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ABSTRACT 

The existence of a marine phosphorus (P) redox cycle was recently confirmed when 

phosphonates, organophosphorus compounds with P in the (III) oxidation state, were found in 

high molecular weight dissolved organic matter. Although some features of the P redox cycle 

have come to light since the discovery of phosphonates, many aspects of phosphonate 

production, cycling and fate remain unknown. To address these gaps in our understanding, we 

studied phosphonate cycling in the Eastern Mediterranean Sea, a chronically P-limited basin, 

using 33P and enzymatic assays. We showed that phosphonate production was low but 

consumption was high, suggesting that phosphonate production and consumption may be 

spatially or temporally decoupled. We also explored phosphonate production in the model 

marine cyanobacterium Prochlorococcus SB. Using 31P NMR, we found Prochlorococcus SB 

allocates ~50% of its cellular P to phosphonates. Allocation of P to phosphonates was conserved 

under P-limitation, and further investigation revealed phosphonates were associated with 

proteins. The discovery of phosphonoproteins in Prochlorococcus SB opens new perspectives on 

the biochemical function of phosphonates and their role in P-cycling. Finally, we developed a 

new P-targeted method to characterize marine organophosphorus compounds using liquid 

chromatography coupled to electrospray ionization and inductively coupled plasma mass 

spectrometry.  
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1.1 MOTIVATION AND BRIEF OVERVIEW OF THE PHOSPHORUS CYCLE 

Earth’s climate is influenced in part by carbon dioxide (CO2) atmospheric concentrations 

(Barnola et al., 1987) which are greatly buffered by the ocean and its biological carbon pump 

(Martin, 1990; Siegenthaler & Sarmiento, 1993). As marine photoautotrophs fix carbon, they 

drive a CO2 flux from the atmosphere into the surface ocean. Most of this carbon is then 

remineralized by hererotrophs and can be respired, transferred to the dissolved organic carbon 

pool or sink. Upon sinking, organisms transfer carbon to deep water and sediments where it 

becomes sequestered. Therefore, the quantity of CO2 removed from the atmosphere depends in 

part on the strength of the ocean’s biological carbon pump. Thus, understanding the processes 

affecting the biological carbon pump is one key to appreciate how the ocean might drive and 

respond to climate change. Broadly, the strength and efficiency of the biological carbon pump is 

driven by physical (light, turbulences, temperature) and chemical (nutrient concentrations and 

bioavailability) forcings (Coles et al., 2017; Louca et al., 2018; Zakem et al., 2020). Physical and 

chemical forcings ultimately select for specific metabolic functionalities, which require different 

nutrients in various proportions. In response, microorganisms’ metabolisms affect nutrients 

distributions and concentrations. Thus, if the nutrient distributions are ultimately shaped by 

global and abiotic processes happening on long time scales (decades to thousands years), biotic 

processes are responsible for changes on much shorter times (hours to weeks). Altogether, 

abiotic and biotic processes lead to complex and highly interconnected nutrient biogeochemical 

cycles that oceanographers seek to understand from a global to a molecular perspective.  

 

P is essential for every living organism as it is part of genetic material (DNA and RNA), lipids, 

proteins, and metabolites involved in energy transfer (de Duve, 1991). Inorganic phosphate (Pi) 

is the most bioavailable form of P, and Pi concentrations are low and can reach undetectable 

levels (< 1 nM) in oligotrophic gyres which account for 40 % of the surface ocean (Polovina et 

al., 2008). In those regions, dissolved organic phosphorus (DOP) can constitute 80-95% of the 

total P pool and sustain over half of the primary production by acting as an alternative source of 

P for marine organisms with the appropriate hydrolytic enzymes (Karl & Björkman, 2015). 

However, very little is known about organic P. With the molybdenum blue method (Murphy & 

Riley, 1962), DOP can be quantified indirectly by difference between soluble reactive 

phosphorus (SRP) and total dissolved phosphorus (TDP). Although those results are extremely 

useful to visualize distributions on a global scale, the limits of detection prevent us from 

capturing finer scale dynamics in the surface ocean (Martiny et al., 2019). Moreover, it does not 

inform us of the various organophosphorus compounds present. Thanks to 31P nuclear magnetic 

resonance (NMR) we know that DOP, which can be further divided in high and low molecular 

weight DOP (HMWDOP and LMWDOP respectively), is mainly constituted of phosphate di- 

and mono-esters, poly-phosphates and phosphonates. HMWDOP is made of approximately 75% 

phosphate, 20% phosphonate and 5% of polyphosphate esters (Figure 1.1) (Kolowith et al., 

2001) but only few key compounds have been identified at a molecular scale (Repeta et al., 

2016) and the rest remains unknown due to the lack of peak resolution. LMWDOP is even more 
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of an unknown as most techniques employed to isolate LMWDOM (mostly through SPE 

extraction) are not efficient for DOP compounds (Johnson, Kido Soule, & Kujawinski, 2017). 

However, thanks to the combination of reverse osmosis and electro dialysis a mixture of 

LMWDOM and HMWDOM was isolated and the 31P NMR spectrum showed that this DOM 

fraction contains the same P functional groups even though phosphonate relative abundance is 

this time around 5-10% (Young & Ingall, 2010). The lack of suitable methods to identify DOP 

compounds on a molecular scale and investigate their biogeochemical cycling is a big obstacle in 

our understanding of DOP bioavailability and the overall P biogeochemical cycling.  

 

 

 
Figure 1.1: 31P NMR spectrum of  HMWDOM collected by ultrafiltration showing the 

distribution of different type of P functional groups. From Repeta et al. 2016. 

 

In this thesis, I present my efforts to gain a better understanding of P biogeochemical cycling 

with a focus on phosphonate in oligotrophic regions. I aimed to take a holistic approach by 

studying organophosphorus on multiple scales in order to shed light on some key questions 

around P and phosphonates. First, I studied phosphonate production and consumption rates in the 

Eastern Mediterranean Sea using different field experiments in order to better understand the 

connection between phosphonates sources and sinks as well as the effect of P concentrations on 

those processes. This work is the focus of Chapter 2. In order to identify more phosphonates 

sources and investigate the cellular function of phosphonates, I studied Prochlorococcus as a 

model microbe and combined culture work with bioinformatics. This is the topic of Chapter 3. 

Finally, I developed a new liquid chromatography coupled to mass spectrometry method to 

enable organophosphorus characterization. I developed that method with the prospects of using it 

to better characterize the breadth of the organophosphorus compounds in marine samples and to 
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be able to start understanding phosphonates biogeochemical cycle, as well as their impact on the 

overall P cycle. This method along with the optimization work is presented in Chapters 4 and 5. 

 

1.2 PHOSPHONATES 

1.2.1 Phosphonate relevance in P biogeochemical cycling 

In the ocean, an important fraction of P in HMWDOP (20-25%) is in the form of phosphonates 

(Kolowith et al., 2001). Phosphonates are organophosphorus compounds with a C-P bond instead 

of the more common C-O-P bond found in phosphates. In phosphonates, the P atom is therefore 

in the +III oxidation state, which drastically changes the chemistry, conformation and 

biochemistry of those compounds. Indeed, phosphonates, due to their tetrahedral conformation, 

can mimic phosphates or carboxylic acids in the active sites of some enzymes and disrupt 

important metabolic reactions. It is for their potency that nature and humans have used 

phosphonates as antibiotics, herbicides, flame retardants, chemical warfare agents etc. since their 

discovery in the 1960s. 

 

 In oligotrophic gyres, where Pi is scarce, phosphonates constitute an important alternative 

source of P. Indeed, the C-P lyase pathway – one of the pathways known to hydrolyze the C-P 

bond of phosphonates - is part of the Pho regulon and is Pi inducible (Chen et al., 1990). 

Moreover, it has been shown that the relative abundance of C-P lyase genes was negatively 

correlated with Pi concentrations (Sosa et al., 2019) which emphasize the importance of 

phosphonate as a P source in the surface oligotrophic ocean. Phosphonate hydrolysis by the C-P 

lyase pathway has been of great interest as the hydrolysis of methylphosphonate, one of the most 

abundant phosphonates in HMWDOM, via this pathway leads to the production of methane 

(Repeta et al., 2016). This process causes an accumulation of methane in the oxic surface ocean - 

previously described as the “oceanic methane paradox” (Kiene, 1991; Reeburgh, 2007) - which 

leads to a flux of methane from the ocean to the atmosphere. Methylphosphonate consumption is 

responsible for ~ 30 to 50 % of methane emissions from the ocean to the atmosphere (Reeburgh, 

2007; Repeta et al., 2016; Weber et al., 2019). In the context of increased anthropogenic forcing, 

it is thought that in the future, surface waters will become more stratified leading to an expansion 

of oligotrophic gyres (Polovina et al., 2008). Increased anthropogenic activities could also 

increase N input, either from anthropogenically fixed N2 (Battye et al., 2017) or enhanced 

microbial N2 fixation due to an increased supply of anthropogenic iron from combustion (Matsui 

et al., 2018). Altogether, this might cause a decrease in Pi concentrations and a consequent 

increase in DOP consumption to meet microbial P requirements. Thus, this could cause an 

increase in methylphosphonate consumption leading to a stronger methane flux to the 

atmosphere. Methane is a potent greenhouse gas with ~ 20-25 times the radiative forcing 

strength per molecule of CO2 (Etminan et al., 2016; Myhre et al., 2013) and is involved in many 

atmospheric chemical reactions resulting in a positive radiative forcing (Lelieveld et al., 1998). 
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Therefore, an increase in methane fluxes from methylphosphonate consumption could cause 

positive feedback on global warming. It is therefore valuable to understand phosphonate cycling 

and for that, the sources of phosphonates and factors influencing phosphonate cycling need to be 

identified. To understand phosphonate cycling, phosphonates sources have to be investigated. All 

phosphonate biosynthetic pathways, with one exception, start with the conversion of 

phosphoenol pyruvate to phosphonopyruvate by the enzyme phosphoenolpyruvate mutase 

(PepM). Very few organisms have been experimentally confirmed as phosphonate producers and 

we cannot account for the large inventory of phosphonates in DOM (Dyhrman et al., 2009; 

Metcalf et al., 2012). 

 

1.2.2 Study of phosphonate at a basin scale 

Very little phosphonate has been detected in marine particulate organic phosphorus (Benitez-

Nelson et al., 2004; Kolowith et al., 2001; Paytan et al., 2003) which may be explained by the 

low rates of phosphonate production measured in the North Atlantic (Ebling et al., 2021; Van 

Mooy et al., 2015) and the apparent lack of phosphonate producers. However, it does not explain 

why phosphonate relative abundance is important in HMWDOM even in low Pi environment 

suggesting that phosphonate accumulates despite their role as an alternative P source. To make 

sense of this discrepancy, more information on which environmental parameters control 

phosphonate biogeochemical cycling is needed. To start understanding those parameters, we 

studied phosphonate cycling on a basin scale and report our findings in Chapter 2. This work was 

done in the ultra-oligotrophic Eastern Mediterranean Sea (EMS) where primary production is 

chronically P-limited (Krom et al., 2010) making this location a perfect end member to study the 

influence of P-limitation on phosphonate cycling. There, we measured rates of Pi uptake and 

turnover as well as phosphonate production rates using 33Pi incubations. Simultaneously, we 

measured methane and ethylene concentrations to obtain air-sea fluxes in order to calculate 

phosphonate consumption rates. We also used a fluorescent C-P lyase assay to measure the 

activity of the C-P lyase pathway. As expected from the metagenomic results obtained by Sosa et 

al. (2019), we found high methane saturation and sea air flux indicative of high 

methylphosphonate via the C-P lyase pathway. Meanwhile, the fluorescent assay showed similar 

patterns to what has been observed in the North Pacific Subtropical Gyre (NPSG) (Granzow et 

al., 2021) with higher activity found at mid depth in the euphotic zone but unlike methane and 

ethylene air-sea fluxes, activities were lower in the EMS than in the NPSG.  Phosphonate 

production rates were lower than in the North Atlantic Subtropical Gyre (Ebling et al., 2021) and 

positively correlated with Pi concentrations indicating that phosphonate production potential is 

lower in P-limited regions. Those production rates were shown to only sustain 25% of the 

phosphonate consumption via C-P lyase calculated with methane saturation implying that the 

phosphonate cycle is not at steady state and suggests that it is decoupled in time and/or space in 

the EMS. These data populate a very sparse database and provide the first indications of which 
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environmental parameters affect the phosphonate biogeochemical cycling and its influence on 

the overall P cycle. 

 

1.2.3 Study of phosphonate at a cellular scale 

In order to identify a model marine microbe to study the synthesis of phosphonates under 

different nutrient conditions and explore their biochemical function, we screened cultured 

microbes looking for one with phosphonate biosynthetic pathway. A previous genomic survey 

showed that this trait was widely distributed among various organisms (Yu et al., 2013). Among 

those, 18 % of the metagenomic reads were attributed to Prochlorococcus which is the most 

abundant photosynthetic organism inhabiting the surface of oligotrophic gyres (Yu et al., 2013). 

Therefore, we thought that Prochlorococcus could be a major phosphonate producer in the 

oligotrophic ocean which could explain in part the abundance of phosphonates in marine DOM. 

In Chapter 3, we show that we found one fully sequenced and culturable strain of 

Prochlorococcus, Prochlorococcus SB, with the full biosynthetic pathway. Using 31P NMR, we 

confirmed that this strain produces phosphonates and allocates at least 40% of cellular P to 

phosphonate production. We looked at the influence of P supply on phosphonate production to 

test the hypothesis that phosphonates were used for P-storage, expecting their relative abundance 

to decrease if the P supply decreased. However, we found that their relative abundance increased 

when the cells became P-limited. We also found that those phosphonates are associated with 

proteins pointing to their potential functions in Prochlorococcus. The discovery of those 

phosphonoproteins was rather surprising as we expected to find the phosphonate associated with 

the sugars as they are in HMWDOM. Using genomic information, we found that phosphonate 

biosynthetic potential was a low abundance but widespread trait among marine microbes. In 

Chapter 3, we discuss the implications of these findings for phosphonate biogeochemical 

cycling. 

 

1.2.4 Molecular level characterization or organic phosphorus in marine samples 

P distributions are well described thanks to the molybdenum blue method combined with the 

different oxidation methods and P functional groups have been identified in the marine 

environment using 31P NMR. However, those methods do not allow us to fully characterize the P 

pools and to study P-compounds bioavailability and cycling. Thus, our understanding of 

organophosphorus cycling is hindered by the lack of molecular methods. To address this issue, 

we developed a new molecular-level method using liquid chromatography coupled to mass 

spectrometry to characterize organophosphorus. To do so, we took an element targeted approach 

inspired from the approach used for siderophores discovery (Boiteau & Repeta, 2015) and used 

liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry 

(ICPMS) and electrospray ionization mass spectrometry (ESIMS). Because of its extremely high 

ionization, ICPMS fully atomizes organic molecules to their constituent elements allowing for an 
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element targeted, here P, approach to organic matter characterization. In contrast, ESIMS is a 

soft ionization technique that applies a charge to organic molecules with little fragmentation, 

enabling the detection of molecular ions. By integrating these two MS datasets, masses 

putatively corresponding to the P compounds can be extracted and their elemental formula 

determined. However, since P does not have a stable isotope, algorithms typically used to align 

ICPMS and ESIMS data cannot be used (Baumeister et al., 2018; Boiteau & Repeta, 2015; 

Durham et al., 2019), and we had to find alternative ways to integrate the data. Here we describe 

an approach using the detection of a product ion common to phosphoesters and phosphonoesters 

to find precursor ions of P-containing compounds in ESIMS. For those precursor ions, elemental 

formulae containing at least one P can be generated and the molecular fragmentation pattern used 

to identify organophosphorus compounds in marine samples. The method required optimization 

work specific to the detection of P in order to improve the sensitivity on each mass spectrometer 

using P-containing standards and this work is presented in Chapter 4. This method was then 

tested on marine samples –both from cultures and natural seawater- and the results are presented 

in Chapter 5. Using this method, we were able to identify organophosphorus compounds in two 

Prochlorococcus strains, Prochlorococcus SB and MIT9313, and in LMWDOM from the spent 

culture medium of Prochlorococcus SB. We also analyzed particulate matter isolated from the 

North Atlantic Ocean showing the potential for this method to be applied to environmental 

samples. We detected phosphite, the reduced form of Pi, in both the Prochlorococcus SB 

LMWDOM sample and the North Atlantic POM samples which is, to our knowledge, the first 

proof that phosphite is present in the marine environment and most likely serves as an alternative 

source of P.  
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CHAPTER 2: PHOSPHONATE BIOGEOCHEMICAL 

CYCLING IN THE EASTERN MEDITERRANEAN SEA 
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2.1 INTRODUCTION 

Phosphorus (P) plays an important role in cellular growth, structure and energy transfer making 

it an essential nutrient for all forms of life (de Duve, 1991). Inorganic phosphate (Pi), found as 

HPO4
2- in seawater, is the most bioavailable form of P but its concentration can be extremely low 

and limiting for primary production in large areas of the ocean. In oligotrophic surface waters, 

dissolved organic phosphorus (DOP) is the most abundant form of P (Karl & Björkman, 2015). 

DOP is mainly composed of phosphate (C-O-P bond), and phosphonate (C-P bond but are 

esterified through a C-O-P) esters (Kolowith et al., 2001) as well as traces of phosphite esters 

(Repeta et al., 2016). To meet their P demand, marine microorganisms have evolved specific 

hydrolytic enzymes that release Pi from these distinct DOP pools (Dyhrman et al., 2007). The 

Eastern Mediterranean Sea (EMS) is an ultra-oligotrophic basin considered to be a primarily P-

limited environment (Krom et al., 2010; Krom et al., 1991). Indeed, in the EMS, Pi 

concentrations are often below detection limits (< 1nM). DOP concentrations are relatively low 

in the EMS compared to other oligotrophic regions, but still constitutes >95% of the P pool (Karl 

& Björkman, 2015; Krom et al., 2005; Lomas et al., 2010). N:P ratios are high throughout the 

water column, and there is a very low N2 fixation (between 0.1 and 0.4 nmol.L-1.d-1 in Spring-

early Summer) (Bonnet et al., 2011; Ibello et al., 2010; Rahav et al., 2013). P-limitation 

responses have been shown experimentally by the enhancement of bacterial production upon the 

addition of Pi (Van Wambeke et al., 2002) and the observation of relatively high alkaline 

phosphatase activity (Duhamel et al., 2011; Mather et al., 2008; Van Wambeke et al., 2002). The 

EMS also has a high relative abundance of genomic markers for high affinity Pi transporters, 

phospholipid substitution (Popendorf et al., 2011), DOP transporters and hydrolytic enzymes 

involved in Pi acquisition such as phoD, phoX, C-P lyase but also phnX (Sosa et al., 2019) 

compared to other oligotrophic regions.  

 

 C-P lyase is a multiprotein complex that degrades a broad suite of alkyl-phosphonates in 

contrast with other phosphonate-specific hydrolytic pathways (White & Metcalf, 2007). C-P 

lyase is part of the Pho regulon (Chen et al., 1990), is Pi-controlled and is present in diverse 

marine microorganisms as a way to access Pi. Recently, it has been shown that the relative 

abundance of C-P lyase genes is negatively correlated with Pi concentrations as it increases from 

the North Pacific Subtropical gyre (NPSG) where Pi concentrations are on the order of hundreds 

nM to the North Atlantic Subtropical Gyre (NASG) where Pi concentrations are on the order of 

tens and the Mediterranean Sea (Sosa et al., 2019) where Pi concentrations are on the order of 

few nM. Hydrolysis of methylphosphonate (MPn) and 2-hydroxyethylphosphonate (2-HEP) 

from HMWDOP via C-P lyase, has been shown to produce methane (CH4) and ethylene (C2H4) 

respectively under aerobic conditions helping to explain the supersaturation of those gases in 

surface waters previously described as the “marine methane paradox” (del Valle & Karl, 2014; 

Karl et al., 2008; Repeta et al., 2016). Therefore, methane and ethylene concentrations and their 

sea-air fluxes can be used to constrain rates of phosphonate consumption. Recently, a fluorescent 

phosphonate - 3-(5-(dimethylamino) naphthalene-1-sulfonamido)propylphosphonic acid (n-
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DDPh) -  has been chemically synthetized and can be used as a substrate to measure C-P lyase 

activity by quantifying the hydrolysis product 3-(5-(dimethylamino)naphthalene-1-

sulfonamido)propane (n-DP) (Granzow et al., 2021). 

 

If phosphonates are being consumed, they have to be produced to compensate for the loss by 

hydrolysis. So far, the only known first step common to all phosphonate biosynthetic pathways is 

the transformation of phosphoenolpyruvate to phosphonopyruvate catalyzed by the 

phosphoenolpyruvate mutase (PepM) enzyme (Horsman & Zechel, 2017; Seidel et al., 1988). 

PepM is present in low abundance in genomes from very diverse lineages of numerically 

abundant microbes like Prochlorococcus and SAR11. It has been shown experimentally that 

Prochlorococcus could be a major source of phosphonate in oligotrophic regions (Chapter 3). 

Phosphonates production rates have been measured in the NASG using incubations with 33Pi.  

Results show a positive relationship between phosphonate production rates and Pi concentration 

implying that regions with high concentrations of Pi (for example along continental margins) 

might be a source of phosphonates whereas regions with low Pi concentrations will support very 

low if any phosphonate production (Ebling et al., 2021; Van Mooy et al., 2015).  

 

By combining measurements of methane and ethylene saturation and air-sea fluxes with the 

fluorimetric assay to directly quantify C-P lyase activity along with 33Pi incubations to assess 

phosphonate production rates in the EMS, we aimed to address two main questions. First, how 

do phosphonate production and consumption rates in the EMS compare to other oligotrophic 

regions? Because of the chronic P-limitation of the EMS, we expect higher phosphonate 

consumption rates as well as lower phosphonate production rates than in other oligotrophic 

regions. Second, is phosphonate cycling unbalanced in the EMS? Due to the expected low 

production and high consumption, we expect a decoupling of phosphonate production and 

consumption in surface waters. 

 

 

2.2 MATERIAL AND METHODS 

2.2.1 Cruise track and sampling 

This study was conducted during the PERLE 2 cruise on board of the R/V Pourquoi Pas? from 

February 26th and March 16th 2019 in the Eastern Mediterranean Sea (Figure 2.1). The cruise left 

from Heraklion (Greece) and went around Crete starting northwest of the island in the Cretean 

Sea, then moving southwest to South East in the Lybian Sea, then back northeast to finish in 

Heraklion. A total of 98 stations were surveyed but our study revolved around 5 stations where 

diverse biogeochemical parameters were measured: Dagon 1 in the well mixed Cretean Sea, 

Dagon 2 and 3 in the more stratified Lybian Sea, Dagon 4 and Tarhun 8 in the most productive 

part of the study area on the edge of the cold Rhodos gyre. All samples were collected from 12 L 

Niskin bottles installed on a rosette equipped with a CTD (CTD SBE 911+) as well as an 
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Underwater Vision Profiler (UVP) and an Acoustic Doppler Current Profiler (ADCP). Because 

of water requirements, water for the analysis of methane and ethylene concentrations, methane 

stable carbon isotopes, and C-P lyase enzymatic activity was sampled from a cast made before 

water for 33P incubations was collected, except at Tarhun 8. At the Dagon stations, water for 

methane and C-P lyase experiments was collected at night, while water for 33P incubations was 

always recovered at 5:00 Eastern European Time (EET; local time). At Tarhun 8, all the water 

was sampled from the same cast which was back on deck at 17:00 EET. 

 

 
Figure 2.1: Cruise track (green dots) and stations sampled (colored dots) during PERLE 2 cruise. 

 

2.2.2 Methane sampling and measurements 

To measure dissolved methane concentrations as well as methane isotopes we used 70 mL and 

500 mL combusted glass bottles respectively. We sampled directly from the Niskin bottles into 

the bottom of the serum bottles using silicon tubing after ensuring that no bubbles were trapped 

in the tube. We overflowed the bottles with twice their volumes and poisoned them with 0.1 mL 

of saturated mercuric chloride solution (7% w/v). We then sealed the bottles with 

polytetrafluoroethylene-lined stoppers and aluminum collars, inverted them a few times and 

stored them in the dark at ambient temperature until analysis in the lab. We collected samples at 

11 depths throughout the water column with a higher resolution near the surface. Even though 

sampling depths varied between stations there were typically 5 m, 20 m, 30 m, 50 m, 75 m, 100 

m, 175 m, 300 m, 500 m, 1000 m and a near bottom sample. We measured dissolved methane 

and ethylene concentrations using gas chromatography (Agilent 7980A; Agilent, USA) equipped 

with a flame ionization detector (FID), a gas stripping and a cryo-trap as previously described 

(Wilson et al., 2017). Briefly, the water samples were first under positive pressure supplied by 

ultra-high purity helium gas, purified downstream by passage through an additional liquid 

nitrogen cryo-trap, from the sample bottles to a purge chamber fitted with a porous frit. Then, the 

dissolved gases were stripped from ~70 mL seawater with ultrahigh purity helium for 10 min and 

1 1 

Dagon 1 

Dagon 
2 

Dagon 3 

Dagon 

Tahrun 8 
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concentrated onto a sample loop (Porapack Q® trap; 80–100 sieve mesh size) cooled in liquid 

nitrogen. The sample loop was then heated allowing the gases to enter the gas chromatograph 

analytical column (30 m × 0.32 mm GS-CarbonPLOT capillary column; J&W Scientific) heated 

at 30°C for 15 minutes. We calibrated the FID daily by injecting different sized loops (0.1, 0.25, 

0.35, 1.0 and 2.0 mL) of a methane standard containing 20.15 ± 1% ppmv of CH4 in pure 

nitrogen gas (Scott-Marrin). All peaks corresponding to CH4 were manually selected and 

integrated on the Agilent ChemStation software. The limits of detection and quantification 

(LODs and LOQs respectively) for methane were 8.3 pmol and 25.4 pmol. LODs and LOQs 

were calculated based on the root mean square error (RMSE) of the gas standard calibration, 

where LOD = 3.29 RMSE, and LOQ = 10 RMSE (Bernal & Guo, 2014). 

 

2.2.3 Methane and ethylene supersaturation and air-sea gas exchange 

Seawater methane concentrations expected from air-sea equilibrium were calculated based on the 

Bunsen solubility model of Wiesenburg and Guinasso (1979) using a mean atmospheric CH4 

concentration of 1942.75 ppb as measured in December 2018 at the ENEA Station for Climate 

Observation (Lampedusa, Italy). Atmospheric CH4 data were obtained from the National 

Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA-ESRL) 

Global Monitoring Division. The extent to which the measured methane concentrations in 

seawater (Cmeas) deviated from the predicted air-sea equilibrium concentrations (Ceq) was 

expressed as the molar differences (Cmeas – Ceq) or ΔCH4. This deviation was also expressed as 

the percent saturation level (Cmeas x 100/Ceq), where 100% corresponds to a null ΔCH4. Air-sea 

flux estimates (F) of methane were calculated with the equation: 

 F=k (Cmeas – Ceq) 

where k is the gas transfer coefficient calculated using the gas exchange wind speed relationship 

by Wanninkhof (2014) and (Cmeas – Ceq) is the average ΔCH4 concentration in the surface mixed 

layer. The k coefficient was calculated using a gas-specific Schmidt number. A seawater CH4 

Schmidt number was calculated as described by Wanninkhof (2014). Wind speed from the ship’s 

anemometer was scaled to 10 m above the sea surface. The average daily wind speed was used to 

estimate k. The depth of the surface mixed layer depth (MLD) was calculated using a 

temperature threshold criterion of -0.2ºC from a reference depth of 10 m (d’Ortenzio et al., 

2005). Positive air-sea fluxes indicated that the ocean is a net source of methane or ethylene to 

the atmosphere. 

 

2.2.4 C-P lyase activity sampling and measurements 

Seawater for C-P lyase activity was sampled on the same casts/depths as samples for gas 

concentrations. We sampled biological triplicates directly from the Niskin bottles using acid 

washed 125 mL polycarbonate bottles after rinsing three times. We then adjusted the volume in 

the bottles to a volume of 120 mL and we spiked 25 μL of 50 μM n-DPPh into each sample to a 
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final concentration of 10.4 nM of substrate. Finally, samples from depths above 300 m were put 

in deck incubators adjusted to the appropriate depth irradiances and constantly flushed with 

surface seawater, while samples from below 300 m were kept in dark incubators set on 16°C for 

depths between 300 and 500 m and 14°C for samples recovered from below 500 m. As we were 

sampling at night, we took precautions to keep samples in the dark until they went into the 

incubators. After 24h, we filtered the samples through 0.2 μm Sterivex filters to remove bacteria. 

The samples were then passed at a rate of 10 mL/min through SPE cartridges (Bond Elute ENV, 

1g) previously activated with methanol. SPE cartridges are washed with 3 column volumes of 

MQ water to reduce salts and refrigerated until sample extraction. Back in the lab, we rinsed the 

columns with 10 mL of MQ water and then extracted the samples using 6 mL of methanol. 

Samples were dried under vacuum at 35oC for 5 h, resuspended into 50 μL of a 1:1 mixture of 

acetonitrile (AcN) in water then transferred into HPLC vials. To separate n-DDPh from the 

product n-DP, we used an HPLC (Agilent 1200 Series, Agilent, Santa Clara, CA) with a C-18 

column (2.1 x 100 mm, 3 μm; Supelco Ascentis® C18) eluted with a linear gradient from 10% 

AcN:90% aqueous 20 mM Pi adjusted to pH of 4.2, to 85% AcN:15% aqueous 20 mM Pi over 

14 min at a flow rate of 0.3 mL min-1. Products were detected by a fluorescence detector set to 

(ex) 341 and (em) 528 nm.  To control for the degradation of n-DP we incubated a sample from 

10 m at Dagon 4 amended with 25 μL of 50 μM n-DP and a sample of filtered seawater amended 

with 25 μL of 50 μM n-DPPh. Those controls were processed the same way as the samples. 

 

2.2.5 33P incubations sampling and treatments 

To measure phosphonate production rates, we conducted incubations using radiolabeled (33P) 

orthophosphoric acid (hereafter 33Pi; American Radiolabeled Chemicals, Inc, USA) using 

samples recovered from 5 and 50 m following a protocol slightly modified from Ebling et al. 

(Ebling et al., 2021; Van Mooy et al., 2015). We used 1 L polycarbonate (PC) bottles to sample 

from the rosette. Then, we used this water to rinse six acid-washed 60 mL PC bottles and to fill 

them with 50 mL of seawater. Among the 6 bottles, 3 were spiked with 5 mL of a 10% 

formaldehyde solution in order to arrest any biological activity (Sohm & Capone, 2010). All 

samples were then spiked with 100 µL of a 33Pi solution to a final activity of 25 µCi. In order to 

measure the specific activity in the bottles, we took 100 µL aliquots out of one biological 

replicate, put it into a 1.5 mL cryovial and stored it at -80°C. Finally, the 5 m and the 50 m 

samples were placed for 3 h and 4.5 h respectively in deck incubators flushed with surface 

seawater and shaded to mimic light at those depths. It should be noted that samples from Dagon 

1 were lost because we spiked 5 µCi and incubated them for an hour. Consequently, not enough 

tracer made it to the cell to see a phosphonate signal. Therefore, for the rest of the stations, we 

spiked each samples as described above. After the incubation period, 5 mL from of each bottle 

were filtered on a 25 mm, 0.2 µm PC membrane filter (Millipore). These filters were reserved to 

measure phosphate uptake rates. The rest of the sample (45 mL) was filtered separately and 

reserved to measure phosphonate production rates. At the end of the filtration, each filter was 
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rinsed with ~10 mL of 0.2 µm filtered seawater, put into 1.5 mL cryovials and stored at -80°C 

until counting or further processing back in the lab. 

 

2.2.6 33P phosphonate separation 

Filters for phosphonate production rate measurements were treated with 1 mL of MQ and 

brought through 3 freeze (LN2)-thaw (boiling water) cycles, each for few minutes in order to lyse 

the cells and release low molecular weight (LMW) phosphonates. Aliquots (700 µL) were 

transferred into new cryovials, dried under vaccum at 30°C overnight and resuspended into 400 

µL MQ. To make sure that the sample was injected consistently during the IC, we added 25 µL 

of a 750 µM MPn solution and monitored the retention time and area of the MPn peak on the 

conductimeter. We manually injected three 100 µL aliquots of the sample serially on a 

preparative ion exchange chromatograph (Thermo Scientific Dionex ISC-2100) equipped with an 

IonPac AS18 column (Thermo Scientific Dionex) and a fraction collector. To separate 

phosphonates from phosphate we eluted the column at 1 mL min-1 with 23 mM aqueous KOH 

for 15 minutes followed by a linear gradient to 90 mM aqueous KOH over 10 min followed by a 

final wash for 10 min with 90 mM aqueous KOH. As phosphonates typically elute between 2 

and 10 minutes (Ebling et al., 2021), the first 10 minutes of the runwere collected and dried 

under vaccum at 60°C, then resuspended in 100 µL of MQ water and transferred it into an HPLC 

vial. To make sure that the sample was injected consistently during the HPLC run, we added 0.5 

µL of a 6 mM adenosine monophosphate (AMP) solution and monitored the retention time and 

area of the AMP peak on the UV detector set to λ=259 nm which correspond to the absorption 

maximum of AMP (Fischer, 1995). Phosphonates were separated using an HPLC (Agilent 1200, 

USA) equipped with two Primesep SB columns (250x2.1 mm, 5 µm particle size; Sielc 

Technologies, USA) in line, a UV detector and a fraction collector. Phosphonates were eluted 

isocratically at 0.2 mL min-1 with 10% AcN:90% aqueous ammonium formate (7 mM adjusted 

to pH = 3 with formic acid). We made serial, replicate 20 µL injections of the sample and 

collected fractions every two minutes, Fractions were transferred into scintillation vials, diluted 

with 10 mL of counting solution (Ultima Gold, Perkin Elmer) and counted each fractions using a 

liquid scintillation counter (LSC; Perkin Elmer). Separations of samples were alternated with 

separations of a corresponding killed controls. Filters collected to measure Pi uptake rates and 

total activities were transferred directly to scintillation vials, 10 mL of counting solution was 

added and the samples counted as described above. 
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2.2.7 33Pi uptake and turnover rates calculations 

To calculate Pi uptake rates and Pi turnover, in situ Pi concentrations were measured on board 

following the protocols developed by Zhang and Chi (J.-Z. Zhang & Chi, 2002) with a detection 

limit of 2 nM and a quantification limit of 8 nM. Briefly, this method uses the same principle as 

the molybdenum blue method (Murphy & Riley, 1962) but here an autoanalyzer is linked to a 1 

m liquid waveguide capillary cell (LWCC; World Precision Instruments, Sarasota, FL, USA). 

The LWCC was coupled to a spectrophotometer (USB 4000 VIS-NIR ; Ocean Optics, Dunedin, 

FL, USA) set to λ = 710 nm instead of the recommended λ = 880 nm due to the limitation of the 

LWCC (J.-Z. Zhang & Chi, 2002). 

First, we subtracted the mean activity of the killed control uptake filters (Akill) from the mean 

activity of the live sample uptake filters (Alive):  

Areal = Alive – Akill. 

Then, we divided this Areal by the total activity (TA) added to the sample so we obtain the total Pi 

uptake (FPi uptake):  

FPi uptale = Areal/TA.  

We then calculated Pi turnover rates (RPi turnover in h-1) by dividing the total FPi uptake by the 

incubation time (t = 3 h or 4.5 h):  

RPi turnover = FPi uptake/t.  

Finally, by multiplying the RPi turnover by the measured in situ Pi concentrations ([Pi]), we 

calculated Pi uptake rates (RPi uptake in nM h-1):  

RPi uptake = RPi turnover x [Pi].  

Errors are calculated using error propagation rules and the standard deviations between 

replicates. 

 

2.2.8 33P phosphonate fraction and production rate calculations 

To calculate the percentage of Pi uptake dedicated to the production of phosphonates (% Phn) 

and phosphonate production rates, samples were separated using IC followed by HPLC. In the 

killed control radiochromatograms, we obtained a peak with a retention time of 47 min which 

was attributed to 33Pi (Chapter 5, Figures 5.12, 5.13 and 5.15). Live samples also have residual 
33Pi. Since the amount of residual 33Pi varied between killed controls, we can assume this 

variation also occurs for live samples. However, activity at 47 min in the live samples could also 

be due to the presence of organic phosphorus compounds, so we do not know the value of 

residual 33Pi in each sample. Therefore, we calculated a % Phn with no correction applied (% 

Phn uncorrected) and a % Phn for which activity at the retention time of Pi was excluded (% 

Phn; Pi corrected).  This approach sets upper and lower boundaries on % Phn. To calculate the 
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%Phn we first calculated the background value (B) by averaging the 33P activity in the killed 

controls (Akill fraction) on each side of the Pi peak:  

B = ∑Akill fraction/Nfractions where Nfractions represents the number of fraction used for the integration. 

We then subtracted the 33P activity in all the live samples fractions (Alive fraction) by this 

background value:  

Areal fraction = Alive fraction - B.  

We then integrated all the 33P fraction activities across the run (APhn tot) for the % Phn 

uncorrected value and excluded the signal between 45 min and 55 min corresponding of the 

elution of Pi (Figure 5, blue boxes) for the Pi corrected % Phn:  

APhn tot = ∑Areal fraction/Nfractions.  

Finally, we divided the integrated value by the total Pi uptake:  

% Phn = APhn tot/ FPi uptake.  

We then multiplied % Phn by the Pi uptake rates to calculate the respective phosphonate 

production rate (RPhn prod in pmol L-1 h-1):  

RPhn prod = % Phn x RPi uptake.  

Standard errors for the % Phn were calculated using 

𝜎 =  √
∑(𝑆𝐷)2

𝑁
 where SD is the standard deviation between each replicate for each 2 minutes 

fraction (n = 2 or 3) and N is the number of fractions used for the integration. Errors for the Phn 

production rates were calculated using error propagation rules using the errors of FPi uptale, RPi 

uptale and % Phn. 

 

Time between the incubations and the sample processing varied so we applied a decay 

correction. This was done calculating the number of days between the incubations and the 

radioactive counting and using a 33P half-life of t1/2 = 25.34 d. 

 

2.3 RESULTS 

2.3.1 Dissolved methane concentrations and stable carbon isotope values 

Methane was mostly oversaturated with respect to the atmosphere from surface waters to ~ 2500 

m (Figure 2). Methane concentrations were between 2.5–5 nM which is similar to published 

values (Lamontagne et al., 1973) and gave methane saturation values ranging from 96% to 

200%. Methane saturation values were generally highest in the upper 300–500 m and decreased 

with depth. At Dagon 1, methane saturation was the highest of all stations and remained 

relatively high throughout the upper 1000 m. At Dagon 3, we measured a high methane 

saturation near 2500 m suggesting a deep source of methane.  

 

Across all sites sampled, the surface mixed layer had an average methane saturation value of 

166% (SE = 3%). This corresponded to an average excess methane concentration (ΔCH4) of 1.6 

nM (SE = 0.1). This ΔCH4 value yields an average methane air-sea flux of 22 μmol m-2 d-1 (SE = 
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5 μmol m-2 d-1) for this region. If we assume that the methane air-sea flux is balanced by 

autochthonous methane production, production values average 295 pM d-1 (SE = 113 pM d-1) in 

the MLD (Table 2.1). 

 

Table 2.1: Mixed layer depth (MLD), wind speed at 10 m above sea level, methane fluxes, production, excess and 

supersaturation values based on the MLD. Uncertainties correspond to the standard deviations between the values 

measured at each depth within the mixed layer. MLD is calculated as the depth where we measure a change in -

0.2°C seawater temperature as preconized by d’Ortenzio et al. (2015). 

 

The δ13C values of methane were measured at stations Dagon 2, Dagon 3, and Dagon 4 (Figure 

2.2). At the three stations, the changes in δ13C methane values with depth were similar. δ13C 

values in the upper 250 m were lighter (-46.9 ‰ and -43.6 ‰), increased (became heavier) at 

mid-depths between 200–500 m, and decreased again below 500 m. At the deepest depths, 

Dagon 2 and 3 δ13CH4 values were similar to the surface ones with δ13CH4 = -43.7 ‰ and -45.8 

‰ respectively whereas Dagon 4 had lighter δ13CH4 values (δ13CH4 = -39.4 ‰; Figure 2). 

  

Station 
MLD 
(m) 

Ship wind 
speed U10 

(m s-1) 

CH4 flux 
(μmol m-2 d-1) 

CH4 MLD 
production 

(pM d-1) 

MLD 
excess CH4 

(nM) 

MLD CH4 
saturation 

(%) 

Dagon 1 302 19.2 ± 2.7 38 ± 6 126 ± 18 1.9 ± 0.3 177 ± 11 

Dagon 2 167 20 ± 3.9 30 ± 5 179 ± 30 1.4 ± 0.2 155 ± 9 

Dagon 3 61 8.7 ± 2.9 6.9 ± 0.00 113 ± 0 1.7 ± 0.00 168 ± 0 

Dagon 4 21 13 ± 5.0 15.1 ± 0.3 717 ± 16 1.62 ± 0.04 166 ± 1 

Tarhun 8 58 15.2 ± 2.8 20 ± 2 342 ± 36 1.6 ± 0.2 164 ± 7 
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Figure 2.2: Vertical profiles of dissolved CH4 concentrations measured in situ (black squares), and equilibrium 

values expected from a 1940 ppb atmosphere (empty squares) and CH4 stable isotope values measured at Dagon 2-4 

(crosses). 
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2.3.2 C-P lyase activity  

The C-P lyase activity profiles in the euphotic zone at Dagon 1 and Tarhun 8 were both 

characterized by sharp changes with depth with a maximum value of 25 pM d-1 at Dagon 1 

(Figure 2.3 inset). Both stations also had a local maximum deeper in the water column which 

occurred at 250 m and 500 m at Dagon 1 and Tarhun 8 respectively. In contrast, C-P lyase 

activities at Dagon 2, 3 and 4 were more constant and varied between 2 pM d-1 and 5 pM d-1 

through the euphotic zone (Figure 2.3 inset). Below 100-150 m, activities stayed low and 

constant between 3 pM d-1 and 1.7 pM d-1 (Figure 2.3). The very large error bars obtained at 

some depths and some stations are due to the leackage of some columns during the filtrations 

which caused a loss of sample in one of the replicate. 

 

 

Figure 2.3: Vertical profiles of C-P lyase activity at the different stations and for the top 300 m (inset). Errors are 

calculated using the standard deviation between the triplicate C-P lyase activities 
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2.3.3 Pi concentrations, uptake and turnover rate 

Pi concentrations in the upper 50 m were highest (22-25 nM) north of Crete (Dagon 1). At the 

other sampling sites, all south of Crete, Pi concentrations were lower (5-12 nM) (Table 2.2). 

 

Pi turnover rates measured with 33Pi were always higher in the surface than at 50 m and varied 

between 0.17 h-1 and 0.27 h-1. At 50 m they varied less and were between 0.14 h-1 and 0.18 h-1. 

The maximum turnover rates at 5 m and 50 m were both observed at Dagon 3, which is also the 

station with the lowest Pi concentrations. The minimum turnover rates were observed where Pi 

was relatively high i.e. 12 nM at 5 m at Tarhun 8 and 10 nM at 50 m at Dagon 4 (Table 2.2). The 

Pi uptake rates were also higher in the surface varying between 1.34 nM h-1 and 2.0 nM h-1. At 

50 m rates varied between 0.92 nM h-1 and 1.91 nM h-1. Interestingly, in spite of having the 

highest turnover rates, the lowest Pi uptake rates were observed at Dagon 3 (Table 2.2).  

 

Table 2.2: Pi concentrations, turnover rates and uptake rates 

Station Depth Pi concentrations (nM) Pi turnover rate (h-1) Pi uptake rate (nM h-1) 

Dagon 2 
5 10 0.19 ± 0.01 1.9 ± 0.1 

50 11 0.173 ± 0.004 1.91 ± 0.05 

Dagon 3 
5 5 0.27 ± 0.02 1.34 ± 0.09 

50 5 0.184 ± 0.005 0.92 ± 0.03 

Dagon 4 
5 9 0.191 ± 0.003 1.72 ± 0.03 

50 10 0.14 ± 0.02 1.4 ± 0.2 

Tarhun 8 
5 12 0.169 ± 0.009 2.0 ± 0.1 

50 11 0.153 ± 0.003 1.68 ± 0.03 

 

2.3.4 Phosphonate production rates 

Phosphonate production rates were calculated by integrating the radiochromatograms after 

background correction normalized to Pi uptake. Due to the presence of 33Pi in the chromatogram 

we calculated two phosphonate production values, one with a Pi correction and one without.  

These values place upper and lower boundaries on phosphonate production rates respectively. 

The corrections for Pi were variable and represented between 78% and 28% of the total 33P 

activity of the samples. 

 

Across all stations, phosphonates represent <1% of the Pi uptake. In general, the highest % Phn 

production and phosphonate production rates were measured in the surface where %Phn varied 

between 0.30% - 0.72% (uncorrected) and 0.22% - 0.40% (Pi corrected). At 50 m values were 

between 0.28% - 0.64% (uncorrected) and 0.08% - 0.35% (Pi corrected) (Table 2.3).  
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Table 2.3: Percentage of phosphate of uptake dedicated to the production of phosphonate (% Phn) and associated 

phosphonate production rates. 

Station 
Depth 

(m) 
% Phn 
uncorr. 

% Phn Pi 
corr. 

Phn production 
rate uncorr. (pM h-1) 

Phn production 
rate Pi corr. (pM h-1) 

Dagon 2 
5 0.68 ± 0.02 0.34 ± 0.01 13 ± 1 6.5 ± 0.5 

50 0.61 ± 0.01 0.31 ± 0.01 9.8 ± 0.3 6.0 ± 0.2 

Dagon 3 
5 0.30 ± 0.01 0.166 ± 0.005 4.0 ± 0.3 2.2 ± 0.2 

50 0.486 ± 0.009 0.349 ± 0.007 4.5 ± 0.2 3.2 ± 0.1 

Dagon 4 
5 0.69 ± 0.02 0.40 ± 0.02 11.8 ± 0.4 6.9 ± 0.3 

50 0.28 ± 0.02 0.08 ± 0.01 3.8 ± 0.7 1.1 ± 0.3 

Tarhun 8 
5 0.72 ± 0.02 0.222 ± 0.008 14.5 ± 0.9 3.1 ± 0.3 

50 0.64* 0.14* 10.7 ± 0.2 2.37 ± 0.05 

* n = 1 

 

2.3.5 Phosphonate diversity across stations 

The phosphonate fraction (0-10 min) from ion chromatography was further separated on 

Primesep SB columns. The resulting chromatograms all contained three distinct groups of 

labeled phosphonates. The first phosphonate group has a retention time between 5 and 15 min, 

the second group between 33 and 39 min and the third group between 39 and 53 min (Figure 

2.4). The incorporation of AMP (detected using a UV detector) spike into the 33P labeled 

samples, allowed for peaks in 33P activity to be directly compared to the retention time of 

phosphonates in our standard mixture (Chapter 4). Consequently, we suspect that the first 33P 

labeled fraction corresponds to N-containing phosphonates similarly to 2-AEPn or other weak 

bases not retained by our column (Chapters 4 and 5). The second group has a retention time 

similar to 2-HEP (~ 40 min) and might correspond to hydroxyalkylphosphonates. The third 

group elutes at retention times typical of MPn and ethylphosphonic acid (EtPn) which might 

mean that alkylphosphonates are present in the sample. As MPn and EtPn elute later than the 

peak in 33P activity, it is likely that some extended hydroxyalkylphosphonates might be present 

as well. The peak from the third phosphonate group tails to 60 min in most samples, which 

indicates that a suite of hydroxyalkylphosphonates might be present in low concentrations. 

Interestingly, we did not find any significant peak matching the retention time of phosphite (64 

min) which suggests that either phosphite is not a major component of reduced P in our POM 

samples or that due to matrix effects, the retention time of phosphite was shifted in these 

samples. 
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The relative abundance of each phosphonate group identified varied between stations and 

between depths especially for the first group of phosphonates. Tarhun 8 is the only station where 

the radiochromatograms do not change with depth (Figure 2.4). 

 

 
Figure 2.4: 33P radiochromatograms of the phosphonate fraction previously isolated using ion chromatography for 

samples at 5 m (solid line) and 50 m (dashed line) at each station. The blue shaded areas highlight the 10 min of the 

radiochromatograms excluded when calculating the Pi corrected % Phn. The sum of the 33P signal is used to 

calculate the % of Pi dedicated to the production and phosphonate and phosphonate production rates. The standard 

mixture ICPMS chromatogram is shown in light grey. Standards elute in the order of 2-aminoethylphosphonic acid 

(6.8 min), AMP (26.4 min), glucose-6-phosphate (33.0 min), 2-HEP (40.0 min), MPn (49.5 min), EtPn (59.3 min) 

and phosphite (64.1 min). Errors bars correspond to the standard deviation between the replicates  

(n= 2 or 3 and n= 1 for Tarhun 8 at 50 m).  

 

 

2.4 DISCUSSION 

2.4.1 Phosphonate consumption and production in the EMS compare to other 

oligotrophic areas 

2.4.1.1 Phosphonate consumption 

The EMS is a place where P chronically limits growth and where genes associated with P-stress 

response are highly abundant (Thingstad, 2005; Van Wambeke et al., 2002). Between the NPSG, 

NASG and the EMS, the EMS has the highest relative abundance of C-P lyase genes (Sosa et al., 

2019). Although higher relative gene abundance does not necessarily translate into higher rates, 
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we expected higher rates of phosphonate consumption via the C-P lyase, and perhaps greater 

accumulation of methane and ethylene leading to a greater saturation in surface waters due to P-

limitation.  

 

During our cruise, average ΔCH4 values in the mixed layer varied between 1.9 nM at Dagon 1 

and 1.4 nM at Dagon 2 which correspond to saturation values of 177 % and 155 % respectively 

(mean value 166 %). Methane air-sea fluxes varied between 38 µmol m-2 d-1 (Dagon 1) and 6.9 

µmol m-2 d-1 (Dagon 3) with a regional/cruise average of 21.7 µmol m-2 d-1 (Table 2.1). Those 

results are much higher than typical values obtained at Station ALOHA (105% and 1.5 µmol m-2 

d-1; Bates et al., 1996; Tilbrook & Karl, 1995; Wilson et al., 2017) or in May in the Sargasso Sea 

where the highest CH4 saturation measured was 119 % and the highest methane air-sea flux 

calculated 1.8 µmol m-2 d-1 (Holmes et al., 2000; Sosa et al., 2020).  Even at a similar wind 

speed, the EMS methane flux was 3-4 times higher than in the NASG. Moreover, we find a 

negative correlation between methane saturation values and Pi concentrations for the top 300 m 

(R = -0.63, p <0.01). These results support the hypothesis that, if all the surface methane comes 

from MPn consumption via C-P lyase, there is more C-P lyase activity when Pi concentrations 

are lower and that there is a higher C-P lyase activity in the EMS than in the NASG and NPSG 

due to the increase in P-limitation. 

 

C-P lyase activities in the EMS varied between 0.4 and 24.5 pM d-1 (mean value of 5.2 pM d-1). 

There are few C-P lyase activity measurements made using n-DDPh and all were made at Station 

ALOHA where Pi concentrations are about an order of magnitude higher than EMS Pi 

concentrations. At Station ALOHA (Pi ~ 100 nM), C-P lyase activities made in January between 

5 and 300 m varied between 0.6 pM d-1 and 5.1 pM d-1. Rates were higher in March (Pi ~ 60 nM) 

and varied between 16.1 and 252.2 pM d-1 and higher still in November (Pi ~ 30 nM) where they 

varied between 324.7 pM d-1  and 776.7 pM d-1 after the period of intense stratification (Granzow 

et al., 2021). Thus, our values are closer to the January conditions despite the much lower Pi 

concentrations and the higher relative abundance of C-P lyase genes in the EMS (Sosa et al., 

2019). If we assume a negative correlation between Pi and C-P lyase activity due to the fact that 

C-P lyase is used to access P from phosphonates, is inhibited by Pi (Imazu et al., 1998; Repeta et 

al., 2016) and seems most active when Pi is low (Chen et al., 1990; Sosa et al., 2019), our C-P 

lyase data suggest that C-P lyase is less active in the EMS than at Station ALOHA for similar Pi 

concentrations. 

 

2.4.1.2 Phosphonate production 

Previous studies in the NASG have noted a positive correlation between phosphonate production 

rates and Pi uptake rates as well as the % Phn and Pi concentrations (Ebling et al., 2021; Van 

Mooy et al., 2015). Moreover, we noted an increase in the relative abundance of putative 

phosphonate producers with depth which may be due to an increase in Pi concentrations (Chapter 

3). As the EMS is chronically P-limited even when Pi concentrations are relatively high (due to a 
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persistent N/P ratio >16), we hypothesized that phosphonate production should be less important 

in the EMS than in the NASG (Ebling et al., 2021; Van Mooy et al., 2015).  

 

Across all stations, Pi concentrations were around 10 nM except for Dagon 3 that had 

concentrations of 5 nM (Table 2.2). From the 33P incubations, we were able to calculate the Pi 

uptake rate and the Pi turnover rate for our samples. The Pi turnover rates varied between      

0.14 h-1 (Dagon 4; 50m) and 0.27 h-1 (Dagon 3; 5m), which means that Pi residence times varied 

between 7.3 and 3.7 h respectively. Our results are in agreement with the EMS Pi residence time 

of 2-4 h measured in May with lower Pi concentrations (<2 nM) (Thingstad, 2005). Regardless 

of the station, residence times at 50 m were always higher than at 5 m as previously observed by 

others in the Sargasso Sea (Ebling et al., 2021; McLaughlin et al., 2013). Similar residence times 

were observed in the NASG where Pi concentrations were 2 to 5 times lower (Ebling et al., 

2021). Pi uptake rates were from 0.92 and 2.0 nM h-1, which was also similar to previous 

measurements in the EMS (1.3-1.6 nM h-1; Thingstad, 2005). 

 

Previous studies have assumed that ion chromatography separates phosphonates from phosphate 

and phosphate esters and used the first 10 minutes corresponding to the phosphonate fraction to 

calculate phosphonate production rates (Ebling et al., 2021; Van Mooy et al., 2015) and we 

followed this approach for our measurements just adding a correction for the presence of Pi in 

our runs (Chapter 5). However, based on Chapter 5, we now know that Pi and ester phosphate 

elutes in the first ten minutes of the ion chromatography run. Similarly, it is not unlikely that 

some phosphonates might elute after those ten minutes. Thus, we recognize that the estimates 

given hereafter might be an approximation of phosphonate production rates and that further work 

is needed to assess the veracity of our estimates. However, due to the consistency in the 

approach, we can still compare them with previous measurements. Regardless of the correction, 

the % of reduced Pi is always <1% of the total Pi uptake, with a surface average of 0.60% 

(uncorrected) and 0.28% (Pi corrected) and deep averages of 0.50% and 0.22% respectively. 

Those values are lower than the % of reduced Pi obtained in the NASG, which varied between 

0.6% to 1.6% for Pi concentrations around 3 nM (Ebling et al., 2021). The averaged phosphonate 

production rates we calculated were 11 pM h-1 and 5 pM h-1 at 5 m and 7 pM h-1 and 3 pM h-1 at 

50 m, whereas phosphonate production rates in the NASG often were above 10 pM h-1. This 

implies that in the EMS, phosphonate production is lower either because there are fewer cells 

capable of producing phosphonates or that cells allocate less of P towards phosphonate 

production. Moreover, for the uncorrected values, we calculated a positive correlation between 

Pi uptake rates and % Phn (R = 0.71, p = 0.05) as well as phosphonate production rates (R = 

0.88, p <0.01). There is also a strong correlation between Pi concentrations and uncorrected % 

Phn (R = 0.57, p = 0.14) and phosphonate production rates (R = 0.71, p = 0.05). Those positive 

correlations are consistent with the hypothesis that microorganisms with access to higher Pi 
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concentrations are able to produce more phosphonate and suggest that low Pi environment limit 

phosphonate production and/or select against microorganisms that produce phosphonates. 

 

2.4.2 Comparison between phosphonate consumption proxies 

The use of a fluorescent phosphonate tracer specific to C-P lyase activity (Granzow et al., 2021) 

allowed us to make an independent measure of phosphonate degradation by the C-P lyase 

enzyme that can be compared to methane fluxes. When comparing the vertical profiles of 

dissolved methane concentrations and the C-P lyase activity, the proxies show similar trends: 

Dagon 1 is the station were C-P lyase activity and % saturation/fluxes are the highest and where 

the maxima are very prominent, Dagon 2 and Tarhun 8 have the lowest values in the surface, 

Dagon 4 does not vary much throughout the profile, and at Tarhun 8 the two maxima co-occur. 

Despite those similarities, the two datasets led us to a contradictory conclusion regarding of the 

C-P lyase activity in the EMS. Indeed, on one hand, the dissolved gas saturations indicate that C-

P lyase is more active in the EMS than in other oligotrophic regions but on the other hand, the C-

P lyase measurements using suggest lower rates of activity compare to the NPSG. 

 

There are several possible explanations for the low activities measured for C-P lyase: 

1) The amount of n-DDPh added as part of the assay was not sufficient to saturate the C-P 

lyase, and therefore measured rates were substrate limited. At Station ALOHA, in the 

NPSG, C-P lyase activities were measured using a concentration of n-DDPh of 5 nM, 

which was shown to be sufficient to saturate C-P lyase (Granzow et al., 2021). As we 

expected a higher C-P lyase activity in the EMS, we used a concentration of n-DDPh of 

10 nM. However, we did not conduct kinetic experiments and it is likely that the 

substrate concentration used was not sufficient to saturate the system, yielding low C-P 

lyase activities. 

2) The incubation time was too short. In the EMS, March is a transition period between 

winter and spring conditions and surface waters are warming up but not yet stratified.  

Microbial production is relatively low. Thus, it is possible that microbial production was 

slow and that, compare to methane (and ethylene) that can accumulate over a longer time 

period (~ 1 month), our incubation time of 24h was too short to capture a similar 

accumulation of n-DP in our incubations. 

3) The sampling time matters. Water for our C-P lyase incubations was always sampled at 

night for the Dagon stations and late afternoon at the station Tarhun 8. These times may 

have not coincided with the times when phosphonate consumers are the most active 

Interestingly, at Station ALOHA, the lowest C-P lyase activities measured so far were 

obtained with water collected at night and might not only be a reflection of the high Pi 

concentrations. Thus, n-DDPh incubations over the diel cycle are recommended. 

4) n-DDPh hydrolysis is slower than MPn (or 2-HEP) via C-P lyase pathway causing a 

faster production of methane (or ethylene) than n-DP. This is very likely as n-DDPh is a 

complex molecule compare to MPn (or 2-HEP) which are some of the simplest 
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phosphonates. This probably influences enzyme affinities and efficiencies leading to 

lower apparent rates of phosphonate consumption by C-P lyase. 

 

To confirm or refute those hypotheses, kinetic measurements should be conducted in order to 

determine the proper amount of n-DDPh to add. The effect of sampling time over the diel cycle 

should be investigated as well as the hydrolysis rates of MPn, 2-HEP compared to n-DDPh. 

Finally, as relative gene abundance and rates are two distinct metrics and are not necessarily 

correlated, we cannot rule out the possibility that our measured C-P lyase activities using n-

DDPh are accurate and that the high saturation of methane and ethylene is caused by additional 

sources of methane in surface waters of the EMS and repeating these measurements in the EMS 

and elsewhere to compare those two approaches is necessary. 

 

2.4.3 Comparison between phosphonate production and consumption via C-P 

lyase 

To compare the rates of phosphonate production and consumption, we averaged phosphonate 

production rates using the values at 5 m and 50 m. Averaged phosphonate production rates are 

lower at Dagon 3 which is in agreement with the lowest Pi concentrations measured at that 

station. Maximum values are obtained at Tarhun 8 for the uncorrected rate and at Dagon 4 for the 

Pi corrected rate (Table 2.4). 

 

Table 2.4: MLD methane production and calculated phosphonate degradation, C-P lyase activity and averaged 

uncorrected and Pi corrected phosphonate production rates all in pM d-1. MLD methane production was calculated 

using the respective fluxes and the MLD (Table 2.1), MLD C-P lyase activity was calculated by averaging C-P lyase 

activities values (in pM d-1) obtained in the ML and the phosphonate production rates (in pM d-1) were calculated 

using the average between phosphonate production rates at 5 m and 50 m. 

Station CH4 production 
Phn 

degradation 
(CH4) 

C-P lyase 
activity 

Phn production 
uncorr. 

Phn production 
Pi corr. 

Dagon 1 126 ± 18 378 ± 54 11 ± 5 N/A N/A 

Dagon 2 179 ± 30 537 ± 90 3.3 ± 0.8 274 ± 12 150 ± 6 

Dagon 3 113 ± 0 339 ± 0 9 ± 2 102 ± 4 65 ± 3 

Dagon 4 717 ± 16 2151 ± 48 4.9 ± 2 283 ± 10 166 ± 7 

Tarhun 8 342 ± 36 1026 ± 108 4 ± 1 302 ± 11 66 ± 4 

 

To calculate the phosphonate consumption rates using the methane air-sea flux data, we made 

the following assumptions: 1) all methane produced in the surface mixed layer is supported 

entirely by the degradation of MPn through the C-P lyase, 2) MPn is 1/3 of the phosphonate 

HMWDOM pool (Repeta et al., 2016) and 3) HMWDOM is the main source of phosphonate for 

the C-P lyase pathway. With these assumptions, we calculated MPn degradation rates between 

113 and 717 pM d-1 (Table 2.4) and total phosphonate consumption rates via C-P lyase between 

0.34 and 2.15 nM d-1. Using the C-P lyase assay, we measured phosphonate consumption rates in 
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the MLD between 11 and 3.3 pM d-1. Those two estimates can be compared to the measured in 

situ phosphonate production rates and we find two different scenari for the EMS at this time of 

year: using the methane values as a proxy, phosphonate production can only support about 25 % 

(12% for the Pi corrected value) of phosphonate consumption which supports the idea of a 

decoupling in time and/or space, and using the C-P lyase assay, only 3-5% of phosphonate 

consumption is needed to sustain phosphonate consumption suggesting that phosphonates might 

accumulate in the EMS at this time of year. 

 

From our results and from previous studies (Ebling et al., 2021; Van Mooy et al., 2015) it seems 

that phosphonate production is positively correlated with Pi concentrations. Thus, phosphonates 

are more likely to be produced at depth, or in coastal waters. In contrast, phosphonate 

consumption via C-P lyase seems to be negatively correlated with Pi concentrations (Granzow et 

al., 2021; Sosa et al., 2019) which is supported by our methane measurements and the obtained 

negative correlation between methane saturation and Pi concentrations. This suggests that the 

EMS should be a place where phosphonate consumption is more intense than in other 

oligotrophic gyres. Therefore, we conclude that the EMS is a place of low phosphonate 

production and intense phosphonate consumption due to the chronic P-limitation and we 

hypothesize that this unbalance is even more pronouced in the summer when Pi concentrations 

drop below 1 nM. We speculate that most of the phosphonates consumed in the EMS were not 

produced locally and could have been transported to the EMS has it has been suggested for DOP 

in the North Atlantic (Reynolds et al., 2014) or that they have been produced when Pi 

concentrations were higher and the P demand lower i.e, in winter. This implies that the 

phosphonate cycle, in this region, is probably decoupled in time and/or space.  

 

 

2.5 CONCLUSION 

Our results are consistent with the hypothesis that MPn/2-HEP cycling is an important source of 

methane/ethylene in Pi depleted ocean regions as predicted by the enrichment of C-P lyase 

bacteria in the Mediterranean Sea (Sosa et al. 2019). The high values of methane and ethylene 

saturation measured in surface waters compared to other oligotrophic regions are consistent with 

the chronic P-limitation in the EMS and the idea of a more intense DOP – including 

phosphonates – remineralization by microorganisms. However, the current data and analysis 

cannot reject the possibility that other sources of methane and ethylene, in addition to MPn and 

2-HEP hydrolysis, are present in the EMS and that phosphonate production and consumption are 

balanced. Additionally, our data indicate that phosphonate production in the EMS is lower than 

in the NASG and that phosphonate production seems to be positively influenced by Pi 

bioavailability.  

 

It should be noted that C-P lyase activities using the fluorescent assay seemed to be abnormally 

low compared to the results obtained in the NPSG especially when considering the higher 
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methane and ethylene saturation values in the EMS compare to the NPSG. We hypothesize that 

these low values are driven by sampling or incubation conditions and recommend that those be 

investigated. We also recommend additional studies using simultaneous measurements of C-P 

lyase activity and Phn production rates to better understand how they relate to each other. 

 

We propose that the elevated methane/ethylene oversaturation in the EMS corresponds to 

enhanced MPn/2-HEP degradation by C-P lyase. It is not clear if the calculated phosphonate 

production rates can support the measured methane flux. This could point to a spatial and/or 

temporal decoupling of phosphonate sources and sinks. The decoupling can be explained by the 

bacterial degradation of phosphonates that have locally accumulated in the DOM pool or 

transported from Pi rich waters into oligotrophic waters. 

 

Our study provides the first ethylene profile as well as the first measurements for C-P lyase 

activity and phosphonate production rates in the EMS, a key region for phosphonate cycling due 

to the chronic P-limitation. Moreover, this is the first time that phosphonate production and 

consumption via C-P lyase have been simultaneously measured which raises some interesting 

questions on the coupling or decoupling of the phosphonate cycle in oligotrophic regions. More 

experiments are needed to confirm or refute some of our hypotheses.  
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3.1 PREFACE 

This work is the results of an extensive and close collaboration with Shane L. Hogle who 

performed and interpreted all the bioinformatic analyses. My intellectual, experimental and 

editorial contribution are specified in details hereafter. 

Experimentally, I grew Prochlorococcus SB and MIT9301 cultures to assess whether the 

presence/absence of the phosphonate biosynthetic pathway in those strains genomes caused the 

presence/absence of phosphonate in the cells respectively. I also separated the macromolecular 

fractions of Prochlorococcus SB to prove that phosphonates were associated with the protein 

fraction in this strain. As an additional proof, I purified Prochlorococcus SB following a 

different protocol. For each of the cultures and the experiments conducted after, I acquired the 
31P-NMR spectra to monitor the presence of phosphonates and interpreted them. As a result of 

those analyses, I wrote the paragraphs about phosphonates in Prochlorococcus cultures (3.4.3), 

phosphonates as a phosphorus storage (3.4.4), the macromolecular form of phosphonate in 

Prochlorococcus SB (3.4.5) the concluding paragraph (3.5) as well as extensive parts of the 

abstract, the introduction, and the potential role of phosphonate associated with proteins (3.4.6). I 

also edited the remaining paragraphs. Additionally, I designed Figures 3.4 and 3.6, the 

Supplementary Figure S3.6 and generated Supplementary Tables S3.3 and S3.4. As a lead on this 

project, I did not only contribute intellectually to the experiments listed above but also suggested 

that we look, using bioinformatics, at 1) the relationships between the abundance of phosphonate 

producers and environmental parameters (within the same location or between different ocean 

basins) 2) genes surrounding the phosphonate biosynthetic pathway in the Prochlorococcus SB 

genome to get more context and be able to speculate about phosphonate function in this strain as 

well as link those information with phosphonate macromolecular form. 

 

3.2 ABSTRACT 

Phosphonates, organic compounds with a C-P bond, constitute 20-25% of phosphorus in high 

molecular weight dissolved organic matter and are a significant phosphorus source for marine 

microbes. However, little is known about phosphonate sources, biological function, or 

biogeochemical cycling. Here, we determine the biogeographic distribution and prevalence of 

phosphonate biosynthesis potential using thousands of genomes and metagenomes from the 

upper 250 meters of the global ocean. Potential phosphonate producers are taxonomically 

diverse, occur in widely distributed and abundant marine lineages (including SAR11 and 

Prochlorococcus) and their abundance increases with depth. Within those lineages, phosphonate 

biosynthesis and catabolism pathways are mutually exclusive, indicating functional niche 

partitioning of organic phosphorus cycling in the marine microbiome. Surprisingly, one strain of 

Prochlorococcus (SB) can allocate more than 40% of its cellular P-quota towards phosphonate 

production. Chemical analyses and genomic evidence suggest that phosphonates in this strain are 

incorporated into surface layer glycoproteins that may act to reduce mortality from grazing or 

viral infection. Although phosphonate production is a low-frequency trait in Prochlorococcus 
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populations (~ 5% of genomes), experimentally derived production rates suggest that 

Prochlorococcus could produce a significant fraction of the total phosphonate in the oligotrophic 

surface ocean. These results underscore the global biogeochemical impact of even relatively rare 

functional traits in abundant groups like Prochlorococcus and SAR11. 

 

3.3 INTRODUCTION 

In nutrient-impoverished mid-ocean gyres, microbial demand for phosphorus (P) is often so high 

that concentrations of inorganic phosphate are drawn down to sub nanomolar levels. Under these 

conditions, up to half of microbial P demand is met through the uptake and metabolism of P-

containing dissolved organic matter (Karl & Björkman, 2015). Dissolved organic phosphorus 

(DOP) is a complex, poorly characterized mixture of high and low molecular weight (HMW and 

LMW) phosphate and phosphonate esters. Phosphate esters are common in nucleic acids and 

lipids, and are synthesized by all marine microbes. The presence of phosphate esters in DOP is 

easily explained. In contrast, phosphonates, reduced P compounds with a stable, covalent C-P 

bond (Horsman & Zechel, 2017), are a poorly-understood component of marine DOP, but 

nevertheless constitute 20-25% of the P in HMWDOP (Kolowith et al., 2001). 

 

All phosphonate production pathways are initially catalyzed through the same steps involving the 

enzymes PepM, Ppd, and Pdh (Horsman & Zechel, 2017) (Figure 3.1A). Despite these shared 

catalytic steps, the chemical diversity of phosphonates is extensive and includes small bioactive 

metabolites as well as macromolecules such as lipids, polysaccharides, and proteins. The 

functional roles and macromolecular forms of phosphonates in marine microbes are unknown. In 

contrast, phosphonate degradation in the marine environment is better understood (Martinez et 

al., 2010; Repeta et al., 2016; Sosa et al., 2019a) (Figure 3.1B), and is correlated with phosphate 

availability (Coleman & Chisholm, 2010; Feingersch et al., 2012; Sosa et al., 2019b).  

 

Despite the high abundance of phosphonates in DOP, only two bacterioplankton species 

(members of bacteria and archaea) have been experimentally confirmed as phosphonate 

producers: Trichodesmium erythraeum, a nitrogen-fixing cyanobacterium (Dyhrman et al., 

2009), and Nitrosopumilus maritimus from the Marine Group I (MGI) Thaumarchaeota (Metcalf 

et al., 2012). Trichodesmium has a relatively restricted geographic range (Breitbarth et al., 2007) 

and global abundance, while MGI Thaumarcheota are abundant in the mesopelagic, but 

comparatively rare in sunlit surface waters (Santoro et al., 2019). Moreover, Candidatus 

Nitrosopelagicus brevis, the only characterized pelagic representative of MGI Thaumarcheota, 

lacks phosphonate biosynthesis genes and is significantly more abundant than Nitrosopumilus in 

the open ocean (Santoro et al., 2015). It is unlikely that phosphonate production by 

Trichodesmium and Thaumarcheota alone is enough to support the large and ubiquitous 

inventory of phosphonates observed in the ocean euphotic zone. Metagenomic surveys of PepM 

have estimated that between 8-16% of all marine microbes in the surface ocean may be capable 
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of producing phosphonates (Metcalf et al., 2012; X. Yu et al., 2013), but the taxonomic 

composition and ecological niches of phosphonate producers remain unclear. 

 

Much about the biology, ecology, and biogeochemistry of marine phosphonates remains to be 

discovered. Recent expansions of marine genomic data (Berube et al., 2018; Biller et al., 2018; 

Karsenti et al., 2011; Pachiadaki et al., 2019), as well as advances in chemical analyses, makes it 

possible to systematically investigate which organisms are producing the enigmatic phosphonate 

pool in the oceans. Here we combine laboratory studies and chemical analyses with comparative 

genomic and metagenomic analyses to investigate the prevalence, taxonomic distribution, and 

potential function of phosphonate biosynthesis in the surface ocean. We find that phosphonate 

biosynthesis genes are found in a wide variety of marine microbes including members of the two 

most abundant groups in the surface ocean: Prochlorococcus and SAR11. We experimentally 

demonstrate that a Prochlorococcus strain produces phosphonates almost exclusively in the 

HMW protein fraction and, surprisingly, these phosphonoproteins account for over 40% of total 

cellular phosphorus. 

 

 
Figure 3.1: Phosphonates production and consumption in the marine environment 

A) Phosphonate biosynthesis includes three key steps; (1) isomerization of phosphoenolpyruvate (PEP) to 

phosphonopyruvate (PnPy) via phosphoenolpyruvate mutase (PepM), (2) decarboxylation of PnPy to 

phosphonoacetaldehyde (PnAa) via phosphonopyruvate decarboxylase (Ppd), and (3) dehydrogenation of PnAa to 2-

hydroxyethylphosphonic acid (2-HEP) via phosphonoacetaldehyde dehydrogenase (Pdh). 2-HEP can be further 

transformed by methylphosphonate synthase (MpnS), to produce methylphosphonate (MPn), a substrate for aerobic 

marine methane production (Repeta et al., 2016). Phosphonates in the marine environment are likely used to 

decorate macromolecules like glycans and glycoproteins (Horsman & Zechel, 2017; Metcalf et al., 2012; Rice et al., 

2019). B) Phosphonate degradation via cleavage of the C-P bond proceeds through at least three mechanisms: 

hydrolytic (2AEP, named for the representative 2-aminoethylphosphate degradation pathway via PhnWX), radical 

(C-P lyase), and oxidative (PhnYZ). The proposed HpnWXZ pathway is likely oxidative proceeding via the 

oxidative deamination of an aminophosphonate similar in structure to 2-aminoethylphosphate (Lahiri et al., 2006). 

We find the HpnWXZ pathway to be rare in marine genomes. 
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3.4 RESULTS AND DISCUSSION 

3.4.1 The taxonomic distribution of phosphonate producers and consumers 

How widespread is the ability to produce and consume phosphonates among diverse marine 

microbes? Prior efforts to address this question have relied on mapping metagenomic reads to 

key marker genes such as the PepM found in phosphonate producers (X. Yu et al., 2013) or the 

C-P lyase multi-enzymatic cluster and other catabolic pathway proteins found in phosphonate 

consumers (Feingersch et al., 2012; Martinez et al., 2010; Sosa et al., 2019a; Sosa et al., 2019b). 

Here we expand on prior read recruitment methods and use a genome-resolved approach with 

thousands of randomly sampled single-cell amplified genomes (SAGs) from the Global Ocean 

Reference Genome (GORG-Tropics) dataset (Pachiadaki et al., 2019). We found that the 

taxonomic richness of phosphonate producers is higher than for consumers (Supplementary Note 

S3.1, Figure 3.2A). However, the taxonomic evenness of producers was low, with over 60% of 

them assigned to SAR11 clades. In contrast, phosphonate consumers were more evenly 

distributed, but over 90% of SAGs came from just four taxonomic orders: Cyanobacteria, 

Pelagibacterales, Rhodobacterales and HIMB59 (Figure 3.2B). SAR11 are small aquatic 

chemoheterotrophic Alphaproteobacteria estimated to constitute up to half of the total plankton 

cells in the surface ocean (R. M. Morris et al., 2002), and Prochlorococcus are unicellular 

photosynthetic picocyanobacteria that numerically dominate the euphotic zone of subtropical and 

tropical oligotrophic areas (Biller et al., 2015). As the two most numerically abundant and 

cosmopolitan marine groups, these two groups alone are likely important phosphonate producers 

across subtropical/tropical surface ocean.  
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Figure 3.2: Genomic potential for phosphonate production and consumption in nearly 13000 single-cell genomes 

from the tropical ocean 

Flow diagrams represent the taxonomic hierarchy of A) phosphonate producers and B) consumers from the GORG-

Tropics database (Pachiadaki et al., 2019). Flows of the same color spanning multiple taxonomic ranks indicate that 

the higher ranks are entirely subsumed by the lowest rank. For example, all cyanobacterial genomes were from the 

Prochlorococcus genus. Otherwise each partition at each taxonomic level is colored uniquely. For the quantitative 

comparison of GORG-Tropics sample BATS248 was randomly subsampled to the median depth of the other 27 

samples. Letters at each taxonomic rank refer to key marine archaea/bacterial groups (key left) and bar size is 

proportional to relative abundance. C) The proportion of phosphonate producers significantly increases with depth in 

the 28 GORG-Tropics samples. Each point is a sample (median SAGs = 241). Producers are slightly more common 

in the Atlantic than the Pacific [Beta-binomial regression; Depth - Est=0.0036, Err=0.0014, t=2.604, P=0.02; Ocean 

- Est=-0.30, Err=0.14, t=-2.08, P=0.05; link=logit; log L=-78.179, df=4, resid df=24]. D) Phosphonate consumers 

are significantly more abundant in the Atlantic than the Pacific [Beta-binomial regression; Ocean - Est=-1.04, 

Err=0.27, t=-3.81, P=7e-4; link=logit; log L = -80.425, df=4, resid df=24]. Proportions [%] are total producers or 

consumers divided by the total number GORG assemblies and are corrected using the estimated sequence recovery 

from assemblies (see methods).  
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3.4.2 The abundance of phosphonate producing and consuming microbes in the 

oceans 

We leveraged the GORG-Tropics reference database to quantify the proportion of cells in the 

surface ocean that are phosphonate consumers or producers. GORG-Tropics utilized a 

randomized cell selection strategy for generating SAGs – thus, minimizing issues related to 

functional or taxonomic biases more common to targeted genome sequencing. We estimate that, 

globally, 15% of all bacterioplankton in the upper 100 meters are potential phosphonate 

producers in the GORG-tropics database. Compared to bacteria, phosphonate producing archaea 

were rare in the euphotic zone (< 3% of all GORG producers) and phosphonate consuming 

archaea were absent (Figure 3.2A and B). Planktonic archaea comprised only 14% of GORG-

Tropics with 80% of archaea from Marine Group II and 20% from Marine Group I. However, 

37% of Marine Group I SAGs contained phosphonate biosynthesis genes. All phosphonate 

producing MGI archaea were isolated from below 100 meters and included both Nitrosopumilus 

(20%) and Nitrosopelagicus (80%). Thus, while archaea may be important phosphonate 

producers at the base of the euphotic zone and mesopelagic, bacterial producers dominate in the 

sunlit ocean. Indeed, SAR11 (order Pelagibacterales) is by far the most abundant producer. 18% 

of all SAR11 SAGs have phosphonate biosynthesis potential and constitute over 60% of all 

potential phosphonate producer SAGs (Figure 3.2A). Most phosphonate producers are from the 

surface SAR11 clades 1a.3, IIa.1 and IIa.2, and the mesopelagic IIb clade (Figure 3.2A, 

Supplementary Figure S3.1). The potential for methylphosphonate production is rare among the 

SAGs (< 1% of genomes contain MpnS) but 80% of the rare occurrences were in SAR11 

genomes. Prochlorococcus constitutes 6% of all phosphonate producers (Figure 3.2A) and 3% of 

all SAGs in the dataset which is significantly less than the 20% estimated from metagenome 

recruitment in other studies (X. Yu et al., 2013). Most Prochlorococcus phosphonate producers 

are from the surface high-light (HL) clades (Supplementary Figure S3.1). The percentage of 

bacterioplankton that can produce (15%) and consume (10%) phosphonates is similar across the 

global surface ocean. On average there are three times more SAR11 phosphonate producers 

(18%) than consumers (5%), while for Prochlorococcus the trend is reversed – 6% producers 

versus 16% consumers (Supplementary Figure S3.2). SAR11 has been implicated as a major 

contributor to marine surface water methane supersaturation due to the metabolism of 

methylphosphonate (Carini et al., 2014). Our results imply that SAR11 has an even more 

important global role as a phosphonate producer. 

 

We identified two major trends for producers and consumers in GORG-Tropics: 1) the 

abundance of phosphonate producers significantly increases with depth and is slightly higher in 

the Atlantic Ocean compared with the Pacific (Figure 3.2C) and 2) consistent with past reports 

(Feingersch et al., 2012; Sosa et al., 2019b) phosphonate consumers are significantly more 

abundant in the Atlantic Ocean (Figure 2D). The same trends broadly held for SAR11 and 

Prochlorococcus consumers (Supplementary Figure S3.2). These trands motivated us to look for 

relationships between phosphonate producers and environmental variables using a metagenomic 
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dataset encompassing nearly 700 metagenomes from bioGEOTRACES, Tara Oceans, and two 

long-term ocean time-series sites (Biller et al., 2018; Karsenti et al., 2011; Schlitzer et al., 2018). 

We determined the relative abundance of the PepM in the upper 250 meters of the global ocean 

using read recruitment to PepM and conserved marker genes (see methods). We estimate that the 

median proportion of phosphonate producers in the global ocean is 6%, 10%, and 15% of 

Prochlorococcus, SAR11, and bacterioplankton genomes, respectively (Figure 3.3A), which 

agrees well with observations from GORG-Tropics. The discrepancy for SAR11 is likely 

explained by the low estimated sensitivity (60%) for our method to SAR11 (Supplementary Note 

S3.5). Assuming we missed 40% of SAR11 PepM sequences, the corrected fraction of SAR11 is 

17% which, again, agrees well with results from GORG. There was no statistically significant 

difference in producer abundance between ocean basins (Supplementary Figure S3.3A), and no 

significant time-averaged difference between the Hawaii Ocean Time-series (HOT) and the 

Bermuda Atlantic Time Series (BATS) (Supplementary Figure S4), two long- running time 

series representative of the N. Pacific and N. Atlantic subtropical gyres (Karl & Lukas, 1996; 

Steinberg et al., 2001). However, phosphonate producers have a significant seasonal dependence 

at the surface at BATS where producer abundance peaks during winter (November through the 

following March), which coincides with the peak of wind-driven deep mixing (Supplementary 

Figure S3.4, Supplementary Note S3.2). Overall, the global median abundance for phosphonate 

producers is modest (15% of total sequenced genomes) and largely stable across the global 

subtropical surface ocean.  

 

Are there particular ocean features that may select for the ability of a microbe to produce 

phosphonate? We used machine learning approaches (Wright & Ziegler, 2015) (Supplementary 

Note S3.6) and parametric regression (B. D. Martin et al., 2020) (Supplementary Table S3.1) to 

identify biotic and chemical/physical factors driving the distributions of Prochlorococcus, 

SAR11, and total bacterioplankton phosphonate producers (Supplementary Figure S3). 

Generally, we find that the greatest amount of phosphonate producer variation is explained by 

multiple depth-dependent biotic factors (Figure 3.3B, Supplementary Figure S3.3 and S3.5, 

Supplementary Note S3). In surface samples shallower than 100 m, a median of 15% of 

bacterioplankton can produce phosphonates, while below 100 m that proportion steadily 

increases to nearly 30-40% at 200 m. This 100 m break coincides with the nutrient-driven 

“genomic transition zone” i.e. a zone where bacteria and archaea tend to have larger genomes 

with higher GC content, and proteins with higher N/C ratios (Mende et al., 2017), and implies 

that nutrient availability is an important factor setting the relative abundance of phosphonate 

producers. Overall it appears that a modest proportion of highly abundant oligotrophic “surface” 

bacterial clades including SAR11 Ia.3 and HL Prochlorococcus are capable of producing 

phosphonates in the upper 50 to 100 m and contribute to an endemic phosphonate pool there. 

Below 100 m, the genetic potential for phosphonate production shifts to other groups including 

SAR86, SAR11 IIb, the OM1 clade, MGI Archaea and the ZD0417 clade (Milici et al., 2017). It 

may be that deep producers are sometimes uplifted into the upper 100 m of the euphotic zone 
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during seasonal mixing events or ephemeral upwelling events like cyclonic mesoscale eddies 

(Barone et al., 2019; Nelson et al., 2014).  

 

Our genomic and metagenomic results offer a number of predictions relevant to the 

biogeochemistry of marine phosphonates. First, the vertical distribution of phosphonate 

producers in the upper 250 meters is not even, with a distinct and rapid increase in producers 

beginning at 100 m depth. Bulk phosphonate production rates are similarly stratified (Van Mooy 

et al., 2015) which implies that deeper phosphonate pools may be important for the total 

phosphonate balance in the sunlit surface ocean. Second, unlike for phosphonate consumers 

(Sosa et al., 2019b), phosphate concentration does not appear to have a strong selective effect on 

the biogeography of phosphonate producers in surface waters. However, this might be due to our 

statistical approach not having sufficient power to detect a true difference between ocean regions 

since the mean proportions we compare are small with relatively high variability. Further 

investigation into ocean basin differences in phosphonate production potential is warranted. 

Finally, the median proportion of bacteria and archaea that can produce phosphonates in the 

upper 100 meters of the surface ocean appears to be relatively small (15% of bacterioplankton 

cells). Since phosphonates appear to be relatively labile and rapidly cycled (Repeta et al., 2016), 

this implies that cellular production rates would need to be quite high to account for the large 

global inventory of phosphonates in marine dissolved organic matter. 

 

 
Figure 3.3: Phosphonate biosynthesis genes in surface (< 300 meters) ocean metagenomes  

A) Phosphonate producers as the percentage of all bacterioplankton genomes estimated from combined 

BioGEOTRACES and Tara Oceans samples for Prochlorococcus, SAR11, and all Bacteria and Archaea combined. 

Black line is the median value for n metagenome samples for each taxonomic group. B) The relationship between 

depth and percent phosphonate producers in the global ocean. The blue line is a simple Loess regression fit to the 

data. Norm. PepM is the normalized fraction genomes with PepM and is estimated as the length-normalized 

abundance of PepM divided by length-normalized abundance of taxon-specific marker genes.  
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3.4.3 Phosphonate production in Prochlorococcus SB 

To better understand how much cellular P is allocated to phosphonate production and with which 

macromolecules they are associated, we studied phosphonate production by an abundant, 

widespread, and experimentally tractable marine microbe. We found only one cultured isolate 

that meets these criteria: Prochlorococcus SB. Since there is as yet no genetic system for 

knockout mutants in Prochlorococcus, we used Prochlorococcus MIT9301, a closely related 

strain lacking the phosphonate biosynthesis cluster, as a control and analyzed cell pellets from 

each strain using 31P nuclear magnetic resonance spectroscopy (31P-NMR). As expected, the 31P-

NMR spectrum of MIT9301 cells shows that all P is allocated to phosphate and pyrophosphate 

esters (-12 to 12 ppm; Figure 3.4B). By contrast, 31P-NMR spectrum of Prochlorococcus SB 

cells displays strong signals between both -10 and 12 ppm from phosphate and pyrophosphate 

esters, and between 18 and 27 ppm from phosphonates (Quin & Williams, 2004) (Figure 3.4B). 

Integration of the phosphate and phosphonate ester regions of the NMR spectrum yields a 

cellular ratio of Phosphonate/Phosphate of 0.72. (Figure 3.4B; Supplementary Table S3.3) and 

under nutrient replete conditions Prochlorococcus SB cells allocate ~ 40% of their cellular P to 

phosphonate production.  
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Figure 3.4: Phosphonate production by Prochlorococcus cultures 

A) Prochlorococcus SB growth curve showing exponential phase (black) and stationary phase (grey) due to P-

limitation. Triangle data points correspond to the days cultures were harvested in the different growth phases. Error 

bars are calculated based on the standard deviation between the biological duplicates. The inset represents the 

Prochlorococcus SB growth curve in medium with N/P = 350/1 in which inorganic phosphate was added on Day 3 

to reach N/P = 16/1. B) 31P-NMR spectra of Prochlorococcus SB whole cells harvested in exponential phase (P-

replete) and in stationary phase (P-limited), the negative control Prochlorococcus MIT9301 harvested in exponential 

phase (P-replete) and the insoluble protein fraction of Prochlorococcus SB harvested in exponential growth phase. 

The phosphonate and phosphate regions of the spectra are indicated in red and blue respectively. While 

Prochlorococcus SB produces phosphonate and doubles its relative phosphonate content in P-limited stationary 

phase, the negative control, MIT9301 only produces phosphates. The histogram (inset) displays the mean 

Phosphonate/Phosphate ratios for Prochlorococcus SB cells harvested in exponential (black) and stationary (grey) 

phase calculated by integrating the phosphonate and phosphate peaks in Prochlorococcus SB whole cell 31P-NMR 

spectra obtained for the duplicates in each growth phase. Error bars correspond to the standard deviation of the 

biological replicate phosphonate/phosphate ratio values with n=2. 
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3.4.4 Phosphonates and P storage 

The physiological and ecological roles of phosphonates are poorly understood. However, the 

presence of PepM among diverse genome-streamlined bacteria and the high relative abundance 

of cellular phosphonates in Prochlorococcus SB both suggest that phosphonates serve an 

important function for some microbes inhabiting oligotrophic marine waters. They may serve as 

an intra-cellular P-storage reservoir (Metcalf & van der Donk, 2009), for example. In highly 

stratified oligotrophic waters, nutrient supply to phytoplankton is episodic; driven by mixing 

events that bring nutrient-rich waters from below the surface into the euphotic zone. To 

synchronize their need for nutrients with an episodic supply, some microbes take up excess P 

during periods of high nutrient concentrations and sequester them internally (P. Martin et al., 

2014; Temperton et al., 2011). When nutrient concentrations fall, internal P-stores are 

metabolized to release inorganic phosphate. However, the Prochlorococcus SB genome lacks 

phosphonate degradation pathways including C-P lyase, phosphonate hydrolytic pathways 

(Horsman & Zechel, 2017), and PhnYZ an oxidative pathway recently discovered in 

Prochlorococcus (Sosa et al., 2019a). Recognizing that Prochlorococcus SB might use an 

uncharacterized pathway to repurpose P from phosphonates, we tested the P-storage hypothesis 

by comparing phosphonate production in cultures grown under P-starved and P-replete 

conditions (Figure 3.4A), expecting that if phosphonates were used for P-storage, P-limitation 

would reduce the allocation of P to phosphonates. However, we found that Prochlorococcus SB 

allocates significantly more P to phosphonates relative to phosphates upon entering P-limited 

stationary phase growth (Phosphonate/Phosphate = 2.4) than during P-replete exponential growth 

(Phosphonate/Phosphate = 0.72; Figure 3.4B). Cellular phosphorus to carbon (C/P) was 

relatively stable across exponential and stationary phases (145 and 131 respectively) and changes 

in Phosphonate/Phosphate were driven by a decrease in phosphate ester content during P-

starvation, with continued production of phosphonates (Supplementary Figure S3.6, 

Supplementary Table S3.4). As Prochlorococcus SB becomes increasingly P starved, the 

regulation of the cellular phosphate and phosphonate pools becomes decoupled from exponential 

growth conditions. While reallocation of P away from labile phosphates is one mechanism by 

which Prochlorococcus adapts to P-starvation (Van Mooy et al.,, 2006), Prochlorococcus SB 

appears to be less able to regulate phosphonate production or repurpose P in phosphonates 

towards other cellular functions. Both scenarios are inconsistent with phosphonates as a P-

storage reservoir in Prochlorococcus SB, and P locked into phosphonates is not internally 

recycled to sustain growth during periods of P-limitation. 

 

This conclusion is reinforced by our comparative genomic analysis. Indeed, in addition to 

biosynthesis genes, we searched for all known phosphonate degradation pathways (Figure 3.1) in 

the GORG-Tropics and MARMICRODB (Becker et al., 2019) genome datasets and we found 

that less than 1% of all genomes encoding at least one marker gene implicated in phosphonate 

metabolism are both producers and consumers (Figure 3.5). This mutual exclusivity occurs at the 

species/strain level - for example within HL Prochlorococcus - which implies strong functional 
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differentiation between even closely related marine microbes. This suggests fine-scale niche 

partitioning between phosphonate producers and consumers in the environment and may reflect 

functional incompatibility or ecological/evolutionary tradeoffs between biosynthesis and 

catabolism. It also implies that if phosphonates were a widespread storage strategy, most 

phosphonate producers would have no way to reclaim P from phosphonates during times of 

need. 

 

 
Figure 3.5: Distribution of phosphonate biosynthesis and utilization pathways in bacterial genomes 

Phylogeny is constructed from 120 concatenated, single-copy marker genes from 1890 bacterial genomes from 

MARMICRODB containing either a phosphonate catabolism or phosphonate biosynthesis pathway. Scale bar is 0.2 

amino acid substitution and the tree is unrooted. Monophyletic taxonomic groups with marine representatives are 

highlighted. The presence of four different phosphonate catabolic pathways (Hpn: Phosphonate catabolism via 

HpnWXZ, PhnYZ: phosphite or methylphosphonate catabolism via PhnYZ (Sosa et al., 2019a), 2AEP: 2-

aminoethylphosphonate catabolism via phosphonoacetate, CPLyase: multisubunit C-P lyase system) is displayed in 

blue on an inner ring while phosphonate/methylphosphonate biosynthesis pathways (PepM and MpnS) are shown in 

red on the middle ring. The outer summary ring indicates whether a genome contains at least one catabolic pathway 

(blue), a phosphonate biosynthesis pathway (red), or both (dark grey, < 0.5% of all genomes). For simplification, the 

MpnS category also includes the functionally related enzyme HepDI (Born et al., 2017). 
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3.4.5 Macromolecular forms of phosphonates 

Past studies have linked the biochemical function of phosphonates to their macromolecular form. 

For example, incorporation of phosphonates into membrane lipids or capsular polysaccharides 

may protect cells against phospholipase activity or inhibit phage attachment (Coyne et al., 2000; 

Hilderbrand, 2018; Wilkinson & Holmes, 1979). Therefore, we next asked what macromolecular 

form do phosphonates take in Prochlorococcus SB? Phosphonate biosynthesis genes in most 

Prochlorococcus and SAR11 genomes are surrounded with genes coding for glycosylating 

enzymes predicted to be involved in the biosynthesis of large extracellular polysaccharide 

structures, i.e. bacterial capsules (Supplementary Figure S3.7, Supplementary Table S3.2). Many 

marine phytoplankton and bacteria produce extracellular layers of polysaccharides to facilitate 

aggregation, for defense against predation, and to manufacture biofilms (Decho & Gutierrez, 

2017). Phosphonates have been shown to be constituents of the large reservoir of dissolved 

polysaccharides that accumulate in the surface ocean (Repeta et al., 2016), and we expected to 

find phosphonates in Prochlorococcus SB to be associated with polysaccharide macromolecules. 

However, upon fractionation of Prochlorococcus organic matter into major biochemical classes, 

we found that phosphonates were recovered in the protein fraction (Figure 3.4B) specifically 

within the methanol/acetone insoluble HMW protein fraction, which includes membrane-

associated proteins. 

 

We reconcile these results by proposing that, in Prochlorococcus SB, phosphonates are 

integrated into glycan polymer chains that are then post-translationally attached to HMW 

proteins, likely membrane-anchored proteins. Indeed, one of the most common post-translational 

modifications of bacterial proteins is O-linked glycosylation (Iwashkiw et al., 2013), where 

glycan polymers are covalently bound to serine or threonine side-chains of larger protein 

complexes. The phosphonate gene clusters in Prochlorococcus SB, SAR11 strain HTCC7217, 

and SAR11 RS40 genomes are adjacent to glycan assembly enzymes and lipid carriers predicted 

to be involved in the biosynthesis of capsules (Supplementary Figure S3.7). However, in some 

bacteria the glycan building blocks for capsule biosynthesis are also routed towards post 

translational O-linked glycosylation of membrane-bound lipoproteins (Lees-Miller et al., 2013). 

Prochlorococcus SB genome contains an O-oligosaccharyltransferase protein directly upstream 

of the PepM, Ppd, and Pdh cluster. This protein family was first characterized in the attachment 

of glycans to liposaccharides, but O-oligosaccharyltransferases have more recently been 

demonstrated to transfer preassembled glycan chains onto protein substrates (Faridmoayer et al., 

2007; Power et al., 2006). O-oligosaccharyltransferase genes are also present near PepM in 

Pelagibacter strains HTCC7217 and RS40 (Supplementary Figure S3.7), and 15% of GORG-

tropics SAGs contain PepM plus an O-oligosaccharyltransferase-like domain colocalized within 

the same 10kbp genome segment. This proportion increases to 50% if we relax the condition that 

the genes must occur on the same genomic contig. The genomic evidence implies that 



65 
 

phosphonates could be a common moiety involved in the post-translational O-linked 

glycosylation of proteins in the ocean.  

 

3.4.6 Functional roles of phosphonylated glycoproteins 

Why would an oligotrophic-adapted organism like Prochlorococcus use scarce P to produce 

large amounts of phosphonate-containing glycoproteins? Phosphonates are often incorporated 

into cell-surface structures (Coyne et al., 2000; Rice et al., 2019) because they are highly 

resistant to hydrolysis and can inhibit the activity of some hydrolytic enzymes by mimicking 

carboxylic acids and phosphate esters (White & Metcalf, 2007). For planktonic bacteria in the 

ocean, surface-expressed structures provide protection against enzymatic attack, UV-radiation, 

phages (Seed, 2015), and protozoan grazers (Jürgens & Matz, 2002). Modifying cell-surface 

structures with phosphonates may play a role in reducing vulnerability to grazers and phage, two 

major drivers of mortality for Prochlorococcus (Partensky et al., 1999). Given that surface 

expressed proteins are some of the most abundant proteins associated with the cell (Fagan & 

Fairweather, 2014), the large proportion of cellular P devoted to phosphonates in 

Prochlorococcus SB (Figure 3.4B) is also consistent with surface protein modification.  

 

Natural selection generally promotes high turnover and low population frequency of genes 

involved in phage -and predator- interactions (Cordero & Polz, 2014) (Supplementary Note S4). 

Horizontal gene exchange is a key mutational mechanism maintaining genes at low frequencies 

within microbial populations (Cordero & Polz, 2014), and cell surface modification traits are 

highly enriched in horizontal gene exchange networks (Nakamura et al., 2004). Similarly, we 

find that patterns of phosphonate biosynthesis gene flow in marine microbial communities do not 

follow a tree-like pattern and are better explained by horizontal exchange and/or gene loss. 

Generally, there is a poor correlation between the species tree, inferred from conserved marker 

genes, and the PepM tree. The topological distance between the species phylogeny and the PepM 

phylogeny approaches values for random simulated tree sets (Supplementary Table S3.5). In 

Prochlorococcus, nearly all phosphonate biosynthesis gene cassettes are located within 

“genomic islands” (Supplementary Figure S3.8), which contain the majority of laterally 

transferred genes in Prochlorococcus (Coleman et al., 2006; Kettler et al., 2007). Indeed, there is 

also a transposase, an important molecular mechanism of lateral gene transfer in bacteria (Frost 

et al., 2005), four genes upstream of PepM in the Prochlorococcus SB genome. Taken together, 

we speculate that the low frequency of phosphonate producers in bacterial populations and the 

evidence for horizontal transfer is consistent with a role for phosphonates within cell surface 

structures – potentially as a defense against phage or grazers. 
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3.5 CONCLUSION: BIOGEOCHEMICAL IMPLICATIONS - A MICROBIAL 

PHOSPHONATE LOOP WITHIN THE MARINE PHOSPHORUS CYCLE 

Above 50 meters we expect that chronic, long-term P scarcity drives the cost of phosphonate 

synthesis to outweigh its fitness benefit for most of the bacterioplankton. This is consistent with 

the numerical dominance of small, genome-streamlined cells, the low gene frequency of the 

phosphonate biosynthesis pathway, the low measured concentrations of particulate 

phosphonates, and the low rates of phosphorus reduction relative to rates of community 

phosphate uptake in the upper euphotic zone (Sannigrahi et al., 2006; Van Mooy et al., 2015). At 

the nutrient-driven genomic transition zone and near the deep chlorophyll maximum, organic 

matter remineralization rates are relatively high and the bacterioplankton community is in close 

proximity to episodic phosphate inputs from below. Phosphate concentrations begin to rise, and 

the fitness benefit of phosphonate biosynthesis as a defense against viral lysis and grazing begins 

to outweigh its cost (Figure 3.6), sustaining the high frequency of phosphonate producers we 

found in this depth range. We expect that phosphonates will be most abundant in particulate 

matter collected near the genomic transition zone, and that higher rates of phosphonate 

production would lead to higher rates of phosphonate degradation, consistent with the higher C-P 

lyase gene copy numbers and higher C-P lyase activity measured in microbes inhabiting the deep 

chlorophyll maximum (Granzow et al., 2020; Sosa et al., 2019b). If phosphonates are used to 

modify cell-surface glycoproteins as we suggest, then after cell death the labile protein 

component likely turns over quickly, but the inherently slow degradation of structural 

polysaccharides would lead to the accumulation of phosphonoglycans as high molecular weight 

dissolved organic matter (Repeta, 2014) explaining their abundance in marine DOP (Figure 

3.6A). 
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Figure 3.6: Microbial cycling of phosphonates in the upper ocean – an hypothesis 

A) Microbes with PepM produce cell surface-layer phosphonoglycoproteins to reduce mortality from grazing or 

viral infection.  Upon death of the cell phosphonoglycoproteins are released into seawater where heterotrophic 

microbes quickly remineralize proteins leaving phosphonoglycans to accumulate as high molecular weight dissolved 

organic phosphorus (HMWDOP). Phosphonates are hydrolyzed from glycans by alkaline phosphatases (APase) 

family enzymes and further hydrolyzed into inorganic phosphate (Pi) by C-P lyase or other hydrolytic pathways. 

Recycled Pi can then be used to produce new phosphonates. B) In the surface ocean, Pi is scarce and often limiting. 

Producing phosphonate as a mortality defense may be costly in terms of resource allocation. Therefore, the relative 

fraction of phosphonate producers in the microbial community is low. As nutrient availability increases through the 

genomic transition zone (Mende et al., 2017) the benefit/cost ratio of phosphonate production increases and 

phosphonate producers are relatively more abundant. 

 

 

3.6 MATERIAL AND METHODS 

3.6.1 Genomic data sources 

We used two collections of genomes for the comparative genomics analysis: MARMICRODB 

(Becker et al., 2019) (https://zenodo.org/record/3520509) and the Global Ocean Reference 

Genomes (GORG) Tropics dataset (Pachiadaki et al., 2019). MARMICRODB contains over 

18000 archaeal, bacterial, eukaryotic, and viral genomes from predominantly the marine 

environment, but also terrestrial and host-associated systems. GORG Tropics consists of 

approximately 13000 single-cell genomes sequenced from 28 samples across the tropical surface 

ocean. Roughly 6000 genomes from GORG Tropics come from a single sample (GORG BATS) 

from the Sargasso Sea. For quantitative analysis of the complete GORG dataset we randomly 

subsampled GORG BATS (Sample SWC-09) genomes to the median genomes per sample 

(N=241) from the remainder of GORG Tropics. We also used 195 surface and Deep Chlorophyll 
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Maximum metagenomes from Tara Oceans project (Karsenti et al., 2011) and 480 metagenomes 

from bioGEOTRACES, HOT, and BATS (Biller et al., 2018). Genome and metagenome quality 

control and exclusion criteria were performed as described earlier (Becker et al., 2019). 

 

3.6.2 Homology searches 

Phosphonate biosynthesis and catabolism proteins were identified by homology to a collection of 

hidden Markov models using HMMERv3.1b2 (http://hmmer.org/) and the trusted cutoffs of each 

individual model. PepM sequences were initially identified using PF13714 (PEP_mutase) and 

then aligned to the Tigrfam (Haft et al., 2013) Hidden Markov Model (HMM) TIGR02320 using 

hmmalign. Authentic PepM sequences were identified by strict presence of conserved active site 

motif “EDK(X)5NS” or if they lacked at most two active site residues but were located adjacent 

(within 5000 nucleotides upstream/downstream) to a gene coding for Ppd (TIGR03297) or MpnS 

(Chen et al., 2006; Cioni et al., 2014; Ju et al., 2015; X. Yu et al., 2013). The PF13714 model 

identified many sequences lacking the PepM active site motif, and with significant similarity to 

the related isocitrate lyase superfamily PF00463. Sequences passing the PF13714 bitscore 

cutoffs, but lacking the “EDK(X)5NS” motif were classified as members of the isocitrate lyase 

superfamily. Sequences from authentic MpnS and the related HepDI/HepDII proteins were 

identified using custom HMMs built from alignments of curated sequences identified as 

containing essential catalytic residues (Born et al., 2017). These alignments were constructed 

using MAFFT v7.273 (Katoh & Standley, 2013) in E-INS-i iterative refinement mode. The 

alignment was trimmed to peptide positions 317-792 to isolate the core catalytic residues and 

used to construct HMMs. MpnS, HepDI, and HepDII sequences in MARMICRODB and GORG-

tropics were identified using the resulting HMMs (evalue < 0.05), and the resulting sequences 

were aligned using MAFFT. The alignments were manually inspected to remove sequences 

lacking the essential catalytic residues and were iteratively realigned after poorly-aligned 

sequences were removed.  

 

For phosphonate catabolism proteins, gene neighborhoods were inspected to confirm the 

presence of multiple co-occurring genes from the PhnYZ (Sosa et al., 2019a), C-P lyase, 2-

aminoethylphosphonate, and phosphonoacetaldehyde phosphonatase catabolism pathways. 

Specifically, valid C-P lyase clusters required at least five other genes from phnC, phnD, phnE, 

phnF, phnG, phnH, phnI, phnJ, phnK, phnL, phnM, phnN, phnO, phnP to occur within 

uninterrupted (ie no scaffold/contig breaks) 16000 nucleotide sliding windows. Valid phosphite 

clusters required two of ptxD, phnY, and phnZ. Valid 2-aminoethylphosphonate clusters required 

co-occurring phnX and phnW or phnW, phnA, and phnY. Valid phosphonoacetaldehyde 

phosphonatase clusters required phnZ, hpnW, and hpnZ. All catabolic pathways other than C-P 

lyase required genes to co-occur within uninterrupted 10000 nucleotide sliding windows. 

 

We also identified two sets of ten highly conserved, single-copy families from Prochlorococcus 

and SAR11 lineages for use in normalization with metagenome profiling. These gene families 
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had the ten lowest dN/dS ratios of the entire pangenome, that is the highest purifying/stabilizing 

selection, for Prochlorococcus or SAR11, and should thus be highly specific and sensitive for 

metagenomic quantification. Prochlorococcus and SAR11 pangenomes were characterized and 

defined using PanX (Ding et al., 2018). To profile metagenomes for total bacterioplankton, we 

used fetchMG from the mOTUs2 tool (Milanese et al., 2019). Briefly, we identified ten COG 

families (COG0012, COG0016, COG0018, COG0172, COG0215, COG0495, COG0525, 

COG0533, COG0541, COG0552) from all bacterial and archaeal genomes in MARMICRODB. 

To reduce redundancy, we clustered protein sequences from each COG at 90% sequence identity 

using MMseqs2 v4e23d (Steinegger & Söding, 2017) and used the 90% clustered sequence 

representatives in metagenome search databases. 

 

The HMM protein sequence profiles, results from these searches, and descriptions of the 

sequence families are available from https://github.com/slhogle/phosphonates. 

 

3.6.3 Multiple sequence alignments, phylogenetic inference, and topological 

comparison  

Authentic PepM sequences containing the “EDK(X)5NS” motif were aligned to TIGR02320 

using hmmalign and trimmed using trimAl v1.4.rev22 (Capella-Gutiérrez et al., 2009) with the 

automated -gappyout option, and alignments were inspected manually to ensure the veracity of 

the “EDK(X)5NS” motif. The multi-phylum genome phylogenies were created from genome 

assemblies with confirmed phosphonate biosynthesis pathway or at least one confirmed 

phosphonate catabolic pathway. We used the GTDB-Tk v1.3.0 pipeline (Chaumeil et al., 2019) 

with default settings and the GTDB R05-RS95 database (Parks et al., 2018) to identify conserved 

proteins (120 bacterial proteins/122 archaeal proteins) and generate concatenated multi-protein 

alignments. We filtered alignment columns using the bacterial and archaeal alignment masks 

from (http://gtdb.ecogenomic.org/downloads). We then removed columns represented by fewer 

than 50% of all taxa and/or columns with no single amino acid residue occurring at a frequency 

greater than 25%. We further trimmed the alignments using trimAl with the automated -gappyout 

option to trim columns based on their gap distribution. The multi-phylum genome phylogenies 

and the PepM phylogeny were inferred using FastTree v2.1.10 (Price et al., 2010) under the 

GAMMA model of rate heterogeneity and the WAG+ substitution model (Whelan & Goldman, 

2001). Support values were determined using 100 non-parametric bootstrap replicates. Both the 

PepM tree and genome tree were left unrooted. Phylogenies and associated data were visualized 

using ggtree (G. Yu et al., 2017). Detailed phylogenies of Prochlorococcus and 

Pelagibacterales/SAR11 in the supplementary materials were constructed as described earlier 

(Becker et al., 2019). 

 

Comparisons between the topology of the PepM tree and the genome phylogeny were performed 

using ETE3 v3.1.1 (Huerta-Cepas et al., 2016a). We pruned both the PepM and genome 

phylogenies so that they contained the same number taxa and no duplication events in the PepM 

https://github.com/slhogle/phosphonates
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tree, which resulted in 999 leaves for bacteria and 16 leaves for archaea. We then compared the 

topologies of the PepM tree, the genome tree, and ten simulated random trees using the 

Robinson-Foulds symmetric distance (Robinson & Foulds, 1981) and the fraction of edge 

similarity. For Robinson-Foulds distances, edges were treated as unpolarized splits rather than 

“true” clades because all trees were compared as unrooted. The Robinson-Foulds distance simply 

counts the number of branch partitions (nodes) that appear in one tree but not the other. 

Therefore, the maximum possible Robinson-Foulds distances of an n-taxa unrooted tree is 2(n-

3). To compute a normalized distance, we simply divided the observed Robinson-Foulds distance 

by the maximum distance of the two-way comparison between trees. Thus, the normalized 

Robinson-Foulds distance is a value from 0 to 1, which can be interpreted as the fraction of 

nodes/splits missing in the query tree compared with the reference tree. 

 

3.6.4 Gene enrichment analysis 

We annotated the 16 Prochlorococcus and 22 SAR11/Pelagibacterales genomes containing 

verified PepM sequences with eggNOG 4.5.1 (Huerta-Cepas et al., 2016b) using eggNOG-

Mapper v1.0.3-3-g3e22728 (Huerta-Cepas et al., 2017). We then collected the resulting KEGG 

orthology annotations (Kanehisa & Goto, 2000) from all genes and tested for enrichment of 

modules and pathways in the KEGG hierarchy in genes within 10000 nucleotides 

upstream/downstream of the PepM sequence start and stop coordinates respectively. Significant 

enrichment of KEGG categories were determined using the hypergeometric test (Rivals, 

Personnaz, Taing, & Potier, 2006) implemented in clusterProfiler v3.8 (G. Yu et al., 2012). We 

excluded genomes from the analysis that had contig/scaffold breaks within 10000 nucleotides 

upstream/downstream of the PepM sequence. 

 

3.6.5 Identification of PepM sequences within Prochlorococcus genomic islands 

We predicted genomic islands using Hidden Markov Models trained from conserved gene 

synteny patterns in closed Prochlorococcus genomes. Briefly, we assume genomic islands to be 

contiguous stretches of DNA enriched in flexible genes families (i.e. genes found in a subset of 

all genomes). We then used previously described genomic islands in six Prochlorococcus 

genomes (Avrani et al., 2011; Coleman et al., 2006; Dufresne et al., 2008) to define core, 

flexible, and inconclusive gene “states” in four distinct hidden markov models, each with two 

hidden states (island or non-island). We then used empirical gene family frequencies as a proxy 

for the core/flexible/inconclusive state of each gene and the gene order on each scaffold as input 
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to the Viterbi algorithm for predicting the hidden island state of each gene in all other 

Prochlorococcus genomes. 

 

3.6.6 Estimation of PepM prevalence in Prochlorococcus and SAR11 genomes 

Because many of the Prochlorococcus and SAR11 genomes analyzed here are incomplete 

(SAGs or MAGs), we attempted to estimate the ‘true’ proportion of genomes with PepM while 

correcting for genome incompleteness. Briefly, we used the estimated genome completeness 

from checkM v1.0.11(Parks et al., 2015), which is based on the presence of core marker genes, 

to estimate the number of missing bases per taxonomic group (Prochlorococcus or SAR11) and 

then use this scale the relative abundance of potential phosphonate producers per group. We 

estimated the corrected prevalence of phosphonate producers as:  

(∑ 𝑝
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× 𝑝̅−1 × 𝑛−1 

where for each clade, p is the length of the phosphonate biosynthesis/degradation operon in base 

pairs, g is the length of the genome assembly in base pairs, c is the completeness estimate from 

CheckM, p is the average length of all phosphonate biosynthesis/degradation operons from each 

clade, and n is the total number of assemblies from each clade. 

 

3.6.7 Metagenome read classification 

We created Diamond v0.9.22.123 (Buchfink et al., 2015) search databases for each of the three 

ten-gene marker gene sets identified for Prochlorococcus, SAR11, and all bacterioplankton 

using reference genomes from MARMICRODB. We also created Diamond databases for only 

Prochlorococcus PepM, only SAR11 PepM, and all bacterial and archaeal PepM sequences 

identified with the “EDK(X)5NS” catalytic motif from MARMICRODB only. We identified the 

marker gene sets using a two-tiered search strategy using Diamond in default fast mode. We first 

searched the metagenomes against reduced marker sets clustered at 70% amino acid identity by 

MMseqs2. We pulled all reads with hits to these reduced marker sets, then searched the reads 

against the entire MARMICRODB, and finally retained read mappings with a best scoring match 

to a MARMICRODB protein from the original marker family. We searched metagenomic reads 

against the PepM databases using Diamond (mode --more-sensitive) and score cutoffs of 55% 

amino acid identity and an E-value of 1e-5. We determined these cutoffs empirically to be those 

that produced the highest F Score (harmonic mean of precision and recall) from mock 

metagenomes simulated from GORG-tropics (Supplementary Note S3.5, Supplementary Figure 

S3.9). Since the E-value is a function of database size it is important to note that the significance 

of this cutoff is specific to the reference databases here. In the case of ambiguous alignments 

(i.e., identical best alignment scores to sequences from different taxonomic groups) we classified 
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reads using a probability-weighted random sampling of all taxonomic groups matching the best 

hits. We derived the probability distributions for random samplings from the taxonomic 

classification uniquely mapped PepM reads. 

 

To normalize PepM reads across metagenomes we calculated the length normalized counts 

(RPKM) of the 10 single copy marker genes from Prochlorococcus, SAR11, and all bacteria and 

archaea in each metagenome as reads per kilobase marker and then estimated the number of 

‘genome equivalents’ in each metagenome as the median of the 10 marker families. We also 

calculated the length normalized abundance of PepM from Prochlorococcus, SAR11, and all 

bacteria and archaea as reads per kilobase from each metagenome. We then divided the length 

normalized abundance of PepM by the estimated number of genome equivalents for each 

taxonomic group to estimate the fraction of genomes with phosphonate biosynthesis potential. 

To ensure robust estimates of normalized abundance we excluded samples where the median 

marker gene coverage was less than 100X for all taxonomic groups. 

 

3.6.8 Biotic and abiotic data associated with metagenomes  

The biotic and abiotic variables used in this study were obtained and preprocessed as described 

in detail here: https://doi.org/10.5281/zenodo.3689249 and here: 

https://doi.org/10.5281/zenodo.3786232.  We obtained phosphate concentrations from the 

GEOTRACES Intermediate Data Product IDP2017 version 3 (Schlitzer et al., 2018), specifically 

from sections GA02 (Rijkenberg et al., 2014; Salt et al., 2015), GA03, GA10 (Wyatt et al., 

2014), and GP13. We obtained dissolved phosphate concentrations from the Tara Oceans project 

(Speich et al., 2017) (https://doi.pangaea.de/10.1594/PANGAEA.875579). Modeled 

climatological dissolved organic phosphorus and other variables were obtained from the MIT 

Darwin model (v0.1_llc90, http://darwinproject.mit.edu/) from the Simons Collaborative Marine 

Atlas project (CMAP) https://simonscmap.com/ using pycmap v0.1.2 

(https://doi.org/10.5281/zenodo.3561147). Taxonomic profiles derived from metagenomic reads 

were generated as described earlier (Becker et al., 2019) using the MARMICRODB database. As 

a first order estimate of Prochlorococcus and SAR11 ecotype relative abundance we divided the 

number of reads mapping to each ecotype by the number of reads mapping in total the 

Prochlorococcus genus or the family Pelagibacterales for SAR11. Some proportion of reads 

mapping to highly conserved (core) regions can only be reliably classified at the genus or family 

level thus our ecotype relative abundance estimates using total read counts are underestimates. 

 

3.6.9 Random Forest Regression  

We trained one random forest model (ntrees= 1000) for each taxonomic group; Prochlorococcus, 

SAR11, and bacteria plus archaea. Each model was trained using up to 44 abiotic/biotic variables 

including trace metal and macronutrient data from GEOTRACES and Tara Oceans, modeled 

climatological means from the MIT Darwin model (http://darwinproject.mit.edu/), and ecotype 

https://doi.org/10.5281/zenodo.3689249
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relative abundances. For the outcome variable (normalized PepM relative abundance) we used a 

modified splitting rule for tree construction that maximized the log-likelihood of the beta 

distribution on the interval [0,1] (Weinhold et al., 2019). Although our relative abundance 

measure is not theoretically restricted to the unit interval (values greater than one could exist, e.g. 

if the PepM copies per genome greatly exceeded one), in practice PepM relative abundance was 

always bounded [0,1] in our datasets. We performed random forest regression using nested ten-

fold cross-validation to prevent data leakage to the validation phase (Teschendorff, 2019). We 

reserved 20% of the data for estimating final model performance. The remaining 80% of training 

data was split into 10 resampled partitions, each with analysis and assessment partitions, to tune 

and estimate the performance of preprocessing, supervised feature selection, hyperparameter 

tuning steps. We tuned hyperparameters (mtry, min.node.size), by maximizing the coefficient of 

determination from correlation (model R2) and minimizing the root mean square error (RMSE). 

We used CAR Scores (Zuber & Strimmer, 2011) for recursive feature elimination to retain only 

the top 50th percentile of informative variables. We included the feature elimination step to 

reduce the computation costs and runtime of the feature importance step (see below). Random 

forest regression was implemented with the package Ranger (Wright & Ziegler, 2015) and the 

Beta Forest algorithm (Weinhold et al., 2019). We determined predictor variable rankings on the 

final model from the cross validation step using the Boruta heuristic (Kursa et al., 2010). This 

step allowed us to identify all predictor variables that consistently performed better than chance 

and to compare the importance of each variable to a reference importance level, i.e. random data. 

 

3.6.10 Beta-Binomial Regression and Generalized Additive Models  

We used the R package corncob (B. D. Martin et al., 2020) and modeled PepM relative 

abundance directly from PepM read counts and the median read counts to marker gene sets as 

“successes/total” which is appropriate for the beta-binomial probability distribution. We used the 

log-odds link function for both relative abundance and the overdispersion parameter. For each 

taxonomic group (SAR11/Prochlorococcus/bacteria and archaea) we modeled only the top five 

most important biotic/abiotic variables identified in the Random Forest regression and variable 

importance steps. We did not include additional model terms because multiple collinearities 

between covariates and the additional model complexity prevented model convergence in most 

cases. We estimated the probability for each biotic/abiotic covariate being informative to the 

overall model by using bootstrapped likelihood ratio tests (N=1000). We estimated 95% 

confidence intervals for model coefficients and standard errors using 1000 random draws from 

the beta-binomial distribution. 

 

We estimated seasonal effects in time-series metagenomes using Generalized Additive Mixed 

Models and Linear Mixed-Effect Models implemented through the mgcv v1.8-26 (Wood, 2017) 

nlme v3.1-148 libraries in R v3.6.2. To decompose any potential seasonal effects, we fit a cyclic 

spline term to a variable for the day of the year, which we use as a proxy for season, and we fit a 
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global trend term to the cumulative time since sampling onset. We considered a seasonal effect 

present if the model term for “day of the year” was statistically significant (p < 0.05).  

 

3.6.11 Prochlorococcus cultures under P-replete and P-deficient conditions 

To investigate the linkage of PepM with phosphonate production, we grew two HLII strains of 

Prochlorococcus: Prochlorococcus SB, which has PepM, and the closely related 

Prochlororoccus MIT9301, which lacks the PepM gene sequence. Both strains were grown 

axenically, under constant light (30 μmol quanta m-2 s-1) in artificial seawater medium AMP1 

prepared has described before (Moore et al., 2007), but using 3.75 μM TAPS as a buffer instead 

of 1mM HEPES. After growing Prochlorococcus SB in the regular medium i.e with a phosphate 

concentration of 50 µM (N/P = 16/1) to assess whether or not this strain could produce 

phosphonate, we decreased the phosphate concentration to 2.28 µM (N/P = 350/1). Although the 

phosphate concentration was lower, Prochlorococcus SB cells were not P-limited in exponential 

phase growth. However, stationary phase was induced by P-starvation, as demonstrated by the 

initiation of further growth after adding phosphate to the culture (Figure 3.4A inset). For all 

experiments, biological duplicates were grown to ensure reproducibility. Cultures axenicity was 

assessed by flowcytometry and by confirming a lack of turbidity for at least 30 days after 

inoculation with three test broths: ProAC (J. J. Morris et al., 2008), MPTB (Saito et al., 2002) 

and ProMM (Pro99 medium (Moore et al., 2007) supplemented with 1xVa vitamin mix 

(Waterbury & Willey, 1988) and 0.05% w/v each of pyruvate, acetate, lactate and glycerol. 

ProMM is the 100% seawater based version of the PLAG medium (J. J. Morris et al., 2008). All 

the glassware and polycarbonate bottles (1 L for the blank, 2 L and 20 L for the cultures) were 

cleaned by soaking overnight in 2% detergent (micro), rinsed 6 times with deionized water, 

soaked overnight in 1 M HCl and rinsed 6 times with ultra-high purity water. 

 

3.6.12 Cell harvest and treatment  

Prochlorococcus SB cultures grown in high N/P medium were harvested twice: ~6 L were 

harvested during exponential growth and the remainder (14 L) harvested two days after the onset 

of stationary phase growth. To ensure that stationary phase cells were limited by phosphorus, 25 

mL of culture was amended with phosphate. Fluorescence increased in the phosphate-amended 

cultures, reaching levels regularly observed in Prochlorococcus HLII cultures (Figure 3.4A 

inset). Cells were separated from the growth medium by centrifugation (15,970 rcf for 30 

minutes at 4°C) and the growth medium was saved for other analyses. Cell pellets were 

transferred into 50 mL falcon tubes, suspended in Turk Island mix (Moore et al., 2007) to rinse 

the cells of external nutrients and centrifuged (6,523 rcf for 15 minutes at 15°C). This time, we 

discarded the supernatant and repeated the operation two more times. After, we flash froze the 

cell pellets in liquid nitrogen and stored them at -20oC until NMR analyses. We also measured 

Prochlorococcus cell abundance by flow cytometry. Samples were prepared and processed as 

previously described (Malmstrom et al., 2010; Zinser et al., 2006) a d run on an Guava 12HT 
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flow cytometer (Luminex Corp., Austin , TX, USA). Cells were excited with a blue 488 nm laser 

analyzed for chlorophyll fluorescence (692/40nm), SYBR Green I stained DNA fluorescence 

content (530/40nm), and size (forward scatter). Samples were ran stained with 1x SYBR Green I 

(Invitrogen, Grand Island, NY) and unstained then incubated for 60 min in the dark prior to 

running. All flow cytometry files were analyzed using Guavacyte. 

 

3.6.13 Nuclear Magnetic Resonance  

NMR spectra were acquired at 25°C on a 400 MHz Bruker AVANCE DPX spectrometer using a 

5mm inverse broadband probe and running TOPSPIN 1.3. 31P shifts are reported relative to 

external 85% phosphoric acid at 0 ppm. For the proton-decoupled 31P-NMR spectra, we used 

‘zgdc30’ with WALTZ16 decoupling and sweep width of 80 ppm, a 3 seconds relaxation delay, 

100K scans and 20Hz line broadening. Prochlorococcus SB and MIT9301 whole cells were 

packed into a 5mm BMS tube (Shigemi Inc.) with magnetic susceptibility of the glass inserts 

matching D2O. 

 
31P-NMR spectra of Prochlorococcus SB protein fraction was acquired at 25°C on a 400 MHz 

Bruker Ascend 400 equipped with a Sample CASE. The 31P-NMR spectra were acquired using 

the program ‘zgpg30’ with a sweep width of 80 ppm, a relaxation delay of 2 seconds, a 15Hz 

line broadening and for 13K scans. 31P chemical shifts are reported relative to external 

phosphoric acid at 0 ppm.  

 

3.6.14 Elemental composition of Prochlorococcus SB and MIT 9301  

Elemental C/N/P ratios were measured at the University of Hawai’i nutrient facility according to 

the protocols employed by the Hawaii Ocean Time series program 

(http://hahana.soest.hawaii.edu/hot/protocols/protocols.html#). Briefly, cell pellets from ~ 900 

mL of culture were transferred to combusted glass vials, dried, and powdered. C and N were 

measured on subsamples using a PE-2400 Carbon/Nitrogen analyzer calibrated with acetanilide 

standards. Cellular P was measured by the molybdenum blue method (Murphy & Riley, 1962; 

Strickland & Parsons, 1972) after first combusting cell pellets at 450oC for 3h, and dissolving the 

residue in 10 mL of 0.5 M HCl.  

 

3.6.15 Separation of cellular macromolecular components  

To fractionate Prochlorococcus organic matter into different classes of major biochemicals, we 

followed the protocols of Karl et al. (Karl et al., 1981). Cells from 3 L of culture were 

centrifuged and the isolated cell pellet extracted with 5 mL of cold 5% trichloroacetic acid 

(TCA) for 1h. The mixture was centrifuged (12,100 rcf for 30 minutes at 4°C), the supernate 

decanted, and the TCA insoluble material washed twice with 5% cold TCA. The TCA fractions 

were combined, evaporated to dryness. Lipids were recovered from the TCA insoluble material 
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by extraction (3x, room temperature, 20 minutes each) with 95% ethanol (5 mL). Residual 

ethanol was evaporated, and RNA within the dry TCA/95% ethanol insoluble material 

hydrolyzed at 37°C for 1 hour with 2.5 mL of 1 M NaOH. The hydrolysis was quenched by 

immersing the sample tube in an ice bath for 15 minutes, after which the sample was acidified to 

pH 1 by adding 2.5 mL 1 M HCl and 0.5 mL of 50% TCA. The mixture was allowed to sit for 15 

min to precipitate proteins and DNA, then centrifuged for 30 minutes at 12,100 rcf. After 

collecting the supernatant (containing RNA), we rinsed and centrifuged the pellet 2x with 5 mL 

of 5% TCA and 2x with 5 mL of 95% ethanol. To hydrolyze DNA, we added 5 mL of 5% TCA 

to the insoluble material and immersed the tube in boiling water for 30 minutes. After 

centrifuging the tube and collecting the DNA-containing supernatant, we rinsed and centrifuged 

the pellet 2x with 5 mL of ice-cold 5% TCA and 2x with ice-cold 95% ethanol as before. Finally, 

we extracted the protein from the remaining cell pellet with 5 mL of 1 M NaOH (37°C,18 h).  A 

small amount of insoluble debris remained after the protein extraction. This was removed by 

centrifugation (12,100 rcf; 30 minutes) and followed by syringe filtration of the supernatant.  

 

3.6.16 Protein extraction and precipitation 

Peptides and denatured “soluble” proteins were fractionated from native HMW “insoluble” 

proteins using the protocol described by Hutchins et al. (Hutchins et al., 2015). The cell pellet of 

0.5 L of culture was lysed (15 minutes, RT) with 1 mL of 1% SDS extraction buffer (1% SDS, 

0.1 M Tris/HCl pH 7.5, 10 mM EDTA) then heated at 95°C for 10 minutes. Samples were 

allowed to cool to RT and were then agitated at 350 rpm for 1 hour. The resulting suspension 

was centrifuged (20 minutes, 14,100 rcf), and the supernatant decanted. After transferring the 

supernatant containing the proteins, we concentrated the proteins from the supernate by 

membrane centrifugation using 5 K molecular weight cutoff Vivaspin units of 6 mL (Sartorius 

Stedim, Goettingen, Germany). The retentate (~300 µL) was recovered, and 1 mL of cold 50/50 

methanol/acetone solution (acidified with HCl to a final concentration of 0.5 mM) added. After 

sitting for 3 days at –20°C, insoluble proteins were pelleted by centrifuge (14,100 rcf for 30 

minutes at 4°C) and the supernatant decanted. 
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3.6.17 Dataset/code availability  

The datasets and computer code supporting the findings in this study are available from: 

https://github.com/slhogle/phosphonates. 

The entire MARMICRODB dataset including a comprehensive description, raw protein fasta 

files, Kaiju v1.6.0 (Menzel et al., 2016) formatted databases, scripts and instructions for how to 

use the resource is available from https://doi.org/10.5281/zenodo.3520509. 

GEOTRACES chemical data was processed and matched to metagenome samples using 

code/methods available from https://doi.org/10.5281/zenodo.3689249. 

Tara Oceans chemical and hydrographic data was processed and matched to metagenome 

samples using code/methods available from https://doi.org/10.5281/zenodo.3786232. 

The list of Prochlorococcus core PFAM and TIGRFAM families, a compiled HMMERv3 hidden 

Markov model database, and a CheckM formatted marker list file is available from 

https://doi.org/10.5281/zenodo.3719132. 
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3.9 SUPPLEMENTARY MATERIAL 

3.9.1 Supplementary Notes 

Supplementary Note S3.1: Taxonomic breadth of marine phosphonate producers and 

consumers 

Phosphonate producers in the GORG dataset are more diverse than consumers. We identified 

phosphonate producers in 30 unique families and 11 different phyla (n domain=2; n phylum=11; 

n class=12; n order=25; n family=30; n genus=40; total genomes=6720). Producers are from 

diverse groups including the Alphaproteobacteria, Gammaproteobacteria, Flavobacteriales, 

Bacteroidia, Actinobacteria, Archaea, and Cyanobacteria, and also uncultured groups like 

SAR202 and the candidate phyla Marinamargulisbacteria and Marinisomatia (Figure 2). While 

for phosphonate consumers, we identified 13 unique families and 5 different phyla (n domain=1; 

n phylum=5; n class=5; n order=10; n family=13; n genus=17; total genomes=6720). However, 

the distribution of taxonomic ranks for phosphonate producers was less even than for consumers. 

Over 60% of phosphonate producers were assigned to the SAR11 group, mostly clade Ia.3, while 

the remaining 40% were evenly distributed amongst low frequency families/orders. The ZD0417 

(6%) clade, the OM1 clade (4%) and High-light Prochlorococcus (4%) were the next most 
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abundant producer groups. In contrast, 30% of phosphonate consumers are from the Aegean-169 

clade (including Alphaproteobacterium HIMB59) (Alonso-Sáez & Gasol, 2007), 21% from the 

Rhodobacteraceae, 18% from SAR11 clade Ia.3, 8% from SAR11 clade IV, and 12% were 

High-light Prochlorococcus.  

In MARMICRODB we found phosphonate producers in most of the same taxonomic groups as 

the GORG database. Unlike GORG, MARMICRODB also includes many genomes isolated 

from the deep ocean (> 500 meters) and from marine sediments. We found abundant production 

potential in many deep ocean planktonic groups such as Chloroflexi (including the SAR202 

clade) and Marinimicrobia (SAR406). We also found PepM and the Ppd expressed in 24/186 

marine transcriptomes from the MMETSP (Keeling et al., 2014) mostly from dinoflagellates as 

well as in the abundant and cosmopolitan marine Prasinophyte, Ostreococcus. Relative 

abundances estimated from MARMICRODB alone should be viewed with caution since 

MARMICRODB has a biased composition. However, we note that fewer than 1.5% of the 

archaeal genomes in MARMICRODB were phosphonate producers (n=18/1256) which is in 

strong agreement with the distributions in GORG-tropics. Like GORG-tropics, no archaeal 

genomes from MARMICRODB contained phosphonate catabolism pathways. 

 

Supplementary Note S3.2: Seasonal dependence of phosphonate producers at BATS 

We examined the abundance of phosphonate producers in two long-standing ocean time-series: 

The Bermuda Atlantic Time-series Study in the North Atlantic Ocean (Sargasso Sea) and the 

Hawaii Ocean Time-series near Hawaii in the North Pacific Ocean. Both study sites are in 

oligotrophic ocean gyres and have comparable biological productivity and carbon export (Neuer 

et al., 2002). Prochlorococcus and SAR11 are the most abundant planktonic cells in the upper 

300 meters at both sites (Giovannoni & Vergin, 2012). However, the two study sites have 

different seasonal patterns. BATS experience strong convective mixing during the winter 

months, and HOT is more stably stratified, although HOT also displays seasonal productivity 

cycles (Karl & Church, 2014). The two study sites also differ in their biogeochemical 

inventories. Inorganic phosphate concentrations are lower at BATS than HOT which is likely 

due to the effect of iron supply on dinitrogen fixation rates in each ocean basin (Wu et al., 2000). 

Indeed, atmospheric iron fluxes are higher at BATS compared with HOT (Boyle et al., 2005; 

Sedwick et al., 2005). Differences in dissolved phosphorus inventories between HOT and BATS 

have been previously linked to gene content variation between Prochlorococcus populations. 

Prochlorococcus populations in the Sargasso sea are more likely to have additional P acquisition 

genes such as alkaline phosphatase (Coleman & Chisholm, 2010; Martiny et al., 2006).  

We detected phosphonate producers at both HOT and BATS at similar abundances as in the rest 

of the global ocean. For SAR11 and total bacterioplankton these abundances generally increased 

with depth and were highest in the deep mixed layer below the subsurface deep chlorophyll 

maximum layer (> 200 meters). Prochlorococcus phosphonate producers were at highest 

abundance in the surface layer (approximately 10 meters) at HOT and BATS and decreased in 

abundance with depth. At HOT approximately a constant 6-9% of Prochlorococcus genomes, 
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10% of SAR11 genomes, and 10% of total bacterioplankton genomes had a phosphonate 

production gene cluster in the surface layer. At BATS we detected a significant seasonal effect 

on the abundance of all phosphonate producers in the surface layer that temporally corresponds 

with the recurring deepening of the mixed layer during winter months (Supplementary Figure 

S3.4C). For example, Prochlorococcus phosphonate producers are most abundant from February 

to May then decline to negligible levels in the summer at the onset of peak water column 

restratification. The seasonality of SAR11 producers and the total community producers was 

tightly coupled, suggesting that peak producer abundance occurs during periods with the deepest 

mixed layer (November through the following March). This pattern follows the seasonal 

succession of ecotypes at BATS where SAR11 clades IIa and IIb are most abundant in the upper 

200 meters during the winter (Vergin et al., 2013). SAR11 clades IIa and IIb were also the most 

abundant producers in GORG-tropics and GORG-BATS after the surface clade Ia, and SAR11 

IIb abundance showed a strong positive correlation with phosphonate producers in the global 

dataset. 

 

Supplementary Note S3.3: Biotic and abiotic covariates shaping the global distribution 

of phosphonate producers 

For Prochlorococcus producers we find that a small, but significant, amount of variation is 

explained by inorganic phosphate concentrations, and the modeled climatological mean of 

dissolved organic phosphorus (Supplementary Figure S3.3 and S3.5). The models suggest that on 

average Prochlorococcus phosphonate producers are most abundant where inorganic phosphate 

and dissolved organic phosphorus concentrations are highest. For example, the North Atlantic 

and Mediterranean had the lowest median abundance of Prochlorococcus producers. In the 

deeply sequenced N. Atlantic sample GORG-BATS we detected no Prochlorococcus 

phosphonate producer genomes and significantly more Prochlorococcus phosphonate consumer 

genomes than in the rest of the global samples. This pattern mirrors the overall depletion of 

inorganic phosphate relative to other nutrients in the N. Atlantic (Wu et al., 2000). We interpret 

this as reflecting potential selection against the phosphonate biosynthesis trait in 

Prochlorococcus populations from consistently P-limited regions, such as the tropical N. 

Atlantic, due to the additional phosphorus cost of phosphonate biosynthesis. The largest 

proportion of variation for Prochlorococcus phosphonate producers is explained by the total 

abundance of Prochlorococcus. That is, Prochlorococcus phosphonate producers are more 

abundant when Prochlorococcus constitutes a smaller fraction of the total microbial community. 

It is unclear what ecological mechanisms underlie this pattern, and it may simply be a 

consequence of the heteroskedasticity of compositional data, i.e. higher variances as the 

denominator in the ratio of (PepM/Core genes) approaches zero. 

The relative abundance of SAR11 phosphonate producers and the bacterioplankton producers 

were strongly positively correlated, consistent with SAR11 being the dominant phosphonate 

producer in GORG-tropics and GORG-BATS. Thus, the relative abundances of SAR11 

producers and total producers were shaped by many of the same factors. A small but significant 
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amount of variation in SAR11 phosphonate producers was explained by increasing 

climatological mean nitrate concentrations and dissolved aluminum concentrations. This reflects 

that the highest average abundance of SAR11 producers occurred in the North Atlantic and 

Mediterranean Sea, regions which have higher than average dissolved aluminum concentrations 

(Orians & Bruland, 1986) and climatological mean nitrate concentrations in the upper 100 

meters. Generally, we find that the greatest amount of phosphonate producer variation is 

explained by multiple depth-dependent biotic factors implying that increasing depth is a unifying 

master parameter (Figure 3.2, Supplementary Figure S3.2, S3.3 and S3.5, main text). Total 

bacterial/archaeal and SAR11 phosphonate producers increase alongside depth-associated biotic 

factors including low light Prochlorococcus and the abundance of mesopelagic groups like 

Archaea (Karner et al., 2001) and SAR11 Iib (Nelson et al., 2014). Phosphonate producers are 

negatively associated with known surface clades like SARII IV and V and abiotic factors like 

dissolved manganese concentrations (manganese being a surface enriched element (van Hulten et 

al., 2017)). These modeling results offer a prediction that bulk phosphonate concentration is 

greatest in the lower reaches of the euphotic zone and upper reaches of the mesopelagic. Future 

chemical studies targeting the 100-300 meters depth range will hopefully provide greater 

understanding of phosphonate cycling in the upper ocean. 

 

Supplementary Note S3.4: Evidence for phosphonylated surface layer structures by 

Prochlorococcus SB 

The phosphonate biosynthesis gene cluster contains genes predicted to be involved in cell 

wall/membrane/envelope biogenesis and extracellular polysaccharide biosynthetic processes 

(Supplementary Table S3.2), suggesting that Prochlorococcus SB may produce extracellular 

saccharides modified with phosphonate groups. We also found that genes coding for 

glycosylation reactions were statistically more abundant within ± 5 Kbp of the phosphonate 

biosynthesis cluster than in the remainder of the complete genomes from Prochlorococcus SB 

and Pelagibacter sp. HTCC7217 and RS40 (Supplementary Table S3.2). Many of these genes 

encode glycosylation enzymes involved in cell membrane/envelope biogenesis (Supplementary 

Figure S3.7). However, our chemical data shows that phosphonates are associated with a high 

molecular weight protein fraction. We propose that in Prochlorococcus SB phosphonates serve 

as molecular decorations of glycan chains bound to high molecular membrane-anchored proteins. 

In glycoproteins sugar polymer chains are covalently attached to amino acid side-chains of a 

parent protein through post-translational modification.  

Glycoproteins were once thought to be exclusive to eukaryotes, but recent efforts indicate that 

they are ubiquitous in bacteria and archaea (Varki et al., 2016). In bacteria glycans are attached 

to specific target proteins via both N- and O-linked glycosylation (Nothaft & Szymanski, 2010). 

Protein substrates for glycosylation reactions include the motor protein flagellins, pilins found in 

bacterial pilus structures (Nothaft & Szymanski, 2010), and S-layers which are two-dimensional 

paracrystalline structures that cover the outer surface of bacteria and archaea (Fagan & 

Fairweather, 2014). Protein glycosylation occurs via two distinct mechanisms: the direct 
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attachment of glycan monomers or small chains to proteins via glycosyltransferases (common in 

flagellins and adhesins) and the pre assembly of glycan onto lipid carriers followed by transfer 

en masse to a protein acceptor (Hug & Feldman, 2011). Recently, it has been discovered that 

many bacteria also possess general O-linked glycosylation systems capable of promiscuous 

modification of numerous different types of membrane associated proteins (Fletcher et al., 2009; 

Ku et al., 2009; Vik et al., 2009).  

In Prochlorococcus SB, we find genes with homologies to both S-layer biosynthesis and the 

general O-linked glycosylation system. S-layer biosynthetic clusters encode genes for both 

biosynthesis and export of lipopolysaccharide anchors (Fagan & Fairweather, 2014) and the 

biosynthesis and export of an extracellular glycoprotein containing the critical Ca2+- binding 

hemolysin domain (Bharat et al., 2017; von Kügelgen et al., 2020). In the Prochlorococcus SB 

genome between 1.15 - 1.17 Mbp we find genes encoding putative surface antigens of the 

filamentous hemagglutinin-glycoprotein family, Ca2+- binding hemolysin domain proteins, and a 

type-I secretion system ABC transporter, and other antigen-polysaccharide repeats 

(Supplementary Table S3.2). Most compelling, however, is the presence of general O-linked 

glycosylation reaction enzymes adjacent to the Prochlorococcus SB, Pelagibacter HTCC7217 

and Pelagibacter RS40 phosphonate biosynthesis clusters (Supplementary Figure S3.7). In 

Prochlorococcus SB we find homologs to known genes involved in extracellular capsule 

synthesis/export, glycan chain extension reactions, and glycosyl transferase reactions. The 

presence of these capsular biosynthesis enzymes is consistent with the significant cross-talk 

between lipopolysaccharide biosynthesis and glycoprotein biosynthesis (Hug & Feldman, 2011) 

and the shared glycan substrates and enzymes between both pathways (Lees-Miller et al., 2013). 

Most importantly we identify an initiating glycotransferase (PgIC) which links the first glycan 

subunit to a lipid carrier, a flippase (Wzx) which translocates the assembled glycan-bound lipid 

carrier to the periplasmic face, and an O-oligosaccharyltransferase (PgIL) which is the critical 

enzyme moving the assembled glycan chain to the final acceptor protein (Iwashkiw et al., 2013; 

Lees-Miller et al., 2013). The striking mutual exclusivity we observe between phosphonate 

production and consumption genes in marine genomes may also be related to the molecular 

mechanisms and subcellular location of the machinery from both pathways. For example, both 

the catalytic domains of C-P lyase (Hove-Jensen et al., 2014) and the assembly of glycans (Varki 

et al., 2016) occur on the cytoplasmic side of the bacterial inner membrane. A cell 

simultaneously expressing both these systems might cannibalize its own phosphonates. Taken 

together our findings strongly suggest that Prochlorococcus SB has the genomic potential to 

produce surface-expressed phosphonoglycoproteins. 
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We also note that the low frequency of phosphonate biosynthesis components in 

Prochlorococcus, and SAR11 populations is consistent with the evolutionary mechanism of 

negative frequency dependent selection (Cordero & Polz, 2014). Negative frequency dependent 

selection favors the presence of rare traits in a population, and negative frequency dependent 

patterns are well documented for microbial surface structures including lipopolysaccharides, S-

layers, O-antigens, and capsular polysaccharides (Wildschutte et al., 2010). Rare variation in 

these surface structure traits, for example slight structural modification, can facilitate bacterial 

evasion from phage and host immune responses (Needham & Trent, 2013; Wildschutte et al., 

2004). However, once a variant becomes too abundant within a population then predators, phage 

or the immune system may adapt to the variant, neutralizing any conferred advantage. Thus, it is 

theorized that natural selection in these genes results in rapid gain and loss, which ultimately 

makes these genes and their variants rare in the wider population. The apparent negative-

frequency dependence of phosphonate producers within Prochlorococcus populations suggests a 

role for the gene in mediating predator or phage interactions. 

 

Supplementary Note S3.5: Robust quantification of PepM and marker genes using short 

metagenomic reads 

Metagenomic classification of diverse functional genes can present methodological challenges 

because the amount of discriminative taxonomic signal in these genes may be marginal or 

confined to specific regions of the gene. For example, PepM appears to be horizontally 

transferred both within closely related microbial groups like Prochlorococcus and between 

diverse microbial lineages). In some cases, it may be difficult to taxonomically assign a short 

metagenome read derived from a PepM gene because the read may map equally well to a PepM 

sequence from multiple taxonomic lineages. We quantified the skill with which we could classify 

PepM sequences derived from SAR11, Prochlorococcus, and all bacteria and archaea genomes 

using mock metagenomes of known composition. 

We simulated mock metagenomes from 200 randomly sampled single cell template genomes 

from the approximately 13000 genomes from GORG-tropics. The 200 template genomes were 

sampled from all available taxonomic orders but were restricted to those genomes from each 

order that fell into the top 10% highest estimated completeness from checkM. Genomes 

estimated to be below 30% completeness were excluded. These criteria resulted in 74 SAR11 

and 48 Prochlorococcus template genomes. We simulated 150 bp paired-end Illumina 

sequencing reads mock metagenomes using randomreads.sh from BBMap v37.90 

(https://sourceforge.net/projects/bbmap/) with 3x coverage, an insert distribution of 155-320 bp 

and parameters snprate=0.005, insrate=0.0005, delrate=0.0005, and subrate=0.0005. We next 

included all identified PepM sequences from GORG-tropics to represent the full diversity of 

PepM sequences in the surface ocean. As a decoy case we also included all GORG genes from 

the isocitrate-lyase superfamily, which have superficial similarity to PepM but lack the essential 

conserved active site motif “EDK(X)5NS.” We then cut these authentic and decoy PepM gene 

sequences with 75 bp upstream and downstream flanking DNA sequence from their parent 

https://sourceforge.net/projects/bbmap/
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genomes and simulated sequencing reads using the same parameters for the full genomes but 

with a sequencing depth of 30x. This step produced sequencing reads derived from 25, 96, and 

14 authentic PepM sequences from Prochlorococcus, SAR11, and all remaining bacteria and 

archaea, respectively. It also generated reads from 49 and 134 isocitrate lyase decoy sequences 

from bacteria and archaea and SAR11, respectively. The final resulting simulated metagenomic 

reads were preprocessed and merged as the Tara ocean and bioGEOTRACES metagenomes. 

Because we knew the precise quantity of PepM-derived reads in the simulated metagenome we 

could then iteratively calculate the true positive rate, true negative rate, positive predictive value, 

and the F1 score (harmonic mean of the true positive rate and positive predictive value) for 

different combinations of sequence similarity cutoffs. In this case the positive predictive value is 

the probability that a metagenomic read classified as PepM is derived from a PepM sequence, the 

true positive rate is the percentage of true PepM reads correctly identified as such, and the true 

negative rate is the percentage of false PepM reads correctly identified. We selected the percent 

identity and E value classification cutoffs that produced the highest F1 score for 

PepM. Ultimately, we selected an E value cutoff of 1e-5 and a percent identity cutoff of 55%, 

which resulted in a true positive rate of 95% and a true negative rate of 99% for classifying any 

bacterioplankton PepM (Supplementary Figure S9). For Prochlorococcus PepM and SAR11 

PepM sequences, respectively, our classification criteria produced a true positive rate of 

96%/60% and a true negative rate of 97%/98%. These performance metrics suggest that in all 

cases we are unlikely to classify superficially related reads as a true PepM sequence. For 

Prochlorococcus and combined bacteria/archaea it appears that we correctly capture 95-96% of 

the total PepM sequence diversity in the mock metagenomes. The true positive rate for SAR11 

was significantly lower (60%) which suggests that 40% of SAR11 PepM sequences are missed 

and probably assigned only to the bacteria/archaea domain level. This result is consistent with 

the high sequence similarity between a handful of PepM genes from SAR11 and other diverse 

bacterial groups, and suggests that our metagenomic database probably underestimates the 

contribution of SAR11 to the total inventory of PepM genes in the ocean. It probably also 

accounts for some of the significant positive correlation between SAR11 PepM abundance and 

combined bacteria/archaea PepM abundance (Supplementary Figure S3.5). Overall, these 

classification metrics indicate that we are unlikely to misclassify PepM reads from marine 

metagenomes and suggest our relative abundance estimates are robust. 

 

Supplementary Note S3.6: Random forest regression 

We used random forest regression, a nonparametric machine learning approach, to identify biotic 

and abiotic factors structuring the distributions of phosphonate producers. We selected random 

forest regression because the dataset has nearly 45 abiotic/biotic variables, many of which are 

highly correlated, and random forest is capable of handling many predictor variables and is 

robust to covariate co-linearities. During the cross-validation and tuning phase of the random 

forest model generation, we performed feature selection heuristics (see methods) to find the top 

50th percentile of informative variables for Prochlorococcus, SAR11, and combined 
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bacteria/archaea. We used a forest size of 1000 trees for all models. For Prochlorococcus we 

ultimately selected 10 model covariates, a minimal node size of 2, and 7 randomly sampled 

variables at each split resulting in a coefficient of determination (R2
Pro) of 0.74 and Root Mean 

Square Error (RMSEPro) of 0.04. For SAR11 we selected 15 selected model covariates, a 

minimal node size of 2, and 6 randomly sampled variables at each split resulting in a coefficient 

of determination (R2
SAR11) of 0.69 and Root Mean Square Error (RMSESAR11) of 0.03. For the 

combined bacteria/archaea we selected 21 selected model covariates, a minimal node size of 2, 

and 8 randomly sampled variables at each split resulting in a coefficient of determination 

(R2
combined) of 0.94 and Root Mean Square Error (RMSEcombined) of 0.02. We then assessed 

whether these top 50th percentile variables were more informative to the model than including 

random information, using the Boruta heuristic (Kursa et al., 2010). The Boruta algorithm is a 

robust, statistically grounded feature ranking method that aims to identify all variables in a 

dataset that contain useful information for model predictive outcome. This approach is useful 

when the variables driving the performance model are of interest and not necessarily the ultimate 

predictive outcome itself. Boruta performs feature ranking by comparing all variables with 

randomized versions of themselves in an iterative framework. In addition to variable ranking 

based on relative scores, Boruta, therefore, provides a measure of the significance of each 

variable relative to noise.  

For Prochlorococcus and SAR11 there was an appreciable amount of variation in producers that 

the models could not capture (R2
Pro= 0.74, R2

SAR11= 0.69). There were 10 and 15 covariates that 

showed better predictive utility than randomly shuffled data for Prochlorococcus and SAR11, 

respectively (Figure S3.3). However, most predictive utility was concentrated into the top 5 

variables, while the importance of the other lower ranking variables was in most cases only 

marginally higher than noise. The five most highly predictive variables for Prochlorococcus 

phosphonate producers (Supplementary Figure S3.3 and S3.5, Supplementary Table S3.1) 

included inorganic phosphate concentrations, the modeled climatological mean dissolved organic 

phosphorus concentrations, the subsurface chlorophyll maximum layer type, and the relative 

abundance of the Prochorococcus LLIV clade. The subsurface chlorophyll maximum layer 

typestypes 1-4 were characterized by deepening SCML depths (~ 20 to 115 meters) while types 

5 and 6 were characterized by high fluorescence throughout the upper 75 meters. The top five 

variables for SAR11 were the relative abundance of total phosphonate producers in the sample, 

the climatological mean nitrate concentrations, SAR11 IV relative abundance, SAR11 clade IIb 

relative abundance, and dissolved aluminum concentrations (Supplementary Figure S3.3 and 

S3.5, Supplementary Table S3.1). The integrated bacteria/archaea phosphonate producer model 

performed best (R2
combined = 0.94) and the top five variables (SAR11 clade IIb relative 

abundance, SAR11 PepM relative abundance, archaea relative abundance, SAR11 clade IV 

relative abundance, Depth) were strongly informative for the random forest prediction when 

compared to noise. We also confirmed these factors for all groups using parametric beta-

binomial regression (Supplementary Table S1) (B. D. Martin et al., 2020). 
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3.9.2 Supplementary Tables 

Table S3.1: Model coefficients from beta-binomial regression of PepM abundance 

Taxonomic group Term Estimate 

95% CI 

[lower] 

95% CI 

[upper] 

Std. 

Error 

t 

value 

Bootstrapped 

LRT P value LRT P value 

Term 

Significance 

Prochlorococcus Prochlorococcus [%] -0.011 -0.015 -0.007 0.003 -4.433 0.004 4.05E-34 *** 

Prochlorococcus Pro LLIV [%] 0.011 0.002 0.018 0.006 1.771 0.077 6.11E-02 . 

Prochlorococcus 

DOP Clim. avg [umol 

kg-1] 1.342 0.360 2.385 0.567 2.366 0.009 4.53E-04 * 

Prochlorococcus PO4 [umol kg-1] -0.014 -0.197 0.167 0.126 -0.107 0.745 7.13E-01 NS 

Prochlorococcus DCM type 2 -0.164 -0.304 -0.043 0.077 -2.129 0.003 6.41E-22 * 

Prochlorococcus DCM type 3 -0.561 -0.710 -0.419 0.085 -6.567 0.003 6.41E-22 *** 

Prochlorococcus DCM type 4 -0.250 -0.380 -0.125 0.076 -3.277 0.003 6.41E-22 ** 

Prochlorococcus DCM type 5 -0.721 -0.970 -0.473 0.134 -5.387 0.003 6.41E-22 *** 

Prochlorococcus DCM type 6 -0.084 -0.210 0.037 0.074 -1.136 0.003 6.41E-22 NS 

SAR11 

Total PepM [per 

genome] 0.021 0.018 0.024 0.002 11.502 0.001 6.94E-29 *** 

SAR11 

NO3 Clim. avg [umol 

kg-1] 0.004 0.001 0.006 0.001 2.640 0.120 2.95E-04 ** 

SAR11 SAR11 IV [%] -0.014 -0.021 -0.007 0.004 -3.908 0.062 3.34E-05 *** 

SAR11 SAR11 IIb [%] -0.005 -0.007 -0.001 0.002 -2.498 0.003 5.99E-05 * 

SAR11 

Dissolved Aluminum 

[nmol kg-1] 0.003 0.001 0.004 0.001 3.370 0.003 1.92E-04 *** 

All bacterioplankton SAR11 IIb [%] 0.0114 0.0088 0.0137 0.0017 6.835 < 0.001 6.08E-13 *** 

All bacterioplankton 

SAR11 PepM [per 

genome] 0.0452 0.0394 0.0506 0.0035 12.901 < 0.001 8.93E-34 *** 

All bacterioplankton Archaea [%] 0.0198 0.0165 0.0223 0.0022 9.083 < 0.001 1.70E-21 *** 

All bacterioplankton SAR11 IV [%] -0.0148 

-

0.0209 -0.0099 0.0035 -4.237 < 0.001 2.31E-08 *** 

All bacterioplankton Pro LLIV [%] 0.0047 0.0031 0.0066 0.0016 2.902 < 0.001 1.88E-07 ** 

All bacterioplankton Depth [m] 0.0006 0.0004 0.0008 0.0001 4.117 < 0.001 1.88E-07 *** 

Coefficient estimates are of unit log-odd change in the probability of sampling a PepM read due to a one unit 

covariate change while controlling for the other covariates. For the categorical variable DCM type the coefficient 

estimate is from the reference level DCM type 1. 95% confidence intervals are simulated from 1000 random draws 

from the beta-binomial distribution parameterized from the covariate data. Each covariate is tested for statistical 

significance using a parametric bootstrapped likelihood ratio test (N=1000) and a classic likelihood ratio (LRT) test 

using a canonical Chi-squared distribution. Term significance: *** P < 0.001,  ** 0.001 < P < 0.01, * 0.01 < P <  

0.05, . 0.05 < P < 0.1, NS P > 0.1. Prochlorococcus and Archaea are percentage of all successfully mapped reads to 

MARMICRODB. Clades LLIV, SAR11 IV, SAR11 IIb are percentage of reads mapped to Prochlorococcus and 

SAR11, respectively. Clim. avg, climatological average from the MIT Darwin model; DCM depth range, deep 

chlorophyll maximum layer depth category – 1=shallow, 6=deep.  
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Table S3.2: Functional enrichment of polysaccharide biosynthesis genes 

within phosphonate biosynthesis gene clusters 

Genome 

Kegg 

Pathway 

Gene 

Ratio 

Background 

Ratio p.adjust qvalue KO Gene function Description 

SB map00520 6/16 24/754 7×10-5 6×10-5 

K02377, 

K02377 

Nad-dependent epimerase 

dehydratase 

SB map00520 6/16 24/754 7×10-5 6×10-5 K01784 udp-glucose 4-epimerase 

SB map00520 6/16 24/754 7×10-5 6×10-5 

K01710, 

K08679 Nucleotide sugar epimerase 

SB map00520 6/16 24/754 7×10-5 6×10-5 K01711 Gdp-mannose 4,6-dehydratase 

SB map00520 6/16 24/754 7×10-5 6×10-5 

K00971, 

K16011 

Mannose-1-phosphate 

guanylyltransferase 

SB map00520 6/16 24/754 7×10-5 6×10-5 K00012 Udp-glucose 6-dehydrogenase 

RS40 map00520 6/28 29/755 1×10-2 1×10-2 K01784 epimerase dehydratase 

RS40 map00520 6/28 29/755 1×10-2 1×10-2 K13010 

DegT/DnrJ/EryC1/StrS 

aminotransferase family 

RS40 map00520 6/28 29/755 1×10-2 1×10-2 

K01654, 

K18430 synthase 

RS40 map00520 6/28 29/755 1×10-2 1×10-2 

K01791, 

K18429 

UDP-N-acetylglucosamine 2-

epimerase 

RS40 map00520 6/28 29/755 1×10-2 1×10-2 

K00966, 

K16881 

Glucose-1-phosphate 

cytidylyltransferase 

RS40 map00520 6/28 29/755 1×10-2 1×10-2 

K01654, 

K18430 synthase 

Subset of results from a Universal Enrichment Analysis implemented with the bioconductor package clusterprofiler. 

The remainder of the results for Prochlorococcus and SAR11 are available from 

https://github.com/slhogle/phosphonates. SB, Prochlorococcus sp. SB; RS40, Candidatus Pelagibacter sp. RS40; 

map00520, Amino sugar and nucleotide sugar metabolism; KO, Kegg Orthology identifier; p.adjust, Bounded False 

Discovery Rate (FDR) adjusted probability for hypergeometric test statistic under the null hypothesis; qvalue, direct 

estimate of the FDR associated with p.adjust; Gene Ratio, k/n where n is the total number of genes within 10000 

nucleotides upstream/downstream of the PepM gene and k is the number of genes in that region annotated to the 
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Kegg Pathway; Background ratio, M/N where N is the total number of genes with a Kegg Orthology assignment and 

M is the number of Kegg Orthology assigned genes annotated to the Kegg Pathway. 

 

Table S3.3: Prochlorococcus SB phosphonate (Phn) and phosphate (Ph) cellular proportions 

Harvest stage # Phn proportion Ph proportion 

Prochlorocccus SB 

P-replete 

(exponential phase) 

1 0.41 0.59 

2 0.43 0.57 

mean 0.42 0.58 

Prochlorocccus SB 

P-limited 

(stationary phase) 

1 0.70 0.30 

2 0.71 0.29 

mean 0.71 0.29 
31P-NMR spectra of each conditions and each replicates were manually integrated and those values used to calculate 

the proportion of phosphonate and phosphate in the cells.  

 

Table S3.4: Prochlorococcus SB phosphorus (P), phosphonate (Phn) and phosphate (Ph) to carbon ratios 

Harvest stage # P/C Phn/C Ph/C 

Prochlorocccus SB 

P-replete 

(exponential phase) 

1 0.009 ± 0.001 0.0036 ± 0.0005 0.0052 ± 0.0007 

2 0.0057 ± 0.0005 0.0024 ± 0.0002 0.0033 ± 0.0003 

mean 0.007  ± 0.001 0.0030 ± 0.0004 0.0042 ± 0.0007 

Prochlorocccus SB 

P-limited 

(stationary phase) 

1 0.008 ± 0.001 0.0059 ± 0.0009 0.0025 ± 0.0004 

2 0.0070 ± 0.0002 0.0050 ± 0.0002 0.00203 ± 0.00007 

mean 0.0076 ± 0.0005 0.0054 ± 0.0003 0.0047 ± 0.0002 

The proportions of phosphonate and phosphate in the cells and the P/C ratio are used to calculate the Phn/C and 

C/Ph ratios. Errors associated the P/C ratio are calculated using the errors associated with the %C and %P in the 

cells and as: ∆
𝑃

𝐶
=  

𝑃

𝐶
× √(

∆%𝐶

%𝐶
)2 + (

∆%𝑃

%𝑃
)2. Errors associated with Phn/C and Ph/C ratios are calculated as: ∆

𝑃ℎ𝑛

𝐶
=

 
𝑃ℎ𝑛

𝐶
 × √(

∆𝑃/𝐶

𝑃/𝐶
)2. Errors associated with the mean values are calculated using the standard error of the mean. 
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Table S3.5: Comparison of genome, PepM, and random tree topologies 

Tree RF Max RF Norm RF Eff tree size Ref in Src Src in Ref 

Gphylo vs 

Gphylo 0 1984 0 999 1 1 

PepM vs Gphylo 1372 1926 0.71 999 0.64 0.66 

Rtrees vs Gphylo 

(n=15) 1708 ± 18 1988 0.86 ± 0.01 999 0.570 ± 0.005 0.570 ± 0.005 

Gphylo vs 

Gphylo 0 26 0 16 1 1 

PepM vs Gphylo 22 26 0.85 16 0.61 0.61 

Rtrees vs Gphylo 

(n=15) 21.8 ± 1.9 26 0.84 ± 0.08 16 0.61 ± 0.04 0.61 ± 0.04 

When compared to the concatenated genome phylogeny (Gphylo), 10 trees simulated at random (Rtrees) have 

similar Robinson-Foulds distances to the PepM phylogeny (PepM) indicating that the PepM evolutionary history 

corresponds poorly to that of the core genome in both archaea and bacteria. The upper half of the table compared the 

bacterial genome phylogeny while the lower half compares the archaeal genome phylogeny. Column descriptions: 

Tree, tree comparison performed; RF, calculated Robinson-Foulds metric; Max RF, maximum possible RF distance 

for the comparison; Norm RF, for normalized comparison between different tree comparisons (RF/Max RF); Eff 

tree size, effective tree size used for the calculation after pruning unshared leaves; Ref in Src, normalized number of 

splits from Gphylo found in either PepM or Rtrees; Src in Ref, normalized number of splits from either PepM or 

Rtrees found in Gphylo. 
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3.9.3 Supplementary Figures 

 
Figure S3.1: A) Prochlorococcus and B) SAR11 phosphonate producers 

Phylogenies are constructed from 120 concatenated, single-copy marker genes from Prochlorococcus (112 

genomes) and Synechocococus (23 genomes) and SAR11 (92 genomes). Scale bar is 0.1 amino acid substitutions. 

The cyanobacteria tree is rooted at Synechococcus sp. WH5701 and the SAR11 tree is rooted at TMED13, a 

metagenome-assembled genome from Tara Oceans distantly related to ‘Candidatus Pelagibacter ubique.’ Bootstrap 

values are based on 250 resamplings. Monophyletic ecotypes are represented by colored cartoon triangles. Inclusion 

of new genomes in this study resulted in a polyphyletic origin for the original SAR11 clade Ib, therefore we have 

partitioned clade Ib into 3 monophyletic subclades (Ib.1, Ib.2 and Ib.3). Phosphonate biosynthetic gene cluster 

diagrams for all genomes from each ecotype are displayed to the right. Vertical red lines represent contig breaks in 

the gene diagrams and filled squares next to the diagram indicate that the gene was detected on a separate 

noncontiguous contig. For simplification, MpnS category also includes the functionally related enzyme HepDI. 
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Figure S3.2: Phosphonate consumers and producers in 28 GORG-Tropics samples 

Same as in Figure 2.2 C,D but includes Prochlorococcus and SAR11. Proportions [%] are total producers or 

consumers divided by the total number GORG assemblies and are corrected using the estimated sequence recovery 

from assemblies (see methods). P values for covariates in beta-binomial regression are displayed if statistically 

significant (P <= 0.05). Beta-binomial regression all consumers; Ocean - Est=-1.04, Err=0.27, t=-3.81, P=7e-4; 

link=logit; log L = -80.425, df=4, resid df=24. Beta-binomial regression Prochlorococcus consumers; Ocean - Est=-

3.50, Err=1.15, t=-3.04, P=6e-3; link=logit; log L = -20.181, df=4, resid df=21. Beta-binomial regression SAR11 

consumers; Ocean - Est=-1.73, Err=0.65, t=-2.66, P=0.01; link=logit; log L = -41.916, df=4, resid df=24. Beta-

binomial regression all producers; Depth - Est=0.0036, Err=0.0014, t=2.604, P=0.02; Ocean - Est=-0.30, Err=0.14, 

t=-2.08, P=0.05; link=logit; log L=-78.179, df=4, resid df=24. 
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Figure S3.3: Environmental factors driving the relative abundance of PepM in Prochlorococcus, SAR11, and 

combined Bacteria/Archaea  

A) Same as in Figure 3A but binned by ocean region. There is no statistically significant difference between ocean 

regions for Prochlorococcus, SAR11, or combined Bacteria/Archaea PepM relative abundance. Black line is the 

median value, the box shows the 25th and 75th percentiles, and the whiskers extend to 1.5 of the interquartile range 

for n metagenome samples in each group. Individual points are outliers, and the vertical axis is square-root 

transformed. B-D) Random forest variable importance measures for each taxonomic group. Point ranges show 

median and maximum/minimum for 100 random permutations of the variable importance algorithm. Only 

informative variables for predicting PepM distributions are displayed. Randomized controls in black represent the 

distribution of the median, minimum, and maximum importance of randomly shuffled variables at each algorithm 

iteration and can be interpreted as the baseline variable importance expected simply due to chance. Asterisks 

indicate whether a variable was also statistically significant in a parametric beta-binomial regression (Supplementary 

Table S1). The top five predictive variables are demarcated by a dashed line. Prochlorococcus, Archaea, and viruses 

are units percentage of all successfully mapped reads to MARMICRODB. Clades HLII, LLI, LLIV, HLIII/HLIV, 

SAR11 IV, SAR11 IIb, SAR11 V, are percentage of reads mapped to Prochlorococcus and SAR11, respectively. 

Clim. avg, climatological average from the MIT Darwin model; DCM depth range, deep chlorophyll maximum 

layer depth category – 1=shallow, 6=deep. PepM units are the percentage of Prochlorococcus, SAR11, or all 

genomes with the trait. 
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Figure S3.4: Time series of PepM relative abundance at the Hawaii Ocean Time-series (HOT) and the Bermuda 

Atlantic Time Series (BATS) 

PepM relative abundance shown by depth range (horizontal grid axis, DCM = deep chlorophyll maximum layer, 

Deep Mix L. = deep mixed layer, 1% photosynthetically active radiation) and by taxonomic grouping (vertical grid) 

at A) HOT and B) BATS. Horizontal axis shows time and points are shaped by sampling season. C) The modeled 

seasonal effect at BATS surface on the relative abundance of PepM of each taxonomic grouping. [GAM SAR11, 

family=Gamma, link=identity: s(dayOfYear), edf=5.4, Ref. df=8, F=9.8, P=7e-5. GAM Prochlorococcus, 

family=Gamma, link=identity: s(dayOfYearDCM), edf=3.8, Ref. df=8, F=4.5, P=0.001, GAM Bacterioplankton, 

family=Gamma, link=identity: s(dayOfYearDCM), edf=3.2, Ref. df=8, F=5.0, P=2e-4]. The red line shows the 

scaled deviation from the annual mean of the mixed layer depth at BATS for the time range in B). For example, a 

negative deviation indicates that the mixed layer depth is deeper than the annual mean. 
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Figure S3.52: Relationship between Prochlorococcus, SAR11, and combined Bacteria/Archaea PepM relative 

abundance and the top five biotic/abiotic covariates for each taxonomic group 

Phosphonate producer relative abundance (vertical axis) vs environmental features (horizontal axis) for the top five 

most informative variables from random forest regressions of each taxonomic group (Figure 3). Each point is a 

metagenomic observation. Climatological averages are from the MIT Darwin model while the other biotic/abiotic 

variables are in situ measurements from GEOTRACES and Tara Oceans. Red lines are local polynomial regression 

fits to the data. Asterisks indicate whether a variable was also statistically significant in a parametric beta-binomial 

regression (Supplementary Table S1). Prochlorococcus and Archaea are percentage of all successfully mapped 

reads to MARMICRODB. Clades LLIV, SAR11 IV, SAR11 IIb are percentage of reads mapped to Prochlorococcus 

and SAR11, respectively. Clim. avg, climatological average from the MIT Darwin model; DCM depth range, deep 

chlorophyll maximum layer depth category – 1=shallow, 6=deep. PepM units are the percentage of 

Prochlorococcus, SAR11, or all genomes with the trait. 
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Figure S3.63: Variations of Prochlorococcus SB P/C, Phn/C and Ph/C ratios between in exponential (P-replete; 

black) and stationary phase (P-limited; grey) 

When Prochlorococcus SB cells become P-limited, their P/C ratio increases slightly whereas their Phn/C ratio 

increases and their Ph/C ratio decreases indicating an increase in phosphonate content and a decrease in phosphate 

(Supplementary Table S4). As before, errors associated with the mean values are calculated using the standard error 

of the mean. 
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Figure S3.74: Polysaccharide and phosphonate biosynthesis in Prochlorococcus and SAR11 isolate genomes 

A) same reaction diagram as in Figure 1 with chemical intermediates (black) and catalyzing enzymes (color). B-D) 

Putative phosphonoglycoprotein biosynthesis gene clusters in Prochlorococcus SB, Candidatus Pelagibacter sp. 

HTCC7217, and Candidatus Pelagibacter sp. RS40 genomes annotated by antiSMASH (Blin et al., 2019) and 

eggNOG mapper (Huerta-Cepas et al., 2017). Genome coordinates are ×106 base pairs. Phosphonate biosynthetic 

genes are colored by enzyme as in A) and are shown in black boxes. Genes involved in modular biosynthesis of 

sugars are shown in red, green, and purple. PgiC is the putative initiating glycotransferase, which links the first 

glycan subunit to a lipid carrier, Wzx is a flippase which translocates the assembled glycan-bound lipid carrier to the 

periplasmic face, and PgIL is an O-oligosaccharyltransferase which is the critical enzyme moving the assembled 

glycan chain to the final acceptor protein. Other biosynthetic genes (grey) have functional predictions not directly 

related to glycan biosynthesis. 
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Figure S3.85: Distribution of phosphonate biosynthesis gene clusters within Prochlorococcus genomic islands 

Includes a subset of all Prochlorococcus genomes with i) high enough completeness and low enough contig 

fragmentation for island prediction (see methods) and ii) that contain phosphonate biosynthesis genes. Genomes are 

ordered by phylogeny (left) and colored by ecotype/clade (right). Grey bars denote the location of predicted genomic 

islands and red vertical lines denote the location of phosphonate biosynthesis clusters within predicted genomic 

islands. Prochlorococcus SB genome assembly length is shown as a black horizontal line. The assembly lengths of 

single cell genomes are omitted due to incompleteness and contig fragmentation. Single cell genome contigs and 

genomic islands are arbitrarily ordered to Prochlorococcus SB. 

 

 

Figure S3.96: Empirical determination of similarity cutoffs for identifying PepM-derived metagenomic short 

sequencing reads 

F1 score, Positive Predictive Value, and True Positive Rate for classifying PepM from mock metagenomes 

simulated from 150 bp Illumina paired-end reads. Results are shown both for merged read pairs (top), and the best 

scoring read from an unmerged read pair (bottom). The True Postive Rate measures the proportion of “true” 

simulated PepM reads correctly identified by a E value/Percent Identity cutoff combination while Positive Predictive 

Value measures the proportion of “true” simulated PepM reads that are correctly identified out of all reads passing 

the E value/Percent Identity cutoff combination. The F1 score is the harmonic mean of precision and sensitivity. 

Cutoffs were empirically chosen to maximize the F1 score resulting in an E value threshold of 1e-5 (dashed blue 

line) and a Percent Identity cutoff of 55% (dashed vertical line).  
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CHAPTER 4. DEVELOPMENT AND OPTIMIZATION OF 

A METHOD FOR THE IDENTICATION OF 

ORGANOPHOSPHORUS COMPOUNDS USING LIQUID 

CHROMATOGRAPHY COUPLED WITH INDUCTIVELY 

COUPLED PLASMA MASS SPECTROMETRY AND 

ELECTROSPRAY IONIZATION MASS SPECTROMETRY 

(LC-ICPMS-ESIMS)   
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4.1 INTRODUCTION 

The chemical characterization of organophosphorus in the ocean currently relies on two different 

methods. The first method is a colorimetric assay that relies on the formation of a blue complex 

between inorganic P or PO4
3- and molybdenum (molybdenum blue method) (Murphy & Riley, 

1962). The molybdenum blue method is a highly sensitive and convenient way to measure the 

concentration of phosphate in environmental samples, however, due to the acidic conditions 

necessary to obtain the blue complex, some phosphate esters, which are part of the organic P 

pool, are hydrolyzed to inorganic phosphate.  In recognition of this, phosphate measured by the 

molybdenum blue method is therefore noted as “soluble reactive phosphorus” or SRP. The 

molybdenum blue method has a limit of detection (LOD) of ~30 nM (Murphy & Riley, 1962). 

This LOD has been decreased to 1 nM using MAGIC (Karl & Tien, 1992) or even 0.5 nM using 

Liquid Waveguide Capillary Cell (LWCC ; (Zhang & Chi, 2002)) but some oligotrophic waters 

have SRP concentrations below those limits which prevents the observation of some P dynamics 

(Martiny et al., 2019)  

 

Organic P (Porg) is measured as the difference in inorganic P concentration before (SRP) and 

after oxidation of organic matter (total phosphorus or Ptot) by UV light, high temperature 

combustion, or strong chemical oxidants (Murphy & Riley, 1962). Thus: [Porg] = [Ptotal] – [SRP]. 

Some organophosphorus compounds are highly resistant to oxidation and may not have the same 

efficiency of conversion to phosphate as the model compounds used to optimize organic matter 

oxidation. Combined, these effects may lead to an overestimation of the inorganic P pool and an 

underestimation of the total P pool which ultimately leads to an underestimation of the organic P 

pool, but in different proportion depending on the oxidation method used. Some efforts have 

been made recently to address the total oxidation issue (Foreman et al., 2019). 

 

The second method used to characterize organic P is 31P nuclear magnetic resonance (NMR), 

which allows the identification of the different P functional groups such as phosphate mono- and 

di-esters, phosphonates and polyphosphates. 31P NMR has shown that marine organophosphorus 

is mainly made of phosphate mono- and di-esters, phosphonate esters and polyphosphates. For 

both the dissolved and the particulate pool, these functional groups have been identified (Cade-

Menun et al., 2005; Young & Ingall, 2010). However, the very complex mixture of 

organophosphorus compounds, the similar chemical shifts for compounds with the same 

functional groups and the low abundance of each individual compounds, leads to broad peaks in 
31P NMR spectra that prevent the use of other NMR experiments such as 2D NMR to 

characterize the breadth of most organophosphorus compounds.  

 

LMW dissolved organic phosphorus (LMWDOP) is the largest pool of organic P in surface 

waters and are used by the marine microbial community to meet their P demands. This pool 

cycles the fastest. Thus, being able to characterize this pool is of great interest when studying the 

marine biogeochemical P cycle and so far, limitations originated from the methods available 
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affect greatly our capacity at understanding it. LMWDOP compounds can be most readily 

characterized by mass spectrometry (MS) coupled with a separation method such as gas 

chromatography (GC) or liquid chromatography (LC).  This approach has been employed to 

measure the presence and the concentration of organophosphorus pollutants such as 

herbicides/pesticides (Liu et al., 2005; Sinha, Vasudev, & Rao, 2012; Wollersen & Musshoff, 

2007), chemical warfare agents (Mawhinney et al., 2007) and their degradation products, and 

drugs (Ghassabian et al., 2012), as well as household and industrial products (Castro et al., 

2020). However, all of those analyses were for structurally resolved organophosphorus 

compounds with known masses i.e. in a targeted manner and have been marginally applied to 

marine samples (Johnson et al., 2017; Johnson et al., 2020; Kujawinski et al., 2017). LC-MS 

using electrospray ionization (ESI) is heavily used in marine sciences and is now well 

established in the field of metabolomics i.e. the study of small molecules involved in metabolism 

as substrate, intermediary or product. Metabolomics has helped identify a large number of key 

metabolites and using a targeted approach measure their concentration and distribution whereas 

the untargeted approach is often used as a comparison tool to study the impact of environmental 

variables such as P concentrations (Kujawinski et al., 2017) or light (Boysen et al., 2020). These 

methods have led to the characterization of a number of new nitrogen (Widner et al., 2020) and 

sulfur (Durham et al., 2019) metabolites but few P containing metabolites. There are several 

reasons for this. First most P-containing metabolites are not retained or only very poorly retained 

by solid phase extraction (SPE) techniques used to recover organic matter from seawater 

(Johnson et al., 2017) which prevents these compounds from being pre-concentrated before LC-

ESIMS analysis. Second, P containing compounds are often small and highly polar and thus they 

are not retained on typical reverse phase columns such as C18 which are commonly used in LC-

MS. Third, phosphorus has a high ionization potential which leads to a poor ionization efficiency 

in the mass spectrometer and a relatively high limit of detection which is especially an issue in 

ICPMS which rely only on P detection and not on other easily ionized atoms present in the 

molecule (Bandura et al., 2002; Johnson et al., 2017). Last but not least, unlike nitrogen or sulfur 

or even iron, P does not have any stable isotope. This limits our capability to find P containing 

metabolites using mass search algorithms that uses natural abundance isotope rations to target 

elements containing a specific heteroatom (S, Br, Fe, Cu, etc.) (Baumeister et al., 2018; Boiteau 

& Repeta, 2015; Boiteau et al., 2016; Durham et al., 2019). 

 

To fill the gap in our knowledge of the molecular composition of LMW P containing compounds 

in marine DOM and POM, we developed an element targeted-approach similar to what has been 

done for trace metals (Boiteau & Repeta, 2015). For this we used LC-MS but used two different 

source of ionization: inductively coupled plasma mass spectrometry (ICPMS) and electrospray 

ionization mass spectrometry (ESIMS). ICP is a highly destructive form of ionization which 

fully breaks a molecule into its constituent elements. The coupling of ICPMS with LC allows for 

the quantitation of different organic P compounds, and tells the analyst where they elute in the 

chromatogram, but it provides no information on the molecular characteristics of the compound. 
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In contrast, the soft ionization offered by the ESI allows the determination of the exact mass of 

intact molecular ions, which is key to generating an elemental formula. In complex 

environmental samples, many compounds co-elute at the same retention time and to identify 

organic P compounds, the molecular ion of the P-containing compound must be identified within 

the suite of co-eluting molecular ions. Using tandem mass spectrometry, co-eluting molecular 

ions can be selected and further fragmented in an ion trap and the fragmentation pattern used to 

help identify or further characterize the compound. Therefore, after separation of P containing 

compounds by LC, ICPMS data is used to obtain the retention times of the P containing 

compounds and ESIMS is used to extract all the molecular masses detected at the retention time 

of interest. By using an online elemental formula generator to which we apply different filters 

e.g. presence of a P atom we can generate elemental formulae for each P-containing masses 

detected. We can then match this formula to a P-containing molecule and confirm the identity of 

this molecule using the fragmentation pattern obtained with the Orbitrap. 

 

To develop this method, we started by optimizing the separation of a mixture of organic 

phosphonate and phosphate using a reverse-phase column functionalized with anion exchange 

sites. Then, we optimized the ICPMS conditions by changing the collision gas, the collision gas 

flow and the dwell time. Finally, we optimized the ESIMS parameters by switching to negative 

mode and varying the voltage as well as the source’s gas flow. We also optimized the Orbitrap 

parameters and created a new method in order to only acquire fragmentation information for     

P-containing compounds. 

 

 

4.2 PHOSPHONATE SEPARATION BY LIQUID CHROMATOGRAPHY 

4.2.1 Choice of the column and the standard mixture 

Organophosphorus compounds, including phosphonates, are highly polar and for the most part 

not retained by reverse-phase columns such as C18. However, phosphonates and a majority of 

phosphate esters have relatively low pKa (~ 2 for phosphonates) and are therefore negatively 

charged at pH > 3. Based on this, Primesep SB (Sielc Technology, USA), an amine-

functionalized reverse-phase column was used to increase the retention of the P-compounds 

through ionic interactions between the column with the phosphate or phosphonate anion.  This 

column was previously shown to be efficient at retaining and separating methylphosphonic acid 

(MPn) from ethylphosphonic acid (EtPn) and 2-hydroxyethylphosphonic acid (2-HEP) from 2-

hydroxypropylphosphonic acid (2-HPP); phosphonates likely to be found in marine samples 

(Repeta et al., 2016). 

 

As our primary goal was to identify and characterize LMW P compounds that we expect to be in 

marine samples, we chose a suite of low molecular weight, highly polar P compounds with 

different functional groups as model compounds to develop the chromatographic separations. 
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Thus, we selected adenosine monophosphate and glucose-6-phosphate as representatives for 

nucleic acids and sugar phosphates as well as 2-aminoethylphosphonic acid (2-AEPn), the firs 

phosphonate discovered in nature (Horiguchi & Kandatsu, 1959), 2-hydroxyethylphosphonic 

acid (2-HEP) and methylphosphonic acid (MPn) (both previously identified in HMWDOM), 

ethylphosphonic acid (EtPn) and phosphorous acid (phosphite), the reduced form of inorganic 

phosphate which is of great interest for marine biogeochemistry since abundant and common 

microbes have the potential to use phosphorus acid as a source of P (Feingersch et al., 2012; 

Figueroa & Coates, 2017; Polyviou et al., 2015). 2-AEPn, AMP, G6P, MPn, EtPn and 

phosphorus acid were purchased from Sigma Aldrich and 2-HEP was purchased from 

Manchester Organics (UK).  Because all the model compounds are hygroscopic, they were kept 

them in a glass dessicator filled with Drierite, sealed with grease and kept under vacuum. 

 

4.2.2 Optimization of the mobile phase 

Based on the notes available on the SIELC website 2-HEP can be separated from 2-

hydroxypropylphosphonic aciHPP using 20-40% acetonitrile (AcN) and 10-15 mM aqueous 

ammonium formate (AmFm) at pH 3. For the separation of MPn, EtPn and ethyl methyl 

phosphonic and isopropyl methylphosphonic acid esters, mobile phases at pH 3-4 using 5-40% 

AcN and 25-50 mM ammonium acetate were used. Similar conditions were used to separate 

sugar phosphates and nucleotide monophosphates. Therefore, I chose to work at pH = 3, with 

acetonitrile and used the aqueous formic acid/AmFm as a buffer. It should be noted that all the 

tests were performed using one Primesep SB column (2.1 x 250 mm, 5 µm, 100 Å) equilibrated 

for 2 hours with the mobile phase at a 400 µL/min flow rate. 

 

The initial trial used a mixture of 30% AcN with 15 mM AmFm at pH= 3. As shown on Figure 

4.1, this mobile phase leads to the elution of the P standards in < 10 min with MPn and EtPn co-

eluting at 7.5 min.  
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Figure 4.1: Chromatogram of the P standards mixture (750 pmol each) using a mobile phase with 30% AcN (grey 

trace), 15% AcN (blue trace) and 10% AcN (orange trace) in 15 mM aqueous AmFm at a pH 3. 

 

In order to increase the retention of compounds and separate MPn from EtPn, we decreased the 

acetonitrile stepwise from 30% to 15% to 10%. Surprisingly, decreasing the AcN content did not 

change the retention times of the compounds very much except for phosphite (Table 4.1). This is 

due to the fact that the standards have very similar polarities, so they are not affected by the AcN 

content of the mobile phase. Their retention on the Primesep SB is primarily due to their ionic 

interactions with the column. 

 

Table 4.1: Influence of the mobile phase AcN content on the retention times (in seconds) of the P-standards. A 

positive value indicates that the compounds are more retained compared to 30 % AcN and a negative value indicates 

that they are less retained. All mobile phases were made with a concentration of 15 mM AmFm. 

Mobile 
phase 

2-AEPn AMP G6P 2-HEP MPn EtPn Phosphite 

RT Shift RT Shift RT Shift RT Shift RT Shift RT Shift RT Shift 

30%  100  176  257  336  422  466  630  

15%  102 2 188 12 252 -5 303 -33 370 -52 434 -32 492 -138 

10%   102 2 222 46 264 7 315 -21 386 -36 461 -5 498 -132 

 

Decreasing the AcN content had an important effect on the ICPMS sensitivity. At 30% AcN, the 

signal/noise for 2-AEPn is about three times lower than when using 15% and 10% AcN (Table 

4.2) due to the introduction of more organics. There is no significant difference in the sensitivity 

whether we used 15% is or 10% AcN, but due to the overall better retention of the P standards 

using 10% AcN, we chose to use that percentage moving forward. 
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Table 4.2: Influence of the different mobile phase compositions on the sensitivity 

Mobile phase mixtures 
2-AEPn signal 

(cps) 
Average noise 

(cps) 
S/N 

Peak width 
(sec) 

30% AcN + 15 mM AmFm 126.69 0.40 318 19.5 

15% AcN + 15 mM AmFm 2083.30 1.86 1119 34.5 

10% AcN + 15 mM AmFm 3878.99 3.84 1011 32.5 

10% AcN + 30 mM AmFm 2226.31 29.12 76 20.5 

10% AcN + 10 mM AmFm 3022.38 10.88 278 43.5 

10% AcN + 8 mM AmFm 3299.99 3.59 919 35.0 

10% AcN + 7 mM AmFm 2938.73 7.84 374 35.5 

 

As previously shown, decreasing the percentage of AcN does not increase the retention of the P 

standards. Since those compounds are negatively charged at pH 3, they interact with the 

ammonium sites of the column packing material. Thus, reducing the competition for those sites 

by reducing the AmFm buffer concentrations (also negatively charged) should increase the 

retention of the P standards. To verify this, we increased the concentration of AmFm from 15 

mM to 30 mM. 

 

 
Figure 4.2: Chromatogram of the P standards mixture (750 pmol) using a mobile phase with 10 % AcN in water and 

a concentration of AmFm of 30 mM (orange), 10 mM (red), 8 mM (dark yellow) and 7 mM (yellow) at a pH 3. Each 

number represent a compound with 1: 2-AEPn, 2: AMP, 3: G6P, 4: 2-HEP, 5: MPn, 6: EtPn and 7: phosphite. 

 

As expected, the P standards that had eluted in 10 minutes now elute in 5 min (Figure 4.2). The 

peaks are not well separated. We then decreased the concentration of AmFm first to 10 mM, then 

to 8 mM and finally to 7 mM. Decreasing the AmFm content increased the retention of the P 



117 
 

standards (Figure 4.2, Table 4.3). 2-AEPn is the only standard not affected by this change. 2-

AEP has a pKa1 of 2.41 (pKa2 = 7.0) and at pH 3 this compound is neutral. Therefore, 2-AEPn is 

not strongly retained by the ionic interactions like the other compounds, and as it has a LMW 

and is polar it is not well retained by the column. As 7 mM AmFm leads to good retention of our 

P-compounds and because there is a benefit at keeping the buffer concentration as low as 

possible since AmFm has a deleterious effect on the negative-ionization in ESIMS (Wu et al., 

2004) (see Section 4.4), we chose a mobile phase containing 10% AcN with 7 mM AmFm 

acidified to pH 3 with formic acid. 

 

Table 4.3: Influence of the mobile phase AmFm concentration on the retention times (in seconds) of the different 

standards. A positive value indicates that the compounds are more retained than in the 10 % AcN with15 mM 

AmFm mobile phase and a negative value indicates that they are less retained. 

Mobile 
phase 

2-AEPn AMP G6P 2-HEP MPn EtPn Phosphite 

RT Shift RT Shift RT Shift RT Shift RT Shift RT Shift RT Shift 

30 mM 102 0 164 -58 176 -88 206 -109 246 -140 292 -169 N/A N/A 

15 mM 102   222   264   315   386   461   498   

10 mM 102 0 292 70 356 92 433 118 540 154 648 187 723 225 

8 mM 102 0 350 128 436 172 531 216 666 280 799 338 916 418 

7 mM 104 2 425 203 472 208 578 263 728 342 878 417 995 497 

 

 

4.3 DETECTION OF PHOSPHORUS USING INDUCTIVELY COUPLED 

PLASMA MASS SPECTROMETRY (ICPMS) 

4.3.1 Instrumentation and initial conditions 

To develop this method, we used an iCap Qc (Thermo Fisher Scientific, USA) equipped with a 

perfluoroalkoxy (PFA) nebulizer delivering a flow between 35 and 15 µL/min to a quartz 

cyclonic spray chamber. The instrument has a quartz injector of 2 mm ID and we used a quartz 

torch optimized for use with organic solvents. The sampling interface is made of a nickel and 

copper sampling cone, a nickel skimmer cone and an extraction lens. The collision cell, or QCell, 

is a quadrupole in which argon (Ar) is introduced along with either helium (He) or oxygen (O2). 

Helium is used in kinetic energy discrimination (KED) mode to remove undesirable polyatomic 

interferences while O2 is used when running with the collision cell technology (CCT) mode i.e. 

without KED barrier. Because the mobile phase contains acetonitrile, formic acid and 

ammonium formate which can decrease the sensitivity of the instrument, O2 was introduced in 

the plasma at a flow rate of 25 mL/min to facilitate oxidation to CO2. The maximum flow rate 

sprayed into the instrument was set to be 50 µL/min (Boiteau & Repeta, 2015). As the flow rate 

for the HPLC separation exceeded the optimum flow of the ICPMS, we split the HPLC flow 

post-column so that only 50 µL/min was directed into the ICPMS instrument.  
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Before each run, the instrument was tuned using a mass calibration solution containing 35 µg/L 

of Be, 15 µg/L of Cu and Ni, 10 µg/L of Al, Ga and Mg, 8 µg/L of Co, Li and Sc, 6 µg/L of Ag 

and Mn, 5 µg/L of Sr, 4 µg/L of Ba and Ti, 3 µg/L of Bi, Ce, Cs, Ho, In, Rh, Ta, Tb, U and Y in 

2.5% (v/v) nitric acid (Inorganic Ventures, USA) in STD mode using the source autotune High 

Matrix 2. When using CCT mode with O2, we also tuned in CCT mode using the source autotune 

CCT Line 2. When using KED initially, I performed performance reports as well, using Tune B 

solution (Inorganic Ventures, USA). Once every few months, the mass calibration solution was 

used to perform a mass calibration and a detector setup. 

 

Initially, analyses were performed using the KED mode with He as a collision gas. The He flow 

was set each time by the instrument software to optimize discrimination and sensitivity while 

executing the tuning protocol, and varied between 3.5 and 4.5 mL/min. In order to monitor the 

presence of organophosphorus compounds, we monitored the ion 31P+ with a dwell time of    

0.02 s. Using those conditions, we injected the standard mixture prepared at concentrations 

ranging from 300 µM to 50 µM and obtained the chromatogram shown in Figure 4.3 for a 

concentration of 150 µM. Based on the 20 µL injection volume and the split causing a loss of 

75% of the flow, these concentrations correspond to a quantity of 15 nmol to 0.25 nmol of each 

standard compound reaching the spray chamber.  

 

4.3.2 Optimization of ICPMS detection sensitivity 

4.3.2.1 Use of oxygen as a collision gas 

The main issue encountered when quantifying P using the ICPMS is that m/z 31, mass at which 

P ions are detected, has several polyatomic interferences: 15N16O+, 14N16O1H+ and 12C1H3
16O+ 

(Bandura et al., 2002). Those interferences are likely to be important considering the high 

abundance of C, N and O in the mobile phase and sample. This leads to an increase of the noise 

i.e. a decrease in sensitivity.  For example, the signal/noise (S/N) for 2-AEPn in the 150 µM 

standard mixture is 4.4. Defining our limit of detection (LOD) as a S/N = 1.3, the detection limits 

are ~150 pmol for 2-AEPn, ~250 pmol for AMP and G6P, ~375 pmol for 2-HEP, MPn and EtPn 

and ~500 pmol for phosphite. Using O2 instead of He in the collision cell yields a polyatomic P 

species 47PO+ that can be detected at m/z 47, which does not have isobaric interferences. Thus, 

even though the signal is an order of magnitude lower, the signal/noise increases by 

approximately an order of magnitude and limits of detection are ~20 pmol for 2-AEPn, ~35 pmol 

for AMP and G6P, ~50 pmol for 2-HEP, MPn and EtPn and ~70 pmol for phosphite.  
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Figure 4.3: Influence of the introduction of O2 instead of He in the collision cell on the P signal sensitivity for the 

standard mixture (750 pmol) with a dwell time of 0.02 s and collision gas flow set by the instrument. 

 

4.3.2.2 Optimization of dwell time 

The dwell time is the amount of time during which the ICPMS accumulates signal for each mass 

chosen. This time can vary between few milliseconds to seconds. When looking at multiple 

elements, it is recommended to set the dwell time in the low range (typically 100s ms) so 

multiple elements can be analyzed simultaneously with a reasonable sensitivity for each. 

However, when acquiring data for only one mass, increasing the dwell time is equivalent to 

obtaining more signal, which leads to better sensitivity. As we are here only interested in the 
31P16O+ mass, we increased the dwell time from 20 ms to 500 ms. As shown on Figure 4.4 below, 

this led to a much smoother signal and an increase of signal/noise from 33 to 82 for 2-AEPn 

when injecting 750 pmol. 

  



120 
 

 

 
Figure 4.4:  Influence of the dwell time on 31P16O+ standard mixture signal (750 pmol) and a collision cell O2 flow of 

0.7 mL/min. The elution order for the different P-standards is the same as indicated in Figure 4.3. 

 

4.3.2.3 Optimization of the oxygen flow 

Because P is absent from the mass calibration tuning solution, the O2 flow is not optimized for P, 

but is arbitrarily set to a flow of 0.7-0.8 mL/min. However, it has been previously shown that the 
31P16O+ signal is higher at a lower O2 flow of 0.2 mL/min (Bandura et al., 2002). Recognizing 

that this study did not report the signal/noise and was using an older version of the instrument, 

we manually varied the O2 flow while 1 µM P, 10 µM P or MQ blank solutions were infused into 

the spectrometer. We prepared the P standard solution by diluting a 1001 mg/L P standard 

solution for ICP (Sigma Aldrich) into 10 mL of MQ water. The samples were infused for 5 min 

in order to allow the O2 level to equilibrate in the collision cell. We performed the experiment by 

increasing the O2 flow from 0.0 mL/min to 0.775 mL/min (the instrument tuned value) by 

increments of 0.05 mL/min. To verify that the equilibration time was sufficient to avoid residual 

O2 concentrations, the O2 flow was decreased step-wise from 0.775 mL/min back to 0.0 mL/min. 

As shown on Figure 4.5, the highest 31P16O+ signal was obtained at an O2 flow of 0.2 mL/min, 

but the best S/N was obtained at an O2 flow of 0.65 mL/min.  
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Figure 4.5: Collision cell O2 flow optimization for 31P16O+ signal (dashed lines) and 31P16O+ signal/noise (full lines) 

using standard solutions of 1 µM P (light grey) and 10 µM P (dark grey) 

 

To confirm that the O2 flow rate was also optimized for HPLC, we analyzed different 

concentrations of the P-standard mixture using a 10% AcN mobile phase with 7 mM AmFm 

acidified to pH 3 in isocratic mode at a flow rate of 200 µL/min. We used O2 flows of 0.7 

mL/min (instrument tuned value), 0.65 mL/min, 0.6 mL/min, 0.45 mL/min and 0.2 mL/min 

(Figure 4.6). As before, we calculated the signal/noise ratio using the intensity of the signal for 

2-AEPn and the highest or average noise between 800 and 1000 seconds for 0.02 s and 0.5 s 

dwell times respectively. The results were similar to the direct infusion experiments illustrated in 

Figure 4.5 except that the highest S/N is obtained for an O2 flow of 0.6 mL/min instead of 0.65 

mL/min.  Changing the O2 flow from 0.7 mL/min to 0.6 mL/min led to an increase of S/N for 2-

AEP from 82 to 252 (~ 3x, compared to ~ 2x for direct infusion measured in Figure 4.5), and we 

used an O2 flow of 0.6 mL/min moving forward. These analyses show the importance of the O2 

flow rate on S/N and sensitivity, and it is recommended to perform similar experiments when 

using different instrumentation or conditions. 

 

4.3.2.4 Summary 

Table 4.4 summarizes the impact of ICPMS instrument parameters on S/N for 2-AEP. When 

using KED mode with a dwell time of 0.02 s, the S/N was 4.4 with an LOD of ~150 pmol. Using 

the CCT mode and introducing O2 as a collision gas at a flow rate of 0.7 mL/min, the S/N 

increased by a factor of 7.5 (Table 4) which corresponds to a LOD of 20 pmol. Increasing the 

dwell time to 0.5 s, increased the S/N by a factor of 2.5 with a LOD of ~8 pmol. Optimizing the 

O2 flow in the collision cell, increased the S/N by a factor of 3 which yielded a LOD of ~2.5 

pmol (Table 4.4).  
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Table 4.4: Summary of the signal/noise ratio obtained for the different tested parameters  

and the associated increase factors. 

Mode Dwell Collision gas Gas flow S/N Increase factor 

KED 0.02 He 3.58 4.4   

57.32 

CCT 0.02 O2 0.7 33 7.5  

CCT 0.5 O2 0.7 82 2.5 

3.11 

CCT 0.5 O2 0.2 137 1.7 

CCT 0.5 O2 0.65 186 1.4 

CCT 0.5 O2 0.45 215 1.2 

CCT 0.5 O2 0.6 252 1.2 
1 S/N improvement when changing the O2 flow from 0.7 to 0.6 mL/min 
2 Overall S/N improvement from the initial to the optimized conditions 

 

In the method development, the LOD was calculated for 2-AEPn, but as the retention time 

increases, the peaks become broader which leads to a lower signal and a higher LOD. Phosphite, 

which has the greatest retention time of the standards, has the largest and smallest peak and a 

LOD of 10 pmol, compared to 2.5 pmol for 2-AEPn, under the optimized conditions (Figure 4.6, 

top panel). 

 

 
Figure 4.67: Changes in LOD with retention time. hromatograms of mixtures where 9.38 pmol (top) or 3.75 pmol 

(bottom) of standard is injected and acquired using the optimized conditions i.e. CCT mode, dwell time = 0.5 s,     

O2 flow = 0.6 mL/min 
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4.4 DETECTION OF ORGANOPHOSPHORUS COMPOUNDS BY 

ELECTROSPRAY IONIZATION MASS SPECTROMETRY (ESIMS) 

4.4.1 Instrumentation and initial conditions 

To identify molecular ions associated with organophosphorus compounds, the HPLC was 

coupled to an Orbitrap Fusion (Thermo Scientific, USA) mass spectrometer. Separations were 

performed using two Primesep SB (2.1x250 mm, 5 µm, 100 Å) columns connected in series and 

eluted with, 90/10 (v/v) water/AcN with 7 mM AmFM acidified to pH 3 with formic acid at a 

flow rate of 200 µL/min with 100% of the eluent was directed into the mass spectrometer 

through a heated electrospray ionization (H-ESI) inlet. The distance between the inlet capillary 

and the sampling cone can be adjusted (graduations from 1 to 3, arbitrary units). For a             

200 µL/min flow rate, the best position was determined by visually monitoring the total ion 

current (TIC) and its stability while the inlet capillary was manipulated. Based on this, analyses 

were performed at position 2. 

 

Initially, ions were collected in positive mode using the instrument recommended method 

parameters (Table 4.5, Column 1). However, under those conditions phosphite did not yield 

measurable positive ions, and could not be detected.  In negative mode, organophosphorus 

compounds are easily charged, especially inorganic species like phosphate and phosphite. 

Another advantage is that there are fewer background interferences when using negative mode 

over positive mode. 

 

4.4.2 ESIMS parameters optimization  

To switch to negative mode, we used the parameters recommended by a Thermo Fisher 

Scientific technical note for the quantification of glyphosate and aminomethylphosphonic acid, 

widely used phosphonates in agriculture, in water 

(https://appslab.thermofisher.com/App/3140/an491-analysis-glyphosate-ampa-environmental-

water-by-ion-chromatography-electrospray-tandem-mass-spectrometry-icesimsms) (Table 4.5, 

Column 2). Under these conditions the detection of MPn and EtPn was improved by a factor of 

1.4 and 2.2 respectively compared to positive mode, but most importantly we were able to detect 

phosphite.  

 

To test the effect of auxiliary gas flow on sensitivity, we increased this flow from 2 to 5 

(arbitrary units) which led to a slight improvement in the detection of all compounds (Table 4.5, 

Column 3). Increasing the sheath gas flow to 45 (arbitrary units, Table 4.5, Column 4) led to 

further improvement in the S/N for all compounds. Decreasing the sheath gas flow to 30 

decreased the S/N of 2-AEPn but slightly increased the S/N for the other compounds. However, 

the S/N was uniformly lower than the values obtained for a gas flow setting of 45. Thus, further 

parameters were optimized using a 45 setting. We then increased the capillary voltage to 3100V 

https://appslab.thermofisher.com/App/3140/an491-analysis-glyphosate-ampa-environmental-water-by-ion-chromatography-electrospray-tandem-mass-spectrometry-icesimsms
https://appslab.thermofisher.com/App/3140/an491-analysis-glyphosate-ampa-environmental-water-by-ion-chromatography-electrospray-tandem-mass-spectrometry-icesimsms
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(Table 4.5, column 6) which did not affect the signal for 2-AEPn, but improved the S/N by 

factors between 1.1 to 2.2 for other compounds in the standard mixture. We then increased the 

vaporizer temperature to 300°C. This led to an increase in S/N by a factors ranging from 1.2 (for 

EtPn) to 2.4 (for 2-AEPn). A further increase of temperature increased the S/N (data not shown) 

further, but a very high vaporization temperature can potentially oxidize compounds, so we made 

the choice to use a vaporizer temperature of 300°C moving forward. Decreasing the ion tube 

temperature to 350°C decreased the S/N by almost a factor of 2, so for all analyses the ion tube 

temperature was set to 400°C. 

 

Table 4.5: Electrospray parameters optimization for the detection of the P standards and improvement in the S/N 

value for each. Bold values show the changed parameter compared to the previous conditions. Values in red font 

mark a decrease in S/N whereas values in green font mark an increase. Values in black font indicate no change. 

ESI parameters 1 2 3 4 5 6 7 8 9* 10 11 

Positive (V) 3500              3500     

Negative (V)  3000 3000 3000 3000 3100 3100 3100 3100 2500 2500 

Sheath gas (arb) 12 40 40 45 30 45 45 45 45 35 35 

Aux gas (arb) 6 2 5 5 5 5 5 5 5 7 7 

Sweep gas (arb) 2 1 1 1 1 1 1 1 1 0 0 
Ion transfer tube 
temp (°C) 280 400 400 400 400 400 400 350 350 400 400 
Vaporizer tube 
temp (°C) 80 275 275 275 275 275 300 300 300 275 300 

Standards S/N                     

2-AEPn 64.5 3.8 8.5 10.0 6.3 6.2 15.1 6.6 8.7 30.2 19.6 

2-HEP 2.8 1.0 1.3 3.2 1.7 3.7 5.4 2.9 1.2 15.0 10.2 

MPn 0.6 0.8 1.1 2.3 1.5 3.3 3.8 2.2 1.4 11.2 7.6 

EtPn 0.4 0.9 1.4 2.8 1.6 4.1 4.9 2.6 1.5 13.7 9.0 

Phosphite ND 0.08 0.2 0.3 0.2 0.7 0.8 0.5 0.1 2.5 1.4 

ND: not detected 

 

Using the conditions listed in Table 4.5, Column 7, the influence of the mass range, Orbitrap 

resolution and the injection times on sensitivity was investigated (Table 4.6).  
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Table 4.6: Influence of Orbitrap resolution, injection times and mass range on the S/N of the different P standards. 

As a reference, the S/N for the parameters used in Column 7 in the table above (Table 5) are reported. Bold values 

show the changed parameter compared to the previous conditions 

Orbitrap parameters 7 7.1 7.2 7.3 7.4 

Orbitrap resolution 120000 240000 240000 120000 120000 

Scan range 70-150 70-150 70-150 70-2000 70-150 

RF lens % 60 60 60 60 60 

AGC Target 2.00E+05 2.00E+05 2.00E+05 2.00E+05 2.00E+05 

Max injection time (ms) 200 200 50 200 50 

Isolation window 1.6 1.6 1.6 1.6 1.6 

Activation type HCD HCD HCD HCD HCD 

HCD collision energy 35 35 35 35 35 

Detector type Orbitrap Orbitrap Orbitrap Orbitrap Orbitrap 

Orbitrap resolution 30000 60000 60000 30000 30000 

AGC target 5.00E+04 5.00E+04 5.00E+04 5.00E+04 5.00E+04 

Microscans 1 1 1 1 1 

Max injection time (ms) 54 54 118 54 54 

Standards S/N           

AEPn 6.6 5.7 9.7 12.5 13.5 

2-HEP 2.9 2.2 2.6 2.3 3.6 

MPn 2.2 1.8 2.8 1.7 3.0 

EtPn 2.6 2.4 3.4 2.4 4.0 

Phosphite 0.5 0.3 0.4 0.07 0.5 

 

Increasing the Orbitrap mass resolution slightly decreased the S/N for all P standards which is to 

be expected as mass resolution is dependent on the amount of signal received (Table 4.6, 

Column 7.1). Counterintuitively, the S/N increased when using a shorter injection time (Table 

4.6, Column 7.2). This phenomenon was also observed when operating at a lower resolution 

(Table 4.6, Column 7.4). However, similar to what we observed with ICPMS sensitivity when 

using a shorter dwell time, the signal is noisier, therefore an injection time of 200 ms was used. 

Increasing the mass range also led to a decrease in S/N especially for phosphite. Because some 

P-containing metabolites have a very low mass (<150 m/z) where the sensitivity is the lowest 

due to the presence of background ions, samples were analyzed with a low mass (m/z = 70-150) 

range and again with a higher m/z (150-1000) range to monitor the loss of signal using the full 

mass range (75-1000). 

 

Using Column 7 (Tables 4.5 and 4.6) conditions, the influence of decreasing the voltage was 

investigated. Decreasing the voltage to 2500V, a big improvement in sensitivity was measured. 

With this voltage, the sheath and auxiliary flows were adjusted and optima were 35 arb and 7 arb 

respectively (Table 4.5, Column 10). Using 2500V led to an improvement of a factor of 2 to 3 

compared to the parameters settings used previously with 3100V (Table 4.5, Column 7) which 

correspond to an overall improvement of a factor of 8 for 2-AEPn, ~15 for 2-HEP, MPn and 

EtPn and 31 for phosphite compared to the initial negative mode conditions (Table 4.5, Column 
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2). The vaporizer temperature was set to 275°C. Indeed, decreasing the vaporizer temperature to 

275°C increased the signal compared to 300°C (Table 4.5, Column 11) and the parameters from 

Table 4.5, Column 10 i.e. negative mode, 2500V, sheath gas of 35 arb, auxiliary gas of 7 arb, ion 

transfer tube temperature of 400°C and vaporizer temperature of 275°C were chosen for future 

work. All Orbitrap parameters previously optimized were kept identical i.e. resolution of 120000, 

m/z scan range of 70-150, injection time of 200 ms. 

 

4.4.3 MS2 of organophosphorus compounds using precursor-product ions 

 
Figure 4.7: Ion path of the Orbitrap Fusion (https://cen.acs.org/articles/91/i27/Thermo-Fisher-Scientifics-Orbitrap-

Fusion.html). Ions are generated at the ion source and separated by the quadrupole mass filter. Ions selected by the 

mass filter can be directed to the high resolution Orbitrap or to the lower resolution ion trap mass analyzers. 

 

Initially, the instrument was operated such that all ions within the mass range selected that 

passed through the quadrupole mass filter were detected, within the mass range selected, by the 

Orbitrap mass analyzer (Figure 4.7). The Orbitrap mass analyzer detects the mass of molecular 

ions (MS1). Ions that have intensity above a certain threshold value were further fragmented 

(MS2). For example, AMP (M = 347.063 g/mol), the corresponding molecular ion [M-H]- will be 

detected in negative mode at m/z 346.054 and further fragmented to obtain an MS2 spectrum 

with product ions at m/z 211.000 (C5H8O7P
-); 150.979 (C3H4O5P

-); 134.046 (C5H4N5
-); 96.969 

(H2PO4
-) and 78.958 (PO3

-) (Figure 5.2). However, most ions selected for MS2 are not from P 

containing compounds and P compounds present in low abundance might be missed. To address 

this, we designed an analytical protocol guided by precursor-product ions. Product ions are ions 

emanating from the fragmentation of precursor (usually molecular) ions in the mass analyzers 

(Figure 4.7) and that are diagnostic for the compounds of interest (in this case, organophosphorus 

compounds). For example, all phosphonates have common m/z 78.958 (PO3
-) and 80.974 

(H2PO3
-) product ions and all phosphates have m/z 78.958 (PO3

-) and 96.969 (H2PO4
-) product 

ions. When molecular ions are fragmented, any molecular ions containing one of the chosen 
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product ions detected by the ion trap will trigger the Orbitrap mass analyzer (Figure 4.7) to 

acquire MS2 data for that molecular ion. In the case of AMP, the fragmentation of its molecular 

ion in the ion trap will lead to the presence of the product ions at m/z 78.958 (PO3
-) and 96.969 

(H2PO4
-) which will trigger the Orbitrap for a high resolution MS2 acquisition. However, all 

organic compounds fragmented by the ion trap that do not contain the product ion of interest will 

not have a high resolution MS2. Thus, this approach allows both the collection of fewer MS2 

spectra and the collection of MS2 for molecular ions of low intensity but of interest for the 

analysis i.e. presence of a P containing fragment. The goals here are to first to reduce the number 

of target ions and second to specifically target P containing ions for collection of high resolution 

MS2 spectra. 

 

As we are interested in characterizing LMW phosphonates and phosphates, we started by 

selecting 3 product ions: m/z 78.958 (PO3
-), m/z 80.974 (H2PO3

-), m/z 96.969 (H2PO4
-) in the 

targeted mass list with a mass tolerance of ± 0.5 m/z and an intensity threshold at 5.0x102. To 

reduce the analysis time in the ion trap, we set the number of microscans per scans to 1 with an 

injection time of 50 ms and chose a rapid ion trap scan rate. The isolation was performed by the 

quadrupole with a window of 1.6 m/z. The precursor ion was activated by HCD (higher collision 

energy dissociation) with an energy fixed to 40%. The Orbitrap HCD collision energy was set for 

35%, with a resolution of 30000, and an injection time of 54 ms with 1 microscan per scan.  

 

This experiment significantly reduced the number of ions selected for MS2 analyses. For 

example, when the standard mixture of organophosphorus compounds was analyzed over 150 

Orbitrap MS2 were acquired compared to 9 with product ion scanning. An analysis of the 

standard mixture showed that the product ion m/z 96.969 (H2PO4
-) included ions with a m/z 

96.959, which corresponds to HSO4
-. Further, the product ion m/z = 80.974 (H2PO3

-) was present 

at a very low intensity. Thus, we removed these two products from the precursor scan mass list 

and only used m/z 78.958 (PO3
-). This allowed for a reduction of ion trap the mass scanning 

range to 75 to 84 and led to an increase in the sensitivity. 

 

 

4.5 CONCLUSION AND RECOMMENDATIONS FOR FUTURE METHOD 

IMPROVEMENT 

The Primesep SB column retains polar, low molecular weight phosphonates and phosphates. The 

organic solvent content of the mobile phase does not have a large effect on the retention times of 

P-containing analytes, however the concentration of the ammonium formate buffer has a 

significant effect on retention time, with lower buffer concentrations yielding better separation of 

the standard mixture of compounds used here. In this Chapter, the optimization of the mobile 

phase was performed in isocratic mode using 10% AcN, 7 mM of AmFm at pH 3 (formic acid) 

but for environmental samples, different conditions and gradients might yield better separations. 
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For example, there is some evidence that substitution of acetic acid for formic acid in the HPLC 

mobile phase will enhance detection limits in ESIMS (Wu et al., 2004).  Likewise, increasing the 

content of AcN in the mobile phase should also be investigated as a higher percentage of organic 

solvent may facilitate desolvatation in the electrospray interface. 

 

Optimizing mass spectral acquisition parameters increased the sensitivity of detection by a factor 

of ~50 for the ICPMS and a factor of between 8 and 33 for the ESIMS. Detection limits on the 

ICPMS were 40 pmol for phosphite and 10 pmol for 2-AEPn. Detection limits on the ESIMS 

were ~900 pmol for phosphite and 90 pmol for 2-AEPn. Moreover, by introducing the precursor 

scans, the number of molecular ion candidates potentially attributed to organophosphorus 

compounds after alignment of the ICPMS and ESIMS traces was greatly reduced, facilitating the 

identification of P containing compounds. As an alternative to the precursor-product ion 

approach, an algorithm using the alignment between the ICPMS and the ESIMS datasets as well 

as other factors such as peak shape in order to find P-containing masses should be investigated. 
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CHAPTER 5. IDENTIFICATION OF 

ORGANOPHOSPHORUS COMPOUNDS IN MARINE 

SAMPLES USING LC-ICPMS-ESIMS  
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5.1 INTRODUCTION 

As previously covered in Chapter 4, one of the biggest limitations to fully understand P 

biogeochemical cycling is the lack of appropriate methods. Thanks to the “molybdenum blue 

method” (Karl & Tien, 1992; Murphy & Riley, 1962; Zhang & Chi, 2002) and the recent efforts 

made to improve the oxidation of TDP (Foreman et al., 2019) standing stocks of SRP and DOP 

can be measured quite precisely, which provides precious information on dissolved organic 

phosphorus (DOP) distribution and has allowed for the identification of P-(co)limited regions. 

With 31P NMR, P functional groups present in DOP led to the discovery of phosphonates and the 

acknowledgment of a P redox cycle.  

 

In addition, cycling rates and bioavailibility of the P pools using 33P-labeled Pi or adenosine 

triphosphate (ATP) have been studied. 33Pi has been used to measure Pi uptake rates in several 

oligotrophic regions (Björkman et al., 2018; Orchard et al., 2010; Thingstad et al., 2005) as well 

as phosphonate production rates in the North Atlantic (Ebling et al., 2021; Van Mooy et al., 

2015) and more recently in the Eastern Mediterranean Sea (Chapter 2). 33P-ATP has been used as 

a tool to estimated DOP uptake rates (Björkman et al., 2018; Orchard et al., 2010) and as a way 

to estimate the biologically available P pools (Bjorkman & Karl, 2003; Karl & Bossard, 1985). 

Enzymatic assays, especially for alkaline phosphatase, have also been used to help understand 

the dynamics of P demand as well as the capacity of microbes to use phosphoesters (Karl & 

Björkman, 2015). Moreover, several efforts have been made to study the chemical composition 

and molecular concentrations of the marine organic P pool. Those include polyphosphates 

(Martin & Van Mooy, 2013; Solórzano & Strickland, 1968), nucleic acids (Karl & Bailiff, 1989), 

nucleotides (Björkman & Karl, 2001) and monoesters (Strickland & Solorzano, 1966). 

 

However, most of the DOP pool chemical composition remains unknown especially on a 

molecular level, which prevents a full understanding of the extent of the bioavailability of DOP 

as well as the exchange and transformation between the different P pools. With these issues in 

mind we developed an element targeted method optimized for P designed to separate P-

containing compounds using liquid chromatography (LC), detect and quantify P-containing 

compounds using inductively coupled plasma mass spectrometry (ICPMS) and finally to 

characterize them using electrospray ionization in tandem mass spectrometry (ESIMS/MS). 

Results were presented in Chapter 4. Due to the absence of a stable isotope for 31P, we could not 

rely on search algorithms previously used in other element targeted methods, and had to 

developed a precursor-product ion method to integrate ICP and ESIMS data. This method was 

previously presented in detail in Chapter 4 as well. 
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Here, we applied the LC-ICPMS/ESIMS method to cultured isolates of Prochlorococcus SB and 

MIT9313. We were able to identify nucleotides and several other P-containing compounds 

expected in particulate organic matter (POM), which proved the ability of the method to detect 

P-compounds leading to their identification. We then applied this method to LMWDOM sample 

extracted from spent Prochlorococcus SB culture media by SPE and were also able to identify 

very diverse P-compounds showing the broad application of this method. Finally, we worked 

with a seawater POM sample that had been previously fractionated and purified using ion 

chromatography like in Chapter 2 and were able to fully separate the P-compounds present in 

selectfractions and identify a majority of them. Our results are presented hereafter.  

 

 

5.2 MATERIAL AND METHODS 

5.2.1 Solvents, standards and columns 

Mobile phases were prepared using MQ water, distilled Optima Grade (Fisher Scientific) 

acetonitrile (AcN) and methanol (MeOH), ammonium formate (AmFm) and formic acid. 

Phosphorus standards: 2-aminoethylphosphonate (2-AEPn), adenosine monophosphate (AMP), 

glucose-6-phosphate (G6P), methylphosphonic acid (MPn), ethylphosphonic acid (EtPn) and 

phosphorus acid were purchased from Sigma Aldrich and 2-hydroxyethylphosphonic acid (2-

HEP) was purchased from Manchester Organics (UK). Two different types of HPLC columns: a 

Zorbax SB-C18 (0.5 x 150 mm, 5 µm; Agilent, USA) and the Primesep SB (2.1 x 250 mm, 5 

µm, 100 Å or 0.5 x 250 mm, 5 µm, 100 Å; SIELC, USA) packed with a C18 functionalized with 

quaternary amine groups were used to separate organic phosphorus compounds from POM and 

DOM samples. While the Zorbax column separated compounds based on polar interactions, the 

Primesep SB column separations were based on polar and anion-exchange interactions. 

 

5.2.2 Sample preparation 

5.2.2.1 Organic phosphorus in Prochlorococcus MIT9313 

A 5 L culture of Prochlorococcus MIT9313 was grown axenically under constant low light ( ~11 

μmol photon m-2 s-1) in Sargasso seawater based Pro99 medium (Moore et al., 2007), but 

substituting 3.75 μM TAPS as a buffer instead of 1 mM HEPES. To harvest the cells, the 

cultures were centrifuged, the spent medium discarded, the cell pellet rinsed with filtered 

seawater, and the pellets frozen at -20oC until analysis. Right before analysis, the pellets were 

thawed, centrifuged and the seawater supernatant removed. Five milliliters of MQ water were 

added and the suspension was flash frozen in liquid nitrogen followed by thawing with boiling 

water. This was repeated 5 times. The samples were centrifuged and the supernatant removed. 

The supernate was filtered using 0.22 µm syringe filters (PES) and then put into 6 mL Vivaspin 

tubes with a 5000 molecular weight cutoff. The residue in the Vivaspin tubes was rinsed with 1 
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mL MQ water, centrifuged and the filtrates were combined then dried at 40°C under vacuum. 

The extract was resuspended in 1 mL of MQ water and stored in the freezer at -20°C. For the 

analysis, the sample was concentrated to a volume of 500 µL and 6.4 µL were injected. 

 

5.2.2.2 Organic phosphorus in Prochlorococcus SB POM and LMWDOM 

A 20 L culture of Prochlorococcus SB was grown axenically, under constant light (30 μmol 

photon m-2 s-1) in artificial seawater medium AMP1 prepared has described by (Moore et al., 

2007), but using 3.75 μM TAPS as a buffer instead of 1 mM HEPES. The cells were harvested 

by centrifugation, the cell pellets rinsed with filtered Turk Island mix i.e. non amended ASW and 

frozen at -20oC. Meanwhile, the spent medium was filtered with a 0.22 µm cartridge filter 

(previously cleaned by rinsing with 1M HCl) and collected in an acid clean 20 L carboy. 

HMWDOM was recovered from the spent media using a stirred cell fitted with a 1 kDa 

membrane filter. The filtrate (nominally < 1 kD fraction) was pumped through two ENV+ SPE 

columns (1 g; previously activated with 12 mL of MeOH followed by 12 mL of MQ) connected 

in series. The columns were desalted using 12 mL MQ water and LMW hydrophobic DOM 

eluted with 12 mL MeOH. The MeOH wash of the two columns were reduced in volume to        

~ 400 µL in a vaccufuge at 35°C for 2h and stored in the freezer until further analysis. For the 

analysis, the sample was concentrated to a final volume of 40 µL and 16 µL were injected. 

 

The cell pellet from the equivalent of 2 L of Prochlorococcus SB culture was thawed, 

resuspended in 25 mL of MQ water and split into four, 15 mL falcon tubes. The cells were 

extracted using a sonicator (30 sec on/off repeated 7 times) and the sample centrifuged to remove 

the cell debris. The supernatant was collected and transferred to 6 mL Vivaspin tubes with a 

5000 MW cutoff. The Vivaspin tubes were centrifuged, the filtrates combined and reduced in 

volume to ~ 500 µL at 40°C under vacuum then stored in the freezer until further analysis. For 

the analysis, the sample was concentrated to a final volume of 100 µL and 6.4 µL were injected. 

 

5.2.2.3 North Atlantic POM 

POM samples were collected by filtering 8 L of North Atlantic (38° 30.479’ N; 68° 0.117’ W) 

surface (5 m) seawater onto 0.22 µm Durapore filters. The filters were flash frozen and stored in 

a -20oC freezer before analysis. Back in the lab, the filters were placed in microvials to which 1 

mL of MQ water was added. The vials were flash frozen in liquid nitrogen then thawed by 

immersion in boiling water. In total, the samples were subjected to three freeze/thaw cycles to 

extract intracellular P. The supernatant was recovered and phosphonates separated from 

phosphates using a preparatory ion exchange chromatograph (Thermo Dionex ISC-2100 

equipped with an autosampler and a fraction collector) fitted with an IonPac AS18 column (4 x 

250 mm) eluted step-wise from 23 mM KOH (0-15 min) to 90 mM (15-25 min) and held at 90 

mM for 10 minutes at a flow rate of 1 mL min-1. One-minute fractions were collected for the ten 
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first minutes of each run. Each one minute fraction was dried then dissolved in 100 µL MQ 

water and 20 µL were injected on the ICPMS and the ESIMS.  

 

The protocol followed a method developed by Van Mooy et al. (2015) and modified by Ebling et 

al. (2021) that is designed to separate 33P-labeled reduced P-compounds from 33P-labeled 

phosphates in order to measure phosphonate production rates.  To verify that the fractions 

collected in the first 10 minutes only containing reduced P-compounds, all fractions were 

analyzed by ICPMS.  Fractions F4 (3-4 min), F6 (5-6 min) and F7 (6-7 min) which displayed 33P 

activity were also analyzed by ESIMS (Ebling et al., 2021). Thus, only those fractions are 

discussed hereafter. 

 

5.3.3 Liquid chromatography instrumentation conditions 

Separations were performed using an Ultimate 3000 (Dionex, USA) HPLC. Depending on the 

sample analyzed, we used different LC conditions. For the North Atlantic POM samples, we 

used two Primesep SB columns (2.1 x 250 mm) connected in series and eluted at a flow rate of 

200 µL/min with 10% AcN, 90% aqueous AmFm (7 mM) acidified to pH 3 with formic acid. 

For Prochlorococcus POM samples, separations were effected using 3 Primesep SB columns 

(0.5 x 250 mm) connected in series eluted at 13 µL/min using a water/AcN gradient as detailed 

in Table 5.1. For the Prochlorococcus SB LMWDOM SPE extract, we used a Zorbax SB-C18 

column (0.5 x 150 mm) with a water/MeOH gradient (Table 5.1) flow rate of 40 µL/min.  
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Table 5.1: Summary of the liquid chromatography conditions used for each sample analyzed 

 North Atlantic POM 
Prochlorococcus SB 

and MIT9313 POM 

Prochlorococcus 

SB LMWDOM 

Column 
2 Primesep SB 

(2.1 x 250 mm) 

3 Primesep SB 

(0.5 x 250 mm) 

Zorbax SB-C18 

(0.5 x 150 mm) 

Solvent A 

10% AcN + 90% 

7mM aqueous 

AmFm; pH 3 

Aqueous 7 mM AmFm; 

pH 3 

Aqueous 40 mM 

AmFm 

Solvent B N/A 
50% AcN + 50% aqueous 

7mM AmFm; pH 3 

100% MeOH + 

40 mM AmFm 

Flow rate (µL/min) 200 13 40 

Elution Isocratic 

0-20 min : 100% A 

20-30 min: 10% B 

30-40 min: 20% B 

40-60 min: 20% B 

60-68 min: 100% B 

68-100 min: 100% B 

100-140 min: 100% A 

0-5 min: 5% B 

5-65 min: 95% B 

65-75 min : 95% B 

75-105 min : 5% B 

 

5.3.4 ICPMS instrumentation and conditions  

The ICPMS was an iCap Qc (Thermo Fisher Scientific, USA) equipped with a perfluoroalkoxy 

(PFA) nebulizer delivering a flow between 15-35 µL/min to a quartz cyclonic spray chamber. 

The instrument was equipped with a 2 mm ID quartz injector and a quartz torch optimized for 

use with organic solvents. The sampling interface includes nickel sampling and skimmer cones. 

The collision cell, or QCell, is a quadrupole in which argon (Ar) was introduced. Measurements 

were made in CCT mode using an O2 collision gas for which the flow was adjusted as detailed 

later. O2 was introduced into the plasma at a flow rate of 25 mL/min to facilitate oxidation of 

organics to CO2 and avoid deposition on the sampling cone (Boiteau & Repeta, 2015).  The 

maximum flow from the HPLC injected into the ICPMS was 50 µL/min (Boiteau & Repeta, 

2015). Due to the limited flow rate, the flow was split post-column for some analyses and only a 

fraction of the analyte was directed into the ICPMS.  

 

For the North Atlantic POM fractions and the Prochlorococcus SB LMWDOM sample, we used 

an O2 collision gas flow of 0.75 mL/min and dwell times of 0.02 s and 0.05 s respectively. For 

the Prochlorococcus MIT9313 and SB POM samples, we used a O2 flow of 0.6 mL/min and a 

dwell time of 0.5 s based on our optimization work (Chapter 4). 
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5.3.5 ESIMS instrumentation and conditions 

The ESIMS is an Orbitrap Fusion (Thermo Scientific, USA) mass spectrometer. The HPLC 

eluent was directed into the mass spectrometer through a heated electrospray ionization (H-ESI) 

inlet. The distance between the capillary and inlet can be adjusted (graduations from 1 to 3, 

arbitrary units) and was changed for each flow rate used. For flow rates of 10 and 40 µL/min we 

positioned the capillary in position 1 while for the 200 µL/min flow rate the capillary was set to 

position 2. Because we improved the method in parallel with sample analyses we adjusted the 

source, Ion Trap and Orbitrap parameters between samples. The settings used for each sample 

type are summarized in Table 5.2. Other parameters were fixed across the analyses. All samples 

were run in negative mode with an ionization voltage of 2500V. Orbitrap resolution was 120000 

with an AGC Target of 2.0x105 and an injection time of 50 ms.  For the ion trap, an isolation 

window of 1.6 m/z, an HCD collision energy of 40% with an AGC Target of 5.0x104 and an 

injection time of 50 ms were used. For the targeted precursor mass, we set the intensity threshold 

to 50 with a mass tolerance of 0.5 m/z. For the MS2 Orbitrap parameters we used a 1.6 m/z 

isolation window, an Orbitrap resolution of 30000 with an AGC Target of 5.0x104 and an 

injection time of 54 ms. 

 

Table 5.25: ESIMS(-) source, Orbitrap and Ion Trap parameters adjusted  for each samples 

Source parameters North Atlantic POM 
Prochlorococcus SB 

and MIT9313 POM 

Prochlorococcus 

SB LMWDOM 

Sheath gas (arb) 35 15 25 

Aux gas (arb) 7 5 5 

Ion tube temp (°C) 400 275 275 

Vaporizer tube temp (°C) 300 30 75 

MS1 Orbitrap parameters    

Mass range 75-150/150-1000 75-150/150-1000 75-500 

Dynamic exclusion No Yes Yes 

MS2 Ion Trap parameters    

Targeted precursors 96.964/80.97/78.958 78.958 78.958 

Scan range mode Normal Mass range: 75-84 Mass range: 75-84 

MS2 Orbitrap parameters    

HCD Collision Energy (%) 35 35 45 

 

To be able to determine the mass of the P-containing compounds and acquire their fragmentation 

pattern or MS2, the precursor-product method described in Chapter 4 was used. Briefly, the 

fragmentation of phosphonates and phosphates (here after called P-containing compounds) yields 

a common fragment at m/z 78.958 which corresponds to the ion PO3
-. Thus, the detection of this 

product ion is used to detect the presence of a P-containing compound in the chromatogram and 
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triggers the acquisition of a high resolution MS2 of the precursor ion. The mass of the precursor 

ion is then listed and an elemental formula found for that mass.  

 

5.3.6 P-compounds characterization and putative annotation 

To determine the elemental formula of the precursor molecular ions, an elemental formula 

generator available online (https://www.chemcalc.org/mf-finder) was used with the following 

filters: carbon number was allowed to vary between 0 and 100, hydrogen between 1 and 100, 

nitrogen between 0 and 20,  oxygen between 0 and 20, phosphorus between 1 and 2, and sulfur 

between 0 and 2. If no elemental formula was found, the option of having 1 halogen (fluorine, 

chlorine, bromine or iodine), or alkaline salt (sodium, magnesium, potassium, calcium) atom was 

added. Because our standard masses deviated from the monoisotopic mass by a Δppm varying 

between ± 0.6 and 6.3 ppm, we narrowed our search window for elemental formulae to a 10 ppm 

range. We then ran the possible elemental formulae against the PubChem online database 

(https://pubchem.ncbi.nlm.nih.gov/) to only keep elemental formulae yielding known P-

compounds. In most cases, only one elemental formula corresponded to P-compounds. 

 

Using the elemental formula(e) and the precursor ion fragmentation pattern (eq. to MS2 spectra), 

we then putatively annotated the P-containing molecule. To confirm our putative annotations, we 

then used the MetFrag online tool (https://msbi.ipb-halle.de/MetFragBeta/). MetFrag is an in 

silico fragmentation tool which uses the precursor mass to find candidates within a database and 

the overlap between the experimental MS2 spectrum and the MS2 spectrum computationally 

generated for each candidate to attribute a score and rank those candidates. Various parameters 

can be changed including the adduct type of precursor ion, the candidate search ppm and the 

relative mass deviation for MS2 peaks. Additional candidate filters can be applied and scoring 

term improved. Here, we looked for candidates within the PubChem database, we chose an 

adduct type of [M-H]-, a 10 ppm window for the candidate search and a relative mass deviation 

of 5 ppm. We also chose a scoring term that would include spectral similarity and exact spectral 

similarity with the MoNA database. Additionally, we applied a substructure exclusion filter for 

the substructure phosphoric acid OP(=O)(O)O when the peak at m/z 96.968 corresponding to the 

fragment H2PO4
- was absent in the experimental MS2 spectrum. Based on the score obtained for 

our phosphonate standards (2.4 and 1.7-1.9 with and without exact spectral similarity match 

respectively) we considered that a score >2.4 or 1.7 to be good and set a cutoff at 2.2 or 1.5 

depending if the exact spectral similarity was considered in the score calculation. Our putative 

annotations almost always fell within the top 5 scores and always scored above the cutoffs. We 

report the MetFrag rank and score as (#rank, score) for all our attributions hereafter. Using 

MetFrag allowed us to move from a Level 3 of confidence which corresponds to the 

https://www.chemcalc.org/mf-finder
https://pubchem.ncbi.nlm.nih.gov/
https://msbi.ipb-halle.de/MetFragBeta/
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characterization of the molecule to a Level 2 of confidence which corresponds to its putative 

annotation according to published guidelines (Sumner et al., 2007). 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 Prochlorococcus SB and MIT9313 POM 

We analyzed the samples using 3 Primesep SB columns (0.5 x 250 mm) in series and a 

water/AcN gradient described earlier. The ICPMS data was acquired using O2 as a collision gas 

in CCT mode with a flow of 0.6 mL/min and a dwell time of 0.05 s. The ESIMS data was 

acquired using the experiment with dynamic exclusion, with m/z = 78.958 as a product ion 

(detected in the ion trap in a m/z = 75-84 range at an intensity threshold of 500) and with 

Orbitrap mass ranges of m/z = 75-150 and m/z = 150-1000. 

 

5.3.1.1 ICPMS data and interpretation 

The 47PO+ ICPMS chromatograms of Prochlorococcus MIT9313 (dark green) and SB (light 

green) POM sample show multiple P peaks along the gradient (Figure 5.1). In both 

chromatograms, the largest peak is at 11.0 min, which is slightly before the elution of 2-AEPn. 

This common peak encompasses all the P-containing compounds that are not retained by the 

column due to their high polarity and basic character with relatively high pKas similarly to        

2-AEPn that is positively charged at pH = 3 (pKa1 = 2.45 (+1), pKa2 = 7.0 (0) and pKa3 = 10.8 (-

1)). In both chromatograms, this peak is followed by a smaller peak at 15.4 min. Because those 

P-containing compounds elute in 100% water (buffered with 7 mM AmFm), they probably have 

a slightly more acidic character but similar polarity. The next peak in the Prochlorococcus 

MIT9313 is much broader and elutes between 30 and 37 min at the time where the AcN content 

increases to 10%. These compounds are probably less basic or neutral at pH = 3, similar to AMP. 

Indeed, AMP (pKa1 = 0.9 (+1), pKa2 = 3.8 (0) and pKa3 = 6.1 (-1)) elutes at 42.3 min despite 

being mostly in its neutral form at the mobile phase pH. A sharp peak elutes (RT = 42.6 min) in 

the Prochlorococcus MIT9313 sample and is most likely AMP. There is also a large peak for the 

Prochlorococcus SB sample that elutes at 45.4 min. Finally, the chromatogram for each sample 

has a sharp peak at 48.5 min (Prochlorococcus MIT9313) and 57 min (Prochlorococcus SB). 

For Prochlorococcus MIT9313 this peak elutes before G6P (RT = 51.1 min) and is within the 

isocratic hold at 10% AcN. Because G6P is acidic (pKa = 1.49) and polar, the P-containing 

compound(s) eluting at 48.5 min is either be more polar or more acidic than G6P. For the 
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Prochlorococcus SB sample this peak also elutes during the hold at 10% AcN but between G6P 

and 2-HEP (RT = 56.5 min). 

 

 

 
Figure 5.18: Prochlorococcus MIT9313 (top panel) and SB (bottom panel) POM sample ICPMS traces. The insets 

represent the scaled ICPMS traces for each sample. The samples were extracted by freeze/thaw cycles and  

3 Primesep SB (0.5 x 250 mm) and a water/AcN gradient described in Table 1 were used. 

 

Due to the reverse-phase and the ion exchange character of this column, it is hard to predict the 

elution order of specific compounds. For example, 2-HEP (pKa = 2.65), MPn (pKa = 2.12), EtPn 

(pKa = 2.43) and phosphite (pKa = 2.07) all elute after G6P despite being less acidic. MPn elutes 

before EtPn despite being more acidic since EtPn is more nonpolar. Based on the 

chromatograms, it is clear that multiple P-containing compounds were extracted and some peaks 

include several co-eluting compounds.  

 

5.3.1.2 ESIMS data and interpretation 

ESIMS data was acquired using the source parameters described in Table 5.2 and the masses of 

P-containing molecular ions were found using the precursor-product ion detection method 

targeting the product ion PO3
- (m/z 78.9586) within the m/z = 75-84 mass window. The samples 

were run first in the low mass range (m/z = 70-150) and then in the high mass range (m/z = 150-
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1000). In all the following tables and figures, we used dark and light green when displaying data 

for both Prochlorococcus MIT9313 and SB respectively. 

 

For both samples, numerous masses (>20) were collected in the low mass range, but only 2 of 

them were found to correspond to P-containing compounds: m/z 78.958 (PO3
-) and MPn (m/z 

94.989) which was added as an internal standard. In the high mass range 70 and 25 ions were 

listed has P-containing compounds for the Prochlorococcus MIT9313 and Prochlorococcus SB 

respectively. All contained the product ion m/z 78.958.  

 

Ions corresponding to nucleotide monophosphates were detected in both samples except for 

cytidine monophosphate (CMP) which was only detected in Prochlorococcus MIT9313. For 

Prochlorococcus SB we looked manually for the CMP mass to obtain its extracted ion 

chromatogram (EIC) and its retention time (Table 5.3). This absence can be explained by the fact 

that the Prochlorococcus SB POM sample is less concentrated than the MIT9313 POM sample 

(~ 2 times according to the ICPMS traces), that CMP seems to be ionized less easily than other 

nucleotides (CMP signal intensity is of 4.69x104 compare to 2.95x105 for GMP), and/or to the 

fact that Prochlorococcus SB is a high light strain whereas MIT9313 is part of the low light 

adapted clade. High light strains are known for their very small genome and low GC content 

whereas low light strains have a larger genome with a higher GC content (Biller et al., 2015). 

This was confirmed by comparing the intensities for the GMP signal in the Prochlorococcus SB 

and MIT9313 samples that are 2.95x105 and 3.65x106 respectively.   
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Table 5.36: Prochlorococcus MIT9313 (dark green) and SB (light green) nucleotide ESIMS(-) data 

Nucleotide Formula 

[M-H]- 

monoisotopic 

mass calc. 

[M-H]- 

monoisotopic 

mass found 

RT 

(min) 

Main 

fragments 

Adenosine 

monophosphate 

(AMP) 

C10H14N5O7P 346.0553 
346.0541 

346.0538 

47.40 

51.98 

211.000 

150.979 

134.046 

96.969 

78.958 

Guanosine 

monophosphate 

(GMP) 

C10H14N5O8P 362.0502 
362.0490 

362.0484 

79.66 

80.41 

211.000 

150.041 

96.969 

78.958 

Cytidine 

monophosphate 

(CMP) 

C9H14N3O8P 322.0440 
322.0433 

322.0428 

17.51 

17.98* 

211.000 

150.979 

138.979 

96.969 

78.958 

Thymidine 

monophosphate 

(TMP) 

C10H15N2O8P 321.0488 
321.0477 

321.0477 

89.473 

88.845 

195.005 

176.995 

125.025 

96.969 

78.958 

Uridine 

monophosphate 

(UMP) 

C9H13N2O9P 323.0280 
323.0269 

323.0268 

76.36 

76.09 

211.000 

192.989 

150.979 

138.979 

111.019 

96.969 

78.958 

Xanthosine 

monophosphate 

(XMP) 

C10H13N4O9P 363.0342 
363.0331 

363.0328 

84.83 

84.93 

211.000 

151.025 

96.969 

78.958 

 

  



144 
 

All nucleotides have the fragments m/z 78.958, 96.969 and 211.000, which correspond to the 

fragments a, b and c below (Figure 5.2). The other fragments, d and e shown for AMP, are 

related to the nucleobase. Our putative annotations (Table 5.3) were confirmed by using MetFrag 

as the nucleotides were always the first ranked candidate and the scores varied between 3.157 

(XMP) and (UMP). 

 

 
Figure 5.2: AMP fractionation pattern 

 

Additionally, other P-containing precursor ions were detected and their high resolution MS2 

acquired which allowed for their identification. Some were unique to one sample and some were 

found in both (Table 5.4). Those were involved in glycolysis, related to lipids or involved in 

other key metabolic processes and their annotation is presented hereafter. 

 

  



145 
 

Table 5.47: Putatively identified compounds present in the Prochlorococcus MIT9313 (dark green) and SB (light 

green) POM samples based on their mass and their fragmentation pattern after injection onto the ESIMS(-) 

Molecular 

ion mass 

RT 

(min) 

Main 

fragments 

Putative 

formula 
Δppm Putative molecule 

184.9844 

184.9843 

61.62 

58.35 

96.969 

78.958 

C3H6O7P- -3.86 3-phosphoglyceric acid 

245.0055 59.214 

61.589 

165.039 

160.841 

96.969 

78.958 

C5H10O9P- -3.04 5-phosphoarabinonic acid 

259.0215 44-58 138.979 

96.969 

78.958 

C6H12O9P- -1.52 Glucose-6-phosphate1 

273.0008 61.589 254.989 

138.979 

113.023 

96.969 

78.958 

C6H10O10P- -1.31 D-glucuronic-1-phosphate 

275.0163 

275.0160 

61.56 

76.29 

195.050 

129.018 

96.969 

78.958 

C6H12O10P- -1.85 6-phosphogluconic acid 

316.0437 

 

86.670 218.067 

175.061 

96.969 

78.958 

C8H15NO10P- 1.18 Phosphono-2-acetyl-2-

amino-3,4,5,6-

tetrahydroxyhexanoate 

330.0593 

330.0593 

61.353 

58.24 

195.005 

176.995 

134.046 

96.969 

78.958 

C10H13N5O6P- -3.17 Deoxyadenosine-5-

monophosphate 

333.0580 42-58 315.048 

273.934 

237.090 

152.995 

96.969 

78.958 

C9H18O11P- -2.02 Glycerophosphoinositosol 

375.0684 54.486 259.061 

213.016 

195.005 

96.969 

78.958 

C11H20O12P- -2.23 L-alpha-

lysophosphatidylinositosol 
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Molecular 

ion mass 

RT 

(min) 

Main 

fragments 

Putative 

formula 
Δppm Putative molecule 

402.0089 70.240 383.998 

272.955 

158.924 

110.035 

78.958 

C9H14N3O11P2
- -3.62 Cytidine diphosphate 

426.0201 76.560 408.009 

328.045 

272.956 

173.497 

158.924 

134.046 

96.969 

78.958 

C10H14N5O10P2
- -3.50 Adenosine diphosphate 

430.0407 71.608 322.043 

279.037 

211.000 

186.955 

138.955 

96.969 

78.958 

C11H18N3O11P2
- -2.23 Cytosine-phosphoryl-1-

hydroxyethyl-phosphonic 

acid 

662.0993 51.311 426.021 

408.010 

346.054 

328.044 

272.956 

254.945 

192.989 

174.979 

158.924 

134.046 

96.969 

78.958 

C21H26N7O14P2
- -3.02 NAD 

708.1046 

708.1042 

47.604 

51.35 

408.010 

346.054 

328.044 

272.956 

158.924 

134.046 

96.969 

78.958 

C22H28N7O16P2
- -3.07 NADH formate 
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742.0651 79.0651 540.051 

408.010 

346.054 

328.044 

272.956 

254.945 

192.989 

174.979 

158.924 

134.046 

96.969 

78.958 

C21H27N7O17P3
- -1.85 NADP 

1 or other isomers 

 

In both samples, at a retention time ~60 min, a molecular ion with a mass at m/z 184.9844 is 

detected. Within our 10 ppm window, only one molecular formula was found for this mass: 

C3H7O7P. Except the two common P fragments at m/z 78.958 and 96.969 i.e. phosphite and Pi 

respectively, there are no other major fragments. Thus, we putatively annotated this molecule to 

phosphoglyceric acid and most likely 3-phosphoglyceric acid (#2, 1.899). 

 

 
Figure 5.39: 5-phosphoarabinonic acid fragmentation pattern 

 

The Prochlorococcus MIT9313 sample has a mass at m/z 245.0055 and only one elemental 

formula was found within 10 ppm: C5H11O9P. In addition to the phosphates common P-

fragments (a and b; Figure 5.3), a fragment at m/z 165.039 [M- HPO3]
- was obtained (c; Figure 

5.3). Thus, we putatively annotated this molecule to 5-phosphoarabinonic acid (#1, 2.0) 

 

The Prochlorococcus MIT9313 sample has a mass at m/z 259.0215 and only one elemental 

formula was found within 10 ppm: C6H13O9P. This elemental formula corresponds to several 

isomers that are likely to be present in a cell: glucose-6-phosphate or mannose-6-phosphate (#2, 

3.731) and β-D-fructose-6-phosphate (#1, 3.847). For this mass, the fragmentation contains only 
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three meaningful fragments at m/z 78.958, 96.969 and 138.979 (a,b and c; Figure 5.4) which 

could belong to any of those compounds. However, the EIC peak in our sample is much broader 

that the peak for glucose-6-phosphate and we suspect that several isomers of hexose or pentose 

phosphate might be eluting within this peak. 

 

 
Figure 5.4: D-Glucuronic-1-phosphate fragmentation pattern 

 

The Prochlorococcus MIT9313 sample has a mass at m/z 273.0008 and only one elemental 

formula was found within 10 ppm: C6H11O10P (Figure 5.4). Due to very similar retention times, 

the mass at m/z 273.0008 could be the keto form of 6-phosphonogluconic acid formed during the 

ionization process. However, their fragmentation patterns are distinct. We found fragments 

formed during the fragmentation of D-glucoronic acid at m/z 162.838 and 113.023 as well as a 

fragment at m/z 138.979. Thus, we putatively annotated this molecule as as D-glucuronic-1-

phosphate (#3, 1.954). 

 

In both samples, a mass at m/z 275.016 was found and only one elemental formula could be 

assigned within the 10 ppm range: C6H13O10P. This mass had fragments at m/z 177.039 [M-

HPO4-2H]-; 129.018 [M-HPO4-COOH-6H]- matching spectra for 6-phosphogluconic acid 

available on the HMDB spectral database (https://hmdb.ca/spectra/ms_ms/5187). Thus, we 

putatively annotated this molecule as 6-phosphogluconic acid (#4, 1.881). 

 

The Prochlorococcus MIT9313 sample displayed a peak with a mass at m/z 316.0437. Two 

elemental formulae were possible in the 10 ppm range: C8H16NO10P (Δppm = 1.08) and 

C9H12N5O6P (Δppm = -3.15). We used the fragmentation pattern to discriminate between the 

two. The main fragment is at m/z 218.067 and can be matched with C8H12NO6
- (Δppm = 2.47) 

which is [C8H15NO10P-H3PO4]
- but also with C9H8N5O2

- (Δppm = -3.67) which is [C9H11N5O6P-

H3PO4]
-. Using MetFrag, we found that [(3R,4R,5S)-5-(6-aminopurin-9-yl)-4-hydroxy-

https://hmdb.ca/spectra/ms_ms/5187


149 
 

tetrahydrofuran-3-yl] dihydrogen phosphate is the best match for this mass and fragmentation 

pattern (#1, 1.816) but that one of the major MS2 peak at m/z 175.061 is not matched. 

Additionnaly, this molecule contains adenine and we should observe adenine related fragments 

(typically at m/z 150.979 and 134.046). For the second best candidate however, the MS2 peak at 

m/z 175.061 was matched and it was the only molecule with a score higher than 1.7 for which it 

was the case. Thus, we characterized that molecule as C8H16NO10P and putatively annotated it as 

phosphono-2-acetyl-2-amino-3,4,5,6-tetrahydroxyhexanoate (#2, 1.777). 

 

The Prochlorococcus MIT9313 sample has a mass at m/z 330.0593 for which two elemental 

formulae were found within the 10 ppm range: C9H18NO10P (Δppm = 0.89) and C10H14N5O6P 

(Δppm = -3.17). We relied on the fragmentation pattern to discriminate between the two. The 

fragmentation pattern contains a fragment at m/z 195.005, which is common to thymidine-5-

monophosphate (Table 5.3) and corresponds to the fragment phosphate plus deoxypentose. 

Additionally, a fragment at m/z 134.046 corresponds to the adenine base observed in adenosine-

5-monophosphate. Thus, we putatively annotated this molecule as deoxyadenosine-5-

monophosphate (#1, 3.387) 

 

The Prochlorococcus MIT9313 sample has a mass at m/z 333.0580 and only one elemental 

formula could be assigned within the 10 ppm range: C9H19O11P (Δppm = -2.02). The 

fragmentation pattern obtained for this mass contained fragments at m/z 152.995 [M-C6H11O6]
- 

which is glycerophosphate, 273.934 and 237.090, which are phosphoinositosol fragments. Thus 

we putatively annotated that molecule as glycerophosphoinositosol (#1, 2.0) 

 

The Prochlorococcus MIT9313 sample has a mass at m/z 375.0684 and only one elemental 

formula could be assigned within the 10 ppm range: C11H21O12P. The fragmentation pattern 

showed fragments at m/z 259.061and 195.005 which were attributed to phosphoinositosol and 

lysophosphatidyl respectively. Thus, we putatively annotated this molecule as 

lysophosphatidylinositosol most likely in its L-α form as this is the biologically active form (#1, 

1969).  

 

The Prochlorococcus SB sample has masses at m/z 402.0089 (Figure 5.5) and 426.0201 and the 

only elemental formulae found within the 10 ppm range were C9H15N3O11P2 and C10H15N5O10P2 

respectively. Both fragmentation patterns contained a fragment at m/z 158.924 (c), which 

corresponds to diphosphate. The mass at m/z 402.0089 had a fragment at m/z 110.035 (e) which 

corresponds to cytosine and the second mass one at m/z 134.046 which corresponds to adenine. 
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Thus, we putatively annotated these molecules as cytidine diphosphate (#1, 3.294) and adenosine 

diphosphate (#1, 3.184) respectively.  

 

 
Figure 5.510: Cytidine diphosphate fragmentation pattern 

 

The Prochlorococcus SB sample has a mass at m/z 430.0407 and only one elemental formula 

could be assigned within the 10 ppm range: C11H19N3O11P2 (Δppm = -3.62). The fragmentation 

pattern contained fragments associated to cytidine monophosphate at m/z 322.043, 211.000 and 

138.955. Moreover, the 13C/12C isotopic molecular peak ratio indicates that this molecule 

contains 11 carbons, in agreement with our assignment. It should be noted that no fragment at 

m/z 158.924 indicative of a diphosphate (Figure 5.5) was observed. Thus, we putatively 

annotated this molecule as cytosine-phosphoryl-1-hydroxyethyl-phosphonic acid (#2, 1.611). 

 

The Prochlorococcus SB sample has masses at m/z 662.0993 and 742.0651. Those two masses 

showed very similar fragmentation patterns and the mass difference between the two (79.966 Da) 

which corresponds to HPO3
-. This led us to conclude that those molecules were identical except 

for the addition of a new PO3 moiety. The fragmentation pattern of the mass at m/z 662.0993 

showed the presence of fragments at m/z 346.054, 211.000, 134.046 typically found associated 

with adenosine monophosphate as well as at m/z 408.010, 272.956 previously found for 

adenosine diphosphate. Moreover, the fragmentation pattern contained a fragment at m/z 
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158.924 indicative of a diphosphate (Figure 5.5). The 13C/12C isotopic molecular peak ratio 

indicates that the molecule contains 21 carbons. Based on these data, we putatively annotated the 

molecule with a mass at m/z 662.0993 as nicotinamide adenine dinucleotide (NAD; #1, 2.518) 

which led to the further putative annotation of the mass at m/z 742.0651 as nicotinamide adenine 

dinucleotide phosphate (NADP; #1, 2.0). 

 

Both samples had a mass at m/z 708.1046. The fragmentation pattern showed intense fragments 

at m/z 346.054 and 134.046 typical of AMP (Table 5.3) as well as fragments at m/z 408.010, 

272.956 and 158.924 typical of ADP and a fragment at m/z 328.043 observed in NAD (Table 

5.4). This mass also corresponds to [NAD+HCOOH]-. Thus, we characterized that molecule as 

C22H29N7O16P2 and putatively annotated it as NADH formate. It should be noted that NADH 

formate is not found as a candidate by MetFrag despite its existence on the PubChem database 

and with a mass within the 10 ppm window (C22H29N7O16P2, Δppm = -3.07). In consequence, we 

were unable to attribute a score to this annotation but based on the high MS2 spectra similarities 

are confident in our annotation. 

 

Finally, the Prochlorococcus MIT9313 sample had a mass at m/z 693.1930. The EIC peak for 

this mass had the same retention time and fragmentation pattern as AMP. Moreover, this mass is 

equal to 2 times the mass of AMP. Thus, we concluded that this mass is due to the presence of an 

AMP dimer formed in the instrument. However, AMP is the only nucleotide for which we 

observe the phenomenon. 

 

5.3.1.3 Conclusion on the Prochlorococcus POM samples 

Using the detection of the product mass at m/z 78.958 corresponding to PO3
- in the ion trap, 66 

ions for the Prochlorococcus MIT9313 sample and 25 ions for the Prochlorococcus SB sample 

were detected. In those, some ions had the same retention time and the same fragmentation 

pattern despite having different masses. This was either due to the presence of the 13C form of 

the molecule or were due to the presence of compounds co-eluting with the P-compound of 

interest and with a mass within the 1.6 m/z isolation window that we set. Among the 66 and 25 

ions detected, we estimate that ~35 and ~20 individual compounds were detected for 

Prochlorococcus MIT9313 and for Prochlorococcus SB respectively. Of these, we were able to 

putatively annotated 17 and 14 P-containing compounds respectively.  

 

Interestingly, we only found one putative annotation for a phosphonate in Prochlorococcus SB 

biomass despite the large relative abundance of phosphonate shown by 31P NMR (Chapter 3). 

This is most likely due to the fact that phosphonates are linked to proteins which are not present 

in our sample.  
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5.3.2 Prochlorococcus SB LMWDOM 

5.3.2.1 ICPMS data and interpretation 

The 47PO+ chromatogram contains numerous distinct P peaks eluting between 1 min and 37 min 

(Figure 5.6). The major peak has a very short retention time, and elutes immediately after the 

dead volume of the column (RT = 1.86 min vs 0.6 min). This peak is preceded by a small 

shoulder and followed by two small peaks at 2.67 min and 3.09 min. At 12 min, when reaching 

25% MeOH, the background increases and we observe very small features seem to be present 

starting at 15 min until 19.23 min which correspond to the retention time of the second taller 

peak. After that we can distinguish multiple peaks of various intensities between at 20.14 min 

and 30.01 min. After that and until the end of the run, we discern 6 small peaks between 31.94 

min and 36.12 min. 

 

 
Figure 5.611: Prochlorococcus SB LMWDOM sample ICPMS trace. We extracted the sample by SPE (ENV+) 

using MeOH and used a Zrobax C18 column (0.5 x 150 mm) with a water/MEOH gradient described in Table 5.1. 

 

Because this column (C18) retains nonpolar compounds, LMW phosphonates separated by the 

Primesep SB column are not retained and elute < 2 minutes.  AMP is the only standard for which 

we observed a peak distinct from the other standards (RT = 1.65 min). Moreover, the retention 

times should be negatively correlated with polarity and we expect to find lower molecular 

weight, O-rich compounds at the beginning of the run and higher molecular weight, C-rich 

compounds -most likely from lipids - later in the run. 
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5.3.4.2 ESIMS data and interpretation 

Table 5.58: Identification of compounds present in the Prochlorococcus SB LMWDOM sample based on their mass 

and their fragmentation pattern after injection onto the ESIMS(-) 

 

Molecular 

ion mass 

RT 

(min) 

Main 

fragments 

Putative 

formula 
Δppm Putative molecule 

80.9743* 1.38 No MS2 H2PO3
- 1.78 Phosphite 

171.0063 1.21 101.9436 

96.969 

91.7946 

78.958 

C3H8O6P- 2.63 Glycerophosphoric acid 

193.0986 19.03 175.088 

149.060 

136.052 

121.064 

107.049 

78.958 

C8H18O3P- -3.92 Octylphosphonic acid 

221.1295 40.17 193.098 

177.127 

163.076 

149.060 

136.052 

121.065 

78.958 

C10H22O3P- -5.23 Decylphosphonic acid 

249.0324 27.34 154.990 

108.021 

93.034 

78.958 

C12H10O4P- 2.93 (2-hydroxyphenoxy)-

phenyl-phosphinic acid 

285.1243 48.56 270.128 

189.127 

187.112 

137.097 

93.034 

78.958 

C14H22O4P- -4.46 2-(2,6-diisopropylphenoxy) 

ethylphosphonic acid1 

321.2203 56.68 209.095 

96.969 

78.958 

C16H34O4P- 2.58 Dioctylphosphate1 

* extracted mass ion chromatogram 1 or another isomer 
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The only elemental formula we found within our 10 ppm range for the mass at m/z 171.0063 was 

C3H9O6P (Δppm = 2.63). The fragmentation pattern and only confirms the presence of a 

phosphate moiety due to the fragment at m/z 96.969. We putatively annotated this molecule as 

glycerophosphoric acid (#2, 3.391). 

 

Only one elemental formula, C8H19O3P, was found within the 10 ppm range for m/z 193.0997 

(Δppm = -3.92). No fragment at m/z 96.969 was observed which implied that the molecule is a 

phosphonate. A fragment at 175.089 [M-H2O]- as well as intense fragments at m/z 136.052 

(C8H8O2
-), 121.064 (C8H9O

-) and 107.049 (C7H7O
-) which were previously found as key 

fragments in octylphosphonic acid 

(https://mona.fiehnlab.ucdavis.edu/spectra/display/LU029051). Additional, fragments were 

observed at m/z 106.989 (C2H4O3P
-) and 93.9813 (CH3O3P

-). Thus, we putatively annotated this 

molecule as octylphosphonic acid (#3, 1.910). It should be noted that the two best hits in 

MetFrag correspond to phosphite esters and that we were not able to discriminate between the 

two functional group. Octylphosphonic acid is a manufactured compound used as an anti-

corrosive agent (Felhősi et al., 2002). 

 

A mass at m/z 221.1295 was found. This mass has a mass difference of 28.031 (C2H4) with 

octylphosphonic acid and the only elemental formula found within the 10 ppm range was: 

C10H23O3P (Δppm = -5.23). This mass had a very similar fragmentation patterns with a large 

number of common fragments to C8H19O3P, which we putatively annotated as octylphosphonic 

acid, such as fragments at m/z 193.098, 136.0516, 121.064 and 149.096. Additional fragments at 

m/z 177.127 (C12H17O
-), 165.0906 (C10H13O2

-) and 150.067 (C9H10O2
-) were found and 

confirmed that the compound has a longer alkane chain than octylphosphonic acid. Thus, we 

putatively annotated this molecule as decylphosphonic acid (#2, 1.917). As before, the phosphite 

ester was the best hit and we were not able to discriminate between the two. Similarly, 

decylphosphonic acid is used as a coating agent against corrosion (Felhősi et al., 2002). 

 

The mass at m/z 249.0324 was found to correspond to only one elemental formula within our 10 

ppm range: C12H11O4P. This elemental formula corresponded to different isomers of diphenyl 

phosphate and the fragmentation pattern was used to discriminate between those. The presence 

of fragments at m/z 93.034 (b) and 154.990 (d) associated with the absence of the fragment at 

m/z 96.969 typically observed in phosphates, ruled out phenylphenol phosphate as a potential 

candidate (Figure 5.7). The presence of a fragment at m/z 108.21 (c) led us towards the presence 

of a phenoxy group. The relatively low intensity of the MS2 peak at m/z 78.958 seemed to 

indicate that the molecule is a phosphonodiester. On MetFrag, the best hit was 

phenyl(phenylperoxy)phosphinic acid. As the peroxide bond is chemically unstable it seemed 

unlikely that we would find it in our sample. The second hit was (2-hydroxyphenoxy)-phenyl-

phosphinic acid and this molecule could explain the high relative intensity of the MS2 peak at 

m/z 93.034. Thus, we putatively annotated this molecule as (2-hydroxyphenoxy)-phenyl-

https://mona.fiehnlab.ucdavis.edu/spectra/display/LU029051
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phosphinic acid (#2, 1.691). To our knowledge, there is no mention of this compound as a 

natural product. 

 

 
Figure 5.712: Chemical structures of the m/z fragments obtained from the mass m/z 249.0324 fragmentation pattern 

 

A mass at m/z 285.1243 was detected and we only found one elemental formula within the 10 

ppm range: C14H23O4P. The MS2 spectrum contains numerous peaks and is challenging to 

interpret but we found some information to rule out several isomers found for this elemental 

formula. First, the absence of a fragment at m/z 96.969 suggests that this compound is not a 

phosphate and most likely a phosphonate. We also observe a fragments at m/z 93.034 

characteristic of a phenol (Figure 5.7). Additionally, no repeating unit characteristic of relatively 

long alkane chains were observed, so we hypothesized that there are several carbon groups in 

addition to the benzene ring. For the rest, we used MetFrag scoring to putatively annotate this 

molecule. The best hit was obtained for 2-(2,6-diisopropylphenoxy)ethylphosphonic acid which 

is consistent with the lack of alkane repeating units that would probably be observed for the 

candidates ranking below. Thus, we putatively annotated this molecule as 2-(2,6-

diisopropylphenoxy)ethylphosphonic acid but recognize that other isomers are possible. Records 

of this molecule were found associated with patents of sedation drugs (EPO Patent No. 

2281565:A2, 2011) and there are no records of this molecule as a natural product. 
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A mass at m/z 321.2203 was found and the only elemental formula within the 10 ppm range was: 

C16H35O4P. This time, a fragment at m/z 96.969 was observed which indicates that this 

compound is a phosphate ester. However, this fragment is small and the third most intense 

fragment was found at m/z 209.0946 corresponding to C8H18O4P
- which is octylphosphate or one 

of its isomer. This suggests that this compound is a symmetrical phosphodiester with 2 C8 

groups on each side. Thus, we putatively annotated this molecule as dioctylphosphate (#34, 

1.565) but due to the low ranking and the lack of more informative fragments we recognize that 

other isomers are very possible. There is no record of this compound being a natural product and 

is compound is used as a metal protector (Chirkunov et al., 2013) or as a lubricant additive 

according to the EPA. 

 

5.3.4.3 Conclusion on Prochlorococcus SB LMWDOM 

Interestingly, the Prochlorococcus SB LMWDOM sample did not have many common peaks 

with the extracted biomass. This suggests that Prochlorococcus SB produces secondary P-

metabolites that are excreted in the growth medium and further suggest that in the marine 

environment, DOM and POM might have different P chemical composition. Most of the 

compounds we were able to identify are phosphonates that have not previously been described as 

natural products, but are rather plastic/metal additives or used as herbicides. Thus, it is unclear if 

those compounds are contaminants or were produced by Prochlorococcus SB. We did not detect 

phosphonates in the POM sample, which is consistent with our result that phosphonates in 

Prochlorococcus SB are incorporated into proteins.  

 

We were able to find phosphite by its EIC. This would also support the observation that 

organisms are able to grow on phosphite as a source of P (Martínez, Osburne, Sharma, DeLong, 

& Chisholm, 2012; Metcalf & Wolfe, 1998; Polyviou, Hitchcock, Baylay, Moore, & Bibby, 

2015) and several genomic surveys that show phosphite utilization genes are present in the 

marine environment (Feingersch et al., 2012; Martinez et al., 2010; Polyviou et al., 2015).   

 

5.3.1 North Atlantic POM 

5.3.1.1 ICPMS data and interpretation 

Select fractions (F4 (3-4 min), F6 (5-6 min), and F7 (6-7 min)) from the fractionation of North 

Atlantic POM by ion chromatography were separated on Primesep SB to characterize the suite of 

phosphonates in the sample. Each fraction had peaks in the 31P-chromatogram that elute within 

three time windows: 6-10 min, 35-45 min, and > 60 min (Figure 5.8; Table 5.6). Each fraction is 

different and had unique peaks. To identify the P-containing compounds eluting in each fraction, 

samples were analyzed by ESIMS using the product-precursor ion method with PO3
- (m/z 

78.958) as the targeted product ion.  
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Table 5.69: Retention times of the ICPMS peaks for the 3 fractions of interest 

 F4 F6 F7 

Group 1 6.9 

7.3 

7.6 

7.3 

8.4 

6.9 

8.1 

9.6 

Group 2 36.7 

41.7 

43.7 

45.4 

 

41.6 

43.5 

45.3 

 

41.7 

43.6 

Group 3 57.8 

67.7 
68.0 68.1 

Additional 

peaks 

32.6 

51.8 

32.3 

48.5 
 

 

 

 

Figure 5.813: Biofest Fractions 4, 6 and 7 (3-4 min, 5-6 min and 6-7 min fraction collection on the IC) ICPMS 

traces 
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5.3.1.2 Identification of P-containing compounds in F4  

Three precursor ions containing the product ion PO3
- (m/z 78.958) eluted between 6-10 min in 

F4. The first peak, at 6.45 min, had a mass at m/z 170.0205. For this mass, the only elemental 

formula within our 10 ppm window was C3H10NO5P. No fragment was observed at m/z 96.969 

so we looked for phosphonates with this elemental formula and found several amino 

phosphonates isomers. However, the MS2 spectrum only contains an ion for the PO3
- fragment 

(78.958) and does not allow us to fully discriminate between the possible isomers. Using 

MetFrag, we found the best hit for 2-Hydroxy-3-(hydroxyamino)propyl]phosphonic acid (#1, 

1.9122) so we made that putative annotation but recognize that another isomer is also likely. 

Based on the retention time, this elemental formula makes sense as it contains a nitrogen and our 

N-containing phosphonate standard, 2-AEPn have a similar retention. This compound should 

correspond to the peak observed at 6.9 min on the ICPMS trace (Figure 5.8, Table 5.6). 

 

 
Figure 5.914: 4-amino-1-hydroxy-butylphosphonic acid fragmentation pattern 

 

The second peak, eluting at 6.52 min had a mass at m/z 168.0412. The only elemental formula 

within the 10 ppm range is C4H12NO4P (Δppm = -8.15). This formula corresponds to several 

isomers but, as before, the absence of H2PO4
- fragment allows us to eliminate phosphates and 

conclude that this compound is most likely an amino phosphonate. We find a fragment at m/z 

110.984 (b) corresponding to CH4O4P
-, which indicates that the 4th oxygen is 1 carbon away 

from the P group (Figure 5.9). On MetFrag, the best hit found was for 4-amino-1-hydroxy-

butylphosphonic acid (#1, 1.986) so we made that putative annotation (Figure 5.9) but recognize 

that another isomer is also likely. 

 

The last peak in this group elutes at 6.93 min and has a mass at m/z 242.0775 (Figure 5.10). This 

mass corresponds to one elemental formula within the 10 ppm range: C7H18NO6P                

(Δppm = -7.64). This time, the fragmentation pattern contains a H2PO4
- fragment (b) typical of 

phosphoesters but of very low intensity, which indicates that the compound is most likely a 

phosphodiester. The fragmentation pattern suggests that the N atom is at the other extremity of 

the molecule than the O-containing part due to the presence of the fragments at m/z 152.994 (c, 

C3H6O5P
-), 171.004 (d, C3H8O6P

-) and 168.041 (e, C4H11NO4P
-). Moreover, those fragments 
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were found for glycerophosphate and confirmed the presence of a glycerol group in that 

molecule (https://mona.fiehnlab.ucdavis.edu/spectra/display/MoNA017590). On MetFrag, the 

best hit found was 2,3-dihydroxypropyl-3-(methylamino)propyl hydrogen phosphate (#1, 1.842) 

which corresponds to the characteristics described above so we made that putative annotation 

(Figure 5.10) but recognize that other isomers are also likely.  

 

 
Figure 5.1015: 2,3-dihydroxypropyl-3-(methylamino)propyl hydrogen phosphate fragmentation pattern 

 

The next peak in F4 elutes at 33.0 min and has an m/z of 245.0409. This mass corresponds to one 

elemental formula within our 10 ppm range: C6H15O8P (Δppm = -7.06). For this mass, identical 

fragments to the compound with m/z 242.0775 and glycrophosphate were found i.e. m/z 96.968 

(b, Figure 5.10), 152.994 (c, Figure 5.10) and 171.005 (d, Figure 5.10) but the fragment at m/z 

96.968 was of low intensity suggesting the presence of a diester. Thus, we putatively annotated 

this molecule as glycerophosphoglycerol (#9, 1.875). Other isomers were ranked better but the 

relatively high intensity observed for the MS2 peak at m/z = 152.994 led us to speculate that we 

have a symmetrical diester. 

 

In the group of peaks eluting between 35-45 min we were only able to characterize Pi eluting at 

46.10 min. Finally, was part of the third group of peaks eluting > 60 min, we were able to 

identify phosphite at 75.41 min. 

 

For F4, the precursor-product method gave us five masses corresponding to P-containing 

compounds and we were able to identify them all as well as phosphate. Thus we identified 6 

compounds out of the 11 peaks (Figure 5.11). This is surprising as the peaks at 41.7 and 45.4 min 

on the ICPMS trace are relatively intense. Because we were able to detect P-containing 

compounds in that time frame for F6 and F7 (see after), we know that this is not due to a 

methodology issue. Thus, we argue that our issue to find compounds for all the P-ICPMS peaks 

https://mona.fiehnlab.ucdavis.edu/spectra/display/MoNA017590
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in F4 is due to the presence of abundant S-containing compounds that have fragments at m/z = 

80.964 which is within the ±0.5 m/z detection range around the precursor m/z = 80.974 that we 

selected to detect phosphite. This is why, moving forward with the samples discussed above, we 

decided to not target that precursor anymore and only focus the common fragment at m/z 78.958. 

 

 
Figure 5.1116: F4 ICPMS trace (grey) and ESIMS reconstructed trace (black) using the EIC for each identified 

compound. Based on our molecular identifications and the elution order found in the ESIMS data, the compounds 

eluting are 1: 2-Hydroxy-3-(hydroxyamino)propyl]phosphonic acid (6.9, 6.45 min); 2: 4-amino-1-hydroxy-

butylphosphonic acid (7.3, 6.52); 3: 2,3-dihydroxypropyl-3-(methylamino)propyl hydrogen phosphate (7.6, 6.93); 4: 

glycerophosphoglycerol (36.7, 33.04); 5: Pi (43.7, 46.10) and 6: phosphite (67.7, 75.41) 

 

Despite the shift in retention time between the ICPMS and the ESIMS data, we were able to pair 

the peaks on the ICPMS trace with the compounds identified with the ESIMS data. For the 

glycerophosphoglycerol and Pi peaks (4 and 5, Figure 5.11) those attributions were harder to 

make because we did not detect the other compounds in that group and could not rely on the 

elution order as we did for the first peak group. However, since Pi has the same retention time in 

F4 and F7, we assumed that the matrix effect for Pi between those two fractions is similar and 

we decided to pair Pi with the peak eluting at 43.7 min on the ICPMS trace as we determined 

that Pi eluted at 43.5 min in F7. The peaks are all shifted differently and those attributions 

remain to be confirmed. 
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5.3.1.3 Identification of P-containing compounds in F6 

In F6, the first mass elutes at 6.47 min and with m/z 168.0412 which corresponds to C4H12NO4P 

(Δppm = -8.15)) and which was also found in F4. The ion has the same fragmentation pattern 

(Figure 5.9) and was putatively annotated as 4-amino-1-hydroxy-butylphosphonic acid. The 

second peak to elute has a mass at m/z 242.0775 (RT = 6.95 min) which corresponds to 

C7H18NO6P (Δppm = -7.64) and was also present in F4 (Figure 5.10). This molecule was 

putatively annotated as 2,3-dihydroxypropyl-3-(methylamino)propyl hydrogen phosphate. Thus, 

these two compounds are common to F4 and F6 (Table 5.6). Based on the elution order, we find 

that for both fractions, 4-amino-1-hydroxy-butylphosphonic acid elutes at 7.3 min on the ICPMS 

which means that 2,3-dihydroxypropyl-3-(methylamino)propyl hydrogen phosphate has a 

slightly a different retention time (7.6 min in F4 and 8.1 min in F6) between the two fractions. 

This could be explained by a shift due to the sample matrix between the two samples or the 

presence of different isomers in each fractions (same mass but different configuration leading to 

a different retention time). 

 

The ICPMS trace for F6 indicates the presence of at least three P-containing compounds between 

35-45 min. The first ion to elute in that group (RT = 40.15 min) is unique to F6 and has a mass at 

m/z 171.0045. The fragmentation pattern of the precursor ion is the same as glycerophosphoric 

acid described previously (Table 5.4). The second mass to elute has a mass at m/z 240.0618 (RT 

= 44.26 min). The only elemental formula corresponding to that mass is C7H16NO6P (Δppm = -

7.91) and here again, the absence of a fragment at m/z 96.969 indicates that this compound is a 

phosphonate. The fragmentation pattern has an intense fragment at m/z 110.984 indicating the 

presence of a CH4O4P
- fragment and a fragment at m/z 168.041 - which could correspond to 4-

amino-1-hydroxy-butylphosphonic acid, molecule found in F4 - due to the presence of a 

C4H11NO4P
- (Figure 5.9). On MetFrag, the best hit was obtained for [2-azaniumyl-3-hydroxy-2-

(hydroxymethyl)propoxy]-[(2R,3S)-3-methyloxiran-2-yl]phosphinate but this compound is 

classified as non-live. The next phosphonate we found with an O placed 1 carbon away from the 

P group and with a score >1.5 was (1,1-diethoxy-2-formamido-ethyl)phosphonic acid (#6, 1.548) 

and the two diethoxy branches could explain the high relative intensity of the MS2 peak at m/z 

110.984. Thus, we putatively annotated this molecule as (1,1-diethoxy-2-formamido-

ethyl)phosphonic acid. Finally, we also find Pi (RT = 46.62 min) phosphite (RT = 75.45) in F6 

by manually looking for their exact masses.  
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Figure 5.1217: F6 ICPMS trace (grey) and ESIMS reconstructed trace (black) using the EIC for each identified 

compound. Based on our molecular identifications and the elution order found in the ESIMS data, the compounds 

eluting are 1: 4-amino-1-hydroxy-butylphosphonic acid (7.3, 6.47); 2: 2,3-dihydroxypropyl-3-(methylamino)propyl 

hydrogen phosphate (8.4, 6.93); 3: glycerophosphoric acid (41.6, 40.15); 4: (1,1-diethoxy-2-formamido-

ethyl)phosphonic acid (43.5, 44.26); 5: Pi (45.3, 46.10) and 6: phosphite (68.0, 75.45) 

 

For F6, we detected 4 compounds using the precursor-product method and were also able to find 

Pi and phosphite by looking directly for their masses. According to the ICPMS trace (Figure 

5.8), two more P-containing compounds were present but were not detected using our precursor-

product method. We speculate that this is due to their relative low abundances in the sample.  

 

As in F4, the peaks between the ICPMS and the ESIMS traces are shifted in different manners 

most likely due an inconsistency in the mobile phase but based on the relative intensity of the 

peaks and the elution order, we were able to pair up all the peaks and compounds (Figure 5.12). 

 

5.3.1.4 Identification of P-containing compounds in F7 

The first ion eluting in F7 has a retention time of 6.14 min and has a mass at m/z 214.0462. For 

this mass, only one elemental formula was found within the 10 ppm range and is C5H14NO6P. 

This mass fragmentation pattern does not contain a fragment at m/z 96.969 suggesting that this 

compound is a phosphonate. We found fragments at m/z 140.010 (b, Figure 5.13) and 152.994 

(c, Figure 5.13). Thus, we putatively annotated this molecule as (2-amino-1-hydroxyethyl)-(2,3-

dihydroxypropoxy)phosphinic acid (#2, 1.954).  

  



163 
 

 
Figure 5.13: (2-amino-1-hydroxyethyl)-(2,3-dihydroxypropoxy)phosphinic acid fragmentation pattern 

 

The second mass to elute in this group is at m/z 140.0102 (RT = 6.45 min). The only elemental 

formula within the 10 ppm range is C2H8NO4P (Δppm = -7.64). No fragment at m/z 96.969 

(H2PO4
-) was observed which implies that the compound eluting is a phosphonate. The rest of 

the fragmentation pattern did not allow us to discriminate between the different amino 

phosphonate isomers. On MetFrag, the best hit found was 1-amino-2-hydroxy-ethylphosphonic 

acid (#1, 1.922) so we made that putative annotation but recognize that another isomer is also 

possible. The third mass to elute in this group is at m/z 168.0412 which is also detected in F4 and 

F6 and was attributed to the presence of 4-amino-1-hydroxy-butylphosphonic acid (Figure 5.9). 

We found a fourth mass corresponding to the peak in the ICPMS trace at 9.6 min. This ion has 

mass at m/z at 306.0467 (RT = 9.97 min). We found only one elemental formula for this mass 

within the 10 ppm range: C9H15N3O7P. Thanks to the presence of fragment m/z 96.968 (a) we 

know that this compound is a phosphoester. Moreover, we found fragments at m/z 110.035 (b) 

and 195.004 (c) corresponding to cytosine and phosphomethyl deoxypentose respectively (Table 

5.3). Thus, we putatively annotated this molecule as deoxycytidine monophosphate (#1, 2.346).  

 

In the region eluting between 35-45 min, F7 contains two peaks. The two of them have the same 

retention times as peaks in F4 and F6 and even though the precursor-product method did not 

detect any P-containing compounds, we were able to manually confirm that the first peak to elute 

in this group has a m/z at 240.0618 (RT = 44.22 min) which was putatively annotated as (1,1-

diethoxy-2-formamido-ethyl)phosphonic acid, while the second peak (RT = 46.16) was 

identified as Pi. The last peak at 68.1 min on the ICPMS trace, which has a similar retention time 

to the last peak in F4, was identified as phosphite (RT = 75.74 min on the ESIMS trace). 
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Figure 5.14: F7 ICPMS trace (grey) and ESIMS reconstructed trace (black) using the EIC for each identified 

compound. Based on our molecular identifications and the elution order found in the ESIMS data, the compounds 

eluting are 1: (2-amino-1-hydroxyethyl)-(2,3-dihydroxypropoxy)phosphinic acid (6.9, 6.14); 2: 1-amino-2-hydroxy-

ethylphosphonic acid (8.1, 6.45); 3: 4-amino-1-hydroxy-butylphosphonic acid (8.1, 6.47); 4: deoxycytidine 

monophosphate (9.6, 9.97); 5: (1,1-diethoxy-2-formamido-ethyl)phosphonic acid (41.7, 44.22), 6: Pi (43.6, 46.16) 

and 7: phosphite (68.1, 75.74) 

 

For F7, we identified all the peaks and even found that the peak at 8.1 min on the ICPMS was a 

result of the co-elution of two compounds, showing the potential of this method to detect a large 

number of compounds. Using the relative intensities of the peaks and the elution order we were 

able to assign compounds for each peak in the ICPMS and ESIMS chromatograms (Figure 5.14). 

 

 

5.4 CONCLUSIONS 

We developed a new element targeted method in order to characterize organophosphorus 

compounds in marine samples. ICPMS detects all P-containing compounds by monitoring the 
47PO+ ion allowing us to determine the retention times and amounts of P-containing compounds. 

In parallel, ESIMS is a soft ionization technique that detects the molecular ions targets 

fragmentation based on the presence of a product ion. In our case, we used the detection of the 

product ion PO3
- (m/z = 78.958) in order to acquire MS2 only for P-containing ions. This allowed 

us to find the masses for P-containing compounds and allowed us, through their fragmentation 

spectra, to identify many of them.  We used Prochlorococcus biomass as a way to test the 

method and were able to identify a relatively large number of P-containing compounds, 

including nucleotide monophosphates, molecule involved in sugar cycles such as glucose-6-

phosphate or lipid synthesis with phosphoglyceric acid and glycerophosphoinositosols as well as 
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molecules involved in key metabolic processes such NAD and NADP. We also tested the 

method on Prochlorococcus SB LMWDOM recovered from spent medium. The ICPMS trace 

showed the presence of numerous P peaks and we obtained target masses for which high 

resolution MS2 spectra were acquired. Using those MS2 we were able to identify a suite of P-

compounds. We found phosphomono- and diesters as well as phenyl and alkylphenyl 

phosphonates. If those compounds are all produced by Prochlorococcus SB and are not 

contaminants, which remains to be investigated, our results show the breath of what one unique 

strain could produce. Finally, we investigated organophosphorus compounds extracted from 

suspended POM collected from North Atlantic surface water. These samples had been 

fractionated by ion chromatography and had a simpler matrix therefore P peaks were well 

separated but some had a relatively low intensity. Despite the relatively low abundance of those 

compounds, we were able to detect and identify most of them. In those samples, we detected 

glycerophosphate but also diverse aminophosphonates which are natural products. Some are 

found in bacteria sphingophosphonolipids (Jayasimhulu et al., 2007) and aminophosphonates 

have been found associated with proteins (Quin, 1964; Shelburne & Quin, 1967). In those 

samples as well as the LMWDOM sample, we detected phosphite. It is unlikely that this 

phosphite derives from the degradation of phosphonate during sample preparation or storage. 

Indeed, other fractions of the North Atlantic POM sample, which also contain phosphonates, did 

not display peaks around the retention times at which phosphite elutes (data not shown). Finding 

and being able to detect phosphite is of great interest due to capability of some marine organisms 

to grow on phosphite and due to the genomic evidence for phosphite transporters in the marine 

environment. To our knowledge, this is the first measurement of phosphite in POM. 

 

Looking ahead, a chromatographic separation capable of resolving polar compounds such as a 

HILIC column would be beneficial. Some compounds such as triesters, phosphinates, 

phosphorothioates (P-S bond) or phosphonamides (P-N bond) might also not be detected if their 

fragmentation does not yield PO3
- or HPO4

- product ions. This problem could be addressed by 

new algorithms that better align ICPMS and ESIMS data. 

 

This study represents the first screening of the marine organophosphorus using a dual ICPMS 

and ESIMS approach. Regardless of the type of sample analyzed, we were able to detect a 

relatively large number of P-containing compounds and identify some of them showing that this 

method can be further developed applied to environmental samples. Thus, this method is 

potentially a powerful tool enabling us to survey the marine organophosphorus pool in an 

untargeted manner and will allow us to develop new methods focused on specific P-compounds 

to study their biogeochemical cycle as well as their importance for the overall marine P cycle in 

the future. 
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APPENDIX 1. ETHYLENE CONCENTRATIONS AND 

SATURATION VALUES IN THE EASTERN 

MEDITERRANEAN SEA 
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A.1.1 INTRODUCTION 

Alike methane that is a by-product of the methylphosphonate (MPn) degradation by C-P lyase, 

ethylene (C2H4) is produced when marine microbes with C-P lyase use 2-

hydroxyethylphosphonate (2-HEP) as a source of P (Repeta et al., 2016). Thus ethylene 

dissolved concentrations and saturation can be used to calculate ethylene air-sea fluxes, estimate 

2-HEP degradation rates and further, phosphonate degradation rates by the C-P lyase. MPn and 

2-HEP are present in approximately a 1:1 ratio in high molecular weight dissolved organic 

matter HMWDOM and in seawater incubations enriched with HMWDOM, methane and 

ethylene were produced  in the same ratio (Repeta et al., 2016). An average 1:1 ratio of methane 

to ethylene saturation was also observed in the North Atlantic Subtropical Gyre (NPSG) (Sosa et 

al., 2020) and the gas saturations were correlated. We wanted to investigate if the same pattern 

was observed in the EMS which would indicate that similar processes are at play and that 

sources of MPn and 2-HEP in the EMS are similar to the ones in the North Atlantic. Thus, we 

measured ethylene concentrations, calculated ethylene saturation and air-sea fluxes and 

estimated 2-HEP as well as phosphonate degradation rates. 

 

 

A.1.2 METHODS 

A.1.2.1 Ethylene sampling and measurements 

Dissolved ethylene concentrations were obtained from the same bottle than for dissolved 

methane concentrations and used the same instrumental setup (Chapter 2). All peaks 

corresponding to C2H4 were manually selected and integrated on the Agilent ChemStation 

software. The limits of detection and quantification (LODs and LOQs respectively) for ethylene 

were 13.4 pmol and 40.6 pmol. As before, LODs and LOQs were calculated based on the root 

mean square error (RMSE) of the gas standard calibration, where LOD = 3.29 RMSE, and LOQ 

= 10 RMSE (Bernal & Guo, 2014). 

 

A.1.2.2 Ethylene saturation and air-sea gas exchange 

The equilibrium concentrations of ethylene in seawater were calculated based on the Bunsen 

solubility model of Breitbarth et al. (Breitbarth et al., 2004) using a mean atmospheric ethylene 

concentration of 0.4 ppb in the North Atlantic Ocean (Rudolph & Ehhalt, 1981). The extent to 

which the measured ethylene concentrations in seawater (Cmeas) deviated from the predicted air-

sea equilibrium concentrations (Ceq) was expressed as the molar differences (Cmeas – Ceq) 

expressed as ΔC2H4, respectively. This deviation was also expressed as the percent saturation 



171 
 

level (Cmeas x 100/Ceq), where 100% corresponds to a null ΔC2H4. Air-sea flux estimates (F) of 

ethylene were calculated with the equation: 

 F=k (Cmeas – Ceq) 

where k is the gas transfer coefficient calculated using the gas exchange wind speed relationship 

by Wanninkhof (2014) and (Cmeas – Ceq) is the average ΔC2H4 concentration in the surface mixed 

layer. The k coefficient was calculated using a gas-specific Schmidt number. A Schmidt number 

specific to C2H4 was obtained using the diffusion coefficient equations implemented by Johnson 

(Johnson, 2010). Wind speed from the ship’s anemometer was scaled to 10 m above the sea 

surface. The average daily wind speed was used to estimate k. The depth of the surface mixed 

layer depth (MLD) was calculated using a temperature threshold criterion of -0.2ºC from a 

reference depth of 10 m (d’Ortenzio et al., 2005). Positive air-sea fluxes indicated that the ocean 

is a net source of methane or ethylene to the atmosphere. 

 

 

A.1.3 RESULTS 

Similarly to methane, ethylene was largely oversaturated at all the stations sampled in the EMS 

from surface waters to 2600 m (Figure A.1.1). Highest ethylene concentrations were always 

measured at depths ≤ 75 m; decreasing below this depth and often reaching a minimum at 500 m. 

In the surface, saturation values ranged from 1966% to 8513% (excluding the extreme value 

obtained at Dagon 2) (Table 2.2). We measured the highest ethylene saturation of all stations at 

the stations Dagon 1 and Tarhun 8 and the lowest at the station Dagon 4.  
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Figure A.1.118: Vertical profiles of dissolved C2H4 concentrations (black squares) and values expected at 

equilibrium with an atmospheric concentration of 400 ppb (empty squares). 

 

Using the same MLD and the same wind speed than for methane (Table 2.1), we calculated 

ethylene air-sea fluxes. We calculated the highest ethylene flux to the atmosphere at Dagon 2 and 

the lowest flux at Dagon 3. Calculated values for ethylene production were greatest at Dagon 4, 

while Dagon 1 and 3 had the lowest values. The methane:ethylene ratio varied between 17.5 and 

8.2, with a mean value of 13.6 (Table A.1.1). 

  



173 
 

Table A.1.1: Ethylene fluxes, production, excess and supersaturation values based on the MLD and MLD 

methane:ethylene ratio. Uncertainties correspond to the standard deviations between the values measured at each 

depth within the mixed layer. MLD is calculated as the depth where we measure a change in -0.2°C seawater 

temperature as preconized by d’Ortenzio et al. (2015). 

Station 
C2H4 flux 

(μmol m-2 d-1) 

C2H4 MLD 
production (pM 

d-1) 

MLD excess 
C2H4 (nM) 

MLD C2H4 
saturation (%) 

MLD excess 
CH4:C2H4 ratio 

Dagon 1 2.0 ± 0.8 7 ± 2 0.11 ± 0.04 6188 ± 2277 17.5 

Dagon 2 3.5 ± 2.7 21 ± 16 0.2 ± 0.1 9798 ± 7590 8.2 

Dagon 3 0.42 ± 0.08 7 ± 1 0.11 ± 0.02 6294 ± 1192 15.3 

Dagon 4 1.00 ± 0.03 48 ± 1 0.11± 0.00 6632 ± 220 14.7 

Tarhun 8 1.6 ± 0.2 27 ± 3 0.13 ± 0.02 7697 ± 853 12.2 
 

A.1.4 DISCUSSION 

ΔC2H4 averaged values for the mixed layer varied between 0.173 nM at Dagon 2 and 0.107 nM 

at Dagon 3. Due to the extremely low accumulation of ethylene in the atmosphere, saturation 

values were very high at all stations. Air-sea fluxes of ethylene varied between 3.5 µmol m-2 d-1 

at Dagon 2 due to the abnormally high concentration measured at 75 m and 0.42 µmol m-2 d-1 at 

Dagon 3. The corresponding fluxes in the EMS are about 2 times higher than measured in the 

NASG (Sosa et al., 2020) which again supports the hypothesis that C-P lyase is more active in 

the EMS than in the NASG. However, the MLD methane:ethylene ratios vary between 8 and 18  

(Table A.1.1) which is higher than the average value of 1 observed in the NASG (Sosa et al., 

2020) or for incubations of Station ALOHA seawater amended with high molecular weight 

DOM (Repeta et al., 2016). Moreover, there is no correlation between ethylene saturation and Pi 

concentrations which suggests that different processes affecting methane and/or ethylene 

saturations are at play in the EMS compared to the NASG and NPSG. 

 

To measure phosphonate hydrolysis rates by C-P lyase, we measured dissolved methane and 

ethylene concentrations to calculate their air-sea fluxes values. This approach has been used as 

proxy to estimate the turnover rate of MPn and 2-HEP (Repeta et al., 2016; Sosa et al., 2020), 

but assumes that the degradation of those compounds is the primary source of methane and 

ethylene. In the EMS, the methane and ethylene vertical profiles from the same stations show 

very similar patterns with maximum and minimum surface concentrations obtained at similar 

depths (Figures 2.2 and 2.3). Moreover, at Dagon 3, 4 and Tarhun 8 MLD methane and ethylene 

% saturation as well as MLD methane:ethylene ratios were similar, which suggest that methane 

and ethylene are affected by the same processes across these stations (Tables 2.1 and A.1.1). 

However, the MLD methane:ethylene ratios are consistently about ten times higher than the 

value of 1 observed in the NASG and NPSG (Sosa et al., 2020) suggesting key differences 

between those oligotrophic regions and the EMS.  We find 3 likely explanations: 

1) Methane production from the degradation of MPn by C-P lyase is not the only source 

of methane in the EMS waters. Indeed, the EMS is known for the presence of mud 
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volcanoes and deep cold seeps which are the major source of methane in deep waters 

(Charlou et al., 2003) and it is possible that methane from those sources is not fully 

oxidized, contributing to the large % saturation observed. However, methane profiles 

decrease to nM concentrations few hundred meters above the volcanoes (Charlou et 

al., 2003) suggesting rapid oxidation in situ. Additionally, benthic methane is 

isotopically light (δ13C ~ -60-70 ‰) and values we measured in the EMS upper water 

column are characteristic of the NASG and NPSG (Holmes et al., 2000). However, 

we cannot exclude the possibility of methane sources with similar isotopic 

fractionation effect that might occur in oxic conditions such as methane production by 

acetate consumption (Bogard et al., 2014) or by cyanobacteria during C fixation 

(Bižić et al., 2020) that have an unknown isotopic value.  

2) Phosphonate sources are different. HMWDOM from the NPSG and the NASG has a 

MPn:2-HEP ration of ~1 which can explain the 1:1 excess ratio in methane and 

ethylene (Repeta et al., 2016; Sosa et al., 2020). If the HMWDOM MPn:2-HEP is 

higher in the EMS it could explain why we measure a higher methane % saturation 

compare to ethylene. Alternatively, HMWDOM might not be the main or the only 

phosphonate source for C-P lyase which is likely as we were able to detect LMW 

phosphonates in particulate matter from the North Atlantic (Chapitre 5). 

3) Ethylene and methane are being oxidized aerobically at different rates. Ethylene is 

produced by stressed plants to reduce the activity of methanotrophs (Zhou et al., 

2018) and was shown to inhibit methane oxidation in a forest soil (Bu et al., 2019) 

suggesting that ethylene oxidation is a preferred source of carbon for hydrocarbon 

oxidizing bacteria. Thus, it is likely that ethylene is oxidized faster than methane 

allowing the methane to build up leading to a higher proportion of methane compare 

to ethylene which would increase the methane:ethylene ratio. 

 

To calculate the phosphonate consumption rates using the ethylene air-sea flux data, we made 

the following assumptions: 1) ethylene produced in the surface mixed layer are supported 

entirely by the degradation of 2-HEP respectively through the C-P lyase, 2) 2-HEP are each 1/3 

of the phosphonate HMWDOM pool (Repeta et al., 2016) and 3) HMWDOM is the main source 

of phosphonate for the C-P lyase pathway. With these assumptions, we calculated 2-HEP 

degradation rates are between 7 and 48 pM d-1 and total phosphonate consumption rates between 

21 and 145 pM d-1. Those estimates can be compared to the measured in situ phosphonate 

production rates (Table X) and we find that phosphonate production is at steady state with 

phosphonate consumption. This conclusion is different from the ones using methane as a proxy 

for phosphonate degradation by C-P lyase or the C-P lyase assay. As we discussed previously, 

this could be due to the factors influencing the methane:ethylene ratio and we are faced with two 

different possibilities. If there is another source of methane but ethylene only comes from the 

degradation of 2-HEP by C-P lyase then those rates are accurate and the phosphonate cycle is at 

steady state in the EMS. If ethylene is consumed or if there is less ethylene in the EMS, then 
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degradation rates using methane are appropriate and phosphonate are being consumed more than 

they are being made and the cycle is not at steady state. 

 

 

A.1.5 CONCLUSION 

Ethylene dissolved concentrations were largely above saturation in the EMS in March. The 

highest MLD ethylene production was observed in Dagon 4 and the lowest at Dagon 1 and 3. 

Unlike for methane, we did not find a correlation between ethylene concentrations and Pi nor 

between methane and ethylene concentrations. Using ethylene as a proxy for phosphonate 

degradation rates, we found that those are similar to phosphonate production rates measures 

simultaneously which leads to the conclusion that the phosphonate cycle is at equilibrium. When 

comparing to phosphonate degradation rates using methane as a proxy or the C-P lyase assay, we 

drew different conclusions (Chapter 2) and more work is needed to constrain our measurements 

and be able to compare them. 
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APPENDIX 2. ABSENCE OF PHOSPHONATE IN 

Trichodesmium erythraeum IMS101 AND 

Prorocentrum minimum (CCMP1329)  
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A2.1 INTRODUCTION 

Phosphonates are organophosphorus esters where the carbon (C) is directly link to the 

phosphorus (P) atom. This causes the P to be in a reduced form compare to a more common 

phosphate ester bond (C-O-P) and its oxidation state is +III. Phosphonates are abundant in 

marine HMWDOM where they represent 20-25% of the P and are an alternative source of P for 

some marine microbes. However, so far, only three model marine microbes have been shown to 

produce phosphonates in cultures which limits our understanding of phosphonate biosynthesis 

and biochemistry. They are: the cyanobacteria Trichodesmium IMS101(Dyhrman et al., 2009) 

and Prochlorococcus SB (Chapter 3) and the archaeon Nitrosopumilus maritimus (Metcalf et al., 

2012).Finding new model microbes able to produce phosphonates is especially important since 

among all the current identified phosphonate producers, only Nitrosopumilus maritimus has been 

shown to be able to produce methylphosphonate which constitute 1/3 of the phosphonate pool in 

HMWDOM and which degradation through the C-P lyase yields methane (Repeta et al., 2016)  

 

The goal of this study was to find other organisms producing phosphonates to compare them 

with Prochlorococcus SB in term of P allocated to phosphonate production and their 

macromolecular form. Moreover, we were also trying to see which types of phosphonates were 

produced and if they were different from the ones in Prochlorococcus SB.  

 

All known phosphonate biosynthetic pathways start with the isomerization of 

phosphoenolpyruvate (PEP) to phosphonopyruvate (PnPy) by phosphonopyruvate mutase 

(PepM) (Seidel et al., 1988). This step is followed by the decarboxylation of PnPy to 

phosphonoacetaldehyde (PnAa) by phosphonopyruvate decarboxylase (Ppd) (Zhang et al., 

2003).The gene sequence coding for PepM has been used in multiple studies to investigate 

phosphonate production potential in marine microbial genomes and metagenomes (Metcalf et al., 

2012; Villarreal-Chiu et al., 2012; Yu et al., 2013). More recently, we found that 15% of 

bacterial+archeal cells were putative phosphonate producers (Chapter 3).  Genomic analyses 

support the potential for phosphonate synthesis, but they are not a definite proof that those 

organisms are indeed producing phosphonate. Thus analysis of laboratory cultures is needed to 

confirm phosphonate production and identify which phosphonates and how much phosphonates 

is being produced.  

 

Because Trichodesmium IMS101 is a known phosphonate producer and readily available, we 

cultured Trichodesmium IMS101 to identify which phosphonates were being produced and 

characterize any macromolecules they might associated with. Metagenomic analysis have also 

suggested that some marine dinoflagellates cultures may also synthesize phosphonates (Cui et 

al., 2016). Thus we selected dinoflagelatte strains that had genes coding for PepM and Ppd,were 

available for purchase from the Bigelow culture collection and were axenic. This narrowed down 
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the list to 3 strains: Alexandrium tamarense (CCMP1771), Amphidinium carterae (CCMP1314) 

and Prorocentrum minimum (CCMP1329) which is the one we retained for this experiment. 

 

A2.2 MATERIAL AND METHODS 

A2.2.1 Trichodesmium erythraeum sp. IMS101  

Trichodesmium erythraeum sp. IMS101 was grown in RMP growth media prepared with filtered 

and sterile oligotrophic Sargasso seawater (Webb et al., 2001). The culture was not axenic but 

had been partially purified by serial sterile transfers for hundreds of generations into RMP media 

which could have caused the emergence of a strain different from IMS101. The culture was 

maintained at 26.9°C in a 14:10h day:night light cycle. Approximately 50 mL of dense, healthy 

filaments were inoculated into 300 mL RMP medium for a final volume of 350 mL. The flask 

was gently stirred daily. The culture was allowed to acclimate and grow for 5 days prior to 

sampling and was harvested during day light exposure in exponential growth. Cultures were 

filtered through a 0.22 μm Durapore filter under gentle vacuum to recover biomass. The filter 

was immediately frozen at -20°C until analysis.  

 

To extract phosphonates from Trichodesmium IMS 101 biomass, filters were cut into pieces and 

hydrolyzed by sonicating for 1 hr in 1.5 mL of 2N KOH followed by heating at 80°C for 24h.  

The reaction was quenched by stirring with 1 g of Biorex 50W-X8 cation exchange resin (50-100 

mesh, H+ form, previously washed 4x with 10 mL of MQ) for ~ 1hr. The sample was 

centrifuged, the supernate removed and the resin washed 2x with 0.5 mL MQ. The supernate and 

washes were combined, dried, and the residue dissolved in 800 µL D2O for NMR analysis. 

 

A2.2.2 Prorocentrum minimum 

Prorocentrum minimum (CCMP 1329) was grown in a f/2-Si medium (Guillard & Ryther, 1962) 

prepared in filtered (0.22 µm) Vineyard Sound seawater using sterile protocols. The medium was 

modified by adding Na2SeO3 and reducing the concentration of CuSO4.5H2O to a final 

concentration of 10-8 M each (Anderson et al., 1994). Cultures were grown at 19oC on a 14:10 hr 

light:dark cycle (ca. 200 µmol photons·m-2·sec-1 irradiance provided by cool white fluorescent 

bulbs). Growth was monitored by visual cell counts and the culture was harvested in exponential 

growth. Cells were pelleted by centrifuge and the spent medium decanted. The cells were washed 

2x by resuspending them in 20 mL Turk Island Mix or non-amended artificial seawater (Moore 

et al., 2007) and centrifuged. The cell pellet was then frozen at -20°C until further analysis.  

 

A2.2.3 Nuclear magnetic resonance (NMR) 

To assess whether or not the cultures were producing phosphonates, we used 31P NMR. NMR 

spectra were acquired at 25°C on a 400 MHz Bruker AVANCE DPX spectrometer using a 5mm 
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inverse broadband probe and running TOPSPIN 1.3. Phosphorus shifts are reported relative to 

external 85% phosphoric acid at 0 ppm. For the proton-decoupled 31P NMR spectrum of whole 

Prorocentrum minimum cells, the frozen cell pellet was thawed and transferred to a 5mm BMS 

tube (Shigemi Inc.) with a magnetic susceptibility matching D2O.  Samples were analyzed using 

“zgdc30” with WALTZ16 decoupling, a sweep width of 80 ppm, a 3 seconds relaxation delay, 

100K scans and 20Hz line broadening. For the 31P NMR spectrum of hydrolyzed Trichodesmium 

erythraeum IMS101 we used the program “zgdc30” with a sweep width of 80 ppm, a 3 seconds 

relaxation delay for 30K scans and 15Hz line broadening. 

 

 

A2.3 RESULTS AND DISCUSSION 

A2.3.1 Absence of phosphonate production in Trichodesmium erythraeum 

IMS101  

The 31P NMR spectrum of soluble P after hydrolysis of Trichodesmium erythraeum IMS101 

(Figure A.2.1) displays a sharp peak at 0 ppm from phosphate, and a suite of peaks between 1-3 

ppm characteristic of phosphate esters (Quin & Williams, 2004).  

 

 

Figure A.2.1:  31P NMR spectrum of soluble phosphorus after 2N KOH hydrolysis of Trichodesmium 

erythraeum IMS101 cells 

Hydrolysis does not affect the C-P bound in phosphonate (Horsman & Zechel, 2017) and if 

phosphonates were produced by Trichodesmium, peaks should appear in phosphonate region (15 

to 30 ppm) (Quin & Williams, 2004) of the 31P NMR spectrum. Unexpectedly, there were no 

discernable peaks in this region. Dyhrman et al. (2009) used solid state NMR of whole cells to 

show that Trichodesmium erythraeum IMS101 dedicated ~10% of its cellular P towards 

phosphonate production.  We were not able to confirm that result in this study.  

Several hypotheses might explain this difference. First, if Trichodesmium synthesizes a complex 

mixture of phosphonates with individual phosphonates representing < 3-5% of the total 
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phosphorus in the sample, it is unlikely that we would have been able to distinguish these 

phosphonates from noise in the spectrum and phosphonate from this strain might have gone 

undetected. Second, phosphonates in the Dhyrman sample may also have originated from 

epibionts (Hmelo et al., 2012) and not from Trichodesmium as suggested by a study where PepM 

gene sequence was found in the Trichodesmium holobiont and not only in the Trichodesmium 

genome (Frischkorn et al., 2017). Third, the microbial community associated with 

Trichodesmium erythraeum IMS101 may have changed since 2009, and finally, Trichodesmium 

erythraeum itself might have evolved over the decade separating the two studies. Even though 

the culture has been described as uni-algal, the culture might have had a minority of other 

Trichodesmium strains that could have outcompeted the initial culture. It is also likely that if the 

epibionts have changed, the culture itself evolved in parallel since signaling, cross-feeding and 

other symbiotic processes might have been altered. It should also be noted that we did not 

investigate the presence of phosphonate in the spent growth medium (unlike for Prochlorococcus 

SB). However, previous studies reported phosphonates associated with Trichodesmium cells 

(Dyhrman et al., 2009; Van Mooy et al., 2015) and it is therefore unlikely that our culture 

excreted phosphonates into the spent medium.  

 

A2.3.2 Absence of phosphonate production in Prorocentrum minimum 

As for Trichodesmium erythraeum IMS101, the 31P NMR spectrum Prorocentrum minimum 

(Figure A.2.2) only displays one large peak due to the presence of phosphate esters and diesters 

between 10 and -5 ppm (Quin & Williams, 2004). The absence of discernable peak in the 

phosphonate region of the spectrum (15 to 30 ppm) suggests that despite having the full 

phosphonate biosynthetic pathway, Prorocentrum minimum did not produce phosphonate in this 

culture. 

 

 

Figure A.2.219:  31P NMR spectrum of Prorocentrum minimum whole cells 
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Dinoflagellates have a very large genome, a highly complex phenotype (Spector, 2012), 

transcriptionally inactive DNA (Roy & Morse, 2013) a complicated and poorly understood gene 

expression which involves transcriptional and post-transcriptional regulation (Hackett et al., 

2004). Moreover, Prorocentrum minimum has been shown to perform substitutional mRNA 

editing (Lin et al., 2002) which further complicates the link between genomic interpretation and 

observed phenotype. Because of this, it is likely that even though Prorocentrum minimum 

genome encodes the full phosphonate biosynthetic pathway, active phosphonate production is 

dormant and only occurs under specific conditions. Phosphonates can be used by organisms as 

potent metabolites as they can mimic phosphates and carboxylic acids hereby inhibiting the 

activity of numerous enzymes (Horsman & Zechel, 2017). Therefore, we hypothesize that 

Prorocentrum minimum and probably other dinoflagellates with the full phosphonate 

biosynthetic pathway (Cui et al., 2016) are more likely to transcribe the genes involved in 

phosphonate production and actively produce phosphonates during harmful algal blooms, events 

where various toxins are produced. Thus, it is likely that the axenic culture conditions did not 

provoke phosphonate production in our culture leading to the absence of phosphonates 

associated with the cells. As for Trichodesmium erythraeum IMS101, we did not investigate if 

phosphonates were present in the spent medium. 
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APPENDIX 3. EXTRACTION EFFICIENCY OF LOW 

MOLECULAR WEIGHT DISSOLVED ORGANIC 

PHOSPHORUS (LMWDOP) BY VARIOUS SOLID PHASE 

ECTRACTION (SPE) COLUMNS 
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A3.1 SUMMARY 

As low molecular weight organic phosphorus (LMWDOP) is very dilute in the ocean, a pre-

concentration method would considerably aid in identifying and quantifying phosphorus 

containing metabolites in the ocean.  Here we compare four different SPE columns for their 

efficiency at retaining phosphorus-containing compounds in seawater. 

 

A3.2 INTRODUCTION 

Marine dissolved organic matter (DOM) is typically divided into high and low molecular weight 

DOM (HMWDOM and LMWDOM respectively) (Hansell, D. A., & Carlson, C. A., 2002/2014). 

HMWDOM is typically isolated using ultra-filtration membranes with a molecular weight cut off 

of ~1 kDa whereas to concentrate the small and dilute molecules constituting LMWDOM, solid 

phase extraction (SPE) is used (Kido Soule et al., 2015; Koch et al., 2008; Lechtenfeld et al., 

2011; Petras et al., 2017). SPE relies on the greater affinity of an analyte to adsorb onto a solid 

phase than to remain in solution (Hennion, 1999). However, common SPE extraction methods 

employed in metabolomics fail to capture most LMWDOP (Johnson et al., 2017; Lechtenfeld et 

al., 2011) most likely due to the small size, high polarity and hydrophilic character of P 

containing metabolites. To identify the SPE technique that is able to retain the most LMWDOP, 

seawater was passed through four different SPE columns and the amount of DOP removed from 

seawater was measured. For this quantitative approach, we used a colorimetric method i.e. the 

molybdenum blue method (Murphy & Riley, 1962), and a recently developed DOP oxidation 

method (Foreman et al., 2019). 

 

There are various ways to oxidize DOP to Pi and be able to measure TDP to obtain DOP 

concentrations by difference. Oxidation can be done using wet chemical oxidation with 

persulfate (Menzel & Corwin, 1965) or magnesium nitrate (Cembella et al., 1986), high-

temperature combustion (HTC; ref) or ultraviolet (UV) light (Armstrong & Tibbitts, 1968). UV 

oxidation is one of the widely use method and has been recently optimized by Foreman et al. 

(Foreman et al., 2019). Their method, using a new photo-oxidation system followed directly by a 

colorimetric measure of TDP with an auto-analyzer (described in more details below), proved to 

be efficient towards phosphate esters and phosphonates. Therefore, we used this method to 

estimate SRP, TDP and DOP concentrations in North Atlantic seawater before and after the 

extraction of the four selected columns. 
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A3.3 MATERIAL AND METHODS 

A3.3.1 SPE columns 

We selected 4 different columns: solute® ENV+ (Supelco), SupelcleanTM Envi-CarbTM (Sigma-

Aldrich), titanium oxide (TiO2; Sigma-Aldrich; column packed in-house), and Hybrid-SPE® 

(Sigma-Aldrich). The ENV+ resin is a polystyrene-divinyl benzene co-polymer designed to 

retain hydrophobic organic compounds from aqueous media. Envi-Carb is a non-porous 

activated charcoal substrate with high surface area and a high affinity for both polar and 

nonpolar organic compounds. TiO2 has been used extensively to retain phosphorus containing 

biopolymers  such as phosphopeptides in phosphoproteomic from aqueous media (Thingholm et 

al., 2006) and Hybrid-SPE® is a zirconia-coated substrate commonly used to concentrate 

phospholipids (Ahmad et al., 2012). Columns (1 g each ENV+, Envi-Carb and TiO2 (rutile form; 

<5 µm, >99.9% trace metal basis; Sigma Aldrich), 2 x 0.5g Hybrid-SPE) were activated before 

running the sample. The ENV+ column was activated using 12 mL of MQ water followed by 12 

mL of methanol. The Envi-Carb column was activated with 12 mL pH 2 MQ water. The TiO2 

and Hybrid-SPE columns were activated with 12 mL of MQ water. 

 

A3.3.2 Extraction of DOP from seawater 

Twenty liters of 0.22 µm filtered Sargasso Sea surface seawater was pumped through each 

column at 15-20 mL min-1. Samples for DOP were collected before and after passage through the 

column. For the Envi-Carb column, the seawater was acidified to pH 3 using HCl before passing 

through the column. To measure potential contamination introduced during sampling, DOP was 

measured in 10 L sized samples of MQ water before and after passage through the system. All 

tubing and bottles were previously acid washed.  Water samples DOP analysis and SPE columns 

were frozen ( -20°C freezer) immediately after collection. 

 

A3.3.3 UV oxidation 

To oxidize samples for TDP measurements, we used the protocol developed by Foreman et al. 

(2019). Briefly, the UV light system is a VelaCure12 equipped with a microwaved powered 1800 

W mercury lamp (F300S lamp, Heraeus Noblelight) isolated by a quartz window from the 

samples. Custom quartz glass vials (Suprasil 310; Allen Scientific Glass) of 22 to 25 mL 

previously washed with 10% HCl were used and filled with 20 mL of sample and 50 uL of 30% 

hydrogen peroxide (ACS grade, Fisher) and 9 uL of 5 M sulfuric acid (ACS Plus grade, Fisher). 

Seawater before and after each column were split in two samples to have duplicate 

measurements and were oxidized for 1.5 h. 
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A3.3.4 SRP and TDP measurements 

Once oxidized in the UV system samples were let to cool then each was transferred into two 

clean 4 mL sample cups to be analyzed for TDP on the auto-analyzer which gives a duplicate for 

each oxidized sample for a total of four TDP measurements for one particular sample. For the 

analyses, we used an auto-analyzer SEAL Analytical AutoAnalyzer III equipped with a high-

resolution detector set on 880 nm as preconized by Murphy and Riley (Murphy & Riley, 1962) 

and prepared the reagents according to Foreman et al. (2019). Standards for the instrument 

calibration were prepared using a mother solution of 10 mM sodium phosphate used to prepare 

an intermediary solution of 100 µM. This solution was added to low nutrient seawater (LNSW), 

to correct for any matrix effect, to obtain 6 standards ranging from 1.004 µM to 0 µM added. 

Similarly, these samples were oxidized and TDP and SRP measured in duplicates. A reference 

standard containing 1.0 µM phosphate was run which, together with the concentration calculated 

for the 0 µM added standard, allowed us to calculate the phosphate concentration in the LNSW. 

Moreover, as the 0 µM added standard contain some phosphate, we also measure the baseline by 

injecting MQ water. This baseline is corrected for seawater using the refractive index (-266 for a 

gain of 400) and those are used to calculate the TDP and SRP concentrations of the various 

samples. Every 22 sample cups, the baseline is measured to make sure that no drift occurred. 

This method typically has a limit of quantification (LOQ) of ~ 30 nM (Foreman et al., 2019) 

which gives a limit of detection (LOD) of ~ 9 nM. 

 

 

A3.4 RESULTS AND DISCUSSION 

A3.4.1 North Atlantic seawater initial concentrations 

SRP and TDP concentrations of the North Atlantic seawater sample were 405.8 ± 0.8 nM and 

539 ± 4 nM respectvely (Table A.3.1). DOP was calculated as 133 ± 4 nM. The SRP 

concentration was much higher (by about two orders of magnitude) than typical Sargasso Sea 

surface water, which is often below 10 nM (Cavender-Bares et al., 2001; Lomas et al., 2010). 

This high SRP concentration is probably due to contamination from the ship’s seawater intake or 

the sampling barrel. However, DOP concentrations are in the range of what would be expected 

from Sargasso seawater (Cavender-Bares et al., 2001; Lomas et al., 2010; Mather et al., 2008).  

 

A3.4.2 MilliQ blanks 

To measure phosphorus contamination from the SPE columns, SRP and TDP of MQ water was 

measured before and after it went through each column (Table A.3.1). The ENV+ column did not 

appear to contaminate with either SRP or DOP. The Hybrid SPE column added some SRP, but 

no DOP was added or removed. The Envi-Carb column added ~10 nM SRP and may have 

removed some DOP. Finally, the TiO2 column added a significant amount (~100 nM) of SRP 
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and TDP concentration was less than SRP, and no determination could be made about addition or 

retention of DOP. 

 
Table A.3.1: Summary of SRP, TDP and calculated DOP concentrations of Sargasso seawater and blanks before and 

after the 4 different SPE columns 

 MQ water Sargasso SW 

 SRP (nM) TDP (nM) DOP (nM) SRP (nM) TDP (nM) 
DOP 
(nM) 

Before columns 1.3 ± 0.4 24 ± 2 23 ± 2 405.8 ± 0.8 539 ± 4 133 ± 4 

After columns       

ENV+ 1 ± 2 26 ± 2 25 ± 3 423 ± 2 538 ± 1 114 ± 3 

Envi-Carb 11 ± 2 27 ± 6 16 ± 6 414.8 ± 0.4 466 ± 2 51 ± 2 

TiO2 105 ± 3 78 ± 5 -27 ± 6 69 ± 2 186 ± 2 116 ± 3 

Hybrid-SPE 15 ± 2 35 ± 2 20 ± 3 401 ± 1 503 ± 3 102 ± 3 

 

A3.4.3 Sargasso seawater 

The differences between the phosphorus concentrations of the initial seawater and the seawater 

after the columns were used to measure how much phosphorus had been retained on the column. 

When looking at SRP, the TiO2 column retained 83% whereas other columns didn’t retain any 

and all contaminated the sample with SRP. For DOP, the Envi-Carb was the most efficient and 

retained 60% of DOP. The Hybrid-SPE had an intermediate efficiency with 24% of DOP 

retained whereas the TiO2 and ENV+ columns only retained ~ 10-15% (Table A.3.2). It should 

be noted, that the protocol using TiO2 columns for phosphopeptides enrichment recommends a 

sample dilution in a solution of dihydrobenzoic acid or a mixture of phtalic acid in acetonitrile 

and trifluoroacetic acid which we did not do here and might have affected the efficiency of the 

column. Concerning the ENV+, this is not highly surprising as very few P peaks were observed 

by liquid chromatography coupled with ionization coupled plasma and mass spectrometry 

(HPLC-ICPMS) for seawater samples previously collected with this column. Therefore, this 

column is probably not the most interesting one to study untargeted organophosphorus and the 

most promising column is the Envi-Carb. 

 
Table A.3.110: Summary of the amount of DOP retained by the 4 different SPE columns 

Column ΔSRP (nM) ΔTDP (nM) ΔDOP (nM) DOP retained (%) 

ENV+ -17 ± 2 2 ± 4 19 ± 4 14 ± 3 

Envi-Carb -9.0 ± 0.9 73 ± 4 82 ± 4 61 ± 4 

TiO2 337 ± 3 353 ± 4 17 ± 5 12. ± 4 

Hybrid-SPE 5 ± 2 36 ± 5 31 ± 5 24 ± 4 
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A3.5 CONCLUSION 

Being able to pre-concentrate and purify LMWDOP compounds is key in order to identify and 

quantify P containing metabolites in order to study their biogeochemical cycle as well as their 

cellular function. Our results show that all column were able to retain some DOP from seawater 

with various efficiency. The Envi-Carb column performed the best followed by the Hybrid-SPE. 

The ENV+ and TiO2 had low but comparable efficiency towards DOP. Our data also shows that 

the columns need to be cleaned more thoroughly to eliminate SRP contamination. The DOP 

retained by those columns has not been characterized and should be investigated. Using those 

columns in line might also present some advantages as they most likely have different affinity 

for different organophosphorus compounds, enabling the possibility of identifying a relatively 

important part of the DOP pool. 
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