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Text S1: reconstructing sea-level changes at Swan Inlet, Falklands

This supplementary document includes methods and data that underpin the proxy-
based relative sea-level reconstruction for the Falkland Islands. The reconstruction was
established by Newton [2017] from microfossils preserved in salt-sediments at Swan Inlet
(51°49°34”S, 58°35°47”W) in East Falkland. The sea-level reconstruction involved three
steps: (1) collecting modern micro-organisms from salt-marsh surface sediments to es-
tablish sea-level transfer functions; (2) establishing a chronology for a sediment core; (3)
applying the sea-level transfer function to microfossils preserved in the core to reconstruct
relative sea-level changes. Step 1 is described in full in a separate paper [Newton et al.,
2020].

Sea-level transfer functions

We established three surface transects to investigate the vertical distributions of
micro-organisms (diatoms) which are known to be reliable sea-level indicators [Barlow
et al., 2013; Shennan et al., 2015]. For height control a survey benchmark was estab-
lished at the edge of the salt marsh from which relative elevations for all sample points
were measured. We refer to this benchmark as Swan Inlet Datum (SID). Using a differ-
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ential Global Positioning System (dGPS) we determined that SID is 14.35 m above the
reference WGS84 ellipsoid. A total of 39 surficial (0-1 cm) sediment samples were col-
lected at ~4 cm vertical increments across an elevational range of 1.27 m. From these
samples, diatoms were extracted, counted and identified. The distribution of modern di-
atoms is shown in Figure S1 The data sets of modern diatoms, with their elevations, were
subjected to regression analyses in the software package C2 [Juggins, 2003] to establish
sea-level transfer function models following Newton et al. [2020]. Figure S2 depicts the
performance of the selected transfer function by comparing elevations of our surface sam-
ples predicted by the transfer functions with their actual (surveyed) elevations. The regres-
sions indicate that the diatom sea-level transfer function is capable of reconstructing past
sea levels with an average precision of + 0.06 m (2 sigma).

Chronology

Following an extensive reconnaissance of the salt-marsh stratigraphy of Swan Inlet,
a core from Swan Inlet (core SI-2, 51°49°33.759S, 58°35’°46.654”W) was selected for the
sea-level reconstruction.The chronology for core SI-2 combines age determinations from
137Cs radionuclide activity in the upper 15 cm of the core (Figure S3) and 12 AMS #C
age determinations (Table S3) on individual horizontally embedded plant fragments down
to a core depth of 0.9 m. The '3’Cs profile in core SI-2 reveals a peak between 6-8 cm
that is related to the maximum deposition (1963 CE) of '*’Cs produced by atmospheric
nuclear weapons testing. Below the maximum, '¥’Cs is present at reduced levels, down
to a depth of 15 cm. Background 37Cs levels are first exceeded at 10 cm, indicating the
onset of nuclear bomb testing, and we assigned an age of 1954 CE to this level. Due to
possible mobility of Cs, we also subjected several plant fragments to radiocarbon bomb-
spike analysis. We analysed the core for 2!Pb, but activity was generally low or below the
minimum detection limit to provide reliable age determinations. An age-depth chronology
with 95% confidence limits (Figure S4) was derived from a Bayesian modelling approach
using Bacon in R [Blaauw and Christen, 2011]. The sea-level reconstruction presented
here is based on the upper 15 cm of the core (dated to 1908-2013 CE). Bacon could not
fit all age measurements into the age-depth model, because three samples returned ‘mod-
ern ages’ (Figure S4); two of these (61889 and 61891) are in the top 15 cm of the core.
The dated material in these sample may have included root or rhizome material of modern
plants. Our age model for the top 15 cm of the core is controlled by the two '37Cs mark-
ers and the radiocarbon measurements at 6.5 cm (61829), 7.5 cm (61887), 10 cm (61888)
and 21 cm (61897). Age uncertainties are lowest between 1954 and 1963 and increase
lower in the core (Figure S4, Table S2).

Sea-level reconstruction

Past sea levels were calculated by the transfer function for every centimeter in core
SI-2 based on the fossil diatom assemblages (Figure S5, Table S1). All samples have good
or close modern analogues, except for one sample (2 cm) which is marginally across the
close/poor boundary as defined by Watcham et al. [2013]. Kemp and Telford [2015] recom-
mend for diatom datasets a lower cut-off for acceptable analogues, which implies that we
should treat the 5 ‘close’ analogue samples (Figure S5) with caution. We have tested the
effect of removing these proxy data by removing these samples and using the sea-level ob-
servations from Port Louis [Woodworth et al., 2010] instead. For this experiment, we tied
the 2006 index point to the Stanley tide gauge data and subsequently tied the Stanley and
Port Louis observations using the levelling data as described in Woodworth et al. [2010].
This experiment gives a 20th-century sea-level trend (without any corrections) at the Falk-



lands of 1.84 [0.92 - 2.89] mm yr‘1 versus 1.63 [1.10 - 2.77] mm yr‘1 for the estimate
based on the full proxy record. The numbers in brackets denote the 5-95 % confidence in-
terval. Given these relatively small changes and the comparison to tide-gauge observations
(Figure 2h), which does not suggest reliability issues with these samples, we have retained
these index points in our sea-level reconstruction.

The age for each level, including its uncertainty, was determined by the age-depth
modelling (Figure S4, Table S2). The vertical uncertainty of each data point combines
several potential sources of error related to sampling processes and regression model un-
certainties, expressed as:

— 2 2 2
E= \/Ethick + Egury + Etfun (D

where E is the total vertical error and Eick, Esurv, and Eyyn are component errors. Com-
ponent errors are defined as follows. Thickness error (E;cx) relates to potential sub-sampling
errors associated with measuring the thickness of samples. Here this is defined as half of
the measured thickness, following [Shennan, 1986], and thus amounts to 0.005 m for 1 cm
slices. Levelling errors are negligible, because all proxy sea-level data are from the same
core which required only a single surveying measurement. The uncertainties associated
with transfer function estimates of sample elevation (Eis,) use the sample-specific root
mean squared errors of prediction (RMSEP) calculated by the C2 software package [Jug-
gins, 2003] using bootstrapping [Birks, 1995]. Component errors are assumed to be the
mean values with normally distributed uncertainty and are multiplied by 1.96 to obtain the
95% confidence intervals. Vertical errors associated with post-depositional lowering as a
result of sediment compaction are considered to be negligible for the upper section of the
core [Brain et al., 2011].
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Table S2. Proxy sea-level data for Swan Inlet (Falkland Islands). Age and vertical uncertainties denote the

95% confidence interval.

Depth (m) Age (CE) Age uncertainty (+) Age uncertainty (-) Sealevel (m) Sea level uncertainty (m)

0.01 2006 2012 1994 0.015 0.115
0.02 1999 2010 1985 0.038 0.128
0.03 1992 2005 1978 0.004 0.122
0.04 1985 2000 1972 -0.073 0.149
0.05 1978 1992 1967 0.062 0.109
0.06 1972 1985 1964 0.020 0.146
0.07 1964 1967 1961 -0.125 0.124
0.08 1961 1965 1956 -0.145 0.129
0.09 1957 1962 1953 -0.068 0.115
0.10 1954 1956 1951 -0.086 0.113
0.11 1945 1954 1928 -0.095 0.109
0.12 1936 1950 1913 -0.106 0.107
0.13 1926 1944 1901 -0.116 0.113
0.14 1917 1938 1889 -0.111 0.113
0.15 1908 1931 1876 -0.192 0.125



Table S4. Trends and uncertainties in mm yr~! for each individual region and for the South Atlantic basin.

The numbers between brackets denote the 5-95% confidence intervals.
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Figure S1. Distribution of modern diatoms in Swan Inlet. SID — Swan Inlet Datum. HAT - Highest As-
tronomical Tide. MHHW - Mean Higher High Water. MTL - Mean Tide Level. Samples were collected
from three transects (as colour coded). Top panel shows the dominant plant species along the transects. From
Newton et al. [2020].
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Figure S2. Scatterplot of observed versus predicted height (a) and observed height against prediction resid-
uals (b) for the diatom transfer function using a Weighted Averaging Partial Least Squares (WA-PLS) model
component 3. SID - Swan Inlet Datum. RMSEP - root mean squared error of prediction. From Newton et al.
[2020].
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nology for core SI-2 (0-87cm) modelled by R-package Bacon [Blaauw and
brated 14C probability distributions (dark blue) and surface and 137¢s ages (light

blue). Darker greys indicate more likely calendar ages; grey dotted lines show 95% confidence intervals; red

dotted line shows the single best’ model based on the weighted mean age for each depth. For this paper, only

the ages for the top 14 cm of the core were used. Laboratory codes correspond with Table S3.
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Figure S5. Fossil diatom assemblages, age markers and modelled ages in the top 15 cm of core SI-2 used
for the sea-level reconstruction. Diatoms shown for species greater than 5% of the total valves counted.
MinDC - minimum dissimilarity coefficient; definitions of ‘good’, ‘close’ and ‘poor’ follow Watcham et al.

[2013]. PSME - palaeomarsh surface elevation. SID — Swan Inlet Datum.



