
Supplementary Materials

Oyster Dome Graft Date Acq. Start Date Acq. End Date Shape

639 1 02/12/2021 02/12/2021 01/03/2022 Atypical

640 2 02/12/2021 02/12/2021 26/01/2022 Other

640 2 02/12/2021 02/12/2021 26/01/2022 Other

643 5 02/12/2021 02/12/2021 26/01/2022 Other

644 6 02/12/2021 02/12/2021 16/12/2021 Other

645 9 02/12/2021 02/12/2021 26/01/2022 Other

646 10 02/12/2021 02/12/2021 26/01/2022 Other

642 4 02/12/2021 02/12/2021 10/08/2022 Round

641 5 02/12/2021 02/12/2021 10/08/2022 Atypical

27 5 02/12/2021 26/01/2022 01/02/2022 Other

28 9 02/12/2021 26/01/2022 19/04/2022 Other

29 10 02/12/2021 26/01/2022 19/04/2022 Other

26 2 02/12/2021 26/01/2022 10/08/2022 Atypical

25 1 02/12/2021 01/02/2022 07/03/2022 Other

644 2 5 02/12/2021 01/03/2022 19/04/2022 Atypical

640 2 1 02/12/2021 07/03/2022 18/05/2022 Atypical

717 10 02/12/2021 19/04/2022 18/05/2022 Other

400 9 02/12/2021 19/04/2022 18/05/2022 Other

25 2 1 02/12/2021 18/05/2022 31/05/2022 Other

27 2 9 02/12/2021 18/05/2022 31/05/2022 Other

188 10 02/12/2021 18/05/2022 10/08/2022 Atypical

903 1 02/12/2021 31/05/2022 09/06/2022 Atypical

904 9 02/12/2021 31/05/2022 10/08/2022 Atypical

905 1 02/12/2021 09/06/2022 14/06/2022 Other

906 1 02/12/2021 14/06/2022 10/08/2022 Atypical

907 1 25/11/2021 10/08/2022 18/08/2022 Round

908 2 25/11/2021 10/08/2022 18/08/2022 Other

909 4 25/11/2021 10/08/2022 18/08/2022 Other

910 10 01/03/2022 10/08/2022 18/08/2022 Atypical

911 5 01/03/2022 10/08/2022 18/08/2022 Other

912 10 01/03/2022 11/08/2022 18/08/2022 Other

913 1 01/03/2022 18/08/2022 11/10/2022 Other

914 2 01/03/2022 18/08/2022 26/09/2022 Other

915 4 01/03/2022 18/08/2022 11/10/2022 Other

916 5 01/03/2022 18/08/2022 11/10/2022 Other

917 9 01/03/2022 18/08/2022 11/10/2022 Round

918 10 01/03/2022 18/08/2022 26/09/2022 Other

919 2 01/03/2022 26/09/2022 03/11/2022 Other

920 10 01/03/2022 26/09/2022 17/10/2022 Other

921 1 01/03/2022 11/10/2022 03/11/2022 Other

922 4 01/03/2022 11/10/2022 03/11/2022 Round

923 5 01/03/2022 11/10/2022 21/10/2022 Other

924 9 01/03/2022 11/10/2022 03/11/2022 Other

925 10 01/03/2022 17/10/2022 03/11/2022 Round

926 1 01/03/2022 03/11/2022 18/11/2022 Round

927 2 01/03/2022 03/11/2022 18/11/2022 Round

928 4 01/03/2022 03/11/2022 18/11/2022 Round

929 9 01/03/2022 03/11/2022 18/11/2022 Round

930 10 01/03/2022 18/11/2022 24/11/2022 Round

931 1 01/03/2022 18/11/2022 24/11/2022 Round

932 2 01/03/2022 18/11/2022 24/11/2022 Atypical

933 4 01/03/2022 18/11/2022 24/11/2022 Atypical

934 9 01/03/2022 18/11/2022 24/11/2022 Other

436 6 02/12/2021 16/12/2021 24/11/2022 Round

Table 1: Table including all the information associated with each oyster: the
date of grafting, the start and end dates of acquisition, as well as the final shape
attributed. Note that the end date of acquisition also corresponds to the date
of sacrifice for the oyster.
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Figure 1: Photographs of all the pearls that were processed by our device are
included, except for the 6 pearls that were lost between the characterization
and photography stages.
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Sensors C1 C2 C3 C4 C5 C6 C7 C8

X 0.9945 0.7032 0 -0.7320 -0.9945 -0.7032 0 0.7032

Y 0 0.7032 0.9945 0.7032 0 -0.7032 -0.9945 -0.7032

Z 0.1045 0.1045 0.1045 0.1045 0.1045 0.1045 0.1045 0.1045

Sensors C9 C10 C11 C12 C13 C14 C15 C16

X 0.8660 0.6124 0 -0.6124 -0.8660 -0.6124 0 0.6124

Y 0 0.6124 0.8660 0.6124 0 -0.6124 -0.8660 -0.6124

Z 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Sensors C17 C18 C19 C20 C21 C22 C23 C24

X 0.5 0.3536 0 -0.3536 -0.5 -0.3536 0 0.3536

Y 0 0.3536 0.5 0.3536 0 -0.3536 -0.5 -0.3536

Z 0.8660 0.8660 0.8660 0.8660 0.8660 0.8660 0.8660 0.8660

Sensors C25

X 0

Y 0

Z 1

Table 2: Cartesian coordinates of each magnetic sensor.

Model Best Accuracy Obtained

Random Forest 0.515

Naive Bayes 0.468

Simple Logistic Regression 0.422

RBF Network 0.390

OneR 0.203

LSTM 0.441

Table 3: Performance results from various models on our dataset. The best accu-
racy achieved after optimization is reported, with each accuracy score computed
on the test set and represented as the mean of randomized batches. Special care
is taken to split oysters into different sets to avoid overfitting. The BioDiscML
[22] tool was utilized to calculate all models, with the exception of the LSTM
model, which was manually coded and optimized in Python. This table gives
an overview of all the results obtained, but it does not include all the models
tested.

Supplementary Note 1: Transformation of our
magnet rotation data into real rotation data of
the pearl

Let Mmagnet be the matrix containing all the magnet orientation data over time,
of size (Ttot, 3). The following are the steps to create the new matrix Mpearl,
which corresponds to the orientation data of the pearl, treated as a sphere:

1. For a 3D point Mmagnet(t), which represents the magnet orientation at
a certain time, determine two other points at the same time interval:
Mmagnet(t − tpearl) and Mmagnet(t + tsphere). In our case, we chose
tsphere = 1600 seconds, considering the average rotation speed of our
pearls.
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2. Calculate the equation of the plane (P1) passing through these three
points.

3. Determine the equation of the plane (P2), parallel to the plane (P1) and
passing through the origin of the sphere.

4. Determine the plane (P3), perpendicular to both planes (P1) and (P2)
and passing through the point M(t, :).

5. Calculate the line (D1) that intersects both planes (P2) and (P3).

6. Calculate the two points (M1
sphere(t)) and (M2

sphere(t)) where line (D1)
intersects the sphere representing the pearl. Then, calculate the distances
between Mmagnet(t) and these two points, and keep the point of inter-
section that corresponds to the minimal distance, giving the final point
Msphere(t).

To obtain the new matrix Msphere, which corresponds to the orientation data
of the pearl over time, repeat the six steps outlined above for each point in
the matrix Mmagnet. The rotation of the pearl over time is finally determined,
allowing for the computation of its corresponding velocities and accelerations.

Supplementary Note 2: Detailed description of
our VGG-16 architecture

1. Input layer: This layer receives the RGB image input, which is resized to
224x224 pixels.

2. Convolutional layers: The VGG-16 architecture comprises 13 convolu-
tional layers, each with a 3x3 kernel. These layers extract features from
the input image. The number of filters in the convolutional layers increases
with depth, starting from 64 and doubling after each max-pooling layer
until it reaches 512.

3. Max-pooling layers: VGG-16 includes 5 max-pooling layers, each using
a 2x2 kernel with a stride of 2. These layers help to reduce the spatial
dimensions of the feature maps, thereby decreasing computational com-
plexity and capturing translation-invariant features. They are interspersed
between the convolutional layers.

4. Fully connected layers: After the convolutional and max-pooling layers,
VGG-16 has 3 fully connected (dense) layers. The first two dense layers
have 4096 units each, followed by three layers with decreasing unit sizes of
1000, 512, and 256, respectively. The size of the final dense layer depends
on the number of output classes K in the classification task, which is 3 in
our case. These layers integrate the high-level features extracted by the
convolutional layers to make the final classification decision. Each fully
connected layer is followed by a 50% dropout layer to prevent overfitting.
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5. Activation functions: The VGG-16 architecture employs the Rectified Lin-
ear Unit (ReLU) activation function throughout the network, except for
the final dense layer, where a SoftMax activation function is utilized to
output class probabilities.

6. Output layer: The VGG-16 network’s output layer provides the class prob-
abilities, and the class with the highest probability is chosen as the final
classification result.

Supplementary Note 3: Detailed description of
the entire data handling process, from acquisition
to classification.

1. Input: acquisition of rotation data from the magnet, and oyster informa-
tion (number of days between graft and acquisition). One sample is equal
to one week of rotation acquisition for the pearl.

2. Normalization and filtering of data using a Gaussian-weighted moving
average filter.

3. Transformation of magnet rotation data into pearl rotation data, using
projections to the equator of a sphere, as described in the Material and
Methods section.

4. 3D representation of pearl rotation data, by assimilating the pearl to a
sphere.

5. Image acquisition from prior 3D representations, creating 224x224 RGB
images of data projected onto a sphere centered on the data’s barycenter.

6. Creation of training, validation, and test sets using the Repeated Holdout
method with a 70%/15%/15% split.

7. Output: Training, validation, and test sets are created from filtered, con-
sistent data with added metadata (time elapsed since grafting for acquisi-
tion and sacrifice). After filtering outliers due to various acquisition issues,
a total of 218 samples from 47 different pearls were retained.

8. Input: Load a pre-trained VGG16 model with custom layers, using weights
pre-trained on the ImageNet [20] dataset.

9. Training of the model on our datasets to fine-tune the weights for our
images.

10. Hyperparameter optimization using grid search on batch size, learning
rate, epochs, and regularization. Evaluation of different models from ac-
curacy and f1-score.
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11. Selection of the best model for shape classification on our pearls

12. Input: New rotation data transformed into images as in the training set
to be used on our trained model.

13. Output: Final shape prediction of the pearl from new rotation data.

Supplementary Note 4: Detailed description of
each block from the feature extraction process,
from Fig. 6.

1. Block1-conv1: This is the first layer of the VGG-16 model that detects
low-level features such as edges and textures.

2. Block2-conv1: This is the first layer of the second block, where the model
starts recognizing more complex patterns like corners and simple shapes.

3. Block3-conv1: The first layer of the third block captures higher-level fea-
tures, such as object parts and more complex shapes.

4. Block4-Conv1: In the first layer of the fourth block, the model identi-
fies even more abstract features, like parts of objects or specific textures
related to the objects in the image.

5. Block5-conv1: The first layer of the fifth block represents the highest
level of abstraction in the VGG-16 model. At this point, the model has
captured more complex features and patterns that help it differentiate
between various objects and scenes. Visualizing this layer offers insights
into the model’s ability to recognize high-level visual concepts.

7


