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Abstract

Tahitian pearls, artificially cultivated from the black-lipped pearl oyster1

Pinctada margaritifera, are renowned for their unique color and large2

size, making the pearl industry vital for the French Polynesian econ-3

omy. Understanding the mechanisms of pearl formation is essential for4

enabling quality and sustainable production. In this paper, we explore5

the process of pearl formation by studying pearl rotation. Here we6

show, using a deep convolutional neural network, a direct link between7

the rotation of the pearl during its formation in the oyster and its8

final shape. We propose a new method for non-invasive pearl moni-9

toring and a model for predicting the final shape of the pearl from10

rotation data with 81.9% accuracy. These novel resources provide a11

1
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fresh perspective to study and enhance our comprehension of the over-12

all mechanism of pearl formation, with potential long-term applications13

for improving pearl production and quality control in the industry.14

Keywords: Tahitian Pearls, Magnetic Fields, Rotation, Transfer Learning,
Deep Convolutional Neural Networks
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Introduction

The pearl industry is a vital sector in French Polynesia, representing a major15

economic pillar for the region. In 2021, the production of Tahitian pearls was16

estimated at around 10 million pearls per year, contributing to nearly 50%17

of French Polynesia’s exports [1]. This dynamic industry employs over 3,00018

people, primarily in the atolls of the Tuamotu and Gambier archipelagos and19

generates an estimated annual revenue of 4.75 billion XPF. Pearl farming is20

also crucial for the sustainable development of remote islands, promoting local21

economic growth while preserving the environment and marine resources.22

Understanding the process of Tahitian pearl formation is thus critical for23

achieving quality and sustainable pearl production in French Polynesia. By24

gaining insights into the biological, environmental, and cultural factors that25

influence pearl development, researchers can identify best practices for opti-26

mizing pearl quality while minimizing the ecological impact of pearl farming.27

Consequently, this knowledge can inform policies and management strategies28

aimed at promoting the long-term viability of the Tahitian pearl industry in29

French Polynesia.30

31

Oysters are bivalve mollusks widely distributed in marine and estuarine envi-32

ronments. They are commonly found in shallow coastal waters and are often33

farmed for their edible meat and their ability to produce pearls. One species34

of oyster that is particularly well-known for its ability to produce pearls is35

the black-lipped pearl oyster, Pinctada margaritifera (Linnaeus, 1758). This36

species is common in the coral reefs of the Indo-Pacific area [2], and is the37

main source of Tahitian pearls, also known as black pearls.38

39

Pearls are the only gemstones produced by living creatures [3]. Natural pearls40

are rare, so to stimulate nacre production, also known as mother-of-pearl [4],41

a foreign body can be intentionally introduced into an oyster [5]. Cultured42

pearls are created through a grafting process in which a small piece of mantle43

tissue from a donor oyster (the saibo), along with a nacre bead known as the44

nucleus, is inserted into the gonad of the recipient oyster. Upon insertion, the45

outer epithelial cells of the graft multiply and form a pearl sac around the46

nucleus. The pearl sac then begins to deposit layers of nacre onto the nucleus,47

marking the start of the pearl’s formation. It takes 12 to 18 months of cultiva-48

tion for the pearl to develop a thick enough layer of nacre to be sold [6]. The49

formation of the pearl is achieved by the superposition of nacre layers around50

the nucleus at a rate of 3 to 4 per day [7, 8]. The secreted nacre is primarily51

composed of calcium carbonate (CaCO3) crystals, known as aragonite, that52

are arranged in a brick-and-mortar structure, also called aragonite tablets.53

Tahitian pearls can exhibit a wide range of phenotypes, including variations54

in size, shape, color, and luster [9].55

56

In recent years, several studies have focused on understanding the factors and57

genes that contribute to the quality and characteristics of Tahitian pearls,58
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highlighting the environmental and genetic factors that can influence pearl59

quality [10, 11], as well as the Mendelian inheritance of rare flesh and shell60

colors in Pinctada margaritifera and how it controls the color of the pearls61

[12]. Among these studies, it has been found that the growth fronts of nacre62

on Tahitian pearls can be observed at the microscopic level and may take the63

form of spirals or targets [9]. The shape of these lines, similar to fingerprints,64

suggested that the pearl moves within the pearl sac. Cartwright et al. [9] then65

proposed a theory of pearl rotation based on the idea that forces during the66

deposit of aragonite tablets can cause pearl movement. It is believed that the67

orientation of aragonite layers on the surface gives momentum to the pearl68

during its growth, leading to movement, and that different rotational move-69

ments may occur, depending on the presence or absence of defects. Further70

verification of this theory and analysis of pearl rotation was still necessary to71

determine its potential effects on the final phenotype of the pearl.72

73

In 2015, evidence of pearl rotation in the pearl sac of Pinctada margaritifera74

was obtained using a magnet inserted in the nucleus of a grafted pearl oyster,75

and magnetic field sensors [13]. A hypothetical link between the rotation and76

the final shape of the pearl had been suggested, and the effects of temperature77

on rotation have also been studied with the same device [14], but the device78

used was not precise enough to allow reliable conclusions.79

80

Acknowledging the necessity for more accurate and reliable methods to inves-81

tigate pearl rotation and its relationship with the final shape of the pearl, we82

took advantage of the field of deep learning, specifically deep neural networks83

(DNNs). These networks have become the standard approach for various84

classification tasks, largely due to their exceptional performance in image85

recognition challenges. This success can be attributed to the availability of86

extensive, well-annotated datasets like the ImageNet dataset [15], as well87

as the use of transfer learning. Transfer learning enables the utilization of88

pre-trained neural network models to enhance performance on related tasks.89

In our study, we apply this technique to our data, evaluating the link between90

pearl rotation and its final shape.91

92

This paper presents an innovative, accurate and reliable device to study pearl93

rotation, as well as initial experiments and findings. Our study aims to better94

understand the rotation of Tahitian pearls during their formation and its95

relationship with the attributes of the pearl, especially its shape. We present96

the first rotation follow-up from graft to harvest, with continuous acquisitions97

for one year on multiple pearls (n = 52 oysters).98

99

Through transfer learning and deep convolutional neural networks, using the100

VGG-16 architecture [16], we establish a strong correlation between the rota-101

tion patterns of the pearl during its formation and its final shape. For all our102

pearls, we demonstrate an average rotation speed of 0.72 +/- 0.14 rad.h−1, and103
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we highlight that in every individual case, the absence of rotation during for-104

mation was associated with no aragonite deposition around the nucleus. This105

confirms the crucial role of rotation in aragonite formation, and consequently,106

in the creation of a Tahitian pearl. We thus provide a first rotation database107

for the pearl, as well as a model to predict the final shape of the pearl from108

new rotation data. This non-invasive method of rotational tracking allows for109

the monitoring of pearl grafting and development without sacrificing the pearl110

oysters. It has potential applications in a variety of studies, including those111

focused on understanding the factors that influence pearl quality, optimizing112

pearl production in the pearl industry, and studying the mechanisms of pearl113

formation. By tracking pearl rotation and other characteristics during devel-114

opment, we may be able to gain new insights into the complex process of pearl115

formation and identify new ways to improve pearl quality.116
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Material and Methods

In this section, we present our complete methodology for studying pearl rota-117

tion. The first part of our approach involves the creation of magnetized nuclei,118

which are essential for our experiments. In the second part, we introduce our119

data acquisition device that allows us to collect high-quality data. To ensure120

accurate results, we describe our calibration process in the third part. The121

fourth part details the different grafts that have been made for our exper-122

iments. In the fifth part, we describe the process of data acquisition and123

processing, with dedicated software that we have developed. The classification124

model used to predict the final shape of the pearl from its rotation data over125

time is detailed in the sixth part. Overall, our methodology provides a compre-126

hensive approach to studying pearl rotation and offers valuable insights into127

their behavior and demonstrates a direct link between the rotation patterns128

and the final shape of the pearl.129
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Preparation of the magnetized nucleus

To perform all our experiments, magnetized nuclei were made manually in the130

following steps:131

1. Spherical nacre beads (2.1 bu, Imai Seikaku Co. Ltd, Sumoto, Japan, made132

from the shells of the freshwater mussel Amblema sp.) and cylindrical133

neodymium magnets (5-mm diameter, 1-mm thick, N52 magnetic strength,134

Supermagnete, Gottmadingen, Germany) were commercially purchased.135

2. The beads were drilled for 5.6-mm in the parallel direction to the rings136

observed on the surface, and the magnets were inserted at the bottom, so137

that the magnet was inserted exactly in the middle of the nuclei.138

3. The holes were covered with dental resin and the nuclei were exposed to139

UV light for 1 hour (254 nm, 10J).140

4. Sander was used to smooth the dental paste and restore a spherical shape141

to the nuclei.142

The result is shown Figure. 1. It is crucial to restore the final spherical shape143

of the nucleus to avoid any impact on the graft. To obtain larger pearls, larger144

nuclei could have been used, but with a greater risk of rejection on the graft145

[17].146

Fig. 1: Magnet and nucleus used, to scale
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Magnetometer System

Based on the preliminary work and experimental setup of Gueguen et al, in147

2015, which proved the rotation of the pearl [13], a dedicated room has been148

set up at Ifremer, Vairao, Tahiti (Figure. 2.a,b,c). The room is composed149

of eight domes, with each dome specifically designed to accommodate an150

oyster and equipped with 25 magnetic sensors. These sensors consist of two151

components: the HCM1021, a one-axis magnetic sensor from Honeywell, and152

an offset compensation circuit. They are strategically distributed at varying153

angles to the base of the half-sphere dome: 6°, 30°, 60°, and one additional sen-154

sor placed at 90°. Figure. 2.e illustrates the arrangement of these sensors. All155

sensors were affixed to the dome using a cyanoacrylate paste and are encased156

in a Plexiglas tube for protection against water. All sensors associated with a157

dome are connected to independent magnetometers with an acquisition card.158

These magnetometers are then connected to a dedicated computer by an159

Ethernet cable so that the data can be transferred and processed by software160

called Magneto, which was designed in 2015 and last updated in 2022 by161

the company Vega Industrie (Avrainville, France). This interface allows for162

real-time visualization of the sensor values and offers different configurations163

and parameters for recording the data (Figure. 2.d). Special care is taken164

to avoid any external magnetic fields in the room, as this could distort the165

acquisitions. This setup enables the performance of eight parallel acquisitions,166

with sensor values being collected every second. This enhanced precision is167

crucial for ensuring the reliability of our acquisitions.168

169

To continuously monitor living oysters, a system of water circulation and pump170

for algae supply was set up. The systems can be adjusted to control the flow of171

food, water, and temperature. Each dome is supplied with 1 µm filtered sea-172

water continuously. The pearl oysters are fed continuously with a mixture of173

microalgae consisting of Isochrysis lutea and Chaetoceros gracilis at a concen-174

tration of 30 cells µL−1 in each dome. The concentration of microalgae in the175

experimental domes is checked daily to ensure that the oysters are consistently176

fed the same amount and that the food doesn’t affect the rotation.177
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Fig. 2: Description of the magnetometer system.
a/ Full dedicated room with 8 domes. b, c/ View from the top of a dome and
its 25 associated magnetic sensors. d/ Direct magnetic field data acquisition
interface, developed by Vega Industrie. e/ Theoretical representation of a dome
via Matlab [18] with each of the associated sensors.
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Data Calibration and Performance Evaluation

To calibrate and ensure the accuracy of our magnetic sensors, we built a cali-178

bration device using a clock mechanism and a magnet (Figure. 3). The purpose179

of the device was to enable us to determine suitable noise filters, optimal oys-180

ter positions, and sensor performance. The magnet, which is placed at the end181

of the rod, is positioned in three different locations within our dome - at the182

center of each of the sensor lines. The magnet was oriented at three different183

angles with respect to the axis of rotation - parallel, diagonal, or perpendicular184

- to evaluate the accuracy of our measurements. By comparing the data from185

our magnetic field acquisition to the clock’s rotation speed, we calculated the186

accuracy of our measurements for each sensor line, averaging over the three dif-187

ferent orientations of the magnet. After applying a Gaussian-weighted moving188

average filter with a window length of 60, we achieved accuracies of 97.75%,189

98.71%, and 58.5% in the first, second, and third sensor lines, respectively.190

Thus, an appropriate base was created to place our oysters in the middle of the191

second row of sensors for optimal measurements. The clock device was criti-192

cal for calibration as the rotational speed of pearls inside oysters is uncertain,193

making it challenging to evaluate the measurement accuracy based solely on194

pearl data.195
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Fig. 3: Description of the calibration of our system using a clock system.
a/ Diagram of the device used: a clock mechanism is fixed at the top of a rod,
allowing it to rotate at a fixed speed of one revolution per hour. At the bottom
of the rod, a magnet is fixed in a variable position (parallel, perpendicular, or
diagonal to the rotation axis). During the acquisition, the magnet is centered
at different positions of the dome, in the middle of each of the 3 rows of
sensors. b/ Representation of the magnetic field data of the magnet projected
on a sphere, assimilated to a pearl. c/ Representation of the magnetic field
data of the magnet projected on the equator, to simulate the real movement
of the pearl. The final accuracies are calculated from the projected data at the
equator, averaged over the 3 different positions of the magnet at the end of
the rod.
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Grafts

All donor and recipient oysters were adult individuals with an average diam-196

eter of 110mm. Three grafting experiments were conducted with wild pearl197

oysters, Pinctada margaritifera (Linnaeus 1758). The first experiment (n =198

47 oysters) was conducted at Ifremer facilities in Vairao, Tahiti. The second199

experiment (n = 40 oysters) used animals collected and cultured at the Pahai200

Poe pearl farm on Apataki Atoll, French Polynesia. The third experiment (n201

= 50 oysters) was conducted at the Tahiti Iti Pearl Farm in Vairao, Tahiti,202

using animals collected and cultured in the Takapoto atoll. After grafting, the203

pearl oysters were observed for nucleus retention for a month, and after the204

closure of the pearl sac, they were air-transferred to Ifremer facilities.205

206

We evaluated post-grafting survival results, related to the quality of the207

magnetized nuclei, shown in Table. 1. The importance of using high-quality208

magnetized nuclei has been established, as better outcomes were observed209

with well-crafted or medium-crafted nuclei compared to poor-quality ones,210

and these outcomes were comparable to those obtained with standard nuclei.211

Additionally, 25 oysters were lost from multiple causes (death, falling off the212

string, problems in air transport) during cultivation. Therefore, a total of213

52 oysters have been in our magnetometer device over a one-year timespan.214

The information and final photos of the corresponding pearls are presented in215

Supplementary Figure 1 and Supplementary Table 1.216

a/ Quality of the nucleus grafted: Number % Alive Remaining

Excellent 15 60 9

Medium 22 63 14

Poor 10 20 2

b/ Quality of the nucleus grafted: Number % Alive Remaining

Medium 20 70 14

Poor 20 0 0

c/ Quality of the nucleus grafted: Number % Alive Remaining

Medium 50 76 38

Table 1: Graft survival after one month. The quality of the nuclei was deter-
mined by their irregularity compared to a standard nucleus. All nuclei were
reviewed by 3 experts. The grafts were carried out at the following pearl farms:
a/ Tahiti Iti Pearl Farm (Teahupoo, Tahiti) b/ Harry’s Pearl Farm (Apataki)
c/ IFREMER (Vairao, Tahiti) by Josh, Kamoka Pearl.
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Data Processing

To process the colected data, software has been implemented in Matlab, avail-217

able at https://doi.org/10.5281/zenodo.7872014. The software takes raw data218

from the sensors as input and filters the noise using a Gaussian-weighted mov-219

ing average filter. It then calculates and displays the orientation of the magnet220

over time. The orientation of the magnet at a given time is represented by a221

3-dimensional coordinate (XYZ) in a space centered at the center of the pearl.222

To obtain each of the 3 coordinates, the values of each sensor are multiplied by223

the relative position of the sensors in the given space, and then summed (see224

Supplementary Table 2). To transform our magnet rotation data into real rota-225

tion data of the pearl, a set of projections is needed. For a detailed description226

of the entire process, please refer to Supplementary Note 1.227

In addition to saving all the orientation data of the magnet and the pearl,228

images are captured to record the movement from the 3D visualization. Start-229

ing from the point of view that maximizes the visible rotation data, through230

a barycenter calculation, 6 images rotated by 60° are acquired for each acqui-231

sition (one pearl, one week). These images will then be used to classify the232

shape of the pearl.233

234

After classification tests, we found out that the first image taken on the 3D235

representation, which contains the most data, was sufficient, as the addition236

of the other images introduced noise. Thus, each sample in our dataset, which237

represents one week’s data for one pearl, consists of a single RGB color image238

of size 224x224. Weekly acquisitions were firstly made for practical reasons -239

the device used must be cleaned every week to maintain favorable conditions240

for the pearl oysters’ development, and the oysters must be removed from the241

device for cleaning. As such, it was not possible to acquire continuous rotation242

data for more than one week. More details and examples are provided in the243

Results section.244

https://doi.org/10.5281/zenodo.7872014
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Classification Model

Our classification model was designed to make predictions in two different245

ways: either sample by sample, corresponding to the rotation of a pearl over246

a week, or for the entire acquisition period of the pearl’s rotation data. For247

the latter prediction method, we exported the set of weekly predictions for248

each pearl and retained the class with the highest frequency.249

250

To determine the amount of rotation data required to predict the final shape251

of a pearl with precision, we created several datasets in addition to the orig-252

inal one. One dataset comprised data from the last week before the oyster’s253

sacrifice (with one sample per pearl), while another contained data from the254

last month before the oyster’s sacrifice (with up to four samples per pearl).255

Additionally, we constructed a dataset from last week’s data, with data sep-256

arated by the day, to assess the predictive potential of rotation data over a257

short 24-hour period.258

259

To train the model, we partitioned the datasets into train, validation, and test260

sets using the repeated holdout technique (n = 100). We carefully separated261

the data linked to individual pearls to ensure exclusivity to one set, thereby262

reducing overfitting risks. The class balance across splits was maintained, and263

we allocated 70% of the data to the train set, 15% to the validation set, and264

another 15% to the test set.265

266

To predict the pearl shape using rotation data and account for the limited267

dataset size, we employed transfer learning with pre-trained neural networks.268

After evaluating multiple options, presented in the Material and Methods269

section, we determined that the VGG-16 convolutional neural network archi-270

tecture [16] was the best-suited model for our task, owing to its balance271

between accuracy and execution time. Previous studies [19, 20] have consis-272

tently demonstrated the effectiveness of the VGG-16 model across a diverse273

range of tasks when compared to alternative architectures. The VGG-16 model274

is pre-loaded with weights from the ImageNet [15] dataset and used to extract275

features from the input images. To use this model, we normalized and resized276

our datasets images to 224x224x3. The complete architecture of our VGG-16277

model, along with examples from our images, is illustrated in Figure. 4. The278

architecture includes 18 weight layers and 5 max-pooling layers, each with279

various functions. A detailed explanation of these functions can be found in280

Supplementary Note 2.281
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Fig. 4: Model architecture and class-associated image and pearl examples.
a/ Overview of VGG-16 architecture and its component layers b/ Example
of one image and its corresponding pearl associated with the ”Other” class,
which includes pearls with no mineral deposits or those with very irregular
deposits. c/ Example of one image and its corresponding pearl associated with
the ”Atypical” class, which includes baroque, drop, button, and circled pearls.
d/ Example of one image and its corresponding pearl associated with the
”Round” class, which includes semi-round and round pearls.

After feature selection, the output is flattened to add two specific features282

to each sample with specific weights: the number of days of pearl cultivation283

until the oyster was sacrificed and the number of days between grafting and284

rotation acquisition, as rotation is not uniformly distributed during pearl for-285

mation. Additional custom layers, including Dense and dropout layers, are286

then incorporated to prevent overfitting. Finally, the output layer with Soft-287

Max activation is added to classify the pearls’ shapes into three categories. The288

entire process, from data acquisition to final shape prediction with new data,289

is summarized in Figure. 5. Each step is elaborated further in Supplementary290

Note 3.291
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Fig. 5: Full description of the entire data handling process, from acquisition
to classification.
a/ Pre-processing and creation of the image dataset, using Matlab [18]. b/ Use
of pre-trained Deep Convolutional Neural Networks (DCNN) for pearl shape
classification using Python and Keras [21].

We evaluated our model’s performance on various datasets using the repeated292

holdout method with 100 splits. The model accuracy and the weighted-average293

F1-score were determined for all splits, with associated standard deviations.294

A grid search was conducted to optimize the model’s hyperparameters on295

each dataset and find the best model. Our main results are summarized and296

discussed in the Results section.297
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Results and Discussion

Our goal was to investigate the hypothesis that there exists a correlation298

between the rotational behavior of a pearl and its final shape. Specifically, we299

sought to predict the final class of a pearl based on its rotation. The pearls300

we analyzed were classified into three distinct categories, which were manually301

labeled by three experts in the field:302

• Round: includes semi-round and round pearls (27.6%)303

• Atypical: includes baroque, drop, button, and circled pearls (21.3%)304

• Other: includes pearls with no mineral deposits, or very irregular deposits305

(51.1%)306

Machine Learning: First Classification Approach

Initially, we conducted exploratory analysis using conventional machine learn-307

ing techniques to classify our pearls based on the acquired data. To process308

the dataset, we calculated features for each sample that captured the pearl’s309

velocity and acceleration over time. These features were then subjected to310

binning in order to reduce their overall number. After experimenting with311

various binning numbers, we determined that selecting 100 features per day312

was the optimal choice. We utilized the BioDiscML tool [22] to optimize313

and evaluate multiple models from our dataset, allowing for effective model314

comparison. Additionally, we explored the application of LSTM algorithms,315

which are specifically designed for time-series data analysis, as a means of316

classification. The outcomes of both approaches are summarized in Supple-317

mentary Table 3, highlighting accuracy levels ranging from 20.3% to 51.6%.318

319

All of the above calculations were exclusively performed using the complete320

dataset. However, the classification results were significantly unsatisfactory,321

with the highest achieved accuracy being only 51.6% using a random for-322

est classification approach. As a result of these disappointing outcomes from323

the previous methods that relied on direct features, our attention shifted324

towards deep learning methods for image classification. Visual observations of325

the movement representation served as inspiration for this approach, as they326

suggested a potential correlation between rotation and form.327
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Deep Learning: VGG-16 Architecture and Image

Classification

We subsequently directed our focus to the VGG-16 architecture and converted328

our data into the image format, as explained in the Material and Methods329

section. Our final dataset consisted of 218 images, with each image depicting330

a week’s worth of pearl rotation. We removed outliers from the dataset, and a331

total of 47 distinct pearls were included in the images, with each pearl having332

a varying number of samples.333

334

To gain insight into the image processing approach of the VGG-16 architecture,335

we present in Figure. 6 the results of feature extraction from our images. The336

figure displays examples of averaged feature maps for a subset of VGG-16337

layers for our three different classes. A comprehensive description of each block338

is provided in Supplementary Note 4.339

Fig. 6: Examples of averaged feature maps for a subset of VGG-16 layers
for our three different classes. Feature maps represent the activation values
of each filter in a convolutional layer. High activation values (brighter regions
in the visualization) indicate that the filter has detected a specific feature in
the corresponding region of the input image. Low activation values (darker
regions) mean that the filter does not recognize its corresponding feature in
that region.
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The VGG-16 model typically makes its decision based on the final layer,340

which has the highest level of abstraction and simplifies the problem. From341

the three displayed images, a clear pattern emerges where a random rotation342

indicates ”Round” pearls, an axial rotation signifies ”Atypical” pearls, and343

no rotation is associated ”Other” pearls. These observations confirm the pre-344

liminary observations obtained by Gueguen et al. [13]. However, the rotation345

patterns are more varied than these three categories suggest, and they are346

often difficult for an observer to classify. This highlights the pertinence of347

using a classification model.348

349

The evaluation of the model, as well as all the calculated metrics, are pre-350

sented in Figure. 7. For the daily, weekly, monthly, and full datasets, we351

obtained accuracies of 47.1%, 73.4%, 70.1%, and 81.9%, respectively, over the352

test set and for the final pearl predictions. These results validate that there353

is a correlation between the pearl’s rotation and its final shape, which can be354

observed even by analyzing the pearl’s rotation data only from the last week355

before the oyster’s sacrifice. However, analyzing the rotation daily seems to356

be insufficient to make a prediction. The calculation of the weighted-average357

F1-score was performed to verify that the prediction is correctly performed358

regardless of the predicted class and the potential imbalance according to the359

dataset. Values of 49.1%, 69.9%, 66%, and 81% were obtained, for the daily,360

weekly, monthly, and full datasets, respectively. These high values, except for361

the one-day dataset, confirm the high quality of our classification, regardless362

of the predicted class.363

364

The model achieved the best accuracy when trained on the entire dataset365

collected over a one-year period. Our findings confirm that obtaining rotation366

data throughout the entire pearl formation period improves pearl classifica-367

tion, despite the irregularity of the rotation, compared to using only the last368

rotation patterns from the final week. In addition, the results indicate that369

using only the last month of rotation leads to lower performance compared to370

using either the entire dataset or only the last week.371

372

Although obtaining rotation data from the entire pearl formation period yields373

the best prediction results, it is not practical to repeat such a lengthy data374

acquisition for future experiments. The model trained on the weekly dataset375

achieved an accuracy of 73.4%, allowing shape predictions with just one week376

of rotation acquisition. We are providing the model trained on our full dataset377

as a reference for future predictions, regardless of the duration of future acqui-378

sitions, and to achieve the best possible prediction. Our model was trained on379

the data of 47 distinct oysters, from 3 different grafts performed in 3 distinct380

locations, which reduces the risk of overfitting on a specific graft and should381

allow reliable predictions for different oysters and grafts.382
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Fig. 7: Model evaluation and classification results.
a/ Example of the evolution of the accuracy on the train (in blue, dotted line)
and validation set (in pink, full line) as a function of the number of epochs,
used to monitor overfitting. b/ Example of classification over time for a pearl.
The irregularity of the classification can be explained by the irregularity of
the rotation that we observed. c/ Different accuracy metrics, on week-by-week
classifications, depending on the dataset (day, week, month, all). d/ Different
accuracy metrics, on pearl-by-pearl classifications, depending on the dataset
(day, week, month, all).
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With an accuracy of 79.5% for weekly classification and 81.9% for bead clas-383

sification with rotation data acquired over several weeks, our final model384

establishes a strong correlation between pearl rotation during its formation385

and its final shape. The provided model and software offer a reliable, turnkey386

solution for predicting pearl shape from newly acquired rotation data, which387

can handle input of any size.388

Global Observations and Measurements of Rotation

Speed

Through our study, we were able to determine the average rotation speed of389

oysters during pearl formation to be 0.72 +/- 0.14 rad.h−1 (equivalent to 8.66390

+/- 1.67 hours per revolution), based solely on the rotating pearls during their391

formation. We also confirmed that rotation is necessary to obtain aragonite392

deposits on pearls, with 100% of pearls with confirmed deposits having under-393

gone rotation during their formation. However, we did not find a significant394

difference in rotation speed between pearls of different shapes. Additionally,395

we observed a sudden acceleration of rotation for two individuals, up to a396

speed of 5 rad.h−1, which led to rejection. This observation could provide397

valuable insight into the mechanism of pearl rejection during formation. To398

take it a step further, our observations contradict the hypotheses proposed by399

Cartwright et al. [9]. While we did not observe any deposition without rota-400

tion, we did observe rotations occurring without deposition, particularly in401

the initial stages of the pearl’s growth. This contradicts the initial hypoth-402

esis that the deposit of aragonite causes pearl rotation. The initial rotation403

patterns were identified 21 days after grafting, whereas the first deposits were404

only visible from the third month onwards. Overall, our findings have impor-405

tant implications for understanding the factors that contribute to successful406

pearl formation.407

Limitations

Our model currently has some limitations, including the requirement of mag-408

netized nuclei to study rotation. The introduction of a magnet has a weak409

influence on the graft and final pearl, confirmed by the proportion of round410

pearls we get, similar to a standard graft [23], of approximately 30%. Nev-411

ertheless, the manual production of these nuclei prevents large-scale studies.412

Additionally, our rotation measurements do not account for the movement of413

the oyster during the experiments. Distinguishing rotation along the magnet’s414

axis from immobility is also challenging. Although our database was acquired415

over a year, it is small and limited to reliable data from 47 individuals. While a416

larger study could yield more reliable results, predicting the shape of more than417

three different classes of pearls would be costly and time-consuming. More-418

over, external factors, independent of the rotation, can influence the shape of419

a pearl. Therefore, we cannot expect significantly higher accuracy than what420

we currently achieve. Replicating our study is challenging due to the unique421
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nature of each individual and the influence of the timing of data collection rel-422

ative to the initial grafting date. The methodology presented in the Material423

and Methods section provides a framework for reproducing our experimental424

process, except for the grafting protocol. This aspect is left to the discretion425

of individual grafters, who maintain confidentiality regarding their specific426

techniques.427

Future Perspectives

The aim of this model and associated acquisition device is to enable non-428

invasive monitoring of pearl formation through rotation data. Numerous429

possibilities arise from studying the relationships between rotation and various430

attributes of the pearl or the oysters that produced it. Additionally, study-431

ing the parameters that influence rotation, such as temperature and food,432

and attempting to link it to the oyster’s muscle activity and respiratory cycle433

would allow us to identify ideal conditions for controlling the final shape of434

the pearl after grafting. Studying different patterns and speeds of rotation435

can help us understand the impact of parameter changes on rotation patterns436

and speed without sacrificing the oyster. Our observations suggest that a sud-437

den increase in rotation speed could cause rejection, highlighting the need for438

further research into the rejection mechanism. Understanding this mechanism439

could potentially help prevent rejection from occurring, leading to significant440

improvements in the control and quality of pearl production. Therefore, it is441

important to gain an extensive understanding of the impact of rotation on442

pearl attributes to advance research in this area.443

Conclusion

In conclusion, this study has confirmed the correlation between rotation and444

the final shape of the pearl, as well as the capital importance of the rotation in445

the creation and the deposit of aragonite on the nucleus. This study also intro-446

duced a device that enables non-invasive monitoring for scientific research on447

pearls. This device allows for accessible and small-scale studies on parameters448

that can affect pearl formation and its final attributes. Compared to conven-449

tional methods, which require waiting for the entire pearl production process450

(12-18 months) to study parameter influences, the non-invasive monitoring451

offered by our device over any short period of time offers a more accessible452

approach.453
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Data Availability

The data that supports the findings of this study and used to train the given
model are available from the corresponding author upon reasonable request.

Code Availability

The codes for processing rotation data and predicting pearl shape are available
online: https://doi.org/10.5281/zenodo.7872014. All other codes used in our
study, especially for training our model, are available from the corresponding
author upon reasonable request.

Acknowledgments

We thank Victor Labrune for his help in designing the rotation data processing
software, Pierre Lyonnard for his help with the maintenance of the experiment
room, Didier Defay (Vega Industrie) for his help on the electronic system of
magnetic field data acquisition. A special thanks also to Erwan Vigouroux and
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