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Abstract. Many marine activities, such as designing ocean structures and planning marine operations, require the character-

ization of sea state climate. This study investigates the statistical relationship between wind and sea states, considering its

spatiotemporal behavior. A transfer function is established between wind fields over the North Atlantic (predictors) and the

significant wave height (predictand) at three locations: North West and South West of the French coast and the English Channel.

The developed method considers both wind seas and swells by including local and global predictors. Using a fully data-driven5

approach, the global predictors’ spatiotemporal structure is defined to account for the non-local and non-instantaneous relation-

ship between wind and waves. Weather types are constructed using a regression guided-clustering method, and the resulting

clusters correspond to different wave systems (swells and wind seas). Then, in each weather type, a penalized linear regression

model is fitted between the predictor and the predictand. The validation analysis proves the model’s skill in predicting the sig-

nificant wave height, with a root mean square error of approximately 0.3 meters in the three considered locations. Additionally,10

the study discusses the physical insights underlying the proposed method.

1 Introduction

A sea state is a statistical description of the sea surface waves generated by wind at a given time and location. The sea state

is characterized by a superposition of wind seas and swells (Ardhuin and Orfila (2018)). The local wind generates wind seas,

whereas swells are generated in distant areas. Significant wave height (Hs), defined as four times the zeroth moment of the15

wave power spectrum, is commonly used to describe the sea state. Thus, Hs is an essential measure of wave height and provides

information about the wave energy of a given sea state.

High-quality wave data is essential for many marine applications, such as designing coastal and offshore structures and

planning marine operations. Observations, numerical, and statistical models are the methods used for sea state characteriza-

tion. Traditional in situ measurements obtained from buoys provide the most reliable data for sea state parameters; however,20

they are only available for the last decades and are limited spatially (Ardhuin et al., 2019). Numerical models (Hasselmann

et al., 1973; Tolman et al., 2009) provide simulations of spectral wave models from which sea state parameters are extracted.

They are a valuable source of data and provide decades of records, although they are computationally expensive. Statistical

models constitute an alternative to numerical models for constructing the wind-waves relationship. These models are not com-
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putationally expensive, and once the statistical relationship is estimated, future predictions can be made by assuming that this25

relationship is stationary, meaning that the statistical relationship between the large-scale variables and the sea state parameters

does not change between the present and the future (Mori et al., 2013; Laugel et al., 2014).

Various studies have compared statistical and numerical models for ocean wave parameters and other climate variables. Wang

et al. (2010) compared these methods in terms of climatological characteristics of the present period using ERA-40 wave data.

They found that the statistical models are better at reproducing the observed climate than the dynamical models. Laugel et al.30

(2014) analyzed these methods for climate projections, and their study shows that statistical downscaling (SD) approaches can

reproduce the present climatology and future projections. In addition, due to their low computational complexity, SD models

permit the consideration of a wide range of GCMs and climate scenarios, which allows to estimate the uncertainties. However,

modeling the relationship between wind and sea state parameters using statistical methods still presents some difficulties, which

have been addressed by different methods in the literature, namely:35

• Waves depend on both local and global wind conditions

The surface wind generates wind waves. However, it is not only the local wind that defines local waves, and wind from distant

regions generates swells that may reach the target point (Ardhuin and Orfila, 2018). Therefore, SD models have to consider

both wind sea and swells, which is particularly challenging in swell-dominated areas (Hemer et al., 2012). To address this

issue, we use a local and a global predictor to account for wind sea and swells, respectively, as already done in Casas-Prat et al.40

(2014) and Camus et al. (2014a).

• Wind conditions are multicollinear and multidimensional

The wind conditions are characterized by two components (zonal and meridional), which might be challenging to consider

directly in a statistical model. To address the issue of multidimensionality in this study, we introduce the wind projection, which

consists of retaining only the fraction of wind blowing towards the target point. The proposed preprocessing step allows using45

only one variable for each grid point, reducing the dimension of the predictor by half. Furthermore, large-scale wind variables

are high-dimensional and multicollinear (strong correlations among variables) due to the strong spatiotemporal dependence of

wind fields, and using them as a predictor in a statistical model might be challenging. Dimensionality reduction methods such

as principal component analysis are typically used as a preprocessing step to reduce the dimension of the large-scale variables

and deal with multicollinearity (Laugel et al., 2014; Camus et al., 2014a, b). In this study, we use Ridge regression (Hoerl and50

Kennard, 1970), which has been proven to be beneficial for dealing with multicollinearity in various studies (Mahajan et al.,

1977; Hessami et al., 2008).

• The relationship between wind and waves is not instantaneous

Wind from distant regions generates waves that may take days to reach the target point. Thus, the relationship between wind and

waves is not instantaneous. Therefore, it is necessary to consider lagged wind conditions to understand the wave dynamics at a55

particular target location. The optimal lag at each grid point is interpreted as the travel time required for the waves to reach the

target point (Camus et al., 2014a). The ESTELA (Evaluation of Source and Travel-time of wave Energy reaching a Local Area)
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(Pérez et al., 2014) is a method that defines the wave generation area and wave travel time at any ocean location worldwide.

Using its spectral information, the method selects the fraction of energy that travels to the target point from selected source

points. The ESTELA method was used in various studies to define the temporal coverage of predictors used in SD (Camus60

et al., 2014a, 2016; Hegermiller et al., 2017; Anderson et al., 2019; Cagigal et al., 2020; Costa et al., 2020). The present study

uses a statistical approach to define the wave generation area. It is based on estimating waves’ travel time from each source

to the target point (optimal lag) using the maximum correlation between the significant wave height and wind conditions.

Therefore, this method is not computationally expensive, and only wind and Hs data at the target point are required, and unlike

ESTELA, no spectral data are needed.65

This study presents a statistical approach for estimating the relationship between wind conditions and ocean waves. The

approach is based on weather types, which are constructed using a regression-guided clustering algorithm. These weather

types are then used to link the space-time wind fields over the North Atlantic (predictors) and the significant wave height

(predictand) at three locations: North West and South West of the French coast and the English Channel. Then, regression

with Ridge regularization is used to fit the relationship between wind conditions and significant wave height at each weather70

type. The proposed methodology considers wind sea and swells and provides additional information about the spatiotemporal

relationship between wind and waves. The main contribution of this work is that it provides an entirely data-driven approach

for estimating the travel time of waves from any source point to a target point, which is essential for the definition of predictors.

To the best of our knowledge, the only other approach in the literature that can be used for this purpose is ESTELA (Pérez

et al., 2014), which relies on directional spectra over the spatial domain of the wave generation. These spectra are not always75

accessible and can be computationally costly and demand high storage capacity. Our proposed approach, however, utilizes

wind fields and significant wave height at the point of interest, which are more accessible and less computationally costly.

Additionally, it allows for the processing of buoy data or data from models with limited spatial coverage as it does not require

the directional spectra over the wave generation domain. Furthermore, this study proposes a relatively interpretable model with

a limited number of weather types and uses Ridge regularization (van Wieringen, 2015). The regularization is used to make the80

parameters of the regression more interpretable and to improve the generalization capability of the model.

This paper is structured as follows. After describing the data in Section 2, the local predictors are defined in Section 3. Then,

Section 4 describes the construction of the global predictors. Next, Section 5 presents the statistical model that combines the

local and global predictors. Then, Section 6 presents the results of the SD model. Finally, the study is concluded in Section 7.

2 Data85

The atmospheric data used in this work to construct predictors is extracted from the Climate Forecast System Reanalysis

(CFSR) (Saha et al., 2010). CFSR is a global reanalysis developed at the National Centers for Environmental Prediction

(NCEP) that covers the period from 1979 to the present with hourly time step and spatial resolution of 0.5°by 0.5°. Extracted

data consists of hourly 10m zonal and meridional wind components in the North Atlantic (Figure 1).
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Figure 1. Mean CFSR Zonal and Meridional wind components over the period 2014-2019.

To comprehensively evaluate the method across a range of observed sea states, we consider three different locations: Gironde90

(45.2°N, 1.6°W), the English Channel (49°N, 4.4°W), and The Gulf of Maine (43°N, 69°N). The Gironde location is nearshore,

with the highest Hs observed at the considered period is 10.5 m, whereas in the English Channel location, which is offshore,

the highest Hs observed is 11.8 m. In addition to the two eastern Atlantic locations, a location in the Gulf of Maine situated in

the western part of the Atlantic, where the maximum Hs reached 9 m. The bathymetry of the Gulf of Maine is highly complex,

with a coastline dotted with numerous bays, islands, and coves (Panchang et al., 2008).95

The historical wave data used in this work for the Gironde and English Channel locations, is the sea-state hindcast database

HOMERE (Boudière et al., 2013) based on the Wavewatch III® model forced by CFSR wind. The database covers the English

Channel and the Bay of Biscay with unstructured computational mesh. It contains 37 parameters and the frequency spectra on

high spatial resolution, ranging from 200 m to 10 km, with a one-hour time step. For the Gulf of Maine location, we consider

the IOWAGA database (Ardhuin et al., 2011) which is also based on the Wavewatch III® model forced by CFSR and ECMWF100

wind. To validate and interpret the results of the SD method, we consider the energy spectral partitioning, which identifies

different wave systems. HOMERE uses the watershed algorithm (Tracy et al., 2007) to separate wind sea and different swells.

The temporal resolution of both predictors and predictand is upscaled from hourly to 3 hourly resolutions to facilitate the

analysis. Both datasets comprise a common period of 26 years, from 1994 to 2019. The 1994-2013 period is used as the

calibration period, while the 2014-2019 period is used as a validation period.105
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3 Local predictor

Wind speed, duration, and the Fetch impact the characteristics of the wind sea (Ardhuin and Orfila, 2018). Hereafter, at time t

the variables U(t), F (t), U(t− 1), and F (t− 1) are considered to construct the local predictors. U(t) is the wind speed at the

target point, and F (t) is the Fetch length at time t, calculated as the minimum of the distance from the target point to shore in

the direction from which the wind is blowing and 500 km. A minimum distance of 500 km is fixed because it is computationally110

expensive to calculate the distance between the target point and far away shores such as eastern American shores. Note that

F (t) is not, but is related to, the Fetch in the literature, which is defined as the distance over which waves develop (Ardhuin

and Orfila, 2018). Lagged wind conditions are considered because they may provide information about the temporal variability

of the wind and, thus, the duration of wind conditions.

To investigate the capability of local variables to explain Hs, the polynomial regression model115

Hs(t) = β
(ℓ)
0 +X(ℓ)(t)β(ℓ) + ϵ(ℓ)(t) (1)

is considered. Where X(ℓ) is the local predictor:

X(ℓ)(t) = {U(t),U2(t),U3(t),U2(t)F (t),U(t− 1),U2(t− 1),U3(t− 1),U2(t− 1)F (t− 1)} (2)

β
(ℓ)
0 and β(ℓ) are model coefficients, and ϵ(ℓ)(t) is the model error. Model 1 contains polynomial terms and interactions between

the Fetch and squared wind to consider nonlinear relationships between Hs and predictors. We considered taking into account120

the lagged local wind conditions up to t-4; however, the performance of the model does not change as much as taking into

account only the t and t-1 wind conditions.

The model is fitted using data from 1994 to 2013 and is assessed in a validation period from 2014 to 2019 using the Pearson

correlation r, root mean square error (RMSE), and bias:

125

r =

∑n
t=1(Ĥs(t)− Ĥs)(Hs(t)−Hs)

σĤs
σHs

(3)

RMSE =

√∑n
t=1(Ĥs(t)−Hs(t))2

n
(4)

130

BIAS =

∑n
t=1(Ĥs(t)−Hs(t))

n
(5)

where Ĥs(t) is the predicted Hs at time t, Ĥs and Hs are the mean of observed and predicted Hs, respectively; σĤs
and σHs
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Figure 2. Local model results (1) in the validation period at the three considered locations as a function of the peak period (Tp).

are the standard deviation of predicted and observed Hs, respectively; and n is the number of observations considered (58440135

for the calibration period and 17528 for the validation period).

Results of the local model as a function of the peak period of the three considered locations are shown in Figure 2. The model

strongly underestimates high-period waves in all three locations and better predicts small-period waves. The high-period waves

could correspond to swells that are generated far from the target point. Therefore, in order to predict Hs at these locations, it is

important to consider the large-scale wind conditions that cover the swell generation as well as the local-scale wind conditions.140

4 Global predictor

In order to take swells into account, a global predictor which describes wind conditions over the North Atlantic has to be

considered. Wind data has two components, the zonal and meridional components. Each of the two components in space and

time carries more or less information about the waves observed at the target point at a given date. However, using all of them as

inputs to a statistical model is computationally challenging, given the high dimensionality of the data, and may lead to hardly145

interpretable results due to the strong correlation between wind conditions at closed locations in space and time. This section

defines the global predictor related to the spatiotemporal domain of the wave generation area.

4.1 Spatial coverage

Following Pérez et al. (2014), the spatial coverage of the global predictor is based on the assumption that deep-water waves

travel along a great circle path. Therefore, the wave generation area is limited by neglecting grid points whose paths are blocked150

by land. Furthermore, small islands are not taken into consideration.

6



N

E

BV

u

v

b

θ β

Source

point

35

40

45

50

55

−30 −20 −10 0
Longitude (degree)

La
tit

ud
e 

(d
eg

re
e)

Figure 3. Wind projection representation. The initial wind vector (V) at each source point is transformed into a component (B) aligned with

the bearing (b) of the target point, as determined by a great circle path (blue dashed line).

4.2 Wind projection

To reduce the dimension of the atmospheric variables and to create a more interpretable model, wind components at each grid

point are projected into the bearing of the target point in a great circle path (Figure 3) using the equation:

W = U cos2s
(
1

2
(b− θ)

)
(6)155

where W is the target-projected wind, U is the wind speed, s is the spread parameter (Young, 1999), b is the great circle

bearing, and θ is the wind direction. The parameter s≥ 0 controls the amount of wave energy being transferred by the wind

blowing from different directions. In Figure 4, the relationship between the target-projected wind and the spread parameter is

examined at varying values of the angle difference b− θ, with a constant wind speed (U = 10 m/s). When the wind blows to

the target point (i.e., θ ≈ b), the target-projected wind is near its maximum, which is the wind speed U. As the deviation of θ160

from b increases, the target-projected wind decreases, with the rate of decrease dependent on the value of the spread parameter.

Therefore, a larger spread parameter corresponds to less energy spreading. Ideally, s has to be smaller for locations near the

target point and vice-versa and one can use an optimisation method to select the optimal value for each location. To simplify

the analysis and avoid the computation burden of such method, we choose a common value of s for all locations. In order to
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Figure 4. Relationship between the target-projected wind and the spread parameter at varying values of the angle difference b− θ, with a

constant wind speed (U = 10 m/s).

evaluate the impact of the parameter s on the prediction of Hs, we tested a range of values for s between 0 and 7 using a165

simple linear regression model. The optimal value of s in terms of prediction accuracy was found to be 1 (not shown). Figure 5

illustrates the mean of the target-projected wind in the four seasons. Strong winds that blow towards the direction of the target

point are observed in winter and mostly in the area around 50°N, 40°W.

4.3 Temporal coverage

According to the dispersion relation, the group velocity of waves is expressed as170

Cg =
gT

4π
(7)

where g is the gravitational velocity and T is the period. For example, swells whose period is around 15s have a group velocity

of 11.73m/s, traveling 50% faster than a 10s ocean wave, and it takes them about five days to cross the Atlantic from Cape

Hatteras to the Bay of Biscay (Ardhuin and Orfila, 2018). Therefore, waves generated at a location j and time t might take

time tj to arrive at the target point.175

At each location j and time t, the predictor is defined as the mean of the squared lagged target-projected wind in a time

window so that,

X
(g)
j (t; tj ,αj) =

1
2αj+1

∑t−tj+αj

i=t−tj−αj
W 2

j (i), (8)

tj +αj +1≤ t≤ tj −αj +n

where αj controls the length of the time window, tj is the mean travel time of waves, Wj is the target-projected wind at location180

j, and n is the total number of observations. Henceforth, the parameter αj is called the temporal width even though the length
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Figure 5. Mean target-projected wind for Gironde in the winter (DJF), spring (MAM), summer (JJA), and autumn (SNO) over the period

2014-2019.

of the temporal wind is equal to 2αj +1. Note that the relationship between the target-projected wind and Hs seems to be a

square relationship (Figure 6) so that, in equation (8), the squared target-projected wind is considered.

The parameters tj and αj can be simultaneously determined for all locations by minimizing an objective function, such

as least squares. However, this method is computationally infeasible due to its non-polynomial and combinatorial nature. As185

an alternative, tj and αj are independently estimated for each location over the entire period using the maximum Pearson

correlation between the global predictor and Hs. At first, at each location j, the travel time tj is estimated by setting αj = 0,

then the temporal width is estimated using the estimated value of tj so that,

t̂j = argmax
tj

(
corr(Hs,X

(g)
j (tj ,αj = 0))

)
α̂j = argmax

αj

(
corr(Hs,X

(g)
j (t̂j ,αj))

)
(9)
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Figure 7 shows the estimated travel time of waves and the temporal width in the three locations. Globally, the two parameters190

are spatially smooth and interpretable, and as expected, the two parameters increase as the distance between the source and

target point increases. For example, under the assumption of constant group wave velocity from the source to the target point,

waves generated at a source point situated at (37.5°N, 70.5°W), which is 5642 km from the target point in Gironde, can take on

average 180 h (about seven and half days) to reach this target point. These waves travel at a velocity of 8.7 m/s; thus, according

to the dispersion equation (7), they have an average period of 11.1 s. On the one hand, considering t̂j + α̂j as the maximum195

travel time of the waves, at the same source point, waves can also take 225 h (about nine days) to reach this target point, with

a velocity of 7 m/s and a period of 9 s. On the other hand, the minimum wave travel time (t̂j − α̂j) at the same source point

is 135h (about five and a half days) with a velocity of 11.6 m/s and a period of 14.8 s. Therefore, tj −αj and tj +αj can be

interpreted as the propagation time of long-period and short-period waves, respectively.

Regions located south 35 degrees latitude exhibit inconsistent values of travel time. This may be attributed to the weak200

correlations between target-projected wind and Hs at the target locations. In such a situation, the optimal travel time value

given by equation (9) may be very sensitive to the sampling error. Note that due to computational constraints, a maximum

temporal width of 45 hours was imposed in equation (9), and this constraint is visible on the bottom plots of Figure 7.
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Figure 7. Estimated travel time of waves (top panel) and the temporal width (bottom panel) using equation 9 in the three locations.

5 Wind-waves model

5.1 Linear regression model205

After defining the predictors, this section presents the statistical downscaling model. Firstly, the linear model that combines the

local and the global predictor is considered

Hs(t) =X(ℓ)(t)β(ℓ) +X(g)(t)β(g) + ϵ(t) (10)

where β(ℓ) and β(g) are local coefficients and global coefficients, respectively. Here β(ℓ) is not necessarily the same as in

equation (1). X(ℓ)
t is the local predictor defined in equation (2), X(g)

t the global predictor defined in equation (8), and ϵ(t) is210

the model error.
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5.2 Model fitting

Model (10) can be fitted using the least squares method; given by

(β̂) = (XTX)−1XTHs (11)

where X = (X(ℓ),X(g)) and β̂ = (β̂(ℓ)T , β̂(g)T )
T

. The least-squares estimates in equation (11) are the best linear unbiased215

estimates of the parameters. However, since the global predictor is high dimensional (e.g., 67108× 5651 matrix for Gironde),

and its variables are highly correlated, the matrix XTX may be ill-conditioned. Thus, the least-squares estimates become

highly sensitive to Hs variations. To address this issue, Ridge regression (Hoerl and Kennard, 1970) minimizes the penalized

residual sum of squares

argmin
β

∥∥∥X(g)β(ℓ) +X(g)β(g) −Hs

∥∥∥2 +λ∥β(g)∥2 (12)220

where λ≥ 0 is the regularization parameter. Note that the regularization is not applied to the parameters associated with the

local predictor. The parameter λ allows us to take into consideration the bias-variance trade-off.

5.3 Regression-guided clustering

Using the global predictor to construct weather types leads to clusters that only account for the global atmospheric circulation

and not for the local environment (not shown). This subsection describes a regression-guided clustering method that considers225

both the global predictor and the predictand.

After estimating the coefficients, the contribution of a source point j at time t to Hs at the target point, is defined as

X
(g)
j (t)β̂

(g)
j . The matrix of contributions Xβ(g) is defined as

Xβ(g)(t, j) =X
(g)
j (t)β̂

(g)
j . (13)

We expect swell systems coming from contributions from distant areas, whereas wind sea will be associated with local230

contributions. A natural question that arises is whether we can identify these wave systems by using Xβ(g) . Subsequently, the

k-means clustering algorithm is used on Xβ̂(g) to obtain the weather types (WTs). Finally, the link function can be constructed

by fitting each class’s linear regression model (10). Therefore, Model (10) now becomes

Hs(t) =X(ℓ)(t)β
(ℓ)
k +X(g)(t)β

(g)
k + ϵk(t), ∀t ∈ Ik k = 1, ...,K (14)

where β(ℓ)
k and β

(g)
k are local and global coefficients for the class k. Ik denotes all time indices that are in class k, and K is the235

total number of WTs.
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5.4 The case of two weather types

The statistical downscaling model described in the previous section has K+2 hyper-parameters, which include the Ridge reg-

ularization parameter λ (as defined in equation (12)), the K associated Ridge regularization parameters for each weather type

(as defined in equation (14)), and the number of weather types (K). Due to the large number of possible combinations, it is not240

computationally feasible to optimize all of these hyper-parameters simultaneously using traditional cross-validation methods.

As an alternative, we propose a simpler approach. We first select λ by considering only two weather types. Next, we determine

the optimal number of weather types for this fixed value of λ. Finally, we choose a common value for Ridge regularization for

all weather types.

The most usual approach to choosing the regularization parameter λ of the Ridge regression consists of performing cross-245

validation and taking the value of λ, which minimizes a prediction error, typically the RMSE. In the current work, we also

intend to obtain a physically interpretable model in addition to forecast accuracy. Interpretability will be quantified as follows.

First, the k-means clustering algorithm is used on the contributions Xβ(g) to identify the leading two clusters. The resulting

clusters are then compared with the sea state classification obtained using the energy spectrum partitioning in Homere. The sea

states chosen for the comparison are wind sea and swell, and the agreement between the two clusterings is measured using the250

classification accuracy,

accuracy = correct predictions/ sample size (15)

where "correct predictions" denotes the number of observations that are well classified by the model, meaning the number of

observations that are classified as swell (wind sea) by the energy spectrum partitioning algorithm and as class "1" ("2") by the

regression-guided clustering algorithm.255

For the purpose of brevity, we only present the results of the weather types in Gironde, as they were found to be consistent

in the other two locations. Figure 8 shows that the value of λ that gives the optimal classification accuracy is greater than

that of the optimal RMSE. Figure 9 shows the estimated global coefficients β(g) using the two different optimal values of the

regularization parameter λ. The coefficients obtained using λ that gives the maximum classification accuracy are smoother

than the ones obtained when minimizing the RMSE and generally decrease as the distance between the source and target260

points increases. In this study, the optimal value of the regularization parameter, λ, is chosen based on its ability to produce

interpretable coefficients and weather types. The primary focus is on the interpretability, and as such, the selected λ that yields

the highest classification accuracy is prioritised even if it results in a non-significant increase in RMSE compared to the value

that yields the minimum RMSE. The optimisation of RMSE will be considered in the next steps.

Figure 10 shows the times series of Hs and the corresponding empirical density with respect to the clusters in the calibration265

period. The most probable cluster is the first one (82%), which corresponds mostly to swells, and the second cluster corresponds

to wind seas (Table 1). To understand the difference between the two clusters, we define the anomaly of Xβ(g) in each cluster

1 and 2 as xβ(g)(1) and xβ(g)(2), respectively
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Figure 9. Estimated global coefficients β(g) using Ridge regression with λ that gives the maximum accuracy (left panel) and minimum

RMSE (right panel).

classes 1 2

swell 47074 6388

wind sea 974 3904
Table 1. Contingency table of k-means clusters (1 and 2) and Homere sea states classes (swell and sea state) in the calibration period.
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Figure 11. Mean of Xβ(g) minus the global mean for the cluster 1 (left panel) and cluster 2 (right panel).

xβ(g)(1) = X̄β(g)(1)− X̄β(g) (16)

xβ(g)(2) = X̄β(g)(2)− X̄β(g)270

where X̄β(g)(1) and X̄β(g)(2) are the mean of Xβ(g) at cluster 1 and 2, respectively and X̄β(g) is the global mean of Xβ(g) .

For the first cluster, the local wind around the target point contributes less than the global mean in Hs (Figure 11). Grid

points far from the target point contribute more, which is expected when swell systems dominate. In contrast, in the second

cluster, generally associated with wind sea, local wind contributes more than the global mean in Hs. The fluctuations observed

in Figures 9 and 11 (also in Figure 14 in the next section) may be attributed to two factors: the loss of smoothness in the275

data due to preprocessing steps such as travel time and temporal width, and the inherent nature of least squares estimates to
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Figure 12. RMSE versus the number of WTs for the validation period.

alternate between positive and negative values when dealing with highly correlated covariates. The use of Ridge regression,

which smoothes the coefficients in comparison to ordinary least squares, still exhibits oscillations. As seen in Figure 9, these

oscillations are more significant when the Ridge penalty is lower.

6 Results280

In this section, the methodology’s results are presented. As for the last section, the results of the weather types were found

to be consistent across the three studied locations; therefore, only the results for Gironde will be displayed. Subsequently, the

overall methodology results for all three locations will be provided (see Figure 16).

The clusters obtained in the last section seem to be interpretable and correspond to sea state classes obtained from the energy

partitioning algorithm provided by Homere (Boudière et al., 2013) (accuracy = 0.87). However, the number of clusters K may285

be greater than 2; therefore, a validation analysis is done to select the optimal number of WTs. To do that, for each number

of WTs (from 1 to 8), model (14) is fitted using the calibration period and evaluated using the validation period. Figure 12

illustrates the RMSE of Hs as a function of the number of WTs. The RMSE is stabilized for a number of WTs greater or equal

to 5, and the RMSE decreases significantly from 1 to 5 WTs. We therefore chose the number of WTs as 5.

Figure 13 shows the time series of Hs and its empirical density as a function of the five WTs. Note that the weather types290

were manually arranged in ascending order according to the magnitude of Hs. The resulting WTs depend on the value of

Hs; for example, the first WT corresponds to small values of Hs, and the fifth corresponds to extremes. In increasing order,
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Figure 13. (a): time series of Hs as a function of WTs. (b): empirical density of Hs as a function of WTs. (c): transition matrix of WTs. (d):

Frequency of occurrence of WTs. All figures correspond to the calibration period.
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Figure 14. Mean of Xβ(g) minus the global mean for the five WTs.

the other clusters (2 to 4) correspond to intermediate values Hs. The bottom right panel of Figure 13 shows the frequency of

occurrence of WTs. The first WT is the most likely, and the fifth one has the smallest probability of occurrence. The transition

matrix in the bottom left panel shows that the self-transition probabilities are greater than 0.9 for all WTs, meaning that the295

WTs are consistent in time. Note that some transition probabilities are precisely zero; for example, the transition probabilities

from the 1st to the 4th and the 5th WT are equal to zero. This means that the probability of being in extreme sea states after

being in the first WT is zero.

Figure 14 shows the mean of Xβ(g) at each WT where

xβ(g)(i) = X̄β(g)(i)− X̄β(g) , i= 1, ..,5 (17)300

where X̄β(g)(i) is the mean of Xβ(g) at the ith WT and X̄β(g) is the global mean of Xβ(g) . For the 1st and 2nd WT,

contributions of source points far from the target points are greater than the global mean. Therefore, these two classes may

correspond to swells. In the 3rd WT, the local wind contributes more, with moderate winds, in the variance of Hs. The fourth

one can be considered as a composition of wind sea and swells given that local and far source points contribute to the variance
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Figure 15. Monthly and annual (in December-January-February) frequency occurrence of WTs in the calibration period. The continuous

black line corresponds to the mean annual winter (DJF) time series of the NAO (North Atlantic Oscillation) index, and the horizontal black

line indicates when NAO is less or greater than zero. When the continuous black line is below the horizontal line, the NAO is less than zero.

of Hs. Finally, the 5th WT corresponds to the wind sea, where the local source points contribute with the highest intensities of305

winds creating the highest waves.

The monthly variability of WTs is shown in the left panel of Figure 15. As expected, the 5th and 4th WTs occur primarily in

winter (December-January-February), and the 1st WT, which corresponds mainly to swells, often occurs during summer. The

long-term winter variability of frequency of occurrence of WTs is shown in the right panel of Figure 15. The continuous black

line corresponds to the mean annual winter of NAO index (Barnston and Livezey, 1987) from 1994 to 2019. The horizontal310

black line indicates when NAO is greater or less than zero. Figure 15 suggests that there is a correlation between the long-term

variability of weather types and the North Atlantic Oscillation (NAO) index. For instance, the winter of 2010 exhibited a lower

frequency of extreme waves and corresponded with a low NAO index, while the most extreme sea states were observed in

2014, which coincided with a high NAO index. This correlation is consistent with previous research, such as (Charles et al.,

2012), which reported that winter waves tend to have larger significant wave heights (Hs) during the positive phase of the NAO315

and smaller Hs during the negative phase of the NAO.

The results of the model described in equation (14) during the validation period for the three studied locations are presented

in Figure 16 and Figure 17 for Gironde. The model performs well in predicting Hs at Gironde and the English Channel.

However, it exhibits less accuracy in the Gulf of Maine, which can be attributed to the complex wave climate in this area due
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to factors such as bathymetry, islands, breaking waves, and frequent storm activity (Panchang et al., 2008). Comparing these320

results with those of the local model in Figure 2, it appears that considering the global predictor is essential to explain the

variability of Hs. Figure 18 illustrates the performance of the downscaling model at each weather type in the validation period.

It can be seen that the model in WT 1, 2, and 4 explains less of the variability of Hs compared with the model in WT 3 and 5.

This might be explained by the fact that in these WTs (1, 2, and 4), the model has to consider source points that cover the swell

generation, as seen in Figure 14, which means that numerous source points contributes to the variability of Hs. In contrast, in325

WT 3 and 5, waves are mainly generated by local wind (14); therefore, the model considers mainly local source points.

7 Conclusions

This study proposes a method that describes the spatiotemporal relationship between wind and the significant wave height (Hs).

At first, the local model, based on a linear regression between the local wind and Hs, is constructed. However, the model poorly

explains the variability of Hs given that the model does not consider the swell generation. Therefore, the global predictor was330

defined to account for both wind sea and swells. The global predictor is based on the target-projected wind, which is the wind

that goes from source points to the target point in a great circle path. After wind projection, the spatial coverage of the predictor

is defined based on the assumption that waves travel along a great circle path. Then its temporal coverage is defined based on

two parameters, the travel time of waves and the temporal width. Both parameters exhibit spatial structure and increase as the

distance between the source and target points increases.335

The statistical downscaling model combines the local and global predictors to predict Hs using a weather-types-based model.

The weather types were constructed using a regression-guided clustering algorithm. The comparison between the Homere sea

state classes (wind sea and swell) and two clusters obtained by the clustering algorithm shows a significant resemblance. The

predictive model consists of fitting linear regression with Ridge penalty between the predictors and the predictand in each WT,

and the validation analysis shows that the optimal number of WTs is five. The obtained weather types are interpretable and340

correspond to different wave systems. The results of the downscaling model show its skill in predicting Hs, even for large val-

ues, which are often important for operational purposes. The proposed method can be used for various operational applications

depending on the availability and quality of wind data. These applications include hindcasting, short-term forecasting, and

climate projections. In the case of climate projections, the method can use bias-corrected output from global climate models

(GCMs). The statistical method presented in this study is validated at three locations, and its ability to accurately predict Hs345

is demonstrated; the method may be therefore generalizable and can be extended to other locations. For locations nearshore, it

may be necessary to take into account other local characteristics such as bathymetry and currents, as these factors can signifi-

cantly impact wave behavior. In addition, the assumption of great circle wave propagation may not be valid for these locations,

and alternative wave propagation models may be considered. Another limitation of the proposed methodology is its limited

scope in predicting only significant wave height (Hs). To fully characterize a sea state, other parameters such as wave period350

and direction should also be taken into account. Future research should investigate the generalizability of the methodology to

other sea state parameters.
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The methodology presented in this paper is based on observed weather types constructed using a clustering algorithm. Future

work may consider the weather types as latent variables that can be estimated using the EM (Expectation-Maximization)

algorithm, where the variables are evaluated based on the prediction of Hs, which can lead to statistical optimal estimates.355

In this paper, we introduced a methodology based on observed weather types, constructed prior to the regression problem

using a clustering algorithm. For future research, these weather types could be treated as latent variables within a mixture

regression framework, which can be estimated using the Expectation-Maximization (EM) algorithm. This approach would

evaluate variables according to Hs predictions, which can yield to statistically optimal estimates.

Code and data availability. The hindcast data Homere is available in their website: https://marc.ifremer.fr/produits/rejeu_d_etats_de_mer_360

homere. The wind data is available from the CFSR website: https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr.
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