Supplementary information for 'Antarctic Ice Sheet and emission scenario controls on 21st-century extreme sea-level changes'

Frederikse et al.

Supplementary Figure 1. Mean sea-level change scenarios for 2046-2065. All scenarios are relative to the 1986-2005 baseline.

Supplementary Figure 2. Mean sea-level change scenarios for 2081-2100. All scenarios are relative to the 1986-2005 baseline.

Supplementary Figure 3. Local 1σ uncertainties of the sea-level projections. Since we do not associate an uncertainty to each AIS scenario, these estimates do not contain an AIS component

Supplementary Figure 4. Sea-level fingerprint for mass loss at the Antarctic Ice Sheet. Local sea-level change associated with a mass loss of 1 meter equivalent global-mean sea level. The mass loss is assumed to occur at Thwaites Glacier.

Supplementary Figure 5. The Generalized Pareto Distribution parameters. Shown are the median and 90-percent confidence intervals for the GPD shape and scale parameter for all sites.

Supplementary Figure 6. Frequency amplification factors for the present-day 100-year ESL event in 2046-2065 for the RCP scenarios and AIS contributions.

Supplementary Figure 7. Frequency amplification factors for the present-day 100-year ESL event in 2081-2100 for the RCP scenarios (left to right) and AIS contributions (top to bottom).

Supplementary Figure 8. Allowances for the present-day 100-year ESL event in 2046-2065 for the RCP scenarios (left to right) and AIS contributions (top to bottom).

Supplementary Figure 9. Allowances for the present-day 100-year ESL event in 2081-2100 for the RCP scenarios (left to right) and AIS contributions (top to bottom).