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Abstract : 

Among marine primary producers, macroalgae support complex and productive coastal food webs, but 
coastal primary production relies on terrigenous inputs and remineralized organic matter which both vary 
seasonally. An approach combining stable isotope and biochemical analyses enables a better 
characterization of macroalgae specificities and highlights environmental influences on their chemical 
signature. This study compared the isotopic signature and biochemical composition of 22 Mediterranean 
macroalgae belonging to Rhodophyta (red algae), Phaeophyceae (brown algae) and Chlorophyta (green 
algae) between March and November 2010 to capture the differences in species chemical signatures 
potentially driven by metabolic traits or environmental drivers. Carbon stable isotope values were 
evidenced as a good proxy of specific carbon metabolism: low values observed in red algae could be 
related to the reported absence of carbon concentrating mechanisms (CCMs) in this group while higher 
values were driven by strong CCM activity in green algae. Biochemical patterns also differed between 
groups: soluble carbohydrates were a major component for red algae, while lipids and proteins dominated 
in brown algae, and insoluble carbohydrate concentrations were high in green algae. Variation within 
species across two collection times could be related to environmental changes and algal metabolism. 
δ15N values confirm the efficiency of this parameter as a proxy of the impact of human influence in the 
Bay of Marseille.  

Highlights 

► Isotopic and biochemical content was measured in 22 Mediterranean macroalgae. ► Carbon
descriptors are related to the metabolism of the specific macroalgal group. ► Seasonal variation of 
descriptors correlates with environmental variability.
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Introduction 

Vegetated coastal habitats that encompass seagrass and seaweed ecosystems fix 

annually ~10% of the carbon used by marine ecosystems (Duarte, 2017). They are important 

contributors to the organic matter pool that supports highly productive and diversified 

coastal ecosystems (Leclerc et al., 2013; Udy et al., 2019). Among benthic primary producers, 

macroalgae are recognized for their fast growth rate compared to seagrasses, and their 

capacity to quickly store carbon in tissue and transfer it to higher trophic levels, sometimes 

as detritus (Cresson et al., 2016; Krumhansl & Scheibling, 2012; Le Bourg et al., 2022; Leclerc 

et al., 2013; Remy et al., 2021). Macroalgae enter coastal food webs via three pathways: 

through direct grazing by herbivores, as particulate organic matter (POM) when the thallus is 

eroded or senescent, and as dissolved organic matter (DOM) released from the thallus due 

to microbial activity and leaching (Ramshaw et al., 2017). 

In the Western Mediterranean, the transfer of macroalgal primary production 

through grazing is of minor importance. Few invertebrate species such as the urchin 

Paracentrotus lividus graze directly on benthic macrophytes. The salema Sarpa salpa is the 

only native herbivorous fish species in the Western Mediterranean (Verlaque, 1990) and 

other species (e.g. such as the sparids Diplodus spp. or Spondyliosoma cantharus) may also 

consume algae but these species consume macroalgae in limited quantities, or only at some 

life history stages (Box et al., 2009; Cresson, Ruitton, Ourgaud, et al., 2014; Ruitton et al., 

2000; Sala & Boudouresque, 1997; Verlaque, 1990). Therefore, organic matter fluxes 

entering the food web mostly derive from the detrital pathway (Palacín et al., 1998; Bulleri 

et al., 1999, 2000; Benedetti-Cecchi et al., 2000; Hereu, 2006). Filter feeders (Cresson et al., 

2016) and detritivorous invertebrates such as holothurians are indeed able to use 

macroalgal detritus (Boncagni et al., 2019). Nonetheless, the increased importance of 

grazing is one of the expected effects of the arrival of new invasive species such as the rabbit 

fish Siganus luridus (Bariche, 2006). 

Understanding the nature, intensity and drivers of the interactions between 

herbivores, detritivores and benthic primary producers is thus crucial to accurately depict 

the functioning of food webs, and has consequently been investigated for decades 

(Clements et al., 2009; Crossman et al., 2001; Paine & Vadas, 1969; Poore et al., 2012; Prado 
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& Heck Jr., 2011). The use of C and N stable isotopes has proved very useful to track the 

integration of benthic primary production in marine food webs. Isotopic ratios of macroalgae 

differ from those of phytoplanktonic and terrestrial production entering marine food webs. 

The biochemical composition of primary producers is a powerful tool to understand 

herbivore feedings choices as macroalgal composition drives herbivory selectivity (Boyer et 

al., 2004; Crossman et al., 2001; Dromard et al., 2015; Verlaque, 1990). Protein content is, 

for instance, recognized as a major factor driving food selection (Barile et al., 1999 and 

references therein; Jacquin et al., 2006; Schaal et al., 2010), as the diet of detritivores and 

herbivores is usually based on nitrogen-poor items. Increased inputs of nitrogen strongly 

affect growth rate and reproductive success (Bowen et al., 1995; Bracken et al., 2012; 

Crossman et al., 2001; Grémare et al., 1997; Prado et al., 2010). Other compounds, such as 

carbohydrates or lipids, are also useful proxies to understand the feeding choices of 

consumers. Carbohydrates can occur within two groups: soluble carbohydrates can be easily 

assimilated by consumers (Harmelin-Vivien et al., 1992), while the complex chemical 

structure of insoluble carbohydrates makes them refractory and of low nutritional interest 

for the vast majority of consumers (Crossman et al., 2001; Panagiotopoulos & Semperé, 

2005). The high amount of energy carried by lipids also explains why lipid-rich dietary items 

are of high interest for consumers (Sargent et al., 2002).  

The isotopic ratios and biochemical composition of benthic primary producers are 

influenced by differences in metabolism (mainly carbon) as well as environmental conditions 

under the influence of seasonality and climate change (Ito & Hori, 1989). The variability of 

carbon isotopes is tightly linked to the carbon source used for primary production (CO2 or 

HCO3
-), the nature of the RubisCO and seasonal variations of temperature or light intensity 

affecting physiological processes (Boller et al., 2015; Grice et al., 1996; Iniguez et al., 2020). 

Nitrogen isotopes are good indicators of nitrogen enrichment and source (Cole et al., 2004; 

Viana & Bode, 2013). Similarly, the composition of pigments and fatty acids in macroalgae 

varies considerably between seasons and taxonomic groups (Schmid et al., 2017). Proteins 

and carbohydrates variations are often correlated with changes in temperature, salinity or 

pH (Mohy El-Din, 2019). This strong link between isotopic or biochemical indicators and 

environmental fluctuations can sometimes preclude the understanding of trophic 

relationships, especially in dynamic systems. Thus, having a species-specific description of 

primary producer isotopic and biochemical signatures, including some seasonal variability is 
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a priority required to better assess ecosystem functioning and organic matter transfer in 

food webs, notably in a context of major ecosystem changes in the Western Mediterranean 

(Lejeusne et al., 2010).  

In the Bay of Marseille, 400 artificial reefs were deployed between 2007 and 2008 at 

depths ranging 15 to 30 m (Charbonnel et al., 2011). A major monitoring and research 

program followed this deployment. All aspects of artificial reef functioning have been 

monitored since including potential alteration of the integrity of the nearby Posidonia 

oceanica meadow (Astruch et al., 2015), the settlement and trophic functioning of the 

benthic invertebrate community (Cresson et al., 2016; Rouanet et al., 2015) and the fish 

assemblages (Cresson, Ruitton, & Harmelin-Vivien, 2014; Cresson, Le Direach, et al., 2019; Le 

Diréach et al., 2013, 2015). As macroalgal species quickly colonized the artificial reefs, this 

deployment was a perfect opportunity to investigate the isotopic and biochemical diversity 

of Mediterranean benthic primary producers. The aim of this study was thus to characterize 

the isotopic and biochemical fingerprints of various macroalgal groups, and study the 

relative roles of taxonomy, metabolism and environment as drivers of isotopic and 

biochemical variability. We hypothesized that physiology and metabolism are major drivers 

of carbon-related isotopic and biochemical descriptors, while seasonal variability of the 

environmental parameters would cause the variations of nitrogen-derived descriptors. We 

also consider this work as a potential baseline for future studies where stable isotopes in 

invertebrates or fish consumers will be used to determine the future of algal primary 

production  

Material and methods 

Sampling was performed in March, June, September and November 2010 to assess 

intra-annual variability in the isotopic ratios and biochemical content of macroalgae. Each 

month was considered as representative of a season (March: Spring, June: Summer, 

September: Autumn and November: Winter). All observed  macroalgal species on artificial 

reefs where hand-picked by divers following an identical protocol for each sampling. 

Sampling occurred on two 'metal basket' type large artificial reefs (187 m3, 6 m high) 

considered in other studies (e. g. Cresson, Ruitton, Ourgaud, et al., 2014) and deployed at 

similar depths (~30 m). In the laboratory, samples were sorted, cleaned of epibionts, and 
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identified to genus or species. Samples were then stored frozen (-20°C), freeze-dried and 

ground with a mechanical grinder before isotopic and biochemical analyses. 

Isotopic analyses were based on small aliquots (~ 1 mg) of powder placed in tin 

capsules. Isotopic ratios were measured with a continuous flow mass spectrometer (Delta V 

Advantage, Thermo Scientific) coupled with an elemental analyser (Flash EA1112, Thermo 

Scientific). Ratios are expressed following the classical notation, δX where: 

 𝛿𝑋 = (
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) × 103, where X is 13C or 15N respectively, and R the isotopic 

ratio 13C/12C or15N/14N respectively in the sample and the standard (Vienna Pee-Dee 

Belemnite for C and atmospheric N2 for N). Measurement accuracy was checked by repeated 

measurement of an acetanilide standard. Overall deviation was lower than 0.1‰ for both C 

and N. Carbon and nitrogen percentages (%C and %N hereafter) were measured with the 

elemental analyser and used to calculate the C:N ratio. 

Carbohydrate measurements were based on the phenol-sulfuric acid method (PSA, 

Dubois et al., 1956). The resulting solution absorbs at 490 nm (Panagiotopoulos & Semperé, 

2005). Soluble carbohydrates were extracted from the algal powder with distilled water 

(100°C, 20 minutes) prior to analysis, while insoluble carbohydrate concentration was 

measured from the remaining powder. Lipid concentrations were determined following Bligh 

& Dyer (1959) and were expressed as tripalmitic acid equivalent. Protein content was 

determined with the Lowry et al. (1951) method, considered as the best suited for marine 

macroalgae (Barbarino & Lourenço, 2005). Biochemical measurements were triplicated in 

most cases, when the amount of ground matter was sufficient. Finally, inorganic content was 

determined by measuring the ash weight, after burning the powder at 500°C for 5 h.  

Macroalgal species sampled varied from one month to another because of the 

heterogeneity in algal assemblages between months. In addition, because the sampling was 

restricted to one depth for the sake of homogeneity, the amount of macroalgae collected 

per species was not always sufficient to perform all analyses. In such cases, the amount of 

algal powder available was allocated to isotopic analyses, as less material is required for this 

analysis than for the determination of biochemical content. Similarly, the quantity of sample 

was not sufficient to replicate ash content characterization, which was measured once for 

each species each month. Heterogeneity in sampling resolution (i.e. the fact that phyla do 

not comprise the same species at each season) is summarized in Table 1.  
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The data treatment process was designed to take this heterogeneity into account. 

We first wanted to describe the major features of each macroalgal group (red, green and 

brown) per month, regardless of the species sampled , and to ensure that intragroup 

variability, both in isotopic and biochemical descriptors, was representative of the intrinsic 

group variability. To do so, mean isotopic and biochemical descriptors of each group (annual 

means) were compared between months. Then, species sharing similar average biochemical 

and isotopic features were grouped by hierarchical clustering, based on Euclidean distance 

and Ward criterion. Hierarchical clustering was selected, as this analysis does not require any 

a priori assumption regarding the number of clusters. Biochemical concentrations of all 

species were then summarized with a Principal Component Analysis followed by a 

hierarchical clustering on the two first principal components.  

In a second step, variations between months were assessed only for the species that 

were collected at all months (i.e. Caulerpa cylindracea, Codium bursa, C. vermilara, Flabellia 

petiolata, Dictyopteris sp., Dictyota dichotoma, Halopteris sp. and Sphaeroccocus 

coronopifolius). Isotopic and biochemical descriptors were compared between months for 

each species. All comparisons were performed with ANOVAs followed by Tukey posthoc 

tests when significant. Homoscedasticity and normal distribution of residuals were reached 

with a priori log transformation of the data, and checked by visual examination of plots 

produced by the performance package (Lüdecke et al., 2021). As δ13C values followed a 

bimodal distribution when considering all species together, log transformation was 

ineffective to reach ANOVAs assumptions. Mean comparison was thus performed with a 

non-parametric Kruskall Wallis test, followed by Wilcoxon posthoc test.  

Correlations between biochemical and isotopic descriptors were checked with two-

sided Spearman correlation tests, and considered significant if ||>0.5 and p value < 0.001. 

Correlations were calculated between average biochemical concentrations and isotopic 

ratios calculated for replicated analyses of the same sample. This analysis was aimed at 

identifying whether variability in isotopic ratios can be used as a proxy of biochemical 

variability.  

All analyses were performed using R software version 4.0.2 (R Core Team, 2020) and 

packages car, cluster, FactoMineR, mass, rstatix and multcomp (Hothorn et al., 2008; 

Kassambara, 2020; Lê et al., 2008; Venables & Ripley, 2002). Plots were produced with 

ggplot2 (Wickham, 2009) and ggcorplot (Kassambara & Kassambara, 2019) packages. 
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Table 1. Analysis undertaken for species collected at each season. (SI: Stable isotope, B: biochemical, A: ash weight).  

 Species March June September November 

Chlorophyta Bryopsis cupressina    SI  
Caulerpa cylindracea  SI B SI B SI B A SI B 
Codium bursa  SI B A SI B A SI B A SI B A 
Codium vermilara  SI B A SI B SI B A SI B A 
Flabellia petiolata  SI B A SI B A SI B A SI B A 

      

Phaeophyce
ae 

Cladostephus spongiosus    SI B A SI B A 

Ericaria zosteroides   SI   
 Dictyopteris polypodioides  SI B A SI SI B SI 

Dictyota sp. SI B A SI B A SI B A SI B A 
 Halopteris sp.  SI B A SI B A SI B A SI B A 

Padina pavonica *  SI B A SI B A  
 
 

Sporochnus pedunculatus   SI B A SI  
Taonia atomaria   SI B A   

 
 

Zanardinia typus   SI A   
     

Rhodophyta Asparagopsis armata  SI B A    

 Bonnemaisonia sp.   SI A   
 Bornetia secundiflora    SI  
 Dudresnaya verticillata   SI   
 Peyssonnelia sp.     
 Vertebrata subulifera  SI  SI B A SI B A 
 Sphaerococcus coronopifolius  SI B SI B SI B A SI B A 
 Spyridia filamentosa    SI B A  

* calcified species 
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Results 

Taxonomic variations of biochemical and isotopic features  

For all months combined, ash (i.e. inorganic content of the tissues) always represented 50% or 

more of the mass in the Chlorophyta, Ochrophyta and Rhodophyta groups. Among the 

biochemical compounds, insoluble carbohydrates were the most strongly represented class and 

represented ~9 to 20% of the mass of the tissues (Fig.1). Other classes each represented 

generally less than 10% of the total mass, with the exception of soluble carbohydrates in 

Rhodophyta (13.8%). 

The concentrations of biochemical compounds highlight some specificity for each group 

(Fig. 2). The Chlorophyta exhibited significantly higher insoluble carbohydrate values, 

intermediate concentrations in soluble carbohydrates, low lipid and protein content, and lower 

C:N ratios than the two other groups. Ash content was also slightly higher than for the two 

other groups. The Phaeophyceae had significantly higher lipid and protein content but lower 

concentrations in carbohydrates. The Rhodophyta had low lipid, intermediate protein and 

insoluble carbohydrate concentrations.  

When species were considered separately, there were inconsistencies in each group 

(Fig. S1). Based on the specific biochemical profile, no cluster grouped all species from the same 

group. Thus, there is a no group-specific biochemical profile (Fig. 3). Three of the five clusters 

were either monospecific (F. petiolata and S. coronopifolius) or group two species from the 

same group (Sporochnus sp. and T. atomaria). For instance, higher insoluble carbohydrate, 

protein and lipid concentrations, lower soluble carbohydrate concentration in Flabellia 

petiolata than other species from the same phylum resulted in a monospecific cluster for this 

species. The Sphaeroccocus coronopifolius monocluster was characterized by very high soluble 

carbohydrate content. Similarly, Taonia atomaria and Sporochnus sp. clustered away from 

other Phaeophyceae, due to their higher lipid and protein content. Phaeophyceae and 

Rhodophyta had similar C:N ratios, mostly ranging between 15 and 17 but with some outlier 

values, whether low (e.g. <10 for A. armata and D. verticillata) or high (>20). Average C:N ratios 

measured for P. pavonica (35.11 ± 15.53) and C. spongiosus (25.02 ± 2.73) were notably the 

highest of the dataset.  
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Finally, two clusters grouped species from at least two different groups: one included 

one Rhodophyta (P. subulifera) with five Phaeophyceae. The median position on the first axis 

for this cluster results from intermediate lipid and protein values, although contradictory 

patterns appear. For instance, P. subulifera mainly appeared in this group due to high protein 

content despite having higher soluble carbohydrate concentrations than S. filamentosa. The 

other cluster grouped two Rhodophyta (S. filamentosa and A. armata) and three Chlorophyta 

(Codium bursa, C. vermillara and Caulerpa cylindracea), in particular as these species had high 

ash content and relatively low protein concentrations. Chlorophyta were placed in an upper 

position within this cluster, because of their high insoluble carbohydrate concentrations. The 

position of Codium bursa in this cluster was also explained by its lower lipid and protein 

content, which resulted in a high C:N ratio (23.39 ± 5.69 ‰). 

Mean C and N isotopic ratios differed significantly between phyla (Kruskall Wallis 

²=33.46, pvalue=5.4 10-8; ANOVA F2,343 = 23.6 for δ15N, p value <0.001; Fig. 4). The Rhodophyta 

exhibited lower isotopic ratios for both δ13C (-26.66 ± 5.74 ‰) and δ15N (3.63 ± 0.58 ‰) than 

the two other groups, but the difference was less significant for nitrogen than carbon. As for 

biochemical concentrations, a wide range of values precluded definition of group-specific 

values. For example, δ13C values ranged between -31.80 ± 1.34 ‰ (F. petiolata) and -14.68 ± 

1.31 ‰ (C. bursa) for the Chlorophyta, -30.48 ± 2.50 ‰ (Sporochnus sp.) and -14.63 ± 1.43‰ 

(P. pavonica) for the Ochrophyta, and -32.82 ± 1.06‰ (D. verticillata) and -18.36 ± 0.62‰ 

(S. filamentosa) for the Rhodophyta. In contrast, the range of values was lower for nitrogen, 

with differences of ~1 to 2‰ between maximum and minimum average values (Tab. S2). This 

different behaviour between the two isotopes was a major driver of species clustering and 

explained the predominant effect of carbon in separating species. The five species with 

relatively lower δ13C values (D. verticilata, S. coronopifolius, F. petiolata, Bonemaisonia sp. and 

Sporochnus sp.) occurred in the same cluster, while C. bursa (δ13C = -14.68 ± 1.31 ‰) and 

P. pavonica (-14.63 ± 1.43 ‰), the two species with δ13C values higher than -15 ‰ were 

clustered in the same group. 

Biochemical content and isotopic ratios differences between months 

All macroalgae sampled in all months (n=8) exhibited major temporal variations, most of the 

time significant. Carbohydrate concentrations were lower in June and March than in September 

and November, while proteins and lipids exhibited an inverse pattern (Fig. 5). Isotopic ratios 
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were generally higher in September and lower in March for both carbon and nitrogen, but with 

differences among species and between compounds (Table S3). The only species with non-

variable isotopic ratios all year round was the green alga F. petiolata. 

 

Correlations between isotopic ratios and biochemical concentrations  

Strong correlations (|ρ|> 0.5) between isotopic and biochemical descriptors were observed 21 

times, most between δ13C or C:N ratios and biochemical descriptors (Fig. 6). Lipids were always 

strongly correlated with δ13C for all species pooled, and specifically for Chlorophyta and 

Rhodophyta. In contrast, correlations between δ15N and biochemical descriptors were observed 

for proteins only, but not for Rhodophyta. C:N was positively correlated with insoluble 

carbohydrates (i.e. the higher the C:N ratio, the higher the insoluble carbohydrate 

concentration) for all phyla but Chlorophyta. Nevertheless, C:N was also negatively correlated 

with protein content in this group only, suggesting that protein (major N compound) may be 

the major driver of C:N ratios for Chlorophyta. 

 

Discussion 

δ13C, a proxy of different carbon acquisition mechanisms 

Carbon stable isotopes are used as tracers of photosynthetic metabolism and carbon 

acquisition, and vary according to the RubisCo and carbon-concentrating mechanisms types 

(Boller et al., 2011, 2015; Iniguez et al., 2020). Results obtained during the present work, at 

species or group levels, appear largely consistent with those of previous studies which usually 

discriminate algae using bicarbonates and carbon concentration mechanisms (CCM) vs species 

relying on CO2
-diffusion only (Cornwall et al., 2017; Giordano et al., 2005; Kevekordes et al., 

2006; Korb et al., 1996; Maberly et al., 1992; Marconi et al., 2011; Raven et al., 2002, 2008). 

Mean δ13C values were notably higher for the Chlorophyta, intermediate for the Ochrophyta 

and lower for the Rhodophyta (Maberly et al., 1992; Marconi et al., 2011; Mercado et al., 

2009). Despite the finding that these groups use different forms of Rubisco, leading to 

differences in carbon fractioning (IB for Chlorophyta, ID for Ochrophyta and Rhodophyta), 

isotopic discrimination against 13C appears similar and cannot be used to explain differences 

between them (Raven & Hurd, 2012).  



 

  10 

Low δ13C values measured here for the Rhodophyta are consistent with values 

measured for this phylum in the Mediterranean (Bricout et al., 1990; Dauby, 1989; Lepoint et 

al., 2000; Pinnegar & Polunin, 2000; Raven et al., 1995) and in other regions (Schaal et al. 2010, 

Marconi et al. 2011). For these species living in deep environments, with limiting low 

luminosity, available carbon is not considered as a limiting factor (Hepburn et al., 2011). Deep 

species are known to rely more on CO2 diffusion than on carbon concentrating mechanisms 

(CCM)(Giordano et al., 2005). Under fixed environmental conditions (temperature, salinity and 

pressure), δ13C value of dissolved CO2 is lower than the value measured for HCO3
-
 (~10 ‰), 

likely explaining some variation in isotopic values between groups. In addition, membrane 

transport and biochemical reactions associated with CCM slightly  discriminate against 13C 

(Maberly et al., 1992; Raven et al., 1995, 2008; Raven & Hurd, 2012). Finally, experimental work 

has generally observed lower capacity for red algae to increase external pH, with some 

exceptions such as Palmaria palmata (Kübler & Raven, 1995; Maberly, 1990). In the cytoplasm, 

dehydration of HCO3
- generates OH- that is expulsed from the intracellular fluid. Intensity of 

external pH increase can thus be viewed as a proxy of HCO3
- use (Maberly, 1990; Marconi et al., 

2011). Lower pH increase and low δ13C values can be explained by the absence of CCM that 

precludes the use of HCO3
- by Rhodophyta, and by a passive entry of dissolved CO2. Some 

Rhodophyta species have nevertheless been shown to have some CCM such as Pyropia 

yezoensis (Zhang et al., 2020). The diversity of mechanisms and abilities may explain the 

diversity of isotopic ratios observed within this phylum (Giordano & Maberly, 1989; Marconi et 

al., 2011).  

Among the Chlorophyta, the low value observed for F. petiolata is also consistent with 

literature values, regardless of environment and sampling depth (Belloni et al., 2019; Dauby, 

1989; Lepoint et al., 2000; Mercado et al., 2009; Vizzini & Mazzola, 2006; Wangensteen et al., 

2011). This species, similar to others among the green algae, such as Udotea flabellum and 

Caulerpa spp., is able to reach such low values, justifying dedicated investigation of metabolic 

peculiarities (Reiskind & Bowes, 1991). Low values appear to result from a C4-like metabolism, 

with a first carboxylation step catalysed by the phospho-enol-pyruvate carboxykinase (PEPCK), 

to increase inorganic C supplies to Rubisco, and to limit photorespiration effects (Reiskind et al., 

1988). This could nonetheless appear in contradiction with the low δ13C values observed. A C4-

like photosynthetic mechanism can be considered as a CCM, and should lead to less negative 

δ13C values. Carbon fractionation associated with PEPCK activity is also dependent upon the 
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available substrate amount (Arnelle & O’Leary, 1992). Further studies are thus required to 

explain low δ13C values for this species (Raven & Hurd, 2012). 

In contrast, the Chlorophyta Codium bursa and the Ochrophyta Padina pavonica 

displayed high carbon isotopic values (> -15‰), as previously demonstrated in the literature 

(Azzuro et al., 2007; Bricout et al., 1990; Dauby, 1989; Lepoint et al., 2000; Mercado et al., 

2009; Wangensteen et al., 2011). High values measured for P. pavonica seem consistent with 

the calcified nature of the species and the importance of inorganic carbon in the tissue of this 

species. For C. bursa, the effect of its spherical shape on nutrient acquisition and 

photosynthetic activity likely explains the high value measured for this species. High δ13C values 

are classical for spherical Codium species: the highest δ13C values (-2.7‰) recorded for a 

macroalga was measured for C. pomoides, another spherical Codium species (Raven et al., 

2002). Two mutually non-exclusive hypotheses can explain this value. First, the rounded shape 

generates a thicker boundary layer around tissues, with lower hydrodynamism and lower 

nutrient exchanges and renewal. Consequently, the proportion of heavy carbon 13C could be 

higher in this layer. Similarly, lower hydrodynamics may prevent the removal of surface 

carbonic anhydrase, the effect of which was demonstrated to be significant in other Codium 

species to integrate isotopically enriched inorganic carbon (Raven & Hurd, 2012; Reiskind et al., 

1988). The second hypothesis is based on the slow growth of this species, potentially linked 

with carbon limitation and the storage of nutrients in the internal medium of C. bursa (Vidondo 

& Duarte, 1995). Carbon isotopic ratios tend to increase when nutrients are limited, as the 

remaining and only available substrate is isotopically enriched. This explanation is further 

supported by the low concentrations observed for all biochemical descriptors in this species.  

δ15N, proxy of environmental influences  

Relationships between δ15N and nitrogen inputs are harder to establish than the relationships 

between δ13C and inorganic carbon, especially as the isotopic fractionation associated with 

nitrogen uptake is less well documented (Marconi et al., 2011; Umezawa et al., 2007). The 

lower range of average values observed for nitrogen (~2 ‰) than for carbon (~18‰) and the 

similar average δ15N values (3 to 4‰) for all species is classical (Marconi et al., 2011), and may 

result from the use of similar nitrogen acquisition mechanisms by all species. Nitrogen isotopic 

ratios in primary producers are used as proxy of local influences, such as upwellings or human 

impact (Bode et al., 2006; Costanzo et al., 2005; Cresson, Boudouresque, et al., 2019; Riera et 
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al., 2000; Savage & Elmgren, 2004). Values measured in Marseille fall within the range of values 

observed at other Mediterranean sites with moderate human influence, in Spain or Sicily for 

example (Azzuro et al., 2007; Jennings et al., 1997; Wangensteen et al., 2011). Samples 

collected in pristine areas had lower δ15N values, for example in Corsica (Lepoint et al., 2000; 

Pinnegar & Polunin, 2000). Higher values were recorded at sites under high anthropic 

pressures, such as some coastal lagoons (Deudero et al., 2011; Dierking et al., 2012; Vizzini & 

Mazzola, 2003). In the Bay of Marseille, the Huveaune River, a small stream flowing into the sea 

only after heavy rain events, may be a source of isotopically enriched nitrogen, but previous 

results demonstrated a low influence of this river (Cresson et al., 2012, 2016). δ15N values 

measured for macroalgae here are thus consistent with these results. 

Differences in nitrogen isotopic ratios between months were detected for two 

Chlorophyta species, consistently with their higher nitrogen requirements and ability to uptake 

nutrients faster than species from other phyla. Nitrogen isotopic ratios can be used as tracers of 

human influence on primary producers, but may also inform on metabolism variation and 

nutrient limitation. When metabolic demands exceed nutrients availability, discrimination 

against 15N is no longer possible, leading to an increase of the algal δ15N ratio. For C. bursa, 

nutrients are limiting in spring and summer as the growth rate is at a maximum in this period 

(Vidondo & Duarte, 1995). High δ15N values can thus result from the use of all of the available 

inorganic N pool, regardless of the isotopic discrimination against 15N (Montoya, 2007). For 

C. cylindracea (considering all varieties of this species), variations of nitrogen isotopic ratios are 

reported in the literature, with δ15N values ranging between 1 and 8‰ (Azzuro et al., 2007; Box 

et al., 2009; Casu et al., 2008; Lapointe, Barile, Wynne, et al., 2005). Low values were also found 

in a previous study in the French Mediterranean (1.32 ± 0.11 ‰ for samples collected in Port 

Cros National Park in December 2018; P. Cresson, unpubl. results). Three explanations can be 

proposed for such a wide range of variation. Firstly, since C. cylindracea is an invasive species in 

the NW Mediterranean, it may have conserved its affinity for warm summer conditions from its 

SW Australian origin, increasing its growth rate and nitrogen demand in summer, precluding it 

from major isotopic discrimination (Gennaro et al., 2015; Klein & Verlaque, 2008; Raniello et al., 

2004; Ruitton et al., 2005; Verlaque et al., 2003). Secondly, this species also uses its rhizomes to 

uptake organic compounds from its environment, allowing this species to be partly 

heterotrophic (Chisholm et al., 1996; Larned, 1998). High δ15N values may thus result from an 

increased use of detritic nitrogen, particularly ammonium, from local sediment (average δ15N = 
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5.13 ± 0.90 ‰; Cresson et al., 2012) to supplement needs for growth. Finally, high δ15N can 

result from the ability of this species to better use human-derived N inputs (Lapointe et al. 

2005a, b). 

 

Biochemical concentrations, species-specific indicators of macroalgal metabolism and 

environmental inputs 

Biochemical analyses of macroalgae have rarely been applied at assemblage level, but rather 

focused on some species of nutritional interest, for both animal and human diet, notably due to 

their high protein or lipid content (Biancacci et al., 2022; Fleurence et al., 1999; Herbreteau et 

al., 1997; McDermid & Stuercke, 2003; Westermeier et al., 2012). Nevertheless, from an 

ecological point of view, the taxonomical and temporal characterization of biochemical 

composition is a powerful tool to understand the relative importance of metabolic and 

environmental effects. The biochemical content of macroalgae can also be used as a predictor 

of diet selection and of the effects of their consumption on the life-history traits of consumers 

(Dromard et al., 2017; Frantzis & Grémare, 1992; Jacquin et al., 2006; Murakami et al., 2011; 

Schaal et al., 2010).  

Biochemical compounds were dominated (more than 50%) by carbohydrates 

representing 12-34 % of the mass of the tissues, with a predominance of insoluble 

carbohydrates. These results are consistent with other studies which showed higher 

carbohydrate concentrations in green and red algae (McDermid & Stuercke, 2003). Insoluble 

carbohydrates, in spite of the high heterogeneity of this class of compounds, share a high 

chemical complexity, and are represented by molecules such as cellulose polymers. Actual 

measurements of the different groups of carbohydrates are rare (Dromard et al., 2017; Jacquin 

et al., 2006; McDermid & Stuercke, 2003; Shams El Din & El-Sherif, 2012), as most studies infer 

carbohydrate content from the quantification of dietary fibres, i.e. all indigestible compounds in 

vegetal cell walls (DeVries et al., 1999; Hipsley, 1953; Thebaudin et al., 1997). Fibre content is 

usually determined as the unreactive part remaining after enzymatic degradation steps 

involving amylase, proteases and amyloglucosidases, leading to the inclusion of all 

carbohydrates in this group (Dawczynski et al., 2007; Wong & Cheung, 2001). Regardless of the 

nature of the compounds actually included or not in the insoluble carbohydrate group, its 
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importance in algal tissue and its relatively low variability throughout the year is consistent with 

its structural role in cell walls. 

Proteins are of major interest, notably as most benthic consumers are living in N-limited 

environments. In contrast to our results, protein content is usually considered high in 

Rhodophyta, despite seasonal variability (Dawczynski et al., 2007 and references therein). The 

higher protein content measured in brown algae may result from the method used to 

determine protein content. Most studies carried out on red and brown algae (52%, Angell et al., 

2016) indirectly estimate protein content by multiplying N content by a factor 6.25, considered 

as the 'universal' ratio between total amino acids and nitrogen content (Angell et al., 2016). 

However, the universality of this factor has been questioned by direct measurements of non-

proteic nitrogen in different phyla, and by arguing that the use of this 'universal' factor can 

induce an underestimation of the proteic content by 70% (Angell et al., 2016; Lourenço et al., 

2002; Shuuluka et al., 2013). Hence, the higher protein content observed in red algae could 

result from a higher non-proteic N content, and thus an overestimation of the protein content 

when estimated from the N to protein conversion (Lourenço et al., 1998, 2002, 2004). This 

assumption is also supported by the results of consumers’ feeding choices. Brown algae 

support most of the grazing pressure globally (Poore et al., 2012) and are also the principal 

algae consumed by the urchin Paracentrotus lividus, one of the main benthic herbivores in the 

Mediterranean (Boudouresque & Verlaque, 2007).  

Spatiotemporal patterns provide evidence of an inverse relationship between 

concentrations of lipids and proteins (high concentrations in spring and summer, low in autumn 

and winter) and those of carbohydrates, that may explain the biochemical functioning of 

macroalgae and the decoupled synthesis of these two groups of compounds.  

Carbohydrate synthesis is classically observed in late spring and summer, simultaneously 

with high photosynthetic activity, driven by high irradiance and higher algal biomass (Marinho-

Soriano et al., 2006; Perfeto, 1998; Rosenberg & Ramus, 1982; Westermeier et al., 2012). 

Higher concentrations in autumn can also result from the storage of carbon fixed in excess 

during high photosynthetic activity in summer (Chapman & Craigie, 1978). Protein content is, 

however, mainly driven by the concentration of inorganic nitrogen in seawater (Durako & 

Dawes, 1980; Marinho-Soriano et al., 2006; Mouradi-Givernaud et al., 1993; Perfeto, 1998; 

Rosenberg & Ramus, 1982). High nutrient concentrations are usually recorded in spring in the 
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bay of Marseille and may underpin the pattern observed for algae (SOMLIT data, http://somlit-

db.epoc.u-bordeaux1.fr/bdd.php).  

Strong correlations observed between δ13C and most of the biochemical descriptors are 

consistent with a comparable functioning of both types of descriptors. While the correlation 

between isotopic and biochemical descriptors has received less interet with reference to 

primary producers, it has been commonly investigated for heterotrophs, as high lipid content 

can bias δ13C measurement (Kiljunen et al., 2006; Sardenne et al., 2015). Studies on terrestrial 

and freshwater producers have confirmed the low δ13C value for lipids, and thus explained the 

negative relationship between these two descriptors (Post et al., 2007; van Dongen et al., 

2002). Negative relationships between N isotopes and protein content is also consistent with 

previously observed low isotopic ratios for proteins (Kelly & Martínez del Rio, 2010; Perga & 

Grey, 2010; Podlesak & McWilliams, 2006), as a result of the low δ15N values in most amino 

acids (Näsholm, 1994; Werner & Schmidt, 2002).  

Finally, the carbohydrate group presents considerable heterogeneity. Carbohydrates as 

a whole are usually considered 13C-enriched (Duranceau et al., 1999; Teece & Fogel, 2007; van 

Dongen et al., 2002), somewhat consistently with the pattern observed for Chlorophyta. 

However, variations may appear between groups of this phylum, driven by the cellulose 

content in species (Marshall et al., 2007). A negative correlation between insoluble 

carbohydrate and δ13C might be consistent with a lower amount of cellulose. 

 

Even if some species diverged from the main pattern of their group, some general 

trends underpinned by physiological processes and environmental influence were supported in 

our study. This study confirmed the utility of combining stable isotopes and biochemical 

content of macroalgae to infer major metabolic mechanisms. Carbon isotopic ratios differ 

between phyla because of specific carbon acquisition physiologies (RubiscCO type or Carbon 

Concentration Mechanisms), while N-linked descriptors are likely more controlled by 

temperature and nutrient availability. The higher lipid and protein content observed for the 

Phaeophyceae is also consistent with the higher integration of brown algae in the diet of 

grazers and detritivores, both at regional and global scales, and of their potential use in 

aquaculture. In a context of major changes for the Mediterranean marine environment, this 

study also provides a baseline of biological and isotopic data that could be used as a reference 

in the future to address the effect of global change on food web structure.  

http://somlit-db.epoc.u-bordeaux1.fr/bdd.php
http://somlit-db.epoc.u-bordeaux1.fr/bdd.php
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Figures 

Fig.1: Average contribution of each biochemical class (SC: soluble carbohydrates, IC: insoluble 

carbohydrates) and of ash mass to the content in each group. The unexplained part (Not expl.) 

was calculated as the difference between 1 g and the sum of the mass of biochemical 

compound and ash content. Actual concentrations are provided in Table S1 

 

 

 

 

Fig. 2: Box plot of biochemical concentrations and C:N ratios for each group of algae, all months 

combined. Concentrations and C:N ratios were log-tranformed to comply with ANOVA 

assumptions. The horizontal line represents median values; boxes limit the first and third 

quartiles, and whiskers represent values higher or lower than mean ± 1.5 × interquartile ranges. 

Different letters represent significant differences between groups (p-value < 0.05). 

 

 

 



 

  38 

Fig. 3. First plan of the PCA analysis on average biochemical concentrations of macroalgae. 

Circles represent species clustered in the same group by cluster analysis on principal 

components. 

 

 

Fig. 4. isotopic ratios measured for the three macroalgal groups. The horizontal line represents median 

values; boxes limit the first and third quartiles, and whiskers extreme values, excluding outlier values 

(higher or lower than mean ± 1.5 × interquartile range). 
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Fig. 5. Intraspecific seasonal variations of biochemical content of the species. Significant 

differences between seasons for each species are illustrated with different letters, or by ns 

when non-significant. Order of the difference is alphabetical, with a representing the lower 

value. The different colours of the boxplot illustrate months (green: March; red: June; brown: 

September; blue: November). Raw data and test statistics are provided in Tab. S3. 
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Fig. 6: Correlations between isotopic (vertical axis) and biochemical descriptors (horizontal 
axis). SC: Soluble carbohydrates; IC: Insolubles carbohydrates. Values are Spearman’s ρ and p-
value of the correlation test. Colour of the squares illustrate the sign of the correlation (red: 
positive; blue: negative) and the stronger the colour the stronger the relationship. Significant 
correlations (p value <0.005) are highlighted with bold colour fonts. 
 
 

 
  



Electronic supplementary material 1 
Tab. S1: Average concentrations (mean ± SD, mg g-1) in biochemical compounds measured in the three groups.  2 

Group Soluble carbohydrates Insoluble carbohydrates Lipids Proteins Ash Not Explained 

Chlorophyta 74.53 ± 40.4 195.13 ± 98.24 22.33 ± 13.5 52.78 ± 35.75 556.27 ± 148.23 96.54 ± 74.04 

Phaeophycea  34.25 ± 19.64 86.23 ± 47.11 27.13 ± 14.52 85.79 ± 28.15 520.44 ± 46.9 237.16 ± 56.47 

Rhodophyta 136.36 ± 69.84 75.06 ± 31.9 19.14 ± 8.02 55.74 ± 33.01 495.89 ± 101.85 219.05 ± 91.69 

   3 



Tab. S2: Mean isotopic ratios, for Ochrophyta, Phaeophyceae, Rhodophyta and species levels (mean and standard deviations). HCA: clusters calculated by 4 

the hierarchical clustering analysis based on isotopic ratios. n: number of replicated analyses performed for each group/species  5 

 HCA δ13C sd δ15N sd n 

Chlorophyta  -21.20 6.82 4.30 0.80 114 

Bryopsis cupresina 3 -17.62 0.73 3.69 0.22 3 

Caulerpa cylindracea 3 -19.14 1.62 4.61 0.71 24 

Codium bursa 4 -14.68 1.31 4.44 1.13 33 

Codium vermillara 3 -19.43 2.05 4.28 0.38 24 

Flabellia petiolata 1 -31.80 1.34 3.99 0.57 30 

Phaeophyceae  -21.47 3.71 3.66 0.91 169 

Cladostephus spongiosus 3 -21.74 1.25 4.12 0.29 12 

Cystoseira zosteroides 2 -23.58 1.47 3.75 1.01 6 

Dictyopteris sp. 3 -20.91 3.11 3.58 0.91 33 

Dictyota spp. 3 -21.17 1.40 3.60 0.90 57 

Halopteris sp. 2 -24.41 1.09 3.38 0.47 24 

Padina pavonica 4 -14.63 1.43 4.76 0.56 18 

Sporochnus pedunculatus 1 -30.48 2.50 2.82 1.37 8 

Taonia atomaria 3 -21.69 1.58 3.25 0.44 9 

Zanardinia typus 3 -20.67 0.81 2.94 0.23 3 

Rhodophyta  -26.66 5.74 3.63 0.58 60 

Asparagopsis sp. 2 -25.61 0.05 2.68 0.09 3 

Bonnemaisonia sp. 1 -31.30 0.08 3.46 0.11 3 

Bornetia secundiflora 3 -21.63 0.03 3.90 0.09 3 

Dudresnaya verticillata 1 -32.82 1.06 4.04 0.83 3 

Polysiphonia subulifera 3 -21.00 2.13 3.31 0.48 21 

Sphaeroccocus coronopifolius 1 -32.05 0.97 3.95 0.49 24 

Spyridia filamentosa 3 -18.36 0.62 3.70 0.21 3 

 6 

  7 



Table S3. Seasonal variation of isotopic ratios for the species sampled at all seasons, and results of ANOVA and Tukey post-hoc tests 8 

  March June September November ANOVA F P value  Post hoc 

Caulerpa cylindracea δ13C (‰) -21.17 ± 0.84  -19.94 ± 1.96 -18.57 ± 0.88 -18.78 ± 1.81 F20,3 = 2.96  0.057 - 

Codium bursa -14.38 ± 0.43 -15.59 ± 1.10 -13.71 ± 1.20 -15.34 ± 1.06 F29,3 = 5.74 0.003 Jun=Nov<Mar<Sepa 

Codium vermillara -22.39 ± 0.28 -22.00 ± 0.23 -17.52 ± 1.30 -19.49 ± 0.74 F20,3 = 28.93 <10-3 Mar=Jun<Nov<Sep 

Flabellia petiolata -32.22 ± 2.13 -31.49 ± 1.23 -31.14 ± 0.65 -32.02 ± 0.25 F26,3 =0.97 0.42 - 

Dictyopteris polyploides -23.44 ±0.86 -18.06 ± 4.23 -20.65 ± 1.22 -22.90 ± 0.36 F29,3 =8.37 <10-3 Mar=Nov=Sep <Jun 

Dictyota spp. -22.63 ± 1.06 -20.12 ± 1.22 -21.13 ± 1.66 -21.40 ± 0.68 F53,3 =12.63 <10-3 Mar=Nov<Sep<Jun 

Halopteris sp. -24.80 ± 0.58 -23.60 ± 0.40  -23.59 ± 0.56 -25.63 ± 1.09 F20,3 =12.22 <10-3 Nov=Mar<Jun=Sep 

Sphaeroccocus coronopifolius -32.98 ± 0.56 -31.64 ± 0.20 -32.21 ± 0.66  -31.36 ± 1.40 F20,3 =4.97 0.009 Mara Sepab Junb Novb  

         

Caulerpa cylindracea δ15N (‰) 4.01± 0.05 5.22 ± 0.06 5.09 ± 0.53 4.13 ± 0.62 F20,3 = 7.92 0.001 Mar=Nov<Sep<Jun 

Codium bursa 4.85 ± 0.29 6.36 ± 0.18 4.10 ± 0.73 4.25 ± 1.22 F29,3 = 4.83 0.008 Sep=Nov=Mar<Jun 

Codium vermillara 4.41 ± 0.07 3.48 ± 0.09 4.52 ± 0.25 4.26 ± 0.20 F20,3 = 28.93 <10-3 Jun<Nov=Mar=Sep 

Flabellia petiolata 3.98 ± 0.51 4.06 ± 0.74 3.77 ± 0.21 4.09 ± 0.70 F26,3 =0.40 0.75 - 

Dictyopteris polyploides 3.42 ± 0.75 3.48 ± 1.10 4.13 ± 0.43 2.13 ± 0.17 F29,3 =6.07 0.002 Nov<Mar=Jun<Sep 

Dictyota spp. 4.15 ± 1.23 2.77 ± 0.36 3.81 ± 0.33 4.13 ± 0.83 F53,3 =13.05 <10-3 Jun<Sep=Nov=Mar 

Halopteris sp. 2.86 ± 0.32 3.17 ± 0.24 3.84 ± 0.20 3.63 ± 0.34 F20,3 =14.99 <10-3 Mar=Jun<Nov=Sep 

Sphaeroccocus coronopifolius 3.40 ± 0.19 4.50 ± 0.23 3.67 ± 0.19 4.21 ± 0.28 F20,3 =28.89 <10-3 Mar=Sep<Nov=Jun 
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Fig. S1: Specific variations of biochemical composition and C:N ratios. Horizontal line represents median values; boxes limit the 1st and 3rd quartiles, and 12 

whiskers extreme values, excluding outlier values (higher or lower than mean ± 1.5b × interquartile range). Significant differences between species within 13 

phyla are represented by different letters or number, with letter/number presented by increasing order of concentrations or of C:N values.  14 


