al. (2021) prepared an alternative material to synthetic plastic, consisting 

of a biocomposite with a mixture of pregelatinized cassava starch and S. plagiophyllum, 

previously dispensed with the aid of ultrasound and prepared using compression molding. The 

material showed improved photo- and thermal-stability. Similar advantages were observed 

using wheat gluten for the preparation of a reinforced material with increased tensile strength 

and delayed degradation (Kachaanun et al. 2022). Algopack, based at Saint Malo (France), 

tested bioplastic formulae using Caribbean Sargassum, the resulting bioplastic is darker and 

slightly more brittle than conventional plastics (https://www.algopack.com/nos-algues/ 

accessed August, 2022).  

Another sector which needs innovation is that of paper and cardboards based on non-woody 

plants and agricultural residues and have attracted renewed, recent interest (Ververis et al. 

2004). The strength of the conventional products (i.e., paper, cardboard, etc.) depends on the 

cellulose content of raw materials. Alginates from holopelagic Sargassum species, as shown in 

Fig. 4f, produce fibres, which in combination with other types of plant fibres allow the design 

of interesting cardboards. For example, the Siniamin Funeral Center in Martinique (French 

overseas territory) developed and patented cardboard coffins for cremation made from 

holopelagic Sargassum species (Siniamin 2019).  

Environmental management and others uses 

Since seaweeds selectively absorb and assimilate minerals from the surrounding water their 

selection, domestication and future cultivation can be proposed to reduce water pollution 

(Saldarriaga-Hernández et al. 2020). The potential to lower the nitrate content in particular 

was reported for Sargassum myriocystum (Sweetly et al. 2021) and for other algae (Sharmila et 

al. 2019). However, most studies evaluated the use of the collected dead biomass as a low cost 

biosorbent for metal removal. Lodeiro et al. (2004) reported the cadmium binding of Sargassum 

muticum biomass, after different treatments to enhance stability for industrial uses; 

formaldehyde cross-linking increased the uptake to 99 mg/g and protonation to 95 mg/g. 

Enhanced biosorption of phenol and derivatives (Rubín et al. 2006) and cadmium, lead and 

https://www.algopack.com/nos-algues/
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mercury (Carro et al. 2015) on S. muticum columns loaded with calcium were reported. 

Carro et al. (2013) reported high mercury removal capacities with native and treated Sargassum 

material without a competition effect, with methylene blue. Simultaneous uptake of methylene 

blue and lead (II) ions were also feasible and column operation allowed up to five adsorption–

desorption cycles (Hannachi and Hafidh 2020). Biosorption of chromium(VI) (González-

Bermúdez et al. 2012), antimony(III) (Ungureanu et al. 2015), and antimony(V) (Ungureanu 

et al. 2017) was reported as possible. The adsorptive ability has been ascribed to the alginate 

extracted from Sargassum species (Azcorra-May et al. 2022), but also the residual biomass 

after alginate extraction from S. muticum could be an appropriate, low-cost biosourced, material 

for removing hexavalent chromium from aqueous solutions, with a maximum uptake capacity 

of 35 mg/g (Belattmania et al. 2017). Alternatively, the biomass of invasive S. muticum 

was used as a precursor for producing porous carbon with KOH and H3PO4 activation (Li et al. 

2018). Combination of bioremediation and energy production has been proposed by Piccini 

et al. (2019), who treated metal-contaminated water, i.e., (nickel(II), zinc(II), cadmium(II) and 

copper(II)) and the metal contaminated biomass by hydrothermal liquefaction in order to yield 

a bio-crude oil, an aqueous phase, a solid residue and gas. The energetic power for the dried 

S. muticum, was quantified and was shown to have a 2.7–2.9 kcal/g calorific value (Saldarriaga-

Hernández et al. 2021) and for the solid residue, remaining after autohydrolysis, 3.6 kcal/g, i.e., 

lower than that of wood (4.0-4.5 kcal/g). Anaerobic digestion could be an alternative use (Soto 

et al. 2015), but the harvesting of S. muticum is seasonal and in order to use it for anaerobic 

digestion, silage was effective for preserving biomass with less than 8% energy loss of 

the higher heating value. This treatment resulted in losses of salt from the biomass of 

Sargassum and the virtual total loss of organic sulphur, but had no effect on methane yield 

(Milledge and Harvey 2016). The low methane yields from S. muticum could be overcome 

by co-digestion with a low nitrogen content substrate such as crude glycerol (Milledge and 

Harvey 2016), by pre-treatment by washing in freshwater to reduce ash and salt content, 

although the methane production was delayed (Milledge et al. 2018), and by a hydrothermal 

pre-treatment (Flórez-Fernández et al. 2021). Another interesting management of high biomass 

of Sargassum species is their use as a natural solution to enhance dune plant growth as 

demonstrated by Williams and Feagin (2010) using S. fluitans and S. natans in Texas, as 

a natural solution to increase soil nutrients and then enhance the growth of some plants such as 

Panicum amarum. As the addition of Sargassum did not impair other halophytes, the authors 

concluded that Sargassum wracks, as cast onto sandy beaches, boosts dune plant growth. 
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Finally, artisans are using the morphology of Sargassum seaweed to create jewelery, with the 

“Sargasso” collection by the jeweler Alexandra Mosher (Studio jewelery, Bermuda) and by the 

seaweed-based jewellery shop Canaille et Bidule, with a pair of earrings made from S. muticum 

(Fig. 4g). 

 

Perspectives of study about the genus – latest advances  

Sargassum muticum, a worldwide species 

Being a well-studied Japanese native species, S. muticum is known for its waves of introduction 

in various places around the world (reviewed by Engelen et al. 2015). It is now present from 

Alaska to Mexico and from North Japan to China in the Pacific Ocean. From Norway to 

Morocco in the Atlantic Ocean (Le Cam et al. 2019). Using restriction-site associated DNA 

(RAD) sequencing, no genetic variation was detected in introduced areas, with these authors 

who demonstrated that S. muticum represented “a unique example of a successful non-clonal 

(i.e., sexually reproducing) marine introduced species, which exhibits almost no genome-wide 

genetic variation over most of its circum-global introduction range”. Despite the lack of genetic 

polymorphism, Tanniou et al. (2015) were able to differentiate S. muticum populations present 

on the eastern Atlantic coast from Norway to Portugal using HR-MAS NMR and FT-IR 

fingerprintings, re-grouping Norwegian and Portuguese and French and Spanish populations 

and separated Irish populations from both groups. Based on a two-year research study, Pien 

et al. (2016) concluded that the invasive seaweed S. muticum, considered today as a nuisance, 

could be the raw material for an innovative and sustainable economy, and could represent 

a new economic resource for the Normandy region, France in the future. 

 

Holopelagic Sargassum species, an opportunity to be seized for the countries of the 

tropical Atlantic Ocean (Caribbean, Mexican and African coasts)? 

Since 2011, many Atlantic coasts have suffered recurrent, massive strandings of pelagic 

Sargassum species, with no apparent solution soon (Fidai et al. 2020). Huge amounts of 

biomass have been washed ashore, with a negative socio-economic impact on tourism, fishing, 

and health (Smetacek and Zingone 2013). Numerous remote sensing observations around 7°N, 

might indicate the presence of new “Sargasso Seas” in the Tropical North Atlantic, a small one 

in the Gulf of Mexico and a larger one in Northern Brazil (Gower et al. 2013). Carbon derived 

from blooming Sargassum can account for up to 18% of the total particulate organic carbon 

present in the top layers of the ocean (Wang et al. 2018). In 2015, the Sargassum summer 
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coverage was estimated to be 20 times higher than that observed for summers between 2000 

and 2010 (Wang and Hu 2016), and the risk of Sargassum washing up on the shore 

has increased in the Lesser Antilles between 2011 and 2015 (Maréchal et al. 2017). The factors 

leading to the Sargassum blooms for a time remained hypothetical, with regards to both the 

dynamics and the source regions of these rafts (Oyesiku and Egunyomi 2014, Schell et al. 

2015). However, recently they were attributed to increased inputs of nutrients from runoffs due 

to the deforestation of the Amazon waters, followed by dispersal of algal biomass by oceanic 

currents to the Lesser Antilles and to western Africa, with an 111% increase in the N:P tissue 

ratio of holopelagic Sargassum since the 1980s (Lapointe et al. 2021). Interestingly, 

the Expedition Sargasses (Thibaut 2017) confirmed the presence of three distinct morphotypes 

of Sargassum within the rafts, as previously demonstrated by Schell et al. (2015). The huge 

amount of Sargassum that washes up on the coasts of Africa, the Caribbean and Mexico can 

represent a significant socio-economic opportunity for the production of various low and high 

value-added industrial products, as first proposed by Milledge and Harvey (2016). Already, 

many companies have emerged to produce materials for civil construction (Rossignolo et al. 

2022), biocarton coffins for cremation (Siniamin 2019) as examples. Oxenford et al. (2021) 

present a state of the art of holopelagic Sargassum recovery with various industrial sectors 

being cited, in order to develop effective and sustainable solutions to the sargassum crisis. 

Given the many constraints identified for each application, Amador-Castro et al. (2021) 

conclude that a biorefinery approach is the most efficient way to valorise this huge biomass of 

holopelagic species.   

 

Industrial challenges linked with the use of Sargassum biomass  

The biorefinery concept 

The more parsimonious approach to use Sargassum biomass as a raw material for industrial 

uses is to propose an integral valorization following the philosophy of biorefineries, thereby 

recovering the different components and fractions in a sequential, multi-stage and multi-product 

process (Pérez-Larrán et al. 2019). This biorefinery approach has been addressed to obtain 

alginates, antioxidants and energy (González-López et al. 2012), fucoxanthin, alginates, 

fucoidans and phlorotannins (Balboa et al. 2015), plant biostimulants, alginates, fucoidans, 

phlorotannins and biogas (Flórez-Fernández et al. 2021). A minimum selling price for fucoidan 

confirmed the economy-of-scale for both a process considering anaerobic digestion steps for 

producing biogas and generating electricity and an alternative with residual seaweed solids sold 
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as fertilizer (Caxiano et al. 2022). The economics of biorefinery processes can be favored 

by the incorporation of bio-fertilizer sales to the energetic valorization and the major challenges 

for scale-up and commercialization remain the seasonality and variability of seaweed 

composition (Thompson et al. 2021). 

 

Degradation of the biomass and arsenic concentration 

The main concern with the use of Sargassum biomass is its rapid degradation with a decrease 

in its quality, especially true for Caribbean Sargassum spp. (ANSES 2017). Many works 

demonstrated the interest of freeze-drying as an efficient process to keep the biochemical 

composition of brown macroalgae (e.g., Chan et al. 1997). Moreover, as traditional extractive 

processes degrade the quality of raw material, innovative processes are favored (Tanniou et al. 

2013). Recently, a pre-treatment by Pulsed Electric Fields (PEF) was developed which allows 

retention of the seaweeds’ optimal biochemical composition (Robin et al. 2018). The use of 

pelagic Sargassum from Barbados in anaerobic digestion for energy production is of 

low bioconversion efficiency, and co-digestion with other forms of biomass would be necessary 

(Thompson et al. 2020).  

 

Ecological challenges linked to Sargassum species 

Bioremediation of Climate Change 

Recent studies estimated that coastal marine macroalgae could sequester up to 173 Tg of 

atmospheric CO2 per year, mostly through export of dead material to deep-sea sediments 

(Krause-Jense and Duarte 2016, Duarte et al. 2017). Further theoretical calculations proposed 

that growing seaweeds over 9% of the world’s oceans, through algal afforestation could remove 

53 billion tons of atmospheric carbon annually, effectively offsetting global emissions and even 

offering climate mitigation if carbon-negative processes are used to make sustainable use of 

algal biomass (N’Yeurt et al. 2012, Capron et al. 2020). For holopelagic Sargassum in the 

Caribbean, about 5% of the atmospheric carbon intake was reported to be converted into inert 

calcite, which is eventually sequestered into marine sediments (Paraguay-Delgado et al. 2020).  

 

Conclusion 

The genus Sargassum is characterized by a high diversity which has led to the interest of a large 

and worldwide number of researchers, resulting in thousands of studies carried out in temperate 

and tropical environments globally. In areas where the genus is present, the various species 
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constitute meadows hosting a large number of associated species and can be considered as 

the pioneer and dominant species in colonized areas, in temperate and tropical environments. 

Of the high species diversity, only one species, i.e., S. muticum, has a worldwide distribution 

with an associated lack of genetic variation. The majority of the species are benthic and only 

two species live in a floating state throughout their life cycle, i.e., S. fluitans and S. natans. 

Given the large number of Sargassum species and known morphological plasticity, the 

taxonomy of the genus is not straightforward; with the existence of two sub-genera, Sargassum 

and Bactrophycus. The large biomass of Sargassum species around the world have led people 

to exploit Sargassum fields in various industries. In Asia, two species are known to be edible 

and used in aquaculture, i.e., S. fusiforme and S. horneri. Sargassum species are used in various 

industrial sectors, from food, feed, human and plant health, to cosmetics as examples. The 

enormous quantities of Sargassum in some regions make it a raw material of interest for the 

extraction of various metabolites, highly represented as alginates, or weakly represented as 

certain lipids, or polyphenols as examples, with however an arsenic and heavy metal 

contamination that could be high in some areas. In areas where algal populations 

are disappearing, it is therefore crucial to develop programs to restore Sargassum meadows and 

in areas where large biomass strandings occur, it is crucial to develop recovery routes before 

the biomass degrades. 
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