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Abstract :

Callista chone samples were live collected at three localities in the Adriatic Sea: Gulf of Venice, Italy, Pag
Bay and PaSman Channel, Croatia. Acetate peel replicas were prepared and the Image Pro Primer
program was used to measure increment widths in samples that had clear boundaries. Visual cross-dating
of the images was performed using list-year method and validated using COFECHA, while the R package
dpIR was used to construct the chronologies. The age of analysed shells ranged from 15 to 46 years
(N=32; 29,9 £ 8,8 years) at the Gulf of Venice, from 14 to 41 years (N=63; 26,0 + 5,1 years) at Pag Bay,
and from 14 to 41 years (N=33; 26,8 £ 4,8 years) at the PaSman Channel. Final statistically robust
standard master chronologies spanned from 1986 to 2018 (Gulf of Venice), from 1994 to 2019 (Pag Bay)
and from 1994 to 2015 (Pasman Channel). Statistically significant correlation was obtained only between
the Gulf of Venice and Pag Bay residual master chronologies (1994-2018; r = 0.607; p <0.001). Although
there are some coincidences between all three localities, suggesting a common signal among
populations, the growth chronology in the Pasman Channel recorded a very different signal potentially
linked to differing oceanographic influences. The PaSman Channel locality is more affected by the inflow
of warmer and saline waters coming from the south than the two other sites which are located in
geographically and hydrographically isolated Adriatic areas. No correlation was found between any shell
master chronologies and surface seawater temperature. Also, no correlations between the shell C.chione
master chronologies and parameters describing the Adriatic-lonian Bimodal Oscillating System (BiOS)
were observed. Correlation maps indicate different relationships between shell master chronology and
chlorophyll a concentration in the region. Significant correlations were mostly limited to March and April
and showed spatial variations.
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1. Introduction

Coastal and shelf areas are dynamic and complex multifunctional systems at the interface
between land and sea (Salgado-Hernanz et al., 2022). These areas are subject to a variety of
stressors that overlap, including the effects of climate change, land-based pollution, and
commercial fisheries (Ramirez et al., 2018). Semi-enclosed seas, such as the Mediterranean
Sea, are particularly vulnerable to disturbance due to high surface-to-volume ratios and strong
pressures from various human activities (Halpern et al., 2015; Schroede et al., 2015; Piroddi et
al., 2017). Anthropogenic pressures on Mediterranean marine ecosystems are predicted to
increase in the future (Coll et al., 2010), particularly due to habitat destruction, resource
exploitation, and climate change (Giorgi and Lionello, 2008; Coll et al., 2012; Adloff et al.,
2015).

To understand the significance of potential future changes, knowledge of present and past
environmental variability and its influence on marine organisms is critical. This requires
detailed records of oceanic conditions over broad temporal and spatial scales (Grebmeier,
2012). As observational multidecadal or multicentennial records are often lacking, scientists
have been exploring possibilities for reconstructing environmental conditions from growth
increments in hard tissues of various marine organisms including bivalve shells, fish otoliths,
coralline algae and corals (Grocke and Gilikin, 2008; Oschmann, 2009; Butler et al., 2019).
Bivalves are often used in sclerochronological research because they continuously deposit shell
material throughout their lifetimes and populations may exhibit a common response to
environmental forcing, exhibiting synchronous shell growth rates (e.g., Wanamaker et al.,
2012; DeLong et al., 2014; Reynolds et al., 2016). Measuring of growth increment widths
enables the development of absolutely dated, annually resolved, and environrﬁentally sensitive
proxy records ranging from several decades to a few millennia (e.g., Schéne, 2008; Black et
al., 2009; Butler et al., 2013). By applying statistical methods adopted from the
dendrochronological research, individual shell growth series data are used for constructing
robust master chronologies (e.g., Wanamaker et al., 2012; Butler et al., 2013; Reynolds et al.,
2022). These chronologies can be related to modern environmental conditions and used for the
reconstruction of past climate changes (e.g. Black et al., 2009; Butler et al. 2010; Edge et al.,
2021). Further, efforts have been devoted to the construction of shell chronology networks,
based on data from multiple sites within a certain geographic region, in order to obtain more
comprehensive insight into past environmental variability on a larger scale (e.g. Butler et al.,
2009; Reynolds et al., 2017; Peharda et al., 2019).
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While the majority of bivalve chronologies have been developed at relatively high latitudes
and in major ocean basins, such studies are still very rare in the Mediterranean and limited to
the Adriatic Sea and to species from the genus Glycymeris, including G. bimaculata (Buseli¢
et al., 2015) and G. pilosa (Peharda et al., 2016: Peharda et al., 2018; Peharda et al., 2019).
Previous studies on age and growth of the commercially important venerid bivalve Callista
chione have shown that the longevity of this species can extend up to four decades (Forster,
1981; Ezgeta-Bali¢ et al., 2011), making it an interesting target species for sclerochronological
studies (Purroy et al., 2018a). Callista chione is a relatively large (up to 10 cm), shallow-
burrowing suspension-feeding bivalve that inhabits sandy sediments in coastal waters at depths
up to 180 m and is widely distributed in the eastern Atlantic Ocean and the Mediterranean Sea,
including the Adriatic Sea (Poppe and Goto, 2000). It is commercially exploited in several
countries from the eastern Mediterranean to the Atlantic, including Croatia, France, Greece,
Italy, Morocco, Portugal, and Spain (e.g., Gaspar et al., 2001, 2002; Tirado et al., 2002;
Metaxatos, 2004; Moura et al., 2009; Ezgeta-Bali¢ et al., 2011; Baeta et al., 2014; Bouzaidi et
al., 2020). Previous studies conducted on C.chione include analyses of the reproductive cycle
(Valli et al., 1984; Tirado et al., 2002; Moura et al., 2008; Purroy et al., 2019), population
dynamics (Metaxatos, 2004), age and shell growth rate (Hall et al., 1974; Forster, 1981; Keller
et al., 2002; Leontarakis and Richardson 2005; Moura et al., 2009; Ezgeta-Bali¢ et al., 2011,
Purroy et al., 2018b). Understanding growth synchrony within and among populations in the
species C.chione is needed in order to obtain an insight into its growth dynamics in relation to
environmental conditions.

The main objectives of this study were to: (1) determine if well-replicated, annually- resolved,
shell growth chronologies can be developed from C.chione shells collected at three localities
in the Adriatic Sea, (2) determine the potential of C.chione for developing a network of bivalve
chronologies in the Adriatic Sea, and (3) test possible environmental influences on the shell
growth of this species.

2. Materials and methods

Individuals of Callista chione were collected live at three localities in the Adriatic Sea:
(1) the Gulf of Venice, Italy (45.344° N, 12.525° E; 17-18 m depth); (2) the Pag Bay, Croatia
(44.495° N, 14.987° E; 4-6 m depth); and (3) the PaSman Channel, Croatia (43.948° N, 15.388°
E; 1.5-3 m depth) (Fig. 1). Specimens were obtained from the catch of the commercial fishing
vessels at the locality in the Gulf of Venice in 2018, and by SCUBA and skin-diving at the
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other two localities on several occasions from 2013 to 2020 (Supplementary Material; Table
S1). For the laboratory analysis, we selected the largest-sized shells (>60 mm).
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Figure 1. The study area: A. The bathymetry of the Northern lonian Sea and the Adriatic Sea.
The localities of Callista chione sampling in the Adriatic are denoted by red dots. Schematic
representation of the Adriatic circulation is also depicted (the yellow line represents the Eastern
Adriatic Current — EAC, while the blue line represents the Western Adriatic Current — WAC).
The river mouth of the Zrmanja River (Croatia) is indicated by black arrow, while the delta of
the Po River (ltaly) is denoted by white arrow. Black and white rectangles in the Northern
lonian denote the areas between which the height difference of the absolute dynamic
topography (ADT) was calculated. The red rectangle in the Northern lonian represents the area
used for computating vorticity. B. Gulf of Venice (the Po River delta is indicated by black
arrow), C. Pag Bay and D. Pasman Channel.

Immediately after collection, the specimens were frozen, and in the laboratory the
shells were thawed and the tissue removed. The shell length (anterior-posterior axis) of each
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specimen was measured with a digital caliper to the nearest 0.1 mm, and the dry weight was
determined using a scientific scale with a precision of 0.01 g.

The hinge area of each shell was cut and embedded in epoxy resin. The resin blocks
containing the hinge were cut along the axis of maximum growth, ground, and polished. The
polished surfaces were etched in 0.1 M HCI for 2 min. After etching, samples were rinsed in
tap water and left to air dry. Acetate peels were prepared by pouring ethyl acetate with a pipette
on the polished and etched shell section and covering the surface with a piece of acetate sheet.
Acetate peels were placed between two microscope glass slides and photographed using an
Axio Lab Al microscope equipped with a Zeiss AxioCam ERc 5s camera. Multiple
photographs were taken for each sample and then stitched together into a single composite
photograph using Image-Pro Plus 10 software. Due to the better visibility of annual growth
lines, all measurements were done in the inner shell layer and were conducted from the

ontogenetically youngest part of the shell towards the oldest part (Fig. S1).

A I—T"_I B

I Length (mm) .

Figure 2. A. Callista chione shell, black rectangle represents hinge area that was cut from each
sample, while dashed black line presents axis of maximum growth along which the shells were
sectioned. B. Shell of C. chione embedded in epoxy resin. DOG — direction of growth. Scale
bar 1 cm.

At each locality the age was estimated for all specimens that had clearly visible growth
lines, but only shells that had clearly delineated growth increments boundaries were used to
construct master chronologies. Counting of growth lines was performed independently by two
experienced researchers and age estimates are reported only for shells for which estimates
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matched. Acetate peel images were visually cross-dated using the list-year method
(YYamaguchi, 1991) to ensure that each increment was assigned to the correct year of formation.
This technique is based on the assumption that some aspects of the environment limit growth,
and as the environmental conditions vary over time, they induce a synchronous growth pattern
in contemporaneous individuals sampled from the same area (Fritts, 1976; Yamaguchi, 1991).
The correct calendar year of each increment was assigned by cross-dating backward from the
known year of sampling. Cross-dating was also checked using the program COFECHA
(Holmes, 1983). It is important to note that analysis of stable oxygen isotope composition
(6180) in shells of C.chione specimens collected from Adriatic Sea showed that this species
deposits an annual growth line during late summer/early autumn (Purroy et al., 2018b;
Uvanovi¢, 2022) while the growth stop/cessation occurs during January and February. This
means that a given annual growth increment can contain environmental data from two calendar
years. For example, the annual growth increment marked as “2015” in our time series contains
shell material deposited over two time periods: from September to December 2014, and from
March to August 2015. This was taken into account when analysing the potential correlations

with environmental data.

After visual cross-dating, individual growth increment widths were measured from the
internal shell surface towards the external surface (Figure 2B) along the axis of maximum
growth and perpendicular to the growth increment boundaries using the Image-Pro Plus 10
software (Supplementary Material; Figure S1). All detrending and chronology construction
were performed in R (R Core Team, 2022) using dpIR package (Bunn, 2008). Detrending was
performed with a cubic spline with a rigidity of 10 years and a cut-off frequency of 50%.
Population-level signal strength in the chronology was assessed using the Expressed
Population Signal (EPS). Although arbitrary, an EPS ~0.85 is considered the threshold at which
the sample set adequately reflects the theoretical population from which it was drawn (Wigley
et al., 1984). EPS was calculated over a window of 5 years. For each locality, two versions of
the chronologies were built: a standard and a residual version. To build the residual chronology,
each individual growth time series was first prewhitened by fitting an autoregressive model, in
order to remove autocorrelation. Then all prewhitened time series were averaged using the

Tukey’s biweight robust mean, in order to minimize the effect of outliers.

In order to test possible environmental influences on the growth of C. chione, available
data of surface seawater temperature (SST) and chlorophyll-a concentrations were correlated

with the shell growth chronologies. Seawater temperature can affect growth directly, but also
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indirectly - through its influence on bivalve reproductive cycle and food supply (Schone et al.,
2005). Bivalve shell growth is known to be strongly influenced by food quantity and quality
(Ballesta - Artero et al., 2018). In order to highlight possible relationships between C.chione
master chronologies and environmental data, correlation maps (Pearson's r) were computed
over a large area (36°-46°N 12°-22°E) around our three localities. The sea surface temperature
data used to compute correlation maps were retrieved from the NOAA Optimum Interpolation
Sea Surface Temperature (Ol SST V2) dataset, provided by the NOAA PSL, Boulder,
Colorado, USA (https://psl.noaa.gov). An estimation of the monthly concentration of
chlorophyll-a (Chl- a) in the Adriatic, lonian and Tyrrhenian Seas was obtained for the period
1998-2019 from GlobColour (http://globcolour.info). High-resolution (1/24°, i.e. approx. 4 km
x 4 km) ocean colour data retrieved from different sensors (SeaWIFS, MERIS, MODIS Aqua,
and VIIRS) were averaged using the Garver-Siegel-Maritorena (GSM) model (Maritorena and
Siegel, 2005). All files were downloaded in NetCDF4 format. For each cell of the gridded
environmental dataset, pairwise Pearson's correlations were computed between the annual
values of the master chronology and environmental data for the months of March, April, May,
June, July and August. Only correlations at a 90% significance level (or higher) are displayed
on these maps. NetCDF4 files were processed using R 4.2.0 "Vigorous Calisthenics" (R Core
Team, 2022), after loading of packages 'rgdal’, 'raster’, and 'ncdf4'. Correlations between the
chronologies and environmental time series developed for the sampled locations were
performed in order to detect the environmental force at each site. All additional information

can be find in Supplementary material.

The regime of the Adriatic - Ionian Bimodal Oscillating System (BiOS, Gagci¢ et al.,
2010) indicates the origin of waters entering the Adriatic Sea. In order to estimate the state of
the BiOS, the monthly values of the height difference of the absolute dynamic topography
(ADT), here termed ADT_difference, were computed for a 0.5°x0.5° area centered on the
northern edge of the eddy in the northern lonian Sea (black rectangle in Fig. 1A) in relation to
an area of the same dimensions at the center of the eddy (white rectangle in Fig. 1A). Another
parameter used to describe the state of the BiOS was vorticity, calculated in for the northern
part of the lonian Sea (37.0°N - 39.0°N; 17.0°E - 19.5°E; red rectangle in Fig. 1A), using the
procedure described by Shabrang et al. (2016). When the value of the parameter
ADT _difference is positive, the level in the center of the vortex is lower than the level at the
edge of the vortex, which indicates cyclonic (counter-clockwise) rotation of the vortex. In the
mentioned periods, the vorticity mostly has a positive value. The positive value of the
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ADT _difference parameter in- dicates the inflow of ultra-oligotrophic and highly saline water
from the eastern Mediterranean into the Adriatic, which is characterized by low nutrients and
lower primary production (Civitarese et al., 2010). When the value of the parameter
ADT_difference is negative, the level at the center of the vortex is higher than the level at the
edge of the vortex, indicating an anticyclonic (clockwise) rotation. Then, the vorticity mostly
has negative values. In anticyclonic periods, the inflow of less oligotrophic water with lower

salinity goes from the western Mediterranean into the Adriatic prevails

3. Results

In the Gulf of Venice, it was possible to estimate the age of 34 out of 52 processed
shells, 19 of which were used in chronology construction. In Pag Bay, a total of 85 shells were
processed and it was possible to estimate age for 64 shells, 47 of which were used to construct
the chronology. In the PaSman Channel it was possible to estimate the age of 33 out of 37

processed shells, 26 of which were used in chronology construction (Table 1).

Table 1. Overview of the Callista chione specimens analysed in this study.

224
Gulf of Pag Bay Pasman Channel
Venice
. N 21 48 27
g x5 L (mm) 665-855  622-813 69.3 - 87.3
§ 2 g min - max (X £sd)  (73.4%3.3) (73.4£3.7) (76.2£4.7)
S22
© S4B
TES Age (years) 18- 46 18-41 21-41
5 &5 (209+88)  (263+4.9) (26.8+48)
N 13 16 6
© L (mm) 701-795  70.0-76.9 56.0 - 88.6
2 min-max R+sd)  (729+24)  (734%2.1) (762 10.9)
5
£ ~ 15 - 39 14-32 21-33
. (274+69)  (254+53) (222+7.8)

Shells used in chronology were of similar size and age compared with those for which
only age was estimated. An exception was the case of several younger shells (n=5; <16 years)
that were omitted from chronology development. All shells older than 40 were included in our
analysis. Pronounced variation was noted in the estimated age of similar sized shells; for
example, shells with length from 70 to 80 mm had an estimated age from 20 to more than 40
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years (Supplementary Material; Figure S2). The mean correlation between each detrended time
series and the average of others (series intercorrelation) for shells from Gulf of Venice was
0.542. The average mean sensitivity which expresses the year-to-year variability of the values
in a time series was 0.256. For shells from Pag Bay, the series intercorrelation was 0.579 and
mean sensitivity was 0.279, while for the Pasman Channel samples, the series intercorrelation

was 0.543 and mean sensitivity was 0.263.

During the first few years of life, shell growth is very rapid and often the annual growth
lines are not sufficiently clear, so it is not possible to accurately measure the distances between
them. Therefore, the widths of annual growth increments during the earlier ontogeny (~first 5
years) were not measured. Similary, in samples collected in periods before late summer/early
autumn when the annual growth line is formed, last year at the very edge was not measured.
Also, due to very narrow growth increments, the positions of annual growth lines at the very
edge (late ontogeny) were not sufficiently clear in some specimens and in such cases were not
measured.

Data on the width of annual growth increments for C. chione specimens collected at the

three localities were obtained for the periods showed in Table 2.

Table 2. Overview of the periods of measured annual growth increments for Callista chione
specimens and constructed master chronologies per localities.

Measured annual growth

Locality A Master chronology period
Gulf of Venice 1997 - 2018 1986 - 2018
Pag Bay 1984 - 2019 1994 - 2019
Pagman Channel 1982 - 2015 1994 - 2015

Figure 3. Individual detrended growth time series of Callista chione from; A. The Gulf of
Venice (1979-2018), B. Pag Bay (1984-2019), and C. The Pagman Channel (1982-2015). Solid
black line represents standard chronology. The growth index varies around 1, with higher
values indicating positive wider and lower values indicating negative narrower growth than
expected by the model. Sample depth (denoting number of samples, grey shading area), 0.85
EPS threshold (straight dashed line) and calculated EPS (black line) are shown for each

sampling locality below corresponding chronology data.
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Comparison of the three residual master chronologies obtained for C.chione individuals
collected from the three localities in the Adriatic Sea was made for the time periods over which
each chronology was determined to be suitable for environmental comparison based on
EPS~>0.85. A statistically significant correlation was obtained only between the Gulf of
Venice and Pag Bay chronologies from 1994 to 2018 (r = 0.607; p <0.001). The correlation
between these two localities is supported by the synchrony found in years 2004, 2007, 2014,
and 2018 that were characterized by higher growth indexes (wider increments). Likewise,
coincidences were also found in the years 2006, 2008, 2012, and 2017 that showed lower
growth indexes (narrower increments; Fig. 5). Interestingly, the years 2002, 2006, and 2012
were characterized by low growth for all three localities (Fig. 4).
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Figure 4. Comparison of Callista chione residual shell master chronologies from the three
sampling localities. The growth index varies around 1, with higher values indicating wider
growth and lower values indicating narrower growth than expected by the model.
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Figure 5. Acetate peels of shells collected in A. Gulf of Venice, (ITA2), and B. Pag Bay

(PAG39). Full circles indicate wide growth increments, open circles indicate narrow growth
increments. Scale bar 100 mm.

No significant correlations were found between the Gulf of Venice shell growth
chronology and chlorophyll a concentrations in the nearby area of the Northern Adriatic,
however, some areas of positive and negative correlation were observed further south of this
locality. Pearson's r correlations at a 90% significance level (or higher) were observed between
the shell master chronologies and chlorophyll concentration for March and April. Positive
correlations were observed between shell data for Pag Bay and chlorophyll values at nearby
sites for the same months, while for shells from the Pa§man Channel significant positive
correlation was only found for March (Fig. 6). Comparisons between shell growth chronologies
and sea surface temperatures (not shown) showed no significant correlations in any area of the

Adriatic for any of the three master chronologies.
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Figure 6. Correlation maps between shell master chronology and chlorophyll concentration for
the Gulf of Venice (1999-2018), Pag Bay (2002-2019) and the Pasman Channel (1996-2015)
in March and April. Red circle represents locality of shell collection.
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4. Discussion

4.1. Callista chione age estimation

Growth rate and age are widely used biological parameters for the management and
conservation of living marine_resources. The age of a bivalve can be estimated using surface
growth rings or checks that can be clearly seen on the external shell surface (Richardson 2001).
They are particularly clear in C.chione during early ontogeny, when the rings are widely spaced
and easy to identify (Forster, 1981). However, later in ontogeny (>20 years) they are deposited
more closely together at the shell margin and are not always easily discernible. Results of this
study show that age of individuals of in this species can pronouncedly vary with respect to
length, as estimated age of specimens measuring ~ 75 mm shell length ranged from 22 to 45
years (Supplementary Material; Figure S2). Slow growth during late ontogeny and high
intraspecies variation in shell growth rates were previously noted for C.chione (Ezgeta- Bali¢
et al., 2011), as well as for a number of other bivalves species including for example Arctica
islandica (e.g. Witbaard et al., 1999, Schone, 2013), and Lithophaga lithophaga (Peharda et
al., 2015).- Therefore, it is more appropriate to use acetate peel replicas examined under
magnification to estimate the age of larger sized C.chione individuals, as opposed to size-age

relationships, suggested by Ezgeta-Bali¢ et al. (2011).

Callista chione is a moderately long-lived bivalve that can attain an age of >40 years
(Forster, 1981; Ezgeta-Bali¢ et al., 2011). However, according to previous studies it is more
common to find populations with individuals showing a maximum age of 16 years (Leontarakis
and Richardson, 2005) or 17 years (Hall et al., 1974; Metaxatos, 2004; Moura et al., 2009)
have been recorded in most of the studied populations. The population structure of C.chione in
the Adriatic Sea has been documented by Ezgeta-Bali¢ et al. (2011) at four localities along the
eastern coast (Rab, Pag Bay, Kastela Bay and the estuary of the Cetina River); individual ages
ranged between 3 and 44 years, and contribution of older specimens in a given population
varied pronouncedly with respect to locality. In this study, estimated age ranged from 14 to 46
years and 90% of analysed specimens were over 20 years old. It is important to note that for
the purpose of chronology construction, larger individuals with >60 mm in length were chosen.
Maximal longevity of 46 years estimated in this study is two years longer than previous
estimates for specimens from Rab (Ezgeta-Bali¢ et al. 2011). Due to the commercial
importance of this species, it is highly likely that larger sized and older specimens have already
been selectively removed from the Adriatic populations. Age data is a prerequisite to generate
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the information on population structure, longevity, mortality, recruitment and fluctuations in
fishery, which could contribute to the improvement of the national management plans of the

species stock (Pauly et al., 2002).

4.2. Callista chione master chronologies

In the last decade, at least 25 species of the Veneridae family have been the subject of
sclerochronological studies, with most species analysed in only one or two studies, indicating
the ongoing quest for suitable target species as well as the expanding interest for
sclerochronological studies (Peharda et al., 2021). Nevertheless, there is a relatively small
number of studies on venerid species that focus on the construction of master chronologies.
One of the first such studies was conducted by Schéne (2003) on three short-lived species (<10
years) collected in the Gulf of California, Mexico. Multidecadal master-chronologies of long-
lived venerids Mercenaria stimpsoni (~100 years) were built by Tanabe et al. (2017) and Shirai
et al. (2018), thanks to its long lifespan, clearly visible growth lines, and synchronized growth
between individuals as well as clearly visible growth lines. It should be noted that the
chronology published in the work of Shirai et al. (2018) was made on data for only three
specimens. To the best of our knowledge, there are no other published studies related to the
construction of master chronology for Veneridae species, and data from our study contribute
to the understanding of growth in this bivalve family.

Previous research aimed at developing master chronologies of bivalves in the Adriatic
Sea, but also in the Mediterranean Sea, has been limited to species of the genus Glycymeris
that were targeted for their longevity. The genus Glycymeris has been interesting for
sclerochronology research in other parts of the world, including research conducted on G.
glycymeris from the Northeast Atlantic (Brocas et al., 2013; Featherstone et al., 2017; Reynolds
et al., 2017; Alexandrof et al., 2021); G. longior from the Southwest Atlantic (Gimenez et al.,
2020a; 2020b) and G. vanhengstumi from North Atlantic (Nemeth and Kern, 2018). In the
Adriatic Sea, a 16 years long master chronology of the species G. bimaculata was constructed
based on growth increment data obtained from shells collected in Pag Bay (Buseli¢ et al.,
2015). Maximal estimated longevity of G. bimaculata in that study was 57 years. Given the
relatively small number of G. bimaculata individuals that were older than 20 years, research
focused on master chronology construction later on targeted the species G. pilosa. The length
of the chronologies for this species ranged from 17 years in the PaSman Channel (Peharda et
al., 2016) to 42 years at the locality Drace (Peharda et al., 2019) and they were constructed
using a larger number of specimens. Maximal estimated longevity of G. pilosa in the Adriatic
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Sea was estimated at impressive 97 years (Peharda et al., 2019). In our study, the lengths of
the constructed master chronologies of C.chione were 32 years for the Gulf of Venice, 25 years

for Pag Bay, and 21 years for the Pasman Channel.

Collecting growth data at multiple localities allows the development of networks of
chronologies and the analysis of spatial similarities and differences (Black, 2009; Butler et al.,
2009; Brocas et al., 2013; Reynolds et al. 2017; Peharda et al., 2019). So far, such research has
been conducted at several localities in the Pacific, Atlantic, and Mediterranean, and has
included species such as Panopea generosa (Edge et al., 2021), Arctica islandica (Butler et al.,
2009), G. glycymeris (Brocas et al., 2013) and G. pilosa (Peharda et al., 2019). Research
conducted in open marine systems in the Pacific and Atlantic has shown that there are some
statistically significant correlations between master chronologies from different localities, as
well as correlations with environmental factors (Black et al., 2009; Butler et al., 2009; Brocas
et al., 2013; Reynolds et al., 2017). Most of these studies have analysed the spatial coherence
among populations from a single species, while a limited number of studies also focus on
networks that include multiple species. Such approach was conducted by Reynolds et al. (2017)
and included the species A. islandica and G. glycymeris collected from several localities along
the western British continental shelf, and by Reynolds et al. (2022) which analysed the species
Astarte borealis and Liocyma fluctuosa collected from the eastern Chukchi Sea in the Arctic
Ocean. In the eastern Adriatic, a comparison of chronologies of G. pilosa growth at several
localities revealed similarities between chronologies for samples collected along the western
coast of Istria and the Pa§man Channel, and between chronologies at Zivogos¢e and Drade
(Peharda et al., 2019). In this study, similarities were found between the master chronologies
of C.chione at the Gulf of Venice and Pag Bay, while the chronology obtained for the Pasman
Channel did not correlate with the two northern chronologies. The sampled localities are in the
shallow coastal area of the Adriatic Sea and according to Peharda et al. (2019) the heterogeneity
in bivalve growth can potentially reflect heterogeneous climate regimes or the influence of
local limiting environmental factors on their growth.

One possible explanation as to why the Pa§man Channel chronology differs from other
two sites could be related to different environmental conditions affecting the Gulf of Venice
and Pag Bay sites. Namely, the general Adriatic surface circulation is cyclonic (Orli¢ et al.,
1992), with a north-westward flow along the eastern coast (Eastern Adriatic Current — EAC,
Fig. 1A)
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and a south-eastward current along the western coast (Western Adriatic Current — WAC, Fig.
1A). The Pasman Channel sampling site is therefore more affected by the inflow of warmer
and saline waters coming from the south than the two other sites, as Pag Bay and the Gulf of
Venice sampling sites are located in somewhat geographically and hydrographically isolated
Adriatic areas. Pag Bay is a part of the deeply indented north-eastern Adriatic coastline,
strongly influenced by the severe wintertime outbreaks of cold and dry Bora wind (Grisogono
and Belusi¢, 2009) and local fresh water sources (Zrmanja River and submarine fresh water
springs, e.g., Novosel et al., 2002; Supraha et al., 2011). The oceanographic properties of the
northernmost part of the Adriatic are strongly dependent on the Po River discharges and
characteristics of the air-sea fluxes, particularly those related to the strong Bora outbreaks,
which excite the cyclonic gyres encompassing the area of the sampling site (Orli¢ et al., 1994,
Kuzmi¢ et al., 2006). Additionally, a persistent thermohaline front positioned to the south and
southwest of the Istrian peninsula (Istrian Front), separating colder and less saline waters of
the northernmost part of the northern Adriatic from the warmer and more saline southern
waters, was reported during oceanographic surveys and in model simulations (e.g., Kokkini et
al., 2017 and references therein).

4.3. Environmental influence on the growth of Callista chione

Growth synchrony among C.chione specimens collected from the same locality suggests
that a common environmental parameter influences individual growth. However, relationships
between shell growth and external factors can be complex, especially in shallow coastal
environments in semi-enclosed seas such as the Adriatic Sea (Epple et al., 2006). In these areas,
local processes, including precipitation, riverine input and terrestrial runoff, may be highly
localised (Gillanders, 2005). Some previous sclerochronological studies have identified
seawater temperature as one of the main drivers of shell growth. Positive correlations between
seawater temperature and bivalve growth have been observed for several bivalve species
including Arctica islandica (e.g., Marali and Schéne, 2015), Glycymeris glycymeris (Reynolds
et al., 2013; Royer et al., 2013), and Glycymeris bimaculata (Buseli¢ et al., 2015). Negative
correlation between seawater temperature and bivalve growth have also been observed in the
case of master chronologies of species Ciliatocardium ciliatum in the northwest Barents Sea
(Carroll et al., 2014) and species A. islandica in the southern Barents Sea (Mette et al., 2016).
Some of the studies found very low (e.g., Butler et al., 2013) or time-unstable (e.g., Marali and
Schone, 2015) corelation between seawater temperature and shell growth thus further

highlighting the complexity in growth-temperature relationships among and even within
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species. In the case of C.chione master chronologies, no correlations were observed with

seawater temperature in the Adriatic Sea.

Previous studies of G. pilosa in the Adriatic Sea have identified the impact of decadal (5
- 10 years) oscillation of water masses referred to as the Adriatic - lonian Bimodal Oscillating
System (BiOS), on populations at the Barbariga and Paman Channel localities (Peharda et al.,
2019). BiOS is known to be the dominant driver of the thermohaline and biogeochemical
oscillations across most of the basin, including southern and middle Adriatic and the shallow
northern areas (Civitarese et al., 2010; Vilibi¢ et al., 2012; Batisti¢ et al., 2014; Dautovi¢ et
al., 2017). However, in the same study, at two southern localities Zivogosée and Drace, growth
of G. pilosa was influenced more by the local factors. In this study, no correlations of C. chione

master chronologies and parameters describing BiOS were observed.

In this study, positive and negative correlations between shell growth chronologies and
nearby chl a values were observed for the three different locations. Although satellite
chlorophyll a data provide insights into state of phytoplankton communities in an area, this
does not monitor sudden changes of conditions in enclosed bays or straight channels between
islands (Kirk, 2011). A previous study of trophic ecology of the C.chione conducted in Pag
Bay and the Cetina River estuary showed that the diet differs between localities (Purroy et al.,
2018a). According to Purroy et al. (2018a), for the bivalves in Pag Bay the most important
food source are particles deposited on sediment, while in the estuary of the Cetina River the
most important food source is suspended particulate matter. Correlation maps obtained in our
study indicate different relationships between the shell master chronology and chlorophyll a
concentration in the region. Significant correlations were mostly limited to March and April
and showed spatial variations. However, the environmental variables that influence bivalve
growth can vary over fine spatial scales, especially in coastal environments in semi enclosed
seas where local processes can be highly localized (Gillanders, 2005). While no direct influence
of enviormental data on the growth of bivalve C. chione were observed, results in this study
highlight the need to combine sclerochronological analyses with ecological studies and in situ
measurements of parameters such as food availability and quality to understand life history

traits of bivalves as archives of environmental variables.
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