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ABSTRACT 10 

In the last decade, marine ecosystem models have been increasingly used to project interspecific 11 

biodiversity under various global change and management scenarios, considering ecological 12 

dynamics only. However, fish populations may also adapt to climate and fishing pressures, via 13 

evolutionary changes, leading to modifications in their life-history that could either mitigate or 14 

worsen, or even make irreversible, the impacts of these pressures. Building on the multispecies 15 

individual-based model Bioen-OSMOSE, an eco-evolutionary fish community model, Ev-Osmose, has 16 

been developed to account for evolutionary dynamics together with physiological and ecological 17 

dynamics in fish diversity projections. A gametic inheritance module describing the individuals’ 18 

genetic structure has been implemented. The genetic structure is defined by finite numbers of loci 19 

and alleles per locus that determine the genetic variability of growth, maturation and reproductive 20 

effort. Climate change and fishing activities will generate selection pressures on fish life-history traits 21 

that will respond through microevolution. This paper is an overview of the Ev-OSMOSE model. To 22 
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illustrate the ability of the Ev-OSMOSE model to represent realistic fish community dynamics, 23 

genotypic and phenotypic traits’ mean and variance and consistent evolutionary patterns, we applied 24 

the model to the North Sea ecosystem. The simulated outputs are confronted to observed data of 25 

commercial catch, maturity ogives and length at age and to estimates of biomass for each modeled 26 

species. In addition to the evaluation of their mean value, the emerging traits’ variability is 27 

confronted to length-at-age and maturity data. To ensure the consistency of genetic inheritance and 28 

the resulting evolutionary patterns, we assessed the transmission of traits’ genotypic value across 29 

cohorts. Overall, the state of the modelled ecosystem was convincing at all these different biological 30 

levels. These results open perspectives for using Ev-OSMOSE in different marine regions to project 31 

the eco-evolutionary impact of various global change and management scenarios on different 32 

biological levels. 33 

Keyword 34 

Food web, Marine ecosystem model, Genotypic variance, Fisheries-induced evolution, Climate-35 

induced evolution, Adaptation 36 

 Introduction 1.37 

Anthropogenic activities alter the ecological and evolutionary dynamics of marine ecosystems. In 38 

addition to inducing direct mortality, selective pressures such as fishing exploitation and climate 39 

change trigger changes in the life history traits of marine organisms due to evolutionary processes 40 

(Crozier and Hutchings, 2014; Heino et al., 2015). Knowledge about genetic diversity, its erosion, and 41 

its impact on organisms' traits has been identified as a gap in current knowledge (IPBES, 2019), while 42 

existing studies have shown that small changes in traits, which may be evolutionary in nature, can 43 

imply large demographic and whole-community and ecosystem changes, with potential 44 

consequences for human activities (Audzijonyte et al., 2014, 2013). Incorporating genetic diversity 45 
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and the resulting potential for adaptation into marine ecosystem models (MEMs) is thus considered 46 

as a key future development (Heymans et al., 2020; Rose et al., 2010). New modelling frameworks 47 

are needed to properly account for evolutionary changes and their impacts at the ecosystem scale to 48 

improve the reliability of predictions (Naish and Hard, 2008).  49 

The existing marine modeling studies for addressing human-induced evolution have primarily 50 

focused on fisheries-induced evolution. The main modeling framework in this field is the eco-genetic 51 

model (Dunlop et al., 2009; Heino et al., 2015). Eco-genetic models are single species models that 52 

describe the individual's life history, genetic variability using a quantitative genetic approach, density 53 

dependence and fishing as a selection pressure. More generally, this modelling framework allows the 54 

study of any pressure that induces evolutionary changes in life history traits (e.g, climate change, see 55 

Waples and Audzijonyte, 2016). However, eco-genetic models generally apply to single species, 56 

rendering difficult the upscale to the community and ecosystem levels, for example by accounting for 57 

the multiple interspecies interactions and the potential selective pressures those interactions may 58 

induce. 59 

OSMOSE is a spatially explicit, multi-species and individual-based modeling framework for regional 60 

marine ecosystems (Shin and Cury, 2004). It includes the marine high trophic level components (fish 61 

and macro invertebrate) and fishing pressure explicitly and it is forced by coupled physical-62 

biogeochemical models to represent the entire ecosystem. In this paper, we describe Ev-OSMOSE, a 63 

new modelling framework that incorporates an eco-genetic sub-model into OSMOSE. The eco-64 

genetic sub-model explicitly describes individual genetic and phenotypic variability in life history 65 

traits for multiple species interacting in a food web. A bio-energetic sub-model describing the life 66 

history in response to biotic and abiotic conditions has already been integrated in the OSMOSE 67 

model resulting in a multispecies framework with a mechanistic modeling of life history (Bioen-68 
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OSMOSE model, Morell et al., 2023). Our new framework Ev-OSMOSE includes the genetic and 69 

phenotypic variances of life history traits described by the bio-energetic sub-model and thus allows 70 

the description of life history micro-evolution and adaptation in response to pressures. To our 71 

knowledge, this new model is the first marine ecosystem model to take into account micro-evolution 72 

and adaptation. This framework allows the study of evolutionary and ecological dynamics and their 73 

interactions at the multi-species level. It also allows to address the impacts of predation, fishing and 74 

climate-induced evolution. Featuring genetic variability, life history evolution, and multispecies 75 

interactions in a single framework make the model suitable for projecting future genetic, functional, 76 

and species diversity under fisheries and climate change scenarios, with consistent mechanisms 77 

linking these three organizational levels of biodiversity.  78 

In this paper, we provide a detailed description of the principles and equations of the Ev-OSMOSE 79 

framework. Parameterization guidelines are provided with an application to the North Sea ecosystem 80 

as a case study example. Results from the North Sea application are also provided to verify the 81 

consistency of the new model developments. 82 

 Materials and methods 2.83 

 Model description 2.1.84 

The Ev-OSMOSE model represents the eco-evolutionary dynamics of fish communities in marine 85 

ecosystems (Fig. 1). It is an individual-based, spatially-explicit multispecies model accounting for 86 

trophic interactions. The main characteristics of the model are opportunistic predation based on 87 

length and spatial co-occurrence of predators and prey, the mechanistic description of individuals’ 88 

life-history traits emerging from genetics and bioenergetics and the consideration of inter-individual 89 

phenotypic variability due to both genotypic variability and plastic responses to spatiotemporal 90 
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variations in biotic and abiotic factors. The aim of the model is to explore the functioning and the 91 

eco-evolutionary dynamics of marine trophic webs, notably in response to perturbations such as 92 

fishing or climate change. The consequences of perturbations can be tracked from the individual 93 

genotype to the phenotype, to the population and to the community scale. The Ev-OSMOSE model 94 

extends the existing OSMOSE model by (i) explicitly accounting for the dependence of life-history 95 

traits on bioenergetics that, in turn, are determined by individual’s genotype, (ii) describing intra- and 96 

inter-specific genetic and abiotic phenotypic variability.  97 

 98 

Figure 1: Graphical summary of the Ev-OSMOSE model. The Ev-OSMOSE model is a marine trophic 99 

web model where the trophic relationships emerge from species distributions per ontogenetic stage, 100 

spatiotemporal prey-predator co-occurrence and lengths adequacy, low trophic level (phytoplankton 101 

and zooplankton) biomass and species life cycle which is genetically determined and varies with 102 

temperature and oxygen. 103 

 Biological unit, state variables and spatial characteristics 2.1.1.104 
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The biological unit of the model is a school (a super-individual in individual-based modeling terms). It 105 

is formed of individuals from the same species that are biologically identical, i.e., whose state 106 

variables have the same values. Individuals are all diploid hermaphrodites, i.e. males and females are 107 

not distinguished, although the model is based on female life history. The state variables 108 

characterizing a school   at time step   belong to five categories (see Table 1 for parameters’ 109 

definitions and units and Table 2 for variables’ definitions and units): 110 

- Trait genetic determinism and expression that include individuals’ genotype, composed of 2 111 

alleles           and           at each of the    functional locus coding for each evolving trait   112 

and 2 alleles         and         at each of    neutral locus, and the phenotypic expression 113 

noise       for each evolving trait  ; 114 

- Ontogenic state of individuals described by their age       , somatic mass        and 115 

gonadic mass       ;  116 

- Abundance, namely the number of individuals in the school       ;  117 

- Spatial location, i.e. the grid cell        where the school is located; and 118 

- Taxonomic identity, i.e. the species      to which the school belongs. 119 

A number of variables further characterizing the individuals of each school emerge from the three 120 

first categories of state variables (and thus are not strictly speaking state variables themselves). In 121 

terms of trait genetic determinism and expression, the effects of functional loci translate into a 122 

genotypic value       for each evolving trait  . Trait phenotypic values result from the influence of 123 

both the genotypic value       and the phenotypic expression noise      . There are four evolving 124 

traits in the model, and hence phenotypic values, namely maximum mass-specific ingestion rate 125 

 max    that determines individuals’ maximum energy uptake from predation, gonado-somatic index 126 

     that determines their energy allocation to somatic growth and reproduction, and two traits that 127 
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specify their maturation schedule, that is the intercept       and the slope       of a deterministic 128 

linear maturation reaction norm (Stearns and Koella, 1986). Their evolution allows us to model the 129 

evolution of the three life history traits most described in response to fishing-induced evolution 130 

(Heino et al., 2015). Schools are also further described by emerging variables such as individuals’ 131 

total body length        and their sexual maturity status        that allows distinguishing between 132 

juveniles and adults.  133 

Fish schools are distributed on a horizontal spatial grid that is composed of regular cells and that 134 

covers the geographical range of the ecosystem represented. A cell c is characterized by its spatial 135 

coordinates, longitude      and latitude     , and (i) physical and (ii) biogeochemical variables 136 

respectively: (i) the vertically-integrated value of physico-chemical factors          (such as 137 

temperature        or the level of oxygen saturation (%) [  ]     ) and (ii) the biomass of each 138 

lower trophic level group (indexed by  )             that are not explicitly modeled but provided as 139 

input to Ev-OSMOSE from coupled hydrodynamic and biogeochemical models.  140 

All schools belonging to the same species form a population and populations of different species 141 

form the fish community. Several aggregated population-based metrics can be tracked at the 142 

population level such as abundance     , biomass     , fishing catches      but also the genotypic 143 

and phenotypic means   
̅̅ ̅    and  ̅    and variances     

     and   
     of trait   (with   144 

{            }. 145 

 Design concepts 2.1.2.146 

Ev-OSMOSE relies on a number of well-established concepts and theories and combines them in an 147 

original way to describe marine fish biodiversity and its dynamics from the intra-specific - genetic and 148 

phenotypic variability - to the inter-specific - taxonomic and trait-based - level. Previous multi-species 149 
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models of fish communities have been designed to project interspecific biodiversity trajectories 150 

under various scenarios considering only ecological dynamics. However, fish populations may also 151 

adapt to natural and anthropogenic pressures via phenotypic plasticity and/or evolutionary changes, 152 

leading to modifications in their physiology and life-history that could either mitigate or worsen the 153 

consequences of these pressures. Ev-OSMOSE has been precisely developed to account for plastic 154 

and evolutionary dynamics in fish biodiversity projections by introducing the following elements to 155 

the existing OSMOSE model. 156 

Ev-OSMOSE explicitly describes mendelian inheritance of quantitative traits determined by polygenic 157 

genotypes according to quantitative genetic principles. The genotypes are composed of a finite 158 

number of loci and alleles per locus with effects of heterogeneous amplitude (Soularue and Kremer, 159 

2012), which allows accounting for realistic adaptive and neutral (genetic drift) evolutionary changes 160 

and genetic erosion induced by natural and anthropogenic selective pressures. Genetically 161 

determined quantitative traits affect individuals’ bioenergetics and sexual maturation processes, 162 

which are described with a bioenergetic sub-model.  163 

Individuals’ bioenergetics are described according to a biphasic growth model (Andersen, 2019; 164 

Boukal et al., 2014; Quince et al., 2008) in which body mass-dependent energy fluxes are allocated 165 

between competing processes —namely maintenance, somatic growth and gonadic growth— thus 166 

accounting for physiological trade-offs that constrain both phenotypically plastic and evolutionary 167 

responses of life-history traits to selective pressures (Roff, 1992; Stearns, 1992). Moreover, energy 168 

fluxes depend on temperature and dissolved oxygen so that metabolic rates follow the oxygen- and 169 

capacity-limited thermal tolerance theory (OCLTT; Pörtner, 2001). The details on the bioenergetic 170 

sub-model are published in the description of the Bioen-OSMOSE model (Morell et al., 2023). 171 
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 Emerging properties: fitness, evolution and adaptation 2.1.3.172 

Emergence of most phenomena or characteristics at higher organization levels than the individual 173 

one (e.g. population and community spatio-temporal dynamics, population and community age and 174 

length structures, species diet) are the same as in the original OSMOSE model. 175 

Phenotypic values of schools’ evolving traits— maximum ingestion rate  max   , gonado-somatic 176 

index     , intercept       and slope       of the maturation reaction norm—are entirely 177 

determined by their genotype and a randomly drawn expression noise. In contrast, other individual 178 

variables or traits at higher integrative levels of organization (hereafter named “emerging variables”: 179 

somatic mass       , length       , gonadic mass        and thus fecundity           , maturation 180 

age       and somatic mass       or length       at maturation) emerge from the combination of 181 

evolving traits’ values, energy intake from length-based opportunistic predation and physiological or 182 

plastic responses of bioenergetics to ambient sea water temperature and dissolved oxygen 183 

concentration (Fig. 2). 184 
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 185 

Figure 1: Ev-OSMOSE processes describing trait variations from loci to population level (grey) and the 186 

causes impacting trait values (green). The process traits are the traits underlying the physiological 187 

processes and trade-offs.  188 

The distribution of genotypic and phenotypic values of evolving traits at the population level are fully 189 

prescribed initially by the values of the parameters describing genetic variability, namely the initial 190 

genotypic mean value   
̅̅ ̅    and the initial additive genetic variance     

    , and the expression 191 

noise distribution, namely the expression variance     
 , for a given trait  . As the simulation 192 

progresses, these distributions are affected by the processes of natural, fishing-induced and climate-193 

induced selection and genetic drift so that their changes through time describe emerging 194 
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evolutionary trajectories. Temporal changes in the phenotypic distribution of emerging variables 195 

result from both the trajectories of the underlying evolving traits and phenotypically plastic 196 

responses to available food and ambient physico-chemical conditions. 197 

The evolving trait values are variable in the populations and confer advantages or disadvantages in 198 

terms of survival and reproductive success relative to different pressures, notably predation, fishing, 199 

and climate changes. Therefore, Darwinian fitness, that governs the above-mentioned evolutionary 200 

trajectories together with genetic variability, emerges naturally from the modelled processes of 201 

mortality and reproduction. In consequence, populations may adapt to predation, fishing and climate 202 

change through evolution. 203 

 Initialization 2.1.4.204 

For each species, the initial pool of allele values present in the population for each functional or 205 

neutral locus is randomly drawn from a prescribed distribution (see section 2.1.6.1  206 

 207 

 208 

Genetic structure for details). The system starts with no school in the domain and is initialized by 209 

releasing eggs for every species during specific reproductive season time steps. For a given species, 210 

this seeding process stops when there is at least one mature individual in the population. The eggs 211 

are grouped in super-individuals, representing schools that are distributed spatially according to their 212 

habitat maps. During the spin-up period (until the system reaches an equilibrium), for each new 213 

school of eggs, a diploid genotype is randomly drawn from the functional and neutral pools of alleles 214 

at each locus. The mendelian transmission of genotype from parents to offspring starts at the end of 215 

the spin-up period.  216 

 Input 2.1.5.217 
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Ev-OSMOSE does not model oceanographic physical and chemical processes, but it is forced by 218 

spatially and temporally varying fields of temperature (°C) and oxygen (% of saturation) from coupled 219 

regional physical and biogeochemical models, data time series or from the regional downscaling of 220 

earth system model outputs. As for the OSMOSE model, biomass prey fields are also used as input to 221 

provide LTL.  222 

 Genetic sub-model 2.1.6.223 

The genetic sub-model introduces a source of intra-specific variability of the quantitative traits 224 

describing the individual life history, through additive genetic variance     
  and expression variance 225 

    
 , and parental gene inheritance. The genotypic values of the four heritable traits—maximum 226 

mass-specific ingestion rate  max , gonado-somatic index  , intercept    and slope    of linear 227 

maturation reaction norm—result from the expression of the corresponding functional loci. Neutral 228 

loci have no effect on individuals’ phenotype: their evolution is the result of random drift. Following 229 

temporal changes in genetic variability at neutral loci is thus a way to assess genetic drift. Hereafter, 230 

the genetic sub-model is described for any of the four evolving traits, generically denoted  .  231 

 Genetic structure 3.1.6.1.232 

The genetic structure is described by a polygenic multi-allelic model with finite numbers of loci and 233 

alleles for both the functional and neutral parts of the genome. The value of trait   thus results from 234 

the expression of    functional loci, each of which has a pool of      (with     {        }) possible 235 

alleles in the initial population characterized by      allelic values. Following classical quantitative 236 

genetics (Lynch and Walsh, 1998), we assume that the genotypic values       of trait   in the 237 

population initially follow a normal distribution     
̅̅ ̅        

      with   
̅̅ ̅    the initial genotypic 238 

mean and     
     the initial additive genetic variance. It follows (see justification in the next section) 239 
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that the      allelic values of locus   initially present in the population are randomly drawn from a 240 

normal distribution     
    

    

    
  (Soularue and Kremer, 2012). This allelic model defines allelic values 241 

as deviations around the initial genotypic mean   
̅̅ ̅    of the population and allows for 242 

heterogeneous allelic values across loci coding for the same trait, many of them with minor effects 243 

and a few ones with major effects. 244 

Similarly, the neutral part of the genome is described by    neutral loci, each of which has a pool of 245 

     (with     {        }) possible alleles in the initial population characterized by their allelic 246 

values with no effect on evolving traits. The      allelic identities of locus   initially present in the 247 

population are randomly drawn from a discrete uniform distribution with probability mass 248 

function       . 249 

 Traits’ genetic determinism and expression  3.1.6.2.250 

The two additive effect allele values           and           at a functional locus        {        }  251 

coding for trait      of diploid individual   can each take one allelic value among the      possible 252 

versions in the population. Alleles act additively at and between loci. Since allelic values describe 253 

deviations around the mean genotypic value of trait  , the genotype value       for trait      in 254 

school   is thus the sum of the initial genotypic mean   
̅̅ ̅    of the trait for the population and of the 255 

two allelic values           at each locus   coding for the trait of interest.  256 

        
̅̅ ̅     ∑                      

    
    (1) 257 

Given the normal distribution additive property and that the initial distributions     
    

    

    
  of allelic 258 

values in the population are independent between loci, the initial distribution of genotypic values 259 

      in the population thus follows a normal distribution     
̅̅ ̅        

     . At later time steps  , 260 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.08.527669doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.08.527669
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

the processes of selection, drift and inheritance will modify this distribution in terms of its mean 261 

  
̅̅ ̅    and its variance     

     but also potentially in terms of its shape as it is not constrained to 262 

remain normally distributed. 263 

In Ev-OSMOSE, part of the phenotypic expression of emerging variables (e.g., somatic mass       , 264 

gonadic mass       , length       at maturation) is due to the bioenergetic responses to conditions 265 

faced by an individual: the available food, the temperature and the oxygen concentration in the 266 

environment during the entire individual life cycle. In contrast, the four evolving traits (maximum 267 

mass-specific ingestion rate  max , gonado-somatic index  , intercept    and slope    of linear 268 

maturation reaction norm) describe underlying individual characteristics whose phenotypic 269 

expression does not depend on these “macro-environmental” conditions. Yet, the phenotypic 270 

expression of evolving traits will also be affected by dominance and recessivity of alleles at the same 271 

locus and epistasis between loci, which are not modeled explicitly in the present genetic model, as 272 

well as by “micro-environmental” variations capturing the potentially unaccounted effects of 273 

individuals’ internal environment or external micro-environment (Lynch and Walsh, 1998). These 274 

sources of phenotypic variability for evolving trait   are implicitly represented by an expression noise 275 

      randomly drawn from a normal distribution         
   at the individual’s birth and added to the 276 

genotypic value of its trait  . The phenotypic value of evolving trait      for the school   is then 277 

                . (2) 278 

 Genetic inheritance 3.1.6.3.279 

Both functional and neutral loci follow Mendelian inheritance under sexual reproduction. 280 

Reproduction is panmictic, which means that all sexually mature individuals can contribute to mating 281 

pairs of parents irrespective of their location and phenotype. If a new school is created at time step  , 282 
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its two parents are randomly drawn from a multinomial distribution           for 2 trials with a 283 

probability vector      composed of as many elements       as there are schools in the population. 284 

The  th element       is defined as the relative fecundity of school   in the population at time step  ,  285 

      
          

∑                      
 (3) 286 

with            the fecundity of school   and ∑                       the total fecundity of the species 287 

     population at time step  .  288 

For each selected parental school, haploid gametes are assembled by randomly drawing one of the 289 

two alleles at each locus to represent allelic segregation during meiosis. This is done under the 290 

assumption of independence between loci, so that alleles recombine freely. New schools receive at 291 

each functional and neutral locus one allele from both chosen parents by randomly picking a haploid 292 

gamete for each of them. 293 

 Bioenergetics and life-history sub-model 2.1.7.294 

The four evolving traits of a school  — max,  ,    and   —together with its age        and somatic 295 

mass        determine its bioenergetics and life-history processes, namely somatic and gonadic 296 

growth, maturation, reproduction and mortality. The detailed description of the bioenergetics fluxes 297 

is provided in Morell et al. (2023). A general description of the bioenergetic fluxes is presented 298 

hereafter as well as their linkages with the four evolving parameters (Fig. 3).  299 

 General principles 3.1.7.1.300 

Individual life history emerges from underlying bioenergetic fluxes which are described according to 301 

a biphasic growth model (Fig. 3) (Andersen, 2019; Boukal et al., 2014; Quince et al., 2008). The body 302 

mass-dependent energy fluxes are allocated according to physiological tradeoffs between competing 303 
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processes: maintenance, somatic growth and gonadic growth. The sexual maturation of individuals 304 

relies on the concept of maturation reaction norms that depicts how the process of maturation 305 

responds plastically to variation in body growth (Heino et al., 2002; Stearns and Koella, 1986). This 306 

combination of processes mechanistically describes how somatic growth, sexual maturation and 307 

reproduction emerge from energy fluxes sustained by food intake resulting from opportunistic 308 

length-based predator-prey interactions. 309 

On top of the biphasic growth model, individuals’ energy mobilization and maintenance energetic 310 

costs depend on dissolved oxygen saturation and temperature so that the resulting metabolic rate 311 

(the net energy available for new tissue production) and thus somatic and gonadic growth vary with 312 

these abiotic parameters in a way that conforms to the oxygen- and capacity-limited thermal 313 

tolerance theory (OCLTT; Pörtner, 2001) and more generally to thermal performance curves (TPC; 314 

Angilletta, 2009). The equations underlying the bioenergetic sub-model and especially the plastic 315 

responses to dissolved oxygen saturation and temperature are not developed hereafter as they are 316 

fully described in a previous paper (Morell et al., 2023). As Ev-OSMOSE models the evolution of bio-317 

energetic process traits underlying the life history, we propose a simplified description of the 318 

bioenergetic processes that are essential to understand the role of the traits, also illustrated with Fig. 319 

3.  320 

 Fluxes description: from the ingestion of energy to tissue 3.1.7.2.321 

growth 322 

The bioenergetic fluxes are summed up in Fig. 3A. The most upstream flux is the ingestion of energy. 323 

The ingested energy follows a Type 1 functional response to prey biomass: it increases linearly with 324 

the amount of prey biomass that is spatiotemporally co-occurring with the feeding school, until it 325 
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reaches a maximum that increases with individual somatic mass, corresponding to the satiety state 326 

level. The predator-prey co-occurrence depends on the spatial distributions of the prey (other HTL 327 

schools and forcing LTL prey fields) and of the feeding schools. 328 

A constant portion of the ingested energy is assimilated. The portion which is not assimilated is lost 329 

due to excretion and feces egestion. A portion of assimilated energy is then mobilized. The mobilized 330 

energy pays internal processes, i.e, growth of the somatic and gonadic tissues and maintenance in 331 

our framework.  332 

The portion of assimilated energy that is mobilized depends on temperature and oxygen. The 333 

mobilized energy rate fuels all metabolic processes starting in priority with the costs of maintenance 334 

of existing tissues. The maintenance rate increases with temperature and with somatic mass. The 335 

difference between mobilized energy and maintenance is called net energy for new tissue 336 

production. The net energy is then fully allocated to the growth of the somatic compartment before 337 

maturation and it is shared between growth of the somatic and gonadic compartments after 338 

maturation. The increase of the somatic compartment implies growth in length and mass. The energy 339 

allocated to the gonadic compartment is used during the breeding season to produce eggs.  340 

The maturation process is modeled by a deterministic linear maturation reaction norm (LMRN) that 341 

represents all the age-length combinations at which an individual can become mature (Stearns and 342 

Koella, 1986 ; Stearns, 1992) (Fig. 3B). In this framework, individuals become sexually mature when 343 

their growth trajectory in terms of body length intersects the LMRN. The mature state        is 0 for 344 

immature individuals and 1 for mature individuals.  345 
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 346 

Figure 3: Bioenergetic sub-model fluxes from the ingestion to the tissue growth, namely somatic and 347 

gonadic growth (A). The flux dependences to biotic (individual genotype, available prey and somatic 348 

mass) and abiotic (temperature and oxygen) variables are specified with pictograms. Four 349 

parameters are prone to evolve: the maximum mass-specific ingestion rate  max whose evolution 350 

impacts the ingested energy and downstream fluxes, the intercept    and the slope    of the linear 351 

maturation reaction norm (LMRN) (B) whose evolutions impact the maturation process, and the 352 

gonado-somatic index   whose evolution impacts the slope of the proportion of net energy   353 

allocated to gonadic growth after maturity (C) and thus impacts the growth-reproduction tradeoff. 354 

The LMRN (B) models all the age-length combinations at which an individual can become mature.  355 

 Mortality 2.1.8.356 

The mortality sub-model is described in the Supporting Information in Morell et al. (2023). To sum up 357 

the mortality process, a school   faces different sources of mortalities at each time step, namely 358 

predation mortality caused by other schools (emerging), starvation mortality (emerging), fishing 359 

mortality     , larval mortality       and diverse other natural mortalities      (i.e. senescence, 360 

diseases, and non-explicitly modeled predators). An additional foraging mortality is modeled in Ev-361 
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OSMOSE. This mortality describes the additional mortality due to foraging for prey. Each time step   362 

is subdivided into multiple sub-time steps    within which the different mortality sources impact a 363 

school   in a random order so as to simulate the simultaneous nature of these processes (see 364 

http://documentation.osmose-model.org/ for more details). Hereafter, we detail the mortality that 365 

represents the main selective pressures and/or important evolutionary tradeoffs in our framework.  366 

Organisms face a trade-off between foraging activity and mortality (Mangel, 2003) because more 367 

active foraging implies a higher exposure to predation, unfavorable conditions (e.g., triggering 368 

diseases) and/or increased oxidative stress. Assuming that variation in mass-specific maximum 369 

ingestion rate      results from variation in foraging activity, this trade-off is modeled by including a 370 

foraging mortality that increases with the mass-specific maximum ingestion rate      and thus when 371 

foraging activity is more intense. The instantaneous foraging mortality rate experienced by school   is 372 

defined as follows: 373 

                          ̅̅ ̅̅ ̅̅ ̅     , (4) 374 

with    the foraging mortality that would face an individual i if it had an         value equal to the 375 

initial mean genotypic value of the trait     
̅̅ ̅̅ ̅̅     in the population and    the exponential slope 376 

translating the change of foraging activity linked to a deviation of         from     
̅̅ ̅̅ ̅̅     into an 377 

multiplicative factor of the trade-off’s strength. Change in the number of individuals in school   due 378 

to foraging mortality during sub-time step    is then obtained as: 379 

                            . (5) 380 

Fishing mortality is a major evolutionary pressure on marine populations due to total mortality 381 

increase and length selectivity. In the model, fishing mortality can be discretized per length class, i.e., 382 
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a parameter of fishing mortality per species per length class can be used to realistically model the 383 

fishing process. The highest fishing mortality rate across length classes of a species is called     . 384 

Predation-induced mortality is an explicit stochastic length-dependent process that emerges from 385 

the spatial co-occurrence between predators and prey, and the predators’ ingestion process. The 386 

predation mortality applied to school   is simply the sum of the biomass losses due to the ingestion 387 

of all predator schools   with suitable body length, and present in the same grid cell        at sub-388 

time step   . From length-dependent interactions emerge a realistic selective predation pressure 389 

that decreases with fish length.  390 

Starvation mortality occurs when an individual cannot cover its energetic maintenance needs, i.e. 391 

when net energy is negative. If the energy reserve, provided by gonads, is not sufficient to cover the 392 

maintenance needs, the school undergoes an energetic deficit and faces starvation mortality 393 

proportionally to its energy deficit. In our model, starvation mortality increases in response to 394 

climate change due to rising temperature, deoxygenation or decrease in food availability. The 395 

increase of total mortality through increased starvation mortality is expected to accelerate life cycle 396 

similarly to what is expected under fishing pressure (Waples and Audzijonyte, 2016). 397 
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Table 1: Species-specific parameters associated to the evolutionary submodel and the selective mortalities in Ev-OSMOSE  398 

Symbol Description Units Equations Source 

Genome structure 

   Number of functional loci for trait   (    {            }) ‒ 1 Assumed 

     Number of possible allelic values at functional locus   (   
 {        }) for trait   (    {            }) in the initial 
population 

‒  Assumed 

   Number of neutral loci ‒  Assumed 

     Number of possible allelic identities at neutral locus   (   
 {        }) in the initial population 

‒  Assumed 

  
̅̅ ̅(0) Initial mean genotypic value of trait   (    {            }) in 

the population 
Trait unit 1 Estimated1 

(       ) or 
calibrated 
(    ) 

    
     Initial additive genetic variance of trait   (    {            }) in 

the population 
Trait unit  Calibrated or 

assumed 

Trait expression    

   ̅  Mean expression noise for trait   (    {            }) Trait unit  Randomly 
drawn 

    
  Expression noise variance for trait   (    {            }) Trait unit  Calibrated or 

assumed 

Mortality  

      Maximum instantaneous fishing mortality rate timestep-1  Calibrated 

   Instantaneous foraging mortality rate for an individual with an 
     value equal to the initial mean genotypic value of the trait in 
the population 

timestep-1 4 Calibrated 

   Exponential slope of the instantaneous foraging mortality cm-1 4 Calibrated 

1 from SMALK data (sex–maturity–age–length key) 399 
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Table 2: Variables and functions used in the Ev-OSMOSE model.  400 

Symbol Description Units Equations 

Entities: Fish schools 

Genetic determinism and expression 

State variables 

          Additive effect of allele 
       {   }                             at locus 
       {        }  for trait   (    {            }) of 
school   

Trait unit 1 

      Phenotypic expression noise for trait   
(    {            }) of school   

Trait unit 2 

        Identity of neutral allele 
       {   }                             at locus 
       {        }  of school   

‒  

Traits: Emerging individual variables  

      Genotypic value of trait   (    {            }) for 
school   

Trait unit 1,2 

     Phenotypic value of trait   (    {            }) for 
school   

Trait unit 2 

        Maximum mass-specific ingestion rate of school        

             

 

      Gonado-somatic index of school   ‒  

      Intercept of the maturation reaction norm of school       

      Slope of the maturation reaction norm of school           

Genetic inheritance: Emerging individual variables 

      Probability of school   to be one of the 2 parents of a 
given new school produced during the breeding season 
starting at time step    

‒ 3 

Ontogenic state 

State variables 

       Age of school  ’s individuals at time step      

       Somatic mass of school  ’s individuals at time step   g  

       Gonadic mass of school  ’s individuals at time step   g  

Emerging individual variables 

       Total length of school  ’s individuals at time step   cm  

       Maturity state of school  ’s individuals at time step   ‒  

      Maturation age of school  ’s individuals    

      Maturation somatic mass of school  ’s individuals g 
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      Maturation length of school  ’s individuals cm  
           Total fecundity of school   at first time step   of the 

breeding season 
# 3 

Abundance: State variable 

       Number of individuals in school   at time step   # 5 

Biomass:  Emerging variables   

       Biomass of school   at time step      

Spatial Location: State variable 

       Grid cell of school   at time step   ‒  

Taxonomic identity: State variable 

     Species to which school   belongs  ‒ 3 

Mortality: Emerging variables 

      Instantaneous foraging mortality rate of school              4,5 

      Instantaneous fishing mortality rate of school               

       Instantaneous larval mortality rate of school               

      Instantaneous diverse mortality rate of school               

Entities: Fish populations 

Abundance: Emerging population variables 

     Population census size at time step   #  

     Population biomass at time step   ton  

     Fishing catches at time step   ton  

Trait distribution: Emerging population variables 

  
̅̅ ̅    Population genotypic mean of trait   

(  {            }) at time step   
Trait unit  

 ̅    Population phenotypic mean of trait   
(  {            }) at time step   

Trait unit  

    
     Population additive genetic variance of trait   (  

{            }) at time step   
Trait unit  

  
     Population phenotypic variance of trait   (  

{            }) at time step   
Trait unit  

Spatial scales and units: grid cells 

Spatial coordinates: State variables 

     Longitude of grid cell     

     Latitude of grid cell     

Physico-chemical factors: State variables 

         Value of physico-chemical factor   of grid cell   at time 
step   

  

       Temperature of grid cell   at time step    K  
[  ]      Dissolved O2 saturation of grid cell   at time step    %  

Biomass of lower trophic levels: State variables 

            Biomass of trophic level       of grid cell   at time step     
*  is the scaling exponent of maximum ingestion rate and maintenance rate with body mass. 401 
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 The North Sea ecosystem application: Ev-OSMOSE-NS 2.2.402 

 Application presentation 2.2.1.403 

The Bioen-OSMOSE model, i.e without the evolutionary sub-model, was applied to the North Sea 404 

ecosystem and published in Morell et al. (2023) and summed up in Fig. 4. The model domain is delimited 405 

by the Norwegian Trench in the north east and includes the eastern English Channel. The grid is regular 406 

with cells of 0.25° x 0.5° (632 sea cells). The Ev-OSMOSE-NS, i.e. including the evolutionary sub-model, 407 

models 15 fish species (Fig. 4). The configuration represents a mean steady state of the ecosystem for 408 

the period 2010-2019. The full description of the parameterization of the 15 fish species is provided in 409 

Morell et al., (2023). Hereafter, we detail the parameterization of the new evolutionary sub-model and 410 

the calibration that was performed with this new sub-model.  411 

 412 
Figure 4: Representation of the Ev-OSMOSE-NS model applied to the North Sea and the Eastern Channel. 413 
Fifteen focus species are explicitly modeled. Outputs from the coupled POLCOMS-ERSEM model force Ev-414 
OSMOSE: temperature, oxygen, and the biomass of 8 LTL plankton and benthic groups. Two 415 
homogeneous benthic groups are added to model large benthic prey. 416 
 417 

 Parameterization of the evolutionary sub-model 2.2.2.418 
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For each species and each evolving trait, the required parameters in the evolutionary sub-model are: the 419 

initial mean genotypic value   
̅̅ ̅(0), the initial additive genetic variance     

    , the expression noise 420 

variance     
 , the number of functional loci    and the number of allelic values      for each of them. It 421 

necessitates in addition determining values for the foraging mortality coefficients    and   . In this first 422 

application of the Ev-OSMOSE modelling framework, neutral loci were not activated, but values for the 423 

number of neutral loci    and the number of allelic identities      for each of them are also required 424 

otherwise. 425 

The mean initial genotypic value   
̅̅ ̅(0) of a trait is by definition equal to the mean phenotypic value of 426 

the trait in the population as expression noise and allelic values are centered around 0. The initial mean 427 

genotypic/phenotypic values of the traits were thus fixed at the value estimated for the Bioen-OSMOSE-428 

NS configuration (Morell et al. 2023), except for the mean value of      that was calibrated de novo for 429 

Ev-OMOSE-NS (see next section “Model calibration”).  430 

The initial additive genetic variance     
     and the expression noise variance     

  were estimated 431 

according to the following procedure. Given additivity and independence of the genetic and micro-432 

environmental effects on the phenotypic value of a trait (equation 2), the phenotypic variance of a trait 433 

is the sum of additive genetic variance and expression noise variance   
         

         
 . Heritability 434 

is defined as the proportion of phenotypic variance due to additive genetic variance,   
      

    
 , and 435 

is typically around 0.2 for life-history traits of vertebrates and ectotherms (Mousseau and Roff, 1987). 436 

Given a certain trait phenotypic variance   
     (that can be estimated from field data see below), initial 437 

additive genetic variance and expression noise variance can then be estimated as     
       

    
  and 438 

    
       

     
 .  439 
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The phenotypic variances      

    ,    
     and   

     were estimated from variability in length-at-age 440 

and maturation for each species using SMALK data (see details in Supporting Information A). For the sake 441 

of simplicity, the phenotypic variance of the slope of the LMRN   ,    
    , was fixed to 0. This 442 

assumption implies that the slope of the LMRN    cannot evolve (if there is no phenotypic variance, 443 

there is no additive genetic variance), all the maturation variance is explained by the population 444 

phenotypic variance of   ,    
    , and that the mean maturation length variance is constant at any age 445 

(see Supporting Information A2). This is justified by the fact that (i) the first order term in empirically 446 

documented evolutionary changes in maturation reaction norm is explained by a change of its intercept 447 

   (e.g. Marty et al., (2014) for North Sea gadoids) so that evolution of the slope    can be neglected in 448 

first approximation and (ii) population variance in maturation age and length can be correctly 449 

approximated by variance in the LMRN intercept only. 450 

In the simulations, the evolution of two out of the three traits with non-zero phenotypic variance was 451 

activated, i.e., the genotypic variance was set different from 0, with a heritability of 0.2, for these traits: 452 

the gonado-somatic index    and the intercept of the LMRN   . The evolution of      was not activated 453 

because the available data were not suitable to estimate the trade-off between foraging mortality and 454 

ingestion and the resulting evolutionary trends would have been subject to caution. However, the choice 455 

was made to keep phenotypic variance of      included as it determines directly phenotypic variance in 456 

juvenile growth, which is one of the most variable traits in fish. In terms of sources of variance, this 457 

assumption means that all the phenotypic variance of      is explained by the expression noise only, 458 

     

         

 . The values of the expression noise variances and the additive genetic variances used for 459 

the simulations are given in Table 3. 460 

The number of functional loci    and alleles per locus      were fixed to 10 and 7, respectively, based on 461 

experience from previous monospecific eco-genetic models (Marty et al. 2015) and analogy with the 462 
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order of magnitude of the number of allelic values typically observed for neutral markers in fish such as 463 

microsatellites (e.g.Poulsen et al., 2006). These values also insured obtaining an initial normal 464 

distribution of the traits in the population.  465 

Table 3: Micro-environmental noise and genotypic variances of process traits in Ev-OSMOSE-NS. The sum 466 
of these variances is the total phenotypic variance of each trait.  467 

               

Species        

         

         
      

          
       

          
       

     

Herring (Clupea harengus) 0.09 0 0.02 4.85e-03 14.07 3.52 0 0 

Mackerel (Scomber 
scombrus) 

0.12 0 0.02 1.17e-02 9.24 2.31 0 0 

Sandeel (Ammodytes spp) 0.12 0 0.02 6.00e-03 2.33 0.58 0 0 

Sprat (Sprattus sprattus) 0.03 0 0.01 6.38e-03 3.68 0.92 0 0 

Norway pout (Trisopterus 
esmarkii) 

0.06 0 0.01 6.00e-03 30.33 7.58 0 0 

Plaice (Pleuronectes 
platessa) 

0.12 0 0.02 3.09e-03 45.87 11.47 0 0 

Sole (Solea solea) 0.28 0 0.06 1.07e-02 21.21 5.3 0 0 

Saithe (Pollachius virens) 0.08 0 0.02 3.66e-03 180.16 45.04 0 0 

Cod (Gadus morhua) 0.63 0 0.13 2.57e-03 283.56 70.89 0 0 

Haddock (Melanogrammus 
aeglefinus) 

0.36 0 0.07 6.00e-03 36.22 9.05 0 0 

Horse Mackerel (Trachurus 
trachurus) 

0.48 0 0.1 4.48e-03 6.26 1.57 0 0 

Whiting (Merlangius 
merlangus) 

0.35 0 0.07 7.31e-03 11.54 2.89 0 0 

Dab (Limanda limanda) 0.12 0 0.02 6.00e-03 12.77 3.19 0 0 

Grey gurnard (Eutrigla 
gurnardus) 

0.22 0 0.04 6.00e-03 12.24 3.06 0 0 

Hake (Merluccius 
merluccius) 

0.4 0 0.08 6.00e-03 108.41 27.1 0 0 

 468 

 Model calibration 2.2.3.469 

The Bioen-OSMOSE-NS configuration detailed in Morell et al., (2023) was calibrated to obtain estimates 470 

for unknown parameters, using maximum likelihood estimation based on an evolutionary optimization 471 

algorithm adapted to high-dimensional parameter space that is available in the calibraR R package 472 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.08.527669doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.08.527669
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

(Oliveros-Ramos and Shin, 2016). The algorithm explores the space of unknown parameters so as to 473 

maximize the likelihood obtained by comparing model outputs to observed data. 474 

The addition of a new evolutionary sub-model to the North Sea configuration modifies the simulation 475 

outputs of the model, notably by introducing interindividual variability through phenotypic variance, and 476 

thus the Ev-OSMOSE-NS model needed to be calibrated anew to re-estimate the same unknown 477 

parameters as in Bioen-OSMOSE-NS. The estimations of the parameters obtained from the calibration of 478 

Bioen-OSMOSE-NS were used as initial guesses to speed up the calibration process. The calibration of the 479 

Ev-OSMOSE-NS model is an ‘ecological fit’ to ecological data using a model version with phenotypic 480 

variability but without genotypic transmission. The data used to calibrate Ev-OSMOSE-NS are fisheries 481 

landings (ICES, 2019a), length-at-age from scientific surveys from ICES database (NS-IBTS-Q1, ICES 482 

DATRAS 2022) and estimated biomasses for assessed species (ICES, 2016, 2018a, 2018b, 2018c, 2019b). 483 

The calibration is performed for an average state of the ecosystem for the period 2010-2019 by using 484 

observed data collected over the period as target values (Supporting Information B). For each species, 485 

the estimated parameters are the larval mortality rate      , the mean maximum ingestion rate     , the 486 

maximum fishing mortality rate     , and the additional mortality rate     . A parameter per LTL group 487 

named coefficient of accessibility of fish is also estimated. The new estimation of these parameters for 488 

the Ev-OSMOSE-NS model is given in Table 4 for species parameters and Table 5 for LTL parameters. Due 489 

to limited data on the relationship between foraging behavior, predation mortality and growth rate, the 490 

coefficients    and    for the trade-off between      and foraging mortality were manually tuned and 491 

not calibrated through maximum likelihood estimation. They were fixed so that foraging mortality for 492 

each species was on average (i.e. when accounting for phenotypic variance in     ) equal to 0.05 and the 493 

slope    was manually tuned (and hence    adjusted to maintain the average at 0.05) to obtain 494 

evolutionary trends in      that were within reasonable ecological limits (results not shown obtained by 495 
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activating evolution for      contrary to the simulations presented here). Values of the two coefficients 496 

are also given in Table 4. 497 

The calibrated configuration is run for 100 years. The first 50 years is the spin-up period, a period during 498 

which the system stabilizes. The years from 50 to 70 constitute the reference stable state of the 499 

simulated system without evolution. The maturation and size-at-age outputs from this period are 500 

presented in the results. Mendelian transmission is activated on year 70. The transmission results 501 

presented hereafter are for the years after the Mendelian transmission activation. 28 replicates of the 502 

model are run with the same parameterization to account for Ev-OSMOSE-NS stochasticity. 503 

Table 4: Calibrated species parameters for the 15 fish species in Ev-OSMOSE-NS. 504 

 

Calibrated parameters   

 Mortality 

     LARVAL    FISHING      ADDITIONAL   
FORAGING 

   

FORAGING 

   

Species g.g-β y-1 y-1 y-1 y-1 cm-1 

Herring  13.96 7.12 0.59 0.14 0.054 0.95 

Mackerel  16.69 4.23 1.09 0.52 0.055 0.7 

Sandeel  9.3 2.06 0.95 0.45 0.052 0.95 

Sprat  12.25 1.00 0.20 0.16 0.057 1.1 

Norway pout 9.8 3.41 0.40 0.28 0.054 1.1 

Plaice  10.39 5.79 0.09 0.16 0.05 1.1 

Sole  9.7 7.42 0.30 0.27 0.04 1.1 

Saithe  14.43 2.66 0.58 0.49 0.054 0.95 

Cod  20.38 8.85 0.32 0.53 0.031 0.95 

Haddock  15.99 5.1 0.07 0.58 0.04 0.95 

Horse Mackerel  13.59 0.15 0.04 0.27 0.036 0.95 

Whiting  17.85 8.66 0.45 0.13 0.041 0.95 

Dab  8.74 4.07 0.17 0.21 0.052 0.95 

Grey gurnard  13.8 5.28 0.32 0.08 0.047 0.95 

Hake  16.88 7.63 0.35 0.28 0.039 0.95 

Table 5: Calibrated coefficients of accessibility of fish to low trophic level (LTL) groups in Ev-OSMOSE-NS.  505 
 

LTL groups 
Coefficient of 

accessibility to fish 

P
el

ag
ic

 

p
re

y 

Micro-phytoplankton 0.123 
Diatoms 0.042 
Hetero-trophic flagellates 0.349 
Micro-zooplankton 0.033 
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Meso-zooplankton 0.088 
B

en
th

ic
 

p
re

y 
Suspension feeders 0.002 
Deposit feeders 7.96E-05 
Meio benthos 0.001 
Large benthos 0.012 
Very large benthos 0.014 

 Results 3.506 

The NS configuration has already been calibrated and evaluated in a version without genotypic and 507 

phenotypic variance (Bioen-OSMOSE-NS, Morell et al., 2023). To avoid redundancy in this paper, the 508 

indicators used to evaluate the ecological validity of the configuration are in Supporting Information B. 509 

Since the model's originality lies in how it includes phenotypic and genotypic variance, indicators 510 

demonstrating the model's capacity to replicate realistic emergent variability received particular 511 

attention (see Section 3.1). Considering Bioen-OSMOSE-NS as the reference configuration, we explored 512 

for which aspects the new developments in Ev-OSMOSE improve the realism of the model predictions. In 513 

consequence, we present how the maturation and length-at-age outputs of Bioen-OSMOSE-NS (Morell 514 

et al., 2023) differ from those produced by Ev-OSMOSE-NS and whether Ev-OSMOSE better fits observed 515 

data. The ability of the model to account for evolutionary responses that correctly respond to selective 516 

pressures is illustrated by the transmission of genotypic values between parental pools and new born 517 

cohorts.  518 

 Emerging phenotypic variability 3.1.519 

 Maturation 3.1.1.520 

A comparison of Ev-OSMOSE-NS simulation outputs for maturity ogives with Bioen-OSMOSE-NS (Morell 521 

et al., 2023) outputs and observed data can indicate whether taking into account phenotypic variance in 522 

process traits improves model realism, especially as maturity ogives were not used as targets for 523 

calibration. The maturation process can be assessed with two types of Ev-OSMOSE outputs: (i) the mean 524 
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maturation age or length and (ii) the variance of the maturation age or length. The slopes of the related 525 

maturity ogives can be used to visually assess if the simulated variance better fits the observations. 526 

Compared to Bioen-OSMOSE-NS, Ev-OSMOSE-NS provides a better representation of mean age at 527 

maturity for haddock, hake, herring, plaice and sole (closer to observed mean ages at maturity), a similar 528 

one for saithe and whiting, but a worse one for cod, grey gurnard, Norway pout and sprat (vertical lines, 529 

Fig. 5A). Ev-OSMOSE-NS outputs reproduce better observed variance in mean age at maturity for all 530 

species except sprat and mackerel (curves, Fig. 5A). The simulated mackerel ages at maturity fail to 531 

reproduce a credible shape for the age-based maturity ogive. 532 

The evaluation of the model’s maturation outputs is complemented with the length-based maturity 533 

ogives (Fig. 5B). Those simulated with Ev-OSMOSE-NS show a much better visually fit to observed ones in 534 

terms of both mean and variance of lengths at maturity for all species except sprat. The fit to data is 535 

particularly good for haddock, herring and whiting length ogives. 536 
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 537 

Figure 5: Age- (A) and length-based (B) maturity ogives per species for observed (red), simulated without 538 
(blue) and simulated with phenotypic variance (yellow) individual data for species for which empirical 539 
maturation data are available. Results are shown for the species for which there is enough data to 540 
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estimate and plot the observed age and length maturity ogives. Age data are yearly grouped and length 541 
data are grouped by 2- centimeter classes. The vertical lines are the mean ages at maturation (A) 542 

computed as ∑   (           )
      
    with o(a) the proportion of mature individuals at age a. The 543 

mean length at maturation is not represented. Some observed length maturity ogives are not strictly 544 
increasing and do not allow a reliable estimation of the mean maturation length. 545 

 Length-at-age 3.1.2.546 

The evaluation of the model on the simulated lengths-at-ages is performed in a similar way to the 547 

maturation indicators: we first inspect the shape of the length-at-age curves (Fig. 6) and we also 548 

calculate the sum of squared errors (SSE) between the simulated and observed means and standard 549 

deviations of length at different ages (Fig. 7). We chose the SSE of the standard deviations as an indicator 550 

of the goodness of fit for length variability at age, because the SSE of the variances would overly 551 

highlight outliers. 552 

The length-at-age outputs from Ev-OSMOSE-NS correctly reproduce the shape of a von Bertalanffy-like 553 

growth curve and the length hierarchy between species. Fig. 6 and 7A highlight the degree of similarity in 554 

simulations of mean length-at-age between Bioen-OSMOSE-NS and Ev-OSMOSE-NS. Ev-OSMOSE 555 

produces better results in terms of mean for herring, haddock, and plaice and fits less well for mackerel, 556 

cod, Norway pout, saithe and whiting (Fig. 7A). A recurring trend is that the mean lengths-at-age 557 

simulated with Ev-OSMOSE fit poorly observed data for the older ages (cod, dab, grey gurnard, haddock, 558 

mackerel, sandeel, sole, sprat, whiting) while the Bioen-OSMOSE-NS results fit better at these ages.  559 

We highlight three main trends in the fit of our models to the observed variability of length-at-age (Fig. 6 560 

and 7B): (i) Ev-OSMOSE outputs generally fit better variance in observed data than Bioen-OSMOSE 561 

outputs for demersal species (in particular cod, haddock, saithe, whiting), except Norway pout, but (ii) 562 

not for pelagic species (herring, mackerel, sandeel, horse mackerel, sprat) and (iii) the fit is better at 563 

earlier ages than at older ages, i.e. the Ev-OSMOSE results tend to overestimate the variance of length at 564 

older ages.  565 
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Figure 6: Boxplot of length-at-age per species for observed (red), simulated without (blue) and simulated with phenotypic variance (yellow) individual data. 566 

Horizontal bars represent the first, second and third quartiles of the data. The whiskers’ extremities represent 1.5 times the interquartile space (the distance 567 

between the first and third quartile).568 
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 569 

Figure 7: Sum of squared errors between observed and simulated mean (A) and standard deviation 570 

(B) of length-at-age from Ev-OSMOSE-NS (yellow dots) and Bioen-OSMOSE-NS (blue dots) per 571 

species. The vertical dotted lines represent the mean observed age at maturation. The species are 572 

grouped per position in the water column: pelagic (blue frame), demersal (beige frame) and benthic 573 

(brown frame) species (see Fig. 4). 574 

 575 

 576 
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 Genotypic value transmission 3.2.577 

 578 

Figure 8: Transmission of genotypic values of the maturation reaction norm intercept    (A) and of 579 

the gonado-somatic index   (B) from parental pools to the new spawned cohort. The mean parental 580 

genotypic value weighted by individual fecundity and averaged over the entire reproductive season is 581 
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compared to the mean genotypic value of the new spawned cohort during the same reproductive 582 

season. The slope and the R² of the regression are expected to be close to 1 in case of faithful 583 

transmission of genotypic values. The noise around the regression slope is a consequence of genetic 584 

drift due to stochasticity in the sampling of parental alleles. The slope and the R² highlighted in 585 

yellow and green are respectively the faithful and the very good faithful simulated transmission of 586 

genotypic values (green slope: between 0.9 and 1.1; yellow slope: between 0.7 and 0.9 or between 587 

1.1 and 1.3; green R²: between 0.8 and 1; yellow R²: between 0.6 and 0.8).  588 

To simulate evolution, a part of the phenotypic variability needs to be transmitted from parents to 589 

offspring through mendelian inheritance. Phenotypic variability was described in part 3.1. Hereafter, 590 

we present results that validate the mendelian transmission process. The support of transmission of 591 

part of the phenotypic variability is the genotype and more precisely mean genotypic values are 592 

transmitted from parental pools to their offspring cohorts thanks to mendelian inheritance of alleles. 593 

Figure 8 illustrates the model capacity to transmit the parents’ genotypic value to their offspring for 594 

the LMRN intercept    (A) and for the gonado-somatic index   (B). This figure shows the linear 595 

regression between the fecundity-weighted mean parental genotypic value and the newborn 596 

genotypic value for each trait. A perfect transmission occurs when the regression slope is equal to 1 597 

and the regression adjustment (R²) is close to 1. Overall, for the two tested traits, we observe a good 598 

transmission of genotypic values. The regression slope is positive for all the species for both traits 599 

and between 0.5 and 1.2 for all species, except for herring for  . The transmission of    is very good 600 

for 4 species (mackerel, sandeel, saithe and grey gurnard). The worst cases for    are observed for 601 

sole, haddock and dab. The transmission of   is very good for 7 species (mackerel, sandeel, Norway 602 

pout, saithe, horse mackerel, grey gurnard and hake). The worst cases for   are observed for herring, 603 

cod, whiting, and dab. Imperfect transmission of genotypic values is probably due to genetic drift 604 

generated by the stochasticity in allele sampling, so-called stochastic sampling error, that could 605 

emerge from an insufficient diversity of genotypes in the population (i.e., an insufficient number of 606 

schools) or an insufficient number of new produced genotypes (i.e., insufficient number of new born 607 

schools). The number of newborn schools per reproductive event is a model parameter (Morell et al., 608 

2023) from which depends the total number of schools of a population. A simulation with 10 times 609 
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more added schools per reproduction event than in the current configuration is presented in 610 

Supporting Information C. The simulated transmission patterns in these additional simulations are 611 

less noisy and much closer to perfect transmission of genotypic values between parental populations 612 

and their offspring.  613 

 Discussion  4.614 

 Modeling phenotypic variance of life-history traits 4.1.615 

 Ev-OSMOSE-NS: A first step to model phenotypic variance 4.1.1.616 

In this study, by applying the evolutionary model Ev-OSMOSE to the North Sea, we obtained a 617 

convincing average state of the ecosystem (Supporting Information B, Fig. 5, 6 and 7) and a good 618 

overall representation of the variance of life-history traits. The representation of the phenotypic 619 

variance is particularly good for the maturation process and encouraging for the growth process (Fig. 620 

5, 6 and 7).  621 

The good representation of the length variance for juveniles to young adults for the majority of 622 

species is an indication of a good estimation of the phenotypic variance of the maximum ingestion 623 

rate      

     (Fig. 7). Similarly, the good simulated slope of the age- and especially the length-based 624 

maturity ogives indicates the reaction norm maturation variance    
     is correctly estimated (Fig. 625 

5). The overestimation of length variance at older ages indicates that (i) one or more aspects 626 

impacting these variances still need to be improved in the model, such as assumptions for variance 627 

parameter estimates or the reliability of some simulated mechanisms and/or (ii) the quality of length 628 

data at older ages is not good enough to be reliable.  629 

 Life history parameterization improvement 4.1.2.630 

The mismatch between simulated and observed variance for length at older ages indicates that the 631 

simulation of the adult part of life history still needs improvement. The large SSE between simulated 632 

and observed adult length-at-age variances is also partly due to the poor data quality at the oldest 633 
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ages due to a small number of samples. In addition, the data samples are collected on fish that 634 

survive until these ages: as fish experience selective pressures over their entire life (mainly fishing), 635 

we estimate the input variance of   using the surviving fish, i.e., only the surviving 636 

genotype/phenotype, which is possibly not representative of the original population diversity 637 

required as input.  638 

In other words, the poor data quality implies a poor estimate of the gonado-somatic ratio variance 639 

  
     that results in a poor fit between simulated and observed data at older ages, as the observed 640 

length-at-age variance is probably lower than it should be. Another source of poor estimation of 641 

  
     could come from the parameter estimation procedure where we assume that there is no co-642 

variation between   and     . This hypothesis could be tested using individual growth curves from 643 

otolith back-calculation (Green et al., 2009) or data from experimentally raised individuals. Lastly, an 644 

incorrect modeling of the foraging-mortality tradeoff would impact the mean length and its variance 645 

at adult stage even without evolution: as predation is length-dependent, if the foraging-mortality 646 

trade-off does not counterbalance realistically the benefits to grow faster and toward higher lengths, 647 

then the simulated phenotypes with a higher      survive better and are more abundant at older 648 

age than in the wild, overestimating the mean and variance of length, as emerging in simulation from 649 

Ev-OSMOSE-NS (Fig. 6, 7).  650 

 Prey, predators and fishing impact emerging individual 4.1.3.651 

properties  652 

Length-at-age depends on growth, maturation and reproductive parameters as well as size selective 653 

pressures such as fishing or predation. For example, an incorrect parameterization of fishing 654 

selectivity and a higher simulated exploitation rate than the actual one can lead to a smaller 655 

simulated than observed length at adult stage, a pattern that can become even more apparent in Ev-656 

OSMOSE-NS when more phenotypic variability is added in the population. This case is observed for 657 
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mackerel, sandeel and cod for example (Fig. 6). The simulated lengths-at-age show a decrease at 658 

older ages. This pattern emerges from the truncation of the fast-growing fish part of the population: 659 

the fish that survive to these ages are small and slow-growing. If this pattern is not observed in the 660 

data, it reflects overfishing in the simulation, either in terms of total fishing pressure or selectivity for 661 

larger lengths. The addition of growth process variability accentuates this pattern. 662 

 Limits from the model’s life history description 4.1.4.663 

The observed length-at-age variance is the sum of the variances due to additive genetic variability, 664 

the phenotypic expression noise and the phenotypic plasticity emerging from macro-environmental 665 

variations (Fig. 2). In our method to estimate process-based-trait variance, we assumed that the 666 

emerging variance was the result of additive genetic and phenotypic expression noise variances only. 667 

Thus, the model performs better on species for which phenotypic plasticity in response to macro-668 

environmental variations has few impacts on length-at-age variance such as cod, whiting, saithe or 669 

haddock for example (blue boxplots in Fig. 6 and variance SSE in Fig. 7). On the contrary, this implies 670 

that the simulated length-at-age variance is overestimated for species with a high phenotypic 671 

plasticity variance emerging from macro-environment variations in the wild. These species are mainly 672 

the small pelagic species (herring, sprat, and sandeel mainly) that feed on highly variable sources of 673 

food, mainly phyto- and zooplankton. Accounting for macro-environmental variations in variance 674 

parameter estimations would be a way to improve the simulated length-at-age variance.  675 

The assumption of linearity for the maturation reaction norm does not allow to correctly represent 676 

the maturation patterns for some species such as mackerel (Fig. 5A). By contrast to other species, the 677 

slope of the LMRN of mackerel is positive: fish that mature older are bigger. The species that 678 

empirically exhibit this maturation pattern also frequently exhibit a reaction norm that decreases at 679 

older ages (Heino et al., 2002; Marty et al., 2014) or a maximum length to mature (Nilsson-Örtman 680 

and Rowe, 2021). With a strictly increasing LMRN, some individuals never mature if their LMRN slope 681 

is steeper than their growth rate. This case was not observed in Bioen-OSMOSE-NS (i.e. without 682 
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phenotypic variance) but appears here in Ev-OSMOSE-NS with the modeling of phenotypic variance 683 

generating some individuals combining a steep positively sloped LMRN and slow growth.  684 

 Toward more evolving traits: technical improvement  4.1.5.685 

In this study, we presented the simulated effects of phenotypic variance on three process-based 686 

traits, with activation of evolution on two of these traits, i.e., the reproductive investment trait   and 687 

a maturation process trait    . Reproductive investment evolution (Wright et al., 2011; Yoneda and 688 

Wright, 2004) and maturation evolution (de Roos et al., 2006; Marty et al., 2014; Mollet et al., 2007) 689 

are the two main known consequences of fisheries-induced evolution. Reported length-at-age 690 

evolution in the literature (Enberg et al., 2012) can be the consequence of evolutionary changes in 691 

the reproductive investment, the maturation process or juvenile growth. The evolution of juvenile 692 

growth was not modeled here in agreement with the fact that it has been seldom documented and 693 

remains weak compared to other traits’ evolution (Enberg et al., 2012; Heino et al., 2015). Moreover, 694 

to correctly model juvenile growth evolution, which in our model translates into maximum mass-695 

specific ingestion rate      evolution, the account of a trade-off between the foraging intensity, that 696 

should be positively related to     , and its associated mortality    is necessary (Enberg et al., 2009) 697 

but is difficult to parameterize in the absence of in situ or experimental data. A way to parameterize 698 

this trade-off in future studies would be to estimate the    unknown parameters    and    by using 699 

time series of trait values in an hindcast interannual calibration. Including the evolution of 700 

     would greatly increase the realism of the model as evolutionary pressures impact multiple traits 701 

including growth, especially in the context of length-selective fishing.  702 

 Genotypic value transmission  4.2.703 

 A good transmission of genotypic values implies a correct 4.2.1.704 

evolutionary trend 705 
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The genotypic value transmission between parental populations and new cohorts is essential in any 706 

eco-evolutionary model such as Ev-OSMOSE because it ensures that the advantageous alleles will be 707 

transmitted from parents to offspring: the effect of selection can then propagate through 708 

generations.  709 

The transmission is validated from Figure 8 and Supplementary Information C, as we observed that 710 

the fecundity-weighted mean genotypic values of the parental pools are transferred to the newborn 711 

cohort. Furthermore, at the species level, a larger number of schools improves genotypic value 712 

transmission (see Supplementary Information C), decreasing the noise by reducing alleles’ stochastic 713 

sampling error and thus genetic drift (see 4.2.2).  714 

Obtaining positive slopes and high R² for regressions of newborn genotypic values on parental ones 715 

indicates faithful transmission for both traits and for all the species. Then, the resulting evolutionary 716 

trends are reliable in terms of response to selection: a change in a parental trait’s genotypic value 717 

due to selection during parent lifetime will be transmitted to offspring. The difference between a 718 

species with a faithful transmission and a species with a noisy one, as long as the slope is positive, 719 

will be in terms of the rate of the evolutionary response: the stochasticity in transmission will slow 720 

down the evolutionary response.  721 

 Genetic drift: a model sensitive to the number of super-4.2.2.722 

individuals (schools)?  723 

In the Ev-OSMOSE model, and more generally in the OSMOSE model, the biological individuals (fish) 724 

are grouped in super-individuals (groups of fish, called schools) to improve the calculation time. In 725 

the model, the number of schools added per reproductive event is empirically fixed to have at 726 

minimum a school of each age class per species per cell where the species is distributed. This 727 

minimum number of schools is a trade-off between reducing the stochasticity of the model and 728 

decreasing the computing needs (both in terms of required memory and calculation time). The use of 729 
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a genetic sub-model that explicitly describes the genetic diversity in the population implies another 730 

condition to determine the minimum number of schools, which is to limit stochasticity in allele 731 

sampling during reproductive events and then genetic drift. The genetic drift is related to the 732 

population size (in our case the number of schools per species) as it decreases with it (Masel, 2011) 733 

and more precisely with the associated effective population, defined as the size of an ideal 734 

population (random mating, equal sex ratio and no overlapping generations) that would have the 735 

same rate of genetic change than the actual population (Beissinger and McCullough, 2002). In Ev-736 

OSMOSE, the structure in school limits the maximum effective population size at the number of 737 

schools and not the total abundance of individuals, which could artificially increase genetic drift.  738 

These considerations are highlighted by comparing a simulation with a lower number of schools (Fig. 739 

8) that displays a stronger genetic drift than a simulation with 10 times more schools added per 740 

reproductive event (Supporting information C). The increase of the number of schools in Ev-OSMOSE 741 

is limited due to problems in terms of calculation time: 50 years of the configuration presented in 742 

this paper runs in 20 minutes whereas 50 years of the configuration presented in Supporting 743 

Information C where the only difference is the number of schools runs in 15 hours on the same 744 

computer. Knowing that the model needs to be run thousands of times to be calibrated, this 745 

difference in calculation time cannot be neglected. It would be necessary to conduct a sensitivity 746 

analysis to identify an acceptable compromise between the faithfulness of genotypic value 747 

transmission, genetic drift and calculation time.  748 

An interesting aspect is also the difference of genotypic value transmission between species. Some 749 

species exhibit an almost perfect transmission with a low number of schools (e.g., saithe, Fig. 8) 750 

whereas others are still very noisy in the simulation with a high number of schools (e.g. whiting, 751 

Supporting Information C). We hypothesize that differences at the interspecific level could arise from 752 

differences between species in terms of demography, selective pressures or genetic structure. 753 

Regarding the demography, the total size of the population, the total number of schools in the 754 
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population, the number of schools added per reproductive event and the total fecundity were not 755 

correlated with the faithfulness of the transmission (results not shown). The age structure of the 756 

mature part of the population could be an interesting feature to explore as overlapping reproductive 757 

generations partly explains differences between effective and real population sizes, and is the only 758 

source of differences between these included in Ev-OSMOSE, as otherwise mating is random and sex 759 

ratio is balanced. Regarding the genetic structure of the population, we observed than genotypic and 760 

phenotypic variances, heritability, allele frequencies and heterozygosity were not correlated with the 761 

faithfulness of transmission (results not shown). A next step would be to explore the relationship 762 

with effective population size and genetic grift. Lastly, as genetic drift impact is expected to be 763 

stronger for small populations or weak selection (Barton and Partridge, 2000), it would be interesting 764 

to explore the link between selective pressure intensity and genetic drift.  765 

 Conclusion 5.766 

This first application of the eco-evolutionary multi-species model Ev-OSMOSE to the North Sea opens 767 

the field of eco-evolutionary studies to marine ecosystems models. This study underlines the 768 

parameterization feasibility in spite of the high data quality requirement to parameterize the 769 

phenotypic and genotypic variances of life-history traits. Ev-OSMOSE-NS is the first configuration to 770 

account for genotypic and phenotypic variances of several interacting species and succeeds to 771 

improve the simulated variances of life-history traits. It is an important step toward more realism 772 

notably in representing length-at-age distribution and the maturation process.  773 

Ev-OSMOSE-NS is also, to our knowledge, the first multi-species model applied to a marine 774 

ecosystem that accounts for mendelian inheritance of traits from parents to their offspring for all the 775 

species of a food web simultaneously, thus allowing to account for the micro-evolution of exploited 776 

species in response to selective pressures such as fishing and climate change together with their co-777 

evolution due to trophic interactions.  778 
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A next step is to use the Ev-OSMOSE model under climate change or fishing scenarios. We believe 779 

that the account of eco-evolutionary dynamics will improve future projections of marine biodiversity, 780 

at the interspecific and intraspecific levels, and fulfill a gap of knowledge on the evolution of 781 

interacting species in communities under multiple natural and anthropogenic selective pressures.  782 
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The Ev-OSMOSE-NS configuration and its associated version of the Ev-OSMOSE model executable will 807 

be deposited on Zenodo. Model code will be available on Github. The scripts developed to estimate 808 

Bioen-OSMOSE-NS parameters are available on Github. 809 
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 904 

 Supporting Information 7.905 

Supporting Information A -Estimation procedure for the 906 

coefficient of variations of the traits under selection 907 

A.1. Estimation of phenotypic variance of the juvenile growth 908 

coefficient c and the gonado-somatic index r 909 

The growth in length of an individual   can be described as 910 
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Applying the Delta method to the growth equation (2) and neglecting second order terms in the 917 

Taylor expansion, we obtain  918 
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for any age      where   
  and      denote variance of   and covariance of   and  , respectively 924 

Under the assumption of negligible covariances between            we obtain further 925 
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Denoting the age-dependent maturity ogive     , the maturation probability at age is obtained as  928 
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approximation of   
  from equation (4) 935 
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Equations (3a) and (6) allow estimating   
  and   

  from length-at-age data for fully immature 939 

individuals, i.e., for any age   so that        for the former, and for fully mature individuals, i.e., 940 

for any age   so that        for the latter. 941 
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One way to combine these equations for an estimation across all ages is to look for the values of   
  942 

and   
  minimizing the sum of squared differences between   

    , the variance of transformed 943 

length at age, and the right handside of equations (3a) and (4) respectively weighted by the 944 

probability of being immature (      ) and being mature     : 945 
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where  ̅,   ̅̅ ̅̅ , and  ̅ are the mean parameter values that can were estimated from the input 955 

parameter estimation procedure. 956 

A.2 Estimation of phenotypic variance of the linear probabilistic 957 

maturation reaction norm parameters 958 

The maturation probability of an individual   of age   and length   conditional on being alive and still 959 

immature can be described by a Heaviside step function 960 
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where         is the individual’s maturation length at age  . Equation (8) thus describes an 962 

individual’s maturation reaction norm. Phenotypic variation in maturation length across individuals 963 

aged   is described by the probability density function        with mean   ̅    and standard 964 

deviation    
   . The population-level PMRN        is then obtained as 965 

       ∫                 
  

  
 ∫          

 

  
 (9) 966 

which is the cumulative distribution function of maturation lengths at age     967 

The derivative of the population-level PMRN according to length allows thus to empirically estimate 968 

the probability density function of maturation length 969 

       

  
       (10) 970 

The mean and variance of maturation length at any age   can thus be estimated from the empirical 971 

PMRN  ̂      as 972 

 ̅̂
     ∫  

  ̂     

  
  

  

  
 (11a) 973 

and 974 

 ̂  

     ∫      ̅̅̅       ̂     

  
  

  

  
 (11b) 975 

Under the assumption of a linear maturation reaction norm with a fix envelop, the maturation length 976 

of an individual   is described at any age   by 977 

   

          

   978 

A.3. Estimation of covariance between the juvenile growth coefficient c 979 

and age at maturation am 980 

To compute the covariance between age a maturation  m and growth potential  , we need to 981 

estimate the joint probability density of these two random variables that we will denote as        . 982 

Under the assumptions of our model, i.e. that survival only depends on length, the number of 983 

newly maturing individuals between age   and     and between transformed length           984 

and      is given by 985 
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                    (12) 986 

where         is the number of immature individuals aged   with transformed length  , 987 

       is survival from age   to     and transformed length   to      (which results from the 988 

combination of natural and fishing mortality) and        is the prospective version of the PMRN.  989 

As immature growth in transformed length   is linear with age according to   
      

        , all 990 

dependencies on   can be turned into dependencies on   by a simple change of variable 991 

  
      

     

 

 
 (13) 992 

so that the number of newly maturing individuals between age   and     for a growth 993 

potential   is given by  994 

                    (14) 995 

If the age and length distribution of sampled individuals    is representative of that of the 996 

population   , the joint probability distribution of maturation age and growth potential is then 997 

obtained as 998 

                             (15) 999 

with   ∑ ∫                    d 
  

  

    
    a normalization constant insuring that the joint 1000 

probability density function sums to 1.  1001 

An estimate of the covariance between age at maturation  m and growth potential   is then 1002 

obtained as 1003 

    m
 ∑ ∫   m   ̅      ̅        d 

  

  

    
     (16) 1004 

with  ̅  ∑   ∫          
  

  

    
     and  ̅  ∫  ∑            

      
  

  
 1005 

Supporting Information B – Ecological validation of Ev-OSMOSE-1006 

NS: Simulated biomass and catches. 1007 
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 1008 

Figure S1: Fisheries catches (A) and biomasses (B), in thousand tons, per species for stock assessment 1009 
estimates and simulated data averaged over 28 replicates (boxplots). The boxplots represent the 1010 
simulated data for 28 replicated simulations (stochastic model) for the catches and biomasses per 1011 
species, with the first, second and third quartiles represented horizontally in each plot. The averaged 1012 
simulated are from year 50 to 70, before the evolution activated at the year 70. The gray bars show 1013 
the minimal and maximum values observed for catch and biomass estimates from stock assessment 1014 
for the 2010-2019 period. The species without gray bars for biomasses are not assessed in the area. 1015 
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 1016 

Figure S2: Simulated time series of biomasses. Data averaged over 28 replicates (black line) and 1017 
replicates variability due to stochasticity (grey area). The configuration is considered stable between 1018 
year 50 and 70, except for cod and sole. The genotype transmission is activated after year 70.  1019 

  1020 
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Supporting Information C – Genotype transmission validation  1021 

1022 
Figure S2: Transmission of genotypic value of the maturation reaction norm origin m0 (A) and of the 1023 
gonado-somatic index r (B) from parent to the new spawned cohort in a simulation where the 1024 
number of schools created per reproductive event is 10 times higher than in the configuration 1025 
presented in the main text. The mean parent genotypic value weighted by individual fecundity 1026 
average over the entire reproductive season time step is compared to the mean genotypic value of 1027 
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the new spawned cohort during the same reproductive season. The slope and the regression 1028 
adjustment are expected to be close to 1. The noise around the regression slope is a consequence of 1029 
drift due random parental allele selection and random mating. As in figure 8, The slope and the R² 1030 
highlighted in yellow and green are respectively the good and the very good fit of simulated data to 1031 
expected pattern (green slope: between 0.9 and 1.1; yellow slope: between 0.7 and 0.9 or between 1032 
1.1 and 1.3; green R²: between 0.8 and 1; yellow R²: between 0.6 and 0.8). 1033 
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