
1 

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive 
publisher-authenticated version is available on the publisher Web site. 

Progress in Oceanography  

 August 2023, Volume 216, Pages 103064 (16p.)
https://doi.org/10.1016/j.pocean.2023.103064 
https://archimer.ifremer.fr/doc/00842/95401/ 

Archimer 
https://archimer.ifremer.fr 

Bioen-OSMOSE: A bioenergetic marine ecosystem model 
with physiological response to temperature and oxygen 

Morell Alaia 1, 2, *, Shin Yunne-Jai 5, Barrier Nicolas 5, Travers-Trolet Morgane 3, Halouani Ghassen 1, 
Ernande Bruno 2, 4 

1 IFREMER, Unité halieutique Manche Mer du Nord Ifremer, HMMN, Boulogne sur mer, France  
2 MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, Sète/Montpellier, France  
3 DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro, 44311 Nantes, 
France  
4 International Institute for Applied Systems Analysis (IIASA), A-2361 Laxenburg, Austria  
5 MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, Sète/Montpellier, France 

* Corresponding author : Alaia Morell, email address : alaia.morell@gmail.com
 

Abstract : 

1 - Marine ecosystem models have been used to project the impacts of climate-induced changes in 
temperature and oxygen on biodiversity mainly through changes in species spatial distributions and 
primary production. However, fish populations may also respond to climatic pressures via physiological 
changes, leading to modifications in their life history that could either mitigate or worsen the consequences 
of climate change.  

2- Building on the individual-based multispecies ecosystem model OSMOSE, Bioen-OSMOSE has been
developed to account for high trophic levels’ physiological responses to temperature and oxygen in future 
climate projections. This paper presents an overview of the Bioen-OSMOSE model, mainly detailing the 
new developments. These consist in the implementation of a bioenergetic sub-model that mechanistically 
describes somatic growth, sexual maturation and reproduction as they emerge from the energy fluxes 
sustained by food intake under the hypotheses of a biphasic growth model and plastic maturation age
and size represented by a maturation reaction norm. These fluxes depend on temperature and oxygen 
concentration, thus allowing plastic physiological responses to climate change.

3 - To illustrate the capabilities of Bioen-OSMOSE to represent realistic ecosystem dynamics, the model 
is applied to the North Sea ecosystem. The model outputs are confronted with population biomass, catch, 
maturity ogive, mean size-at-age and diet data of each species of the fish community. The model 
succeeds in reproducing observations, with good performances for all indicators. A first exploration of 
current spatial variability in species’ bioenergetic fluxes resulting from temperature, oxygen, and food 
availability is presented in this paper, highlighting the role of temperature.  

4 - This new model development opens the scope for new fields of research such as the exploration of 
seasonal or spatial variation in life history in response to biotic and abiotic factors at the individual, 
population and community levels. Understanding such variability is crucial to improve our knowledge on 
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potential climate change impacts on marine ecosystems and to make more reliable projections under 
climate change scenarios. 
 
 

Highlights 

► A presentation of a new marine ecosystem model integrating physiology in response to temperature 
and oxygen. ► A successful confrontation of the model to data in a North Sea case study. ► An efficient 
model for simulating size-at-age, maturation, diet, biomass, and catch patterns. ► A suitable tool to 
explore the spatial variation of individual indicators in response to temperature, oxygen, and food. 
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succeeds in reproducing observations, with good performances for all indicators. A first exploration of current spatial variability in species’ bioenergetic 
fluxes resulting from temperature, oxygen, and food availability is presented in this paper, highlighting the role of temperature. 

4 - This new model development opens the scope for new fields of research such as the exploration of seasonal or spatial variation in life history in response 
to biotic and abiotic factors at the individual, population and community levels. Understanding such variability is crucial to improve our knowledge on 
potential climate change impacts on marine ecosystems and to make more reliable projections under climate change scenarios. 

Keyword 

Bioenergetic, Food web, Hypoxia, Marine ecosystem model, Phenotypic plasticity, Thermal tolerance  

 Introduction 

The development of increasingly realistic marine ecosystem models (MEMs) is needed to improve understanding and knowledge about marine ecosystems, 
which is one of the main challenges of the UN Decade of the Oceans (Heymans et al. 2020). MEMs are end-to-end models representing ecosystems from 
primary production to top predators, linking the species and/or functional groups via trophic interactions. These models also account for abiotic and human 
activity impacts on ecosystem dynamics (Rose et al. 2010; Steenbeek et al. 2021; Travers et al. 2007). MEMs are still being improved through the 
development of sub-models that increase their reliability in supporting ecosystem-based management (Pikitch et al. 2004; Rose et al. 2010). 

The rates of ocean temperature rise and deoxygenation make urgent the development of mechanistic tools to forecast realistically their impacts from the 
physiology of marine organisms, to the population demographic impacts and to the consequence on marine trophic webs (Breitburg et al. 2018; Urban et al. 
2016). Efforts to model the temperature impacts on marine biodiversity at the ecosystem level has so far focused mainly on the bottom-up effect of 
temperature on the ecosystem via changes in primary production (Lefort et al. 2015; Moullec et al. 2019) and on the distribution shift of species according 
to their preferred temperature (Albouy et al. 2014; Fernandes et al. 2013; Moullec et al. 2019; Serpetti et al. 2017). Mechanistic physiological response to 
temperature in MEM is modeled in size spectrum models (e.g., Lefort et al. 2015; Maury 2010) and has been incorporated explicitly into few regional 
multispecies models (see for example (Utne et al. 2012). Although oxygen concentration is considered as a main pressure on marine biodiversity (Laffoley & 
Baxter, 2019), the oxygen physiological impact on marine ecosystems is still not explicitly modeled in multispecies MEMs.  

The core of recent model developments linking environmental conditions and physiological response is primarily on single-species models. These 
frameworks mechanistically describe life history cycles and metabolic fluxes. The response of metabolic rates to temperature is used in several frameworks 
(Gillooly et al. 2002; Kooijman 2010) which are applied to project future population dynamics and spatial distribution under climate change scenarios. The 
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response of metabolic rates to oxygen through its impact on ingestion (Thomas et al. 2019) has been recently introduced in the Dynamic Energy Budget 
framework to study the impact of hypoxia on population dynamics (Lavaud et al. 2019). 

The model Bioen-OSMOSE is a new framework that mechanistically describes the emergence of life history traits through an explicit description of the 
underlying bioenergetic fluxes and their response to food, temperature and oxygen variation in a multispecies food web model. It has been developed from 
the OSMOSE framework (Shin & Cury, 2004; see https://osmose-model.org for more information and http://documentation.osmose-model.org/ for a full 
technical description), which is an individual-based, spatially and temporally explicit, multispecies model for regional marine ecosystems. Designed to be 
possibly coupled to ocean and biogeochemical models, it includes components of the entire ecosystem, from primary production to fish populations and 
human fishing activity, but the core of the model describes the dynamics of fish and macroinvertebrate species. In this paper, we provide a detailed 
description of the principles and equations of the Bioen-OSMOSE framework, as well as parameterization guidelines (detailed in Supporting Information). An 
application to the North Sea ecosystem is provided as a case study example. We then confront simulation outputs from the North Sea example to observed 
data to assess the consistency of the new model development and explore spatial variability in fish metabolic fluxes in response to temperature, oxygen and 
food availability. 

 Method  

 Model description 

The Bioen-OSMOSE model (Fig. 1) represents fish individual physiological responses to temperature and oxygen variations and their consequences on fish 
communities in marine ecosystems. It is an individual-based, spatially and temporally explicit multispecies model accounting for trophic interactions. The 
main characteristics of the model are opportunistic predation based on size adequacy and spatiotemporal co-occurrence of predators and prey, the 
mechanistic description of individuals’ life-history traits emerging from bioenergetics. The aims of the model are to explore the functioning of marine 
trophic webs, the ecosystem impacts of individual physiological modifications due to temperature and oxygen, and the consequences of fishing pressure or 
climate change, from individual phenotype, to the population and to the community scale. The Bioen-OSMOSE model extends the existing OSMOSE model 
by (i) explicitly accounting for the mechanistic dependence of life-history traits on bioenergetics and (ii) describing intra- and inter-specific phenotypic 
variability originating from phenotypic plasticity in responses to spatio-temporal biotic and abiotic factor variations.  

https://osmose-model.org/
http://documentation.osmose-model.org/
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The 

chronology of processes  during a Bioen-OSMOSE time step is given in a process overview in Supporting Information S1. Compared to OSMOSE, the new 
developments of Bioen-OSMOSE impact mortality processes (see Process 5 in S1 and section 2.1.9) and life history processes, from ingestion to growth and 
reproduction (see Processes 6 to 9 and sections 2.1.3 to 2.1.8). 
Figure 1: Graphical description of the Bioen-OSMOSE model. In Bioen-OSMOSE, trophic relationships emerge from spatio-temporal co-occurrence and size 
adequacy between predators and prey, the former resulting from ontogenic spatial distributions and low trophic level biomass distribution. The explicit 
description of the internal physiological processes (bio-energetic fluxes box), from energy ingestion (which relies on the encountered prey) to growth, 
maturation and reproduction, constitutes the novelty of Bioen-OSMOSE and allows explicit effects of temperature and oxygen on these processes. From 
these new individual physiological processes, the whole life cycle and trophic web emerge.  
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      Biological unit, state variables and spatial characteristics 

The biological unit of the model is a school (a super-individual in individual-based modeling 
terminology). It is formed by individuals from the same species that are biologically identical. The 
state variables characterizing a school 𝑖 at time step 𝑡 belong to four categories (see Table 1 for state 
variable definitions and their units): 

- Ontogenic state of individuals described by their age 𝑎(𝑖, 𝑡), somatic mass 𝑤(𝑖, 𝑡) and 
gonadic mass 𝑔(𝑖, 𝑡);  

- Abundance, namely the number of individuals in the school 𝑁(𝑖, 𝑡);  

- Spatial location, i.e., the grid cell 𝑐(𝑖, 𝑡) where the school is located; and 

- Taxonomic identity, i.e., the species 𝑠(𝑖) to which the school belongs. 

Fish schools are distributed on a horizontal spatial grid that is composed of regular cells and that 
covers the geographical range of the ecosystem represented. A cell 𝑐 is characterized by its spatial 
coordinates, longitude 𝑥(𝑐) and latitude 𝑦(𝑐), and several other variables: (i) the vertically-
distributed values (z vertical layers) of k physico-chemical factors 𝑝𝑐𝑘(𝑐, 𝑡, 𝑧) (such as temperature 
𝑇(𝑐, 𝑡, 𝑧) or the level of oxygen saturation (%) [𝑂2](𝑐, 𝑡, 𝑧)) and (ii) the biomass of all low trophic 
level (LTL) groups (indexed by 𝑗) 𝐵𝐿𝑇𝐿(𝑐, 𝑗, 𝑡) that are not explicitly modeled in Bioen-OSMOSE but 
provided as input from coupled hydrodynamic and biogeochemical models.  

Below we describe the bioenergetic sub-model that we developed to describe individual life-history 
and its responses to environmental variations. The individuals described with this level of detail 
belong to high trophic level (HTL) species, mainly fish and macroinvertebrate species.  

 Individual life history description 

Individual life history emerges from underlying bioenergetic fluxes which are described according to 
a biphasic growth model derived from (Quince, Abrams, et al. 2008; Quince, Shuter, et al. 2008) and 
Boukal et al. 2014). Biphasic growth models depict somatic growth pattern as being different before 
and after sexual maturation due to a change in energy allocation across life stages: during the 
immature stage, all available energy is allocated to growth with no allocation to reproduction, 
whereas during the mature stage, there is an explicit energetic tradeoff between growth and 
reproduction (Fig. 1) (Andersen 2019; Boukal et al. 2014; Quince, Abrams, et al. 2008; Quince, 
Shuter, et al. 2008; Day et Taylor 1997). Such models have a long-standing history in life-history 
theory, especially regarding the evolution of age and size at maturation (e.g. Roff 1984; Kozłowski et 
Wiegert 1986; Kozłowski 1992; Eric L. Charnov 1993; Day et Taylor 1997; Ernande, Dieckmann, et 
Heino 2004; Marty et al. 2011), and are particularly well adapted to fish species (see Wilson et al. 
2018 for a review). Our bioenergetics model is comparable to a simplified version of a dynamic 
energy budget (DEB) model (Kooijman 2010) with no explicit reserves (Kooijman et Metz 1984; Jager, 
Martin, et Zimmer 2013) and where energy allocation to build structures and organs required for 
reproduction during the juvenile stage is considered negligible (Sibly et al. 2013). Despite the 
absence of dedicated reserves in our model, gonads may be used as stored energy to sustain 
maintenance in case of starvation at adult stage in a way relatively similar to the framework 
proposed by Sibly et al. (2013). As for most bioenergetics models, the energy fluxes are predicted as 
allometric functions of body mass and are allocated according to physiological tradeoffs between 
competing processes: maintenance, somatic growth and gonadic growth depending on the life stage. 
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The sexual maturation of individuals relies on the concept of maturation reaction norms that depicts 
how the process of maturation responds plastically to variation in body growth (Heino et al., 2002; 
Stearns & Koella, 1986). This combination of processes mechanistically describes how somatic 
growth, sexual maturation and reproduction emerge from energy fluxes sustained by food intake 
resulting from opportunistic size-based predator-prey interactions. 

On top of the biphasic growth model, individuals’ energy mobilization and maintenance energetic 
costs depend on dissolved oxygen concentration and temperature so that the resulting metabolic 
rate (the net energy available for new tissue production) and thus somatic and gonadic growth vary 
with these abiotic parameters in a way that conforms to the oxygen- and capacity-limited thermal 
tolerance theory (OCLTT; Pörtner, 2001) and more generally to thermal performance curves (TPC; 
Angilletta, 2009). 

In the following description, energetic fluxes are expressed in somatic mass unit equivalents under 
the assumption that the ratio of energy density between somatic and gonadic tissues 𝜂 is 
independent of size. All the parameters of the bioenergetic and life-history sub-model are species-
specific parameters except one parameter is constant across species, namely the Boltzmann constant 
(Table 2). 

 Ingestion, assimilation and mobilization 

For an individual in school 𝑖, the food ingestion rate 𝐼(𝑖, 𝑡) at time step 𝑡 is described by a Holling’s 
type 1 functional response (Holling 1959) that depends on its somatic mass 𝑤(𝑖, 𝑡) (Christensen & 
Walters, 2004; Holt & Jorgensen, 2014; Shin & Cury, 2004) in two ways. First, it is determined by the 
prey biomass 𝑃(𝑖, 𝑡) available to an individual of school 𝑖. All other fish schools and LTL organisms 
(from the forcing biogeochemical model) that are present in the same grid cell 𝑐(𝑖, 𝑡) are potential 
prey if their body size is compatible with a minimum 𝑅𝑚𝑖𝑛 (Shin & Cury, 2004) and a maximum 𝑅𝑚𝑎𝑥 

predator to prey size ratio based on individual total length 𝐿(𝑖, 𝑡) = (
𝑤(𝑖,𝑡)

𝑘
)

1

𝛼 (Travers et al. 2009) so 

that:  

𝑃(𝑖, 𝑡) =
∑ 𝛾(𝑖, 𝑗) 𝐵(𝑗, 𝑡) 𝑗

𝑁(𝑖, 𝑡)
 

𝑤𝑖𝑡ℎ 𝑗 ∈ {𝑗 | (𝑐(𝑗, 𝑡) = 𝑐(𝑖, 𝑡)) ⋂ (
𝐿(𝑖,𝑡)

𝑅𝑚𝑎𝑥
≤ 𝐿(𝑗, 𝑡) ≤

𝐿(𝑖,𝑡)

𝑅𝑚𝑖𝑛
)} (1) 

where 𝑘 and 𝛼 are the allometric length-somatic mass relationship coefficient and exponent, 
respectively, 𝛾(𝑖, 𝑗) is the accessibility coefficient of potential prey school 𝑗 to school 𝑖 that is 
essentially determined by the position in the water column of species 𝑠(𝑗) relative to species 𝑠(𝑖) 
according to their life stage, and 𝐵(𝑗, 𝑡) = 𝑁(𝑗, 𝑡) 𝑤(𝑗, 𝑡) is the biomass of prey school 𝑗 at time step 
t. The maximum possible food ingestion rate scales with the mass with a scaling exponent 𝛽. The 
food ingestion rate can then be written as: 

𝐼(𝑖, 𝑡) = 𝑓(𝑃(𝑖, 𝑡)) = 𝑚𝑖𝑛(𝑃(𝑖, 𝑡);  𝐼𝑚𝑎𝑥  𝜓(𝑖, 𝑡) 𝑤(𝑖, 𝑡)𝛽)  (2) 

with 𝐼𝑚𝑎𝑥 the maximum ingestion rate per mass unit at exponent 𝛽 (or mass-specific maximum 
ingestion rate) of individuals in school 𝑖 and 𝜓(𝑖, 𝑡) a multiplicative factor that depends on their life 
stage such that: 
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𝜓(𝑖, 𝑡) = {
𝜃 if 𝑎(𝑖, 𝑡) < 𝑎𝑙  
1 otherwise

 (3) 

where 𝑎𝑙  is the age at the end of an early-life fast-growth period (e.g., larval period or the larval and 
post-larval period, defined according to data availability, see Supporting Information S2) and 𝜃 a 
multiplicative factor accounting for higher mass-specific ingestion rate at this stage. Food limitation 

can occur at a given time step and locally in cell 𝑐(𝑖, 𝑡) when  𝑃(𝑖, 𝑡) < 𝐼𝑚𝑎𝑥  𝜓(𝑖, 𝑡) 𝑤(𝑖, 𝑡)𝛽. This can 
be the result of competition. At each cell and sub-time step (here, 10 sub-time steps within a time 
step t), predator schools are randomly drawn so that the order of predation actions constantly vary. 
The prey biomass removed by a predator is no longer available for the predator school drawn 
afterwards. 

A portion 𝜉 of the food ingestion rate 𝐼(𝑖, 𝑡) is assimilated, (1 − 𝜉) being lost due to excretion and 
feces egestion.Reserves before mobilization are not modeled in Bioen-OSMOSE: the assimilated 
energy is directly mobilized (but see 2.1.6 on gonads acting as reserves at the adult stage). The 
difference between assimilated and mobilized energy depends on oxygen and temperature 
conditions (Fig. 2). Mobilized energy 𝐸𝑀, referred to as active metabolic rate in the ecophysiology 
literature, fuels all metabolic processes such as maintenance, digestion, foraging, somatic growth, 
gonadic growth, etc… The mobilization of energy relies on the use of oxygen to transform the energy 
held in the chemical bonds of nutrients into a usable form, namely ATP (Clarke 2019). In 
consequence, the maximum possible energy mobilized depends (i) directly on dissolved oxygen 
saturation that sets up an upper limit to mobilization at a given temperature and (ii) as temperature 
increases, on the capacity of individuals to sustain oxygen uptake and delivery for ATP production. 
The mobilized energy rate 𝐸𝑀 is thus described by:  

𝐸𝑀(𝑖, 𝑡) = 𝜉 𝐼(𝑖, 𝑡) 𝜆([𝑂2](𝑖, 𝑡)) 𝜑𝑀(𝑇(𝑖, 𝑡)) (4) 

with 𝜆([𝑂2](𝑖, 𝑡)) and 𝜑𝑀(𝑇(𝑖, 𝑡)) being the mobilization responses to dissolved oxygen saturation 

[𝑂2](𝑖, 𝑡) = [𝑂2](𝑐(𝑖, 𝑡)) and temperature 𝑇(𝑖, 𝑡) = 𝑇(𝑐(𝑖, 𝑡)), respectively, encountered by school 𝑖 

in the grid cell 𝑐(𝑖, 𝑡). These are scaled between 0 and 1 such that, in optimal oxygen saturation and 
temperature conditions, all assimilated energy 𝐸𝑀(𝑖, 𝑡) = 𝜉 𝐼(𝑖, 𝑡) can be mobilized and, in 
suboptimal conditions, only a fraction of assimilated energy can be mobilized 𝐸𝑀(𝑖, 𝑡) < 𝜉 𝐼(𝑖, 𝑡). 

More precisely, the effect of dissolved oxygen is described by a dose-response function 𝜆(∙) (Thomas 
et al. 2019) which increases with the saturation of dissolved oxygen: 

𝜆([𝑂2]) = 𝑐𝑂,1  
[𝑂2]

[𝑂2]+𝑐𝑂,2
 (5) 

with parameters 𝑐𝑂,1 𝑎𝑛𝑑 𝑐𝑂,2 the asymptote and the slope of the dose-response function. The effect 

of temperature 𝜑𝑀(∙) is such that first, energy mobilization increases with temperature according to 
an Arrhenius-like law due to chemical reaction rate acceleration until reaching limitation in 
individuals’ ventilation and circulation capacity. Hence, oxygen uptake and delivery for energy 
mobilization saturates or even decreases at high temperatures, potentially due to temperature 
dependence of the rate of enzyme-catalyzed chemical reactions (Arcus et al. 2016) or enzyme 
denaturation (Pawar, Dell, et Savage 2015). This effect is described according to the Johnson & Lewin 
(1946) model (Pawar, Dell, et Savage 2015): 

𝜑𝑀(𝑇) = 𝛷
𝑒

−
𝜀𝑀

𝑘𝐵 𝑇

1+
𝜀𝑀

𝜀𝐷−𝜀𝑀
𝑒

𝜀𝐷
𝑘𝐵

(
1

𝑇𝑝
−

1
𝑇

)
  (6) 
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with 𝑘𝐵 the Boltzmann constant, 𝜀𝑀 the activation energy for the Arrhenius-like increase in mobilized 
energy with temperature 𝑇 before reaching its peak value at 𝑇𝑝, 𝜀𝐷 the activation energy when the 

energy mobilization declines with 𝑇 above 𝑇𝑝, and 𝛷 = (1 +
𝜀𝑀

𝜀𝐷−𝜀𝑀
) 𝑒

𝜀𝑀
𝑘𝐵 𝑇𝑝 a standardizing constant 

ensuring that 𝜑𝑀(𝑇𝑝) = 1. 

 Maintenance 

The mobilized energy 𝐸𝑀 fuels all metabolic processes starting in priority with the costs of 
maintenance of existing tissues 𝐸𝑚 which is often referred to as the standard metabolic rate in the 
ecophysiology literature. Here, we also include in the maintenance costs, the routine activities of 
individuals, including foraging and digestion implicitly, so that they are actually best compared to the 
routine metabolic rate in the ecophysiology literature. The maintenance costs are explicitly modeled 
to describe the share of mobilized energy between maintenance and the production of new tissues 
(Charnov et al., 2001; Holt & Jorgensen, 2014), with precedence of the former over the latter, as well 
as to link mechanistically starvation mortality to energetic starvation when neither mobilized energy 
nor gonad energy reserves can cover the costs of maintenance (see next section on new tissue 
production for more details). The maintenance energy rate 𝐸𝑚 scales with the individual’s somatic 
mass 𝑤(𝑖, 𝑡) with the same exponent 𝛽 as the maximum ingestion rate. The maintenance rate also 
increases with the temperature 𝑇(𝑖, 𝑡) experienced by individuals according to the Arrhenius law 
(Brown et al. 2004; Gillooly et al. 2002; Kooijman 2010) and can be described as: 

𝐸𝑚(𝑖, 𝑡) = 𝑐𝑚  𝑤(𝑖, 𝑡)𝛽  𝜑𝑚(𝑇(𝑖, 𝑡)) (7) 

with 𝐶𝑚the mass-specific maintenance rate and 𝜑𝑚(∙) the Arrhenius function 𝑚 defined as: 

𝜑𝑚(𝑇) = 𝑒
−

𝜀𝑚
𝑘𝐵 𝑇  (8) 

with 𝜀𝑚 the activation energy for the increase of the maintenance rate with temperature. 

 Net energy available for new tissue production 

The net energy available for new tissues production 𝐸𝑃 is the difference between the mobilized 
energy 𝐸𝑀 and the maintenance costs 𝐸𝑚 defined as follows: 

𝐸𝑃(𝑖, 𝑡) = 𝐸𝑀(𝑖, 𝑡) −  𝐸𝑚(𝑖, 𝑡). (9) 

Given that the mobilized energy rate 𝐸𝑀 increases at a lower rate than the maintenance rate 𝐸𝑚 
close to the species preferred temperature, it results that, all other things being equal, the emerging 
relationship between the net energy rate 𝐸𝑃 (and thus somatic and gonadic growth, see next section) 
and temperature is dome-shaped and conforms to the OCLTT theory and the principle of TPC (red 
curve in Fig. 2). 
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Figure 2: Thermal responses of the bioenergetic fluxes from ingestion to tissue growth in Bioen-
OSMOSE. The net energy rate dome-shaped curve (in red) conforms to the Oxygen- and capacity-
limited thermal tolerancetheory (OCLTT) and the principle of thermal performance curves. Food 
shortage impacts ingested energy and downstream fluxes. Hypoxia impacts mobilized energy and 
downstream fluxes. The maximum of the net energy rate (red curve) is called 𝑇𝑜𝑝𝑡 hereafter. 

 New tissue production: somatic and gonadic growth 

The net energy 𝐸𝑃 contributes to the production of new tissues with a varying proportion 𝜌 being 
allocated to the gonadic compartment 𝑔(𝑖, 𝑡) and a proportion (1 − 𝜌) to the somatic one 𝑤(𝑖, 𝑡). 
This proportion depends on the sexual maturity status 𝑚(𝑖, 𝑡) of the schools’ individuals and their 
somatic mass 𝑤(𝑖, 𝑡). Before sexual maturation, i.e., when the maturity status 𝑚(𝑖, 𝑡) = 0, 𝜌 is equal 
to 0 and, after maturation, i.e., when 𝑚(𝑖, 𝑡) = 1, 𝜌 is determined such that the annual mean 

gonado-somatic index of individuals 
𝑔(𝑖,𝑡)

𝑤(𝑖,𝑡)
 is constant throughout their adult life-stage and equal to 𝑟 

(Boukal et al. 2014; Lester, Shuter, et Abrams 2004; Quince, Abrams, et al. 2008): 

𝜌(𝑖, 𝑡) = 𝑚(𝑖, 𝑡)
𝑟

𝜂 𝐸P̅̅ ̅̅ (𝑖)
 𝑤(𝑖, 𝑡). (10) 

where, 𝜂 is the ratio of energy density between somatic and gonadic tissues, 𝐸P
̅̅ ̅(𝑖) =

∆𝑡

𝑎(𝑖,𝑡)
∑ 𝐸𝑃(𝑖, 𝑡′) 

𝑡′=𝑎(𝑖,𝑡)/∆𝑡
𝑡′=0 is the average net energy available per time step to individuals of school 𝑖 

since their birth, with ∆𝑡 being the duration of a time step. Eq. 10 differs from a deterministic 
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continuous time version of the same model (Boukal et al. 2014; Lester, Shuter, et Abrams 2004; 
Quince, Abrams, et al. 2008) where the current net energy 𝐸𝑃(𝑖, 𝑡) would be used instead of the 
average 𝐸𝑃

̅̅̅̅ (𝑖). The averaging in a stochastic discrete time individual-based model such as Bioen-
OSMOSE ensures a smooth increase of the proportion 𝜌 as individuals grow by dampening strong 
variations in 𝐸𝑃(𝑖, 𝑡) and thus in 𝜌(𝑖, 𝑡) due to the stochasticity of prey encounters and hence of the 
ingested energy 𝐼(𝑖, 𝑡). 

According to the definition of 𝜌, all net energy 𝐸𝑃 is allocated to somatic growth before maturation 
and it is shared between somatic and gonadic growth after, with the proportion 𝜌 allocated to 
gonads increasing with somatic mass (Boukal et al. 2014), which limits somatic growth as individuals 
become bigger. In case the mobilized energy 𝐸𝑀 cannot cover the maintenance costs 𝐸𝑚, i.e., when 
𝐸𝑃 < 0, new tissue production is not possible and the gonadic compartment 𝑔(𝑖, 𝑡) is resorbed to 
provide energy for sustaining maintenance. Somatic growth is then defined as follows: 

𝑑𝑤

𝑑𝑡
(𝑖, 𝑡) = {

(1 − 𝜌(𝑖, 𝑡)) 𝐸P(𝑖, 𝑡) if 𝐸P(𝑖, 𝑡) ≥ 0

0 otherwise
 (11) 

and gonadic growth as: 

𝑑𝑔

𝑑𝑡
(𝑖, 𝑡) = {

𝜂 𝜌(𝑖, 𝑡) 𝐸P(𝑖, 𝑡) if 𝐸P(𝑖, 𝑡) ≥ 0

𝜂 𝐸P(𝑖, 𝑡) if − 𝑔(𝑖, 𝑡) ≤ 𝜂 𝐸P(𝑖, 𝑡) < 0 
−𝑔(𝑖, 𝑡) if 𝜂 𝐸P(𝑖, 𝑡) < −𝑔(𝑖, 𝑡) <  0

 (12) 

where the second and third conditional formulas account for maintenance coverage by energy 
reserves contained in gonads. In the former case, gonads’ energy can fully cover maintenance costs 
but in the latter it cannot, so that individuals undergo energetic starvation and incur additional 
starvation mortality (see Supporting Information S3). 

 Maturation 

Age and size at maturation vary strongly between individuals due to phenotypic plasticity. This 
plasticity in maturation is modeled by a deterministic linear maturation reaction norm (LMRN) that 
represents all the age-length combinations at which an individual can become mature (Stearns, 1992; 
Stearns & Koella, 1986). In this framework, individuals become sexually mature when their growth 
trajectory in terms of body length intersects the LMRN. The maturity status 𝑚(𝑖, 𝑡) of individuals of 
school 𝑖 at time step 𝑡 is thus described as:  

𝑚(𝑖, 𝑡) = {
0 if 𝐿(𝑖, 𝑡) < 𝑚0 + 𝑚1 𝑎(𝑖, 𝑡) (immature)

1 if 𝐿(𝑖, 𝑡) ≥ 𝑚0 + 𝑚1 𝑎(𝑖, 𝑡) (mature)
  (13) 

with 𝑚0 and 𝑚1 the intercept and slope of the LMRN, respectively.  

 Reproduction 

Mature individuals spawn during the breeding season, then a gonad portion is used to release eggs, 
what is represented by a gonad portion released 𝑠𝑝(𝑡′) above 0. The sex-ratio is assumed to be 1:1 
for all species and the number of eggs produced by school 𝑖 at time 𝑡 is defined as follows:  

𝑁𝑒𝑔𝑔𝑠(𝑖, 𝑡) = 𝑠𝑝 (𝑡 𝑚𝑜𝑑 
365

𝛥𝑡
) 𝑁(𝑖, 𝑡)  

𝑔(𝑖,𝑡)

2𝑤egg 
 (14) 
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with 𝑡 𝑚𝑜𝑑 
365

𝛥𝑡
 giving the time of the year at time step 𝑡 for a time step size of 𝛥𝑡, and 𝑤𝑒𝑔𝑔 the 

mass of an egg.  

At each time step 𝑡 of the breeding season (i.e., 𝑡 for which 𝑠𝑝 (𝑖, 𝑡 𝑚𝑜𝑑 
365

𝛥𝑡
) > 0) , 𝑛𝑠(𝑖) new 

schools are produced by species 𝑠(𝑖), with the number of eggs, and thus individuals, per new school 
𝑖′ calculated as follows:  

𝑁(𝑖′, 𝑡) =
∑ 𝑁𝑒𝑔𝑔𝑠(𝑗,𝑡)𝑗|𝑠(𝑗)=𝑠(𝑖)

𝑛𝑠(𝑖) 
 (15) 

with ∑ 𝑁𝑒𝑔𝑔𝑠(𝑗, 𝑡)𝑗|𝑠(𝑗)=𝑠(𝑖)  the total number of eggs produced by schools of species 𝑠(𝑖) at time step 

𝑡, age of offspring set to 0, 𝑎(𝑖′, 𝑡) = 0, their somatic mass to the mass of an egg, 𝑤(𝑖′, 𝑡) = 𝑤𝑒𝑔𝑔, 

and their gonadic mass to 0, 𝑔(𝑖′, 𝑡) = 0. The new schools are released randomly in the grid, 
following the relevant species distribution map corresponding to the larval stage (Supporting 
Information S7).  

 Mortality 

At each time step, a school experiences several mortality sources. The total mortality of a school 𝑖 is 
the sum of predation mortality caused by other schools, starvation mortality, fishing mortality, and 
additional mortalities (i.e. larval, senescence, diseases, and non-explicitly modeled predators). For a 
school 𝑖, the starvation mortality results from the encountered food, the environmental abiotic 
variables and its maintenance rate. If the mobilized energy 𝐸𝑀 covers the maintenance costs 𝐸𝑚, 
there is no starvation. However, if the mobilized energy 𝐸𝑀 is lower than the maintenance costs, the 
school 𝑖 has an energetic deficit. In this case, the gonad 𝑔(𝑖, 𝑡) is used as a reserve. In case the gonad 
content does not cover the exceeding maintenance costs, the school 𝑖 faces starvation mortality 
proportionally to the remaining energetic deficit. If a school's abundance decreases to less than one 
during the mortality process, the school is considered dead and removed from the system at the end 
of the time step. The equations and details about all mortality processes are in Supporting 
Information S3. 
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Table 1: Variables and functions of the bioenergetics and life-history sub-models. (𝛥𝑡:time step duration) 

Symbol Description Units Equations 

Entities: Fish schools 

Ontogenic state 

State variables 

𝑎(𝑖, 𝑡) Age of school 𝑖’s individuals at time step 𝑡 𝑦 3, 13 

𝑤(𝑖, 𝑡) Somatic mass of school 𝑖’s individuals at time step 𝑡 g 2, 7, 10,11 

𝑔(𝑖, 𝑡) Gonadic mass of school 𝑖’s individuals at time step 𝑡 g 12, 14 

Emerging individual variables 

𝐿(𝑖, 𝑡) Total length of school 𝑖’s individuals at time step 𝑡 cm 1,13 

𝑚(𝑖, 𝑡) Maturity state of school 𝑖’s individuals at time step 𝑡 ‒ 10, 13 
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𝑎𝑚(𝑖) Maturation age of school 𝑖’s individuals 𝑦  

𝑤𝑚(𝑖) Maturation somatic mass of school 𝑖’s individuals g  

𝐿𝑚(𝑖) Maturation length of school 𝑖’s individuals cm  

𝑁𝑒𝑔𝑔𝑠(𝑖, 𝑡) Total fecundity of school 𝑖 at first time step 𝑡 of the breeding season # 14, 15 

Abundance: State variable 

𝑁(𝑖, 𝑡) Number of individuals in school 𝑖 at time step 𝑡 # 1, 14,15  

𝐵(𝑖, 𝑡) Biomass of school 𝑖 at time step 𝑡 𝑔 1 

Spatial Location: State variable 

𝑐(𝑖, 𝑡) Grid cell of school 𝑖 at time step 𝑡 ‒ 1 

Taxonomic identity: State variable 

𝑠(𝑖) Species to which school 𝑖 belongs  ‒  
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Bioenergetics 

Emerging individual variables 

𝑃(𝑖, 𝑡) Available prey biomass to an individual of school 𝑖 at time step 𝑡 𝑔 1, 2 

𝜓(𝑖, 𝑡) Life-stage dependent multiplicative factor of maximum mass-specific ingestion rate of school 𝑖 at time step 𝑡 ‒ 2, 3 

𝐼(𝑖, 𝑡) Ingestion rate of individuals in school 𝑖 at time step 𝑡 𝑔 ∙ 𝛥𝑡−1 2, 4 

𝐸𝑀(𝑖, 𝑡) Mobilized energy rate of individuals of school 𝑖 at time step 𝑡 𝑔 ∙ 𝛥𝑡−1 4, 9 

𝐸𝑚(𝑖, 𝑡) Maintenance cost rate of individuals of school 𝑖 at time step 𝑡 𝑔 ∙ 𝛥𝑡−1 7, 9 

𝐸𝑃(𝑖, 𝑡) Net energy available for new tissue production 𝑔 ∙ 𝛥𝑡−1 9, 10, 11, 12 

𝜌(𝑖, 𝑡) Proportion of net energy allocated to gonadic growth ‒ 10, 11, 12 

𝑑𝑤

𝑑𝑡
(𝑖, 𝑡) 

Somatic growth rate 𝑔 ∙ 𝛥𝑡−1 11 
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𝑑𝑔

𝑑𝑡
(𝑖, 𝑡) 

Gonadic growth rate 𝑔 ∙ 𝛥𝑡−1 12 

Functional responses 

𝑓(𝑃) Holling’s type 1 functional response to prey biomass 𝑃 ‒ 2 

𝜆([𝑂2]) Dose-response function of energy mobilization to dissolved oxygen concentration [𝑂2] ‒ 4, 5 

𝜑𝑀(𝑇) Response of energy mobilization to temperature 𝑇 ‒ 4, 6 

𝜑𝑚(𝑇) Response of maintenance rate to temperature 𝑇 ‒ 7, 8 

Spatial scales and units: grid cells 

Spatial coordinates: State variables 

𝑥(𝑐) Longitude of grid cell 𝑐   

𝑦(𝑐) Latitude of grid cell 𝑐   
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Physico-chemical factors: State variables 

𝑝𝑐𝑘(𝑐, 𝑡, 𝑧) Value of physico-chemical factor 𝑘 of grid cell 𝑐 at time step 𝑡 of layer 𝑧   

𝑇(𝑐, 𝑡) Temperature of grid cell 𝑐 at time step 𝑡  K 4, 6, 7, 8 

[𝑂2](𝑐, 𝑡) Dissolved O2 concentration of grid cell 𝑐 at time step 𝑡  % 4, 5 

Biomass of LTL: State variables 

𝐵𝐿𝑇𝐿(𝑐, 𝑗, 𝑡)) Biomass of 𝐿𝑇𝐿 group 𝑗 of grid cell 𝑐 at time step 𝑡 𝑔  

Table 2: Species- specific parameters of the bioenergetic and life-history sub-model. (𝛥𝑡: time step duration). One parameter is constant across species, 

namely the Boltzmann constant (𝑘𝐵 = 8.62 𝑒−5𝑒𝑉. 𝐾−1). 

Symbol Description Units Equations Source 

Ingestion, assimilation and mobilization  

𝑅𝑚𝑖𝑛 , 𝑅𝑚𝑎𝑥 Minimum and maximum predator to prey size ratio ‒ 1  Literature 

 Accessibility coefficient of prey species 𝑠(𝑗) to predator species 𝑠(𝑖) according to life stage ‒ 1 Literature 
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𝛾(𝑖, 𝑗) 

𝐼𝑚𝑎𝑥 Maximum mass-specific ingestion rate 𝑔 ∙ 𝑔−𝛽

∙ 𝛥𝑡−1 

2 Calibrated 

𝛽 Scaling exponent of maximum ingestion rate and maintenance rate with body mass ‒ 2, 7 Assumed 

𝜃 Multiplicative factor of maximum mass-specific ingestion rate at larval stage ‒ 3 Estimated1 

𝑎𝑙  Age at the end of the fast growth period 𝑦 3 Literature 

𝜉 Assimilation efficiency ‒ 4 Literature 

𝑐𝑂,1 Asymptote of energy mobilization dose-response function to dissolved oxygen saturation ‒ 5 Estimated2 

𝑐𝑂,2 Slope of energy mobilization dose-response function to dissolved oxygen saturation % 5 Estimated2 

𝜀𝑀 Increasing activation energy of the energy mobilization temperature function 𝑒𝑉 6 Estimated3 

𝜀𝐷 Declining activation energy of the energy mobilization temperature function 𝑒𝑉 6 Estimated3 
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𝑇𝑝 Temperature of peak value in energy mobilization K 6 Estimated3 

𝛷 Normalization constant of the energy mobilization temperature function ‒ 6 Estimated3 

Maintenance  

𝑐𝑚 Mass-specific maintenance rate  

𝑔 ⋅ 𝛥𝑡−1 

7 Literature 

𝜀𝑚 Activation energy of the maintenance temperature function 𝑒𝑉 8 Estimated3 

Maturation     

𝑚0 Intercept of the maturity reaction norm  𝑐𝑚 13 Estimated1 

𝑚1 Slope of the maturity reaction norm  𝑐𝑚 ∙ 𝑦−1 13 Estimated1 

New tissue production  

𝜂 Energy density ratio between somatic and gonadic tissue ‒ 10, 12 Literature 
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𝑘 Allometric length-somatic mass relationship coefficient 𝑔. 𝑐𝑚−𝛼  Estimated4 

𝛼 Allometric length-somatic mass relationship exponent −  Estimated4 

Reproduction  

𝑟  Gonado-somatic index  ‒ 10 Estimated1 

𝑤𝑒𝑔𝑔 Egg mass 𝑔 14 Estimated5 

𝑠𝑝(𝑡) Spawning seasonality expressed as a fraction of the gonad energy available at the time step 𝑡 ‒ 14 Literature 

𝑛𝑠(𝑖) Number of new schools produced at each time step of the breeding season for the species 𝑠 of 
school 𝑖 

# 15 Arbitrary 

1 from Size Maturity Age Length Key (SMALK) data (see Supporting Information S2.1) 

2 from ecophysiological data (see Supporting Information S2.4) 

3 from a combination of SMALK and thermal tolerance data (see Supporting Information S2.3) 

4 from length-mass data 

5 from fecundity data (see Supporting Information S2.5) 
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 Application to the North Sea ecosystem: Bioen-OSMOSE-NS 

 Area and explicit species 

Figure 3: Case study area map. The 
Bioen-OSMOSE-NS area is delimited 
with the red line. The area is divided in 
632 regular cells of 0.25° x 0.5° 
delimited with black lines. 

The Bioen-OSMOSE-NS area includes 
the North Sea (ICES area 4) and the 
eastern English Channel (ICES area 7d), 
excluding the area deeper than 200m 
(notably the Norwegian Trench), and 
extends from 49° N to 62° N and from 
4° W to 8.5° E (red delimitation in Fig. 
3). The model covers the area by 632 
regular cells of 0.25° x 0.5°. 16 HTL 
species are modeled explicitly, 
accounting for 89% of the total 
fisheries landings in the area over the 
period 2010-2017 (ICES 4abc and 7d) 
and more than 90% of the scientific 
North Sea International Bottom Trawl 
Survey (NS-IBTS-Q1, DATRAS) catches. 
There are five pelagic species, seven 
demersal species, three benthic flatfish 
and one shrimp functional group. The 
species and their input parameters are 
listed in Supporting Information S4, 
Table S3, and the data sources, 
references, and/or methodology to 

estimate these parameters are presented in the Supporting Information S6. The species spatial 
distributions are described by presence/absence maps, and informed per life stages (egg-larvae, 
juvenile, and adult) whenever information was available (Supporting Information S7). As individuals 
are represented in a 2D horizontal environment, a predator-prey accessibility matrix 𝛤, used to 
determine the accessibility coefficient 𝛾(𝑖, 𝑗) (see Eq. 1 and Table 2), is defined according to the 
vertical distribution overlap between potential predator and prey species possibly per life stage 
(Supporting Information S4, Table S5). The gonad portion released 𝑠𝑝(𝑡) is estimated from the 
seasonality of eggs’ release (see Supporting Information S2.5). The seasonality of eggs’ release data 
are taken from the literature and presented in Supporting Information S8. The fishing mortality rates 
are size-dependent due to fisheries size-selectivity. The calibrated maximum fishing mortality rates 
𝐹𝑚𝑎𝑥  are in Supporting Information S4, Table S3. The species-specific fishing selectivity curves are in 
Supporting Information S11. The larval and additional mortality are in Supporting Information S4, 
Table S3.  

 Forcing variables: low trophic levels and physical variables 
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The Bioen-OSMOSE model is forced by temperature and oxygen variables and by LTL biomass fields. 
The forcing data come from the regional biogeochemical model POLCOMS-ERSEM applied to the 
North Sea ecosystem (Butenschön et al. 2016). The modeled period is 2010-2019. There are five 
pelagic (micro-phytoplankton, diatoms, heterotrophic flagellates, micro-zooplankton, meso-
zooplankton) and three benthic (suspension feeders, deposit feeders and meiobenthos) LTL groups 
(Supporting Information S5): the biomass of the former is available in three dimensions and 
therefore integrated vertically, while the biomass of the latter is available in two-dimensions. Two 
other groups of large and very large benthos are set as homogeneous prey fields in space and time 
due to the absence of data and model output for these LTL groups. For the temperature and oxygen 
variables, their values are integrated over the 43 vertical layers of POLCOMS-ERSEM to force pelagic 
and demersal HTL species, which are assumed to be able to move vertically and access most of the 
water column of the shallow North Sea. Only the values in the deepest layer are used for benthic 
species. Monthly maps for each LTL group and temperature and oxygen variables are shown in 
Supporting Information S9. 

 Calibration  

The model is calibrated, i.e., parameters for which an independent estimator is unavailable are 
estimated, using maximum likelihood estimation based on an optimization method adapted to high-
dimensional parameter space, namely an evolutionary algorithm available in the package calibraR in 
R (Oliveros-Ramos & Shin, 2016). The algorithm explores the space of unknown parameters (referred 
to as “calibrated” in Supporting Information S4, Table S3) so as to maximize the likelihood obtained 
by comparing model outputs to observed data. Data used to calibrate Bioen-OSMOSE-NS are 
fisheries landings (ICES 2019a), size-at-age from scientific surveys (NS-IBTS-Q1, North Sea 
International Bottom Trawl Survey (2010-2019), available online at http://datras.ices.dk) and 
estimated biomasses for assessed species (ICES 2016; 2018a; 2018b; 2018c; 2019b). The discard rate 
of assessed species is low except for dab and plaice: the data used as landings and biomass for these 
species includes estimated discards from stock assessments. The biomasses estimated for stocks 
entirely located within the study area are directly used (herring, sandeel, sprat, sole, and whiting). 
For stock with a wider distribution than the study area, the biomass data is taken proportional to 
total stock biomass according to the ratio between landings in the study area and total landings 
(mackerel, norway pout, plaice, saithe, cod, haddock, dab, hake). There is no biomass target value for 
unassessed species (horse mackerel, grey gurnard, hake, shrimp). The calibration is performed for an 
average state of the ecosystem for the period 2010-2019 by using observed data averaged over the 
period as target values (Supporting Information S10). The calibration is run using four phases with a 
new set of parameters to be estimated added at each phase for better convergence of the 
optimization, a procedure adapted to non-linear parameter estimation (Nash et Walker-Smith 1987) 
and especially when dealing with complex ecosystem models (Oliveros-Ramos et al. 2017): the first 
phase calibrates the LTL group accessibility coefficients only (Supporting Information S5), the larval 
mortalities are added for the second phase (Supporting Information S4, Table S3), the maximum 
ingestion 𝐼𝑚𝑎𝑥 rates are added on phase three (Supporting Information S4, Table S3), and the 
maximum fishing mortality rates and the additional mortality rates are added in the last phase 
(Supporting Information S4, Table S3).  

The calibrated configuration is run for 80 years. The first 70 years is the spin-up period, a period 
during which the system stabilizes. The results presented hereafter are the years after the spin-up 
period. 28 replicates of the model are run with the same parameterization to account for Bioen-
OSMOSE stochasticity.  

 Results and discussion 
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In this paper, we present the Bioen-OSMOSE framework with its first application to the North Sea 
ecosystem, involving the coupling of the POLCOMS-ERSEM model for the physical and LTLs model 
with the HTLs Bioen-OSMOSE model. The North Sea trophic network has been intensively studied 
and modeled , either considering the whole ecosystem (Blanchard et al., 2014; Cormon et al., 2016; 
Heath, 2012; Lewy, 2004; Mackinson & Daskalov, 2007) or part of it (including the English Channel) 
(Girardin et al. 2018; Stäbler et al. 2016; Travers-Trolet et al. 2019; Wolfshaar et al. 2021).  

This is the first time that the Bioen-OSMOSE model is used, i.e., the OSMOSE model (Shin & Cury, 
2004) augmented with a mechanistic description of the emergence of life history from underlying 
bioenergetics and its response to temperature and oxygen seasonal and spatial variations. The Bioen-
OSMOSE model is a theoretical improvement of the OSMOSE model and it widens the range of 
questions that can be addressed by the OSMOSE model, in particular the impacts of climate change 
at different levels: individual physiology, population dynamics, and trophic interactions. 

 Model evaluation 

The calibration procedure allowed us to estimate unknown parameters to obtain a model 
configuration that fairly accurately represents the North Sea ecosystem. As suggested in the pattern-
oriented modeling approach (Grimm et al. 2005; Grimm et Railsback 2012; Cury et al. 2008), a strong 
evidence of the realistic structure of a model is its capacity to reproduce patterns observed at 
different scales and hierarchical levels. Particular attention was then paid to obtaining satisfactory 
results for variables at different biological levels, the final result giving a balanced fitting  between 
variables used as target during the calibration (size-at-age, catch and biomass) and variables at 
population and community scales not used for the calibration (maturation and diet) enabling the 
cross-validation of the model. 

 The individual level: size structure and maturity ogives 
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Figure 4: Boxplot of size-at-age per species for observed (pink) and simulated (blue) individual data. 
Horizontal bars represent the first, second and third quartiles. The whiskers’ extremities represent 
1.5 times the interquartile space (the distance between the first and third quartile). The shrimp 
group was not represented in this graph, as available observed data are not sufficiently 
taxonomically resolved to be relevant for this functional group.  

The simulated mean sizes-at-age correctly reproduce the observed ones (Fig. 4), supporting the 
credibility of the growth process described by the new bioenergetic sub-model. The Von-Bertalanffy-
like shape and the indefinite growth are two realistic properties reproduced with our model. As 
observed in the data, it can be noted that growth is faster during the first years of life and the sizes at 
older ages slowly tend to an infinite size. The simulated and observed sizes-at-age interquartile 
ranges overlap for almost all age classes of the species. The simulated size hierarchy between species 
is consistent with the observed one, which is a key expected property for a size-based model. 

The simulated sizes-at-age 1 have generally the poorest fit to observed data. Size-at-age class 1 partly 
inherits uncertainties linked to size at hatching and to the growth rate at very early stages, notably 
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the larval one, that is imperfectly accounted for by the multiplicative factor of maximum mass-
specific ingestion rate for the larvae at larval stage 𝜃. In addition, growth during the first year is 
mainly driven by food limitation implying that the size-at-age class 1 is the result of a complex model 
adjustment between growth rate, competition and prey accessibility.  

The variance in size-at-age differs between observed and simulated data, mainly for demersal 
species. The observed variance in sizes-at-age is the result of macro-environmental variations, i.e, in 
the abiotic environment (Brown et al. 2004; Gislason et al. 2010; Thomas et al. 2019) and food 
availability (Brosset et al. 2016), micro-environmental variations, i.e., in undetectable or unaccounted 
for environmental conditions, and genetic variability in energy allocation inducing variability in size-
at-age (Enberg et al. 2012). In contrast, the variance of simulated size-at-age only results from macro-
environmental variations. Thus, the species with observed variance higher than the simulated 
variance is because genetic and micro-environmental variances are not modeled here.  

Comparison of observed and simulated age and size maturity ogives (defined as the proportion of 
mature individuals in the population as a function of age or size) demonstrate the ability of Bioen-
OSMOSE to correctly reproduce maturation patterns (Fig. 5). The simulated mean age at first 
maturation perfectly matches that observed for three species (cod, norway pout, and whiting). In 
observed data, age is given with yearly resolution. Therefore, we consider that a correct pattern is 
obtained for seven additional species for which the difference between simulated and observed age 
at maturity is less than one year (grey gurnard, haddock, hake, herring, mackerel, plaice and sole). 
The worst deviation is obtained for sprat and saithe with simulated maturation occuring at later ages 
and larger sizes than that observed. Saithe and sprat have lower mean sizes at early ages than 
observed ones (Fig. 4) which can explain the late simulated maturation. However, both species have 
simulated maturation ages that stand within observed ranges, being lower than the upper bounds of 
observed maturation ages, namely 9 years for saithe in the North Sea (Cohen et al. 1990) and 4 years 
for sprat (Ojaveer et Aps 2003) in the Baltic Sea (only mean values were reported for the North Sea 
population).  

The use of linear maturation reaction norms improves the description of the variability in the 
maturation process compared to the use of fixed age or size at maturity, as is most commonly done 
in marine ecosystem models, such as previously in the OSMOSE framework (Shin & Cury, 2004) or in 
other models (Audzijonyte et al. 2019). Consequently, individuals from the same size or age class do 
not necessarily have the same maturity state (Fig. 5), which increases the realism of the life cycle 
description. For the majority of the species, the slope of simulated age and size maturity ogives is 
higher than the observed one, meaning that the observed maturation process is more variable than 
in simulations. As for size-at-age, part of the observed variability in maturation is determined by 
genetic and/or micro-environmental variability (Law 2000, 200; van Wijk et al. 2013) and is not 
modeled here. 
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Figure 5: Age (A) and size (B) maturity ogives per species for observed (pink) and simulated (blue) data. 
Results are shown for species for which there is enough data to estimate and plot the observed age 
and size maturity ogives. Age data have a yearly resolution and size data a 2-centimeter resolution. The 
simulated (blue) and observed (pink) mean age at maturity are represented by vertical lines (A). The 
mean size at maturity is not represented. The observed size maturity ogive is not strictly increasing and 
does not allow a reliable estimation of the maturation size. 
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 The population level: fisheries catches and species biomass 

Given the high statistical confidence in catch data, a greater weight was given to the corresponding 
likelihood component in the calibration process which resulted in reaching targets, i.e., simulated 
catches were within the range of observed values, for the majority of species (Fig. 6A). Plaice and dab 
are the two species for which the simulated catches were the farthest from their targets. Plaice and 
dab are two by-catch species that are largely discarded. These discards are estimated to be up to 
40% for plaice and 90% for dab (ICES 2018c). The catch data used as target here is reconstructed 
from the landings and discards estimates, which, in case of overestimation of discards, could explain 
the discrepancy between the target and the simulated values. The poor fit of plaice could also be 
partially explained because the migrations between the Eastern and Western English Channel stocks 
are not taken into account in Bioen-OSMOSE-NS (ICES 2021).  

The simulated biomasses are within acceptable ranges (Fig. 6B) and the resulting dominance ranking 
between species groups respects the ranking based on stock assessment estimations: small pelagic 
fish are the dominant group with herring as the main species. Demersal species have lower 
biomasses with saithe and haddock as the most abundant ones. Flatfish are the minority group in the 
system, which is dominated by plaice.  

The simulated biomasses of mackerel and sandeel are underestimated compared to the stock 
assessment biomass estimates (Fig. 6B). Mackerel is a widely distributed stock in the North East 
Atlantic area and our biomass estimate in the North Sea (proportional to the total biomass in the 
North East Atlantic according to the ratio between North Sea landings and total landings) relies on 
the assumption of a uniform fishing effort in the assessed area. A higher fishing effort within the 
North Sea would lead to an overestimation of the target biomass for the area, which is credible since 
the North Sea is a historically heavily fished area. An ecopath model of the North Sea (Mackinson & 
Daskalov, 2007) also estimated a lower biomass for this species (980 400 t). Underestimation for 
sandeel is more troublesome as it is a key forage species in the North Sea (Engelhard et al. 2014), for 
which the stock assessment is considered to be very detailed with 7 stocks in the area (ICES 2016). 
The fact that the Bioen-OSMOSE-NS model does not describe the peculiar overwintering behavior of 
this species, which buries itself in sand and thus is less vulnerable to fishing and predation in winter 
(Henriksen et al. 2021), may explain the underestimation of its biomass. The sandeel may also be 
over-consumed by higher tropic level species in our model, indicating a missing forage species or an 
over-consumption of sandeel over LTL forced prey.  

In Bioen-OSMOSE-NS, flatfish are represented by only the three main species of the North Sea 
ecosystem. However, there are other flatfish species each with low biomass levels (Scophthalmus 
maximus, Microstomus kitt, Scophthalmus rhombus, Platichthys flesus…) (NS-IBTS-Q1, DATRAS, Piet 
et al., 1998) but whose total biomass is not negligible (NS-IBTS-Q1, DATRAS, Mackinson & Daskalov, 
2007). Thus, the overestimation of plaice biomass may compensate for the absence of these other 
flatfish in the model that may leave an empty trophic niche.  

The high biomass of the shrimp functional group, dominated in the ecosystem by the species 
Crangon crangon and Pandalus borealis, may seem surprising. However, as the micro- and meso-
zooplankton groups described by the biogeochemical model POLCOMS-ERSEM represent pelagic 
prey of sizes smaller than 0.5 cm only, we suggest that the shrimp functional group has a broader 
ecological role in the Bioen-OSMOSE-NS model by actually representing all LTL prey larger than 0.5 
cm in the water column, whose biomass is critical to sustain the food web. These prey include 
demersal crustaceans with diel vertical migration such as Crangon crangon or Pandalus borealus as 
well as more pelagic species such as large amphipods (large Bathyporeia elegans) or euphausiids 
(Thysanoessa sp., Meganyctiphanes norvegica).  
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Figure 6: Fisheries catches (A) and biomasses (B), in thousand tons, per species for stock assessment 
estimates and simulated data. The boxplots represent the simulated data for 28 replicated 
simulations (stochastic model) for the catches and biomasses per species, with the first, second and 
third quartiles represented horizontally in each plot. The gray bars show the minimal and maximum 
values observed for catch and biomass estimates from stock assessment for the 2010-2019 period. 
The species without gray bars for biomasses are not assessed in the area. 

 The community level: trophic diets  
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Figure 7: Diet in percent of biomass eaten of prey species per size class of the predator species in cm. 
For each predator species, the last size class (x-axis) includes all the larger individuals. 

In Bioen-OSMOSE, the diet emerging from opportunistic predation reflects the species’ relative 
abundances, their sizes and their spatio-temporal overlap. There are no pre-established predator-
prey diet matrix in the parameterization of the model so confronting the output diets to observed 
ones, especially in terms of species composition, is a way to validate the model properties.  

The simulated diets show patterns that are consistent with observations (Fig. 7). The model 
reproduces correctly observed ontogenetic diet shifts (Timmerman et al. 2020). The prey 
composition shifts between pelagic early-life stages (size class 0-10 cm for fish species and 0-3 cm for 
the shrimp group) and the older life stages for all species. There are different emerging diet patterns 
depending on the predator’s position in the water column. The pelagic species diet is dominated by 
phyto- and especially zoo-planktonic prey, which is consistent with studies on sprat and herring (De 
Silva 1973; Last 1989; Raab et al. 2012). The benthic species diet is composed of benthic LTL groups 
and the shrimp functional group, similarly to results obtained by an isotopic study (Timmerman et al. 
2021), by plaice and sole stomach content studies for adults (Rijnsdorp & Vingerhoed, 2001) and for 
juveniles (Amara et al. 2001) with smaller prey for sole than for plaice and dab of the same size 
(Amara et al. 2001). The demersal species have an intermediate diet composition with a high degree 
of piscivory for the larger fish. There is a steady increase in piscivory with size, mainly for demersal 
species, as shown empirically for whiting, cod, saithe and haddock in the area (Robb & Hislop, 1980; 
Timmerman et al., 2020) but not for norway pout (Robb & Hislop, 1980). In addition, there is a 
significant part of benthic prey in the pelagic species diet, which correctly represents the strong 
pelagic-benthic coupling in this area (Giraldo et al. 2017; Timmerman et al. 2021): the pelagic 
piscivorous fish (mackerel and horse mackerel) also feed on benthic prey which represents half of 
their diet (Giraldo et al. 2017). 
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  Another study simulating the North Sea ecosystem with the 
OSMOSE model forced by different biogeochemical models 
highlights (i) the increase of the total fish biomass with LTL biomass 
and (ii) the low sensitivity of the simulated species composition to 
LTL biomass variations (Wolfshaar et al. 2021). Here, as the 
simulated diets emerge from the species composition of fish and LTL, 
the diet patterns produced in output of our model are expected to 
be robust to the biogeochemical model used for representing LTL 
dynamics. The LTL-HTL interactions and the emerging diets may be 
sensitive to refining the size distribution of LTL biomass (Wolfshaar 
et al. 2021) but this is not represented in currently available 
biogeochemical models. The physiological level: spatial pattern 

New outputs and original questions emerge from the physiological responses of metabolic rates to 
biotic and abiotic variables and can be explored with the Bioen-OSMOSE model. The representation 
of emergent spatially and seasonally varying bioenergetic fluxes is an example of the new features 
brought by Bioen-OSMOSE that can help improve our understanding of the relationship between 
temperature and ecosystem dynamics, which is crucial in the context of global warming (Lindmark et 
al. 2022). This spatial and seasonal variability of metabolism in relation to temperature variation is 
often under-studied.  

The simulated adult mean mass-specific net energy rate for new tissue production 𝑒𝑝̅̅ ̅, is the ratio 

between the population mean mass-specific net energy rate (see Eq. 9) and the weight at the 
exponent 𝛽 and it drives the energy allocated to growth and reproduction. It is spatially represented 
as an output example (Fig. 8). This spatial representation of emerging bioenergetic fluxes highlights 
the high variability of mean mass-specific net energy rate for three widely distributed species in the 
North Sea ecosystem with contrasted thermal preferences: cod, herring and dab (quoted by 
increasing physiological optimum temperature 𝑇𝑜𝑝𝑡, defined in Fig. 2). The spatial pattern of mean 

mass-specific net energy is mainly explained by species thermal preferences. The species with the 
lowest thermal preference (cod) has a greater net energy acquisition in the northern part of the area 
where the water is colder on average. The opposite pattern emerges for the species with the highest 
thermal preference (dab). There is a better energy acquisition in the south where the average 
temperature is higher than in the north. A similar spatial pattern for growth rate was predicted as 
outputs of a single-species bioenergetic model for two thermophilic flatfish in the North Sea (Teal et 
al. 2012). Herring, which has an intermediate thermal preference, exhibits a more spatially 
homogeneous emerging mean mass-specific net energy rate. During the period described by our 
model (2010-2019), temperature is the main driver of spatial variability in bioenergetic fluxes for 
these three species. The spatial distribution of food has little or no impact on adult energy acquisition 
for these examples as we observe that simulated food ingestion frequently reaches the maximum at 
the adult stage (results not shown). Likewise, oxygen saturation has little impact on the emerging 
spatial pattern because oxygen saturation is not low enough to become a primary driver of 
bioenergetic fluxes (Vaquer-Sunyer & Duarte, 2008, Supporting Information S9).  
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Figure 8: Spatial variability of the mean adult mass-specific net energy rate available for new tissue 
production, per model cell for cod, herring and dab. These three species are distributed over the 
whole modeled area although they have different optimum temperatures 𝑇𝑜𝑝𝑡. Cod, herring and dab 

mean adult mass-specific net energy available rate for new tissue production averaged over the area 

are 7.4, 3.3, and 2.7 𝑔. 𝑔−𝛽, respectively. Spatial variations of this bioenergetic flux can be driven by 
temperature, oxygen and food variation.  

 Conclusion 

Applying Bioen-OSMOSE to the North Sea allows demonstrating the feasibility of its parameterization 
for several species with different levels of available knowledge and allows evaluating the framework 
capabilities. Bioen-OSMOSE-NS simulates many different outcomes at different scales and levels of 
organization that convincingly reproduce observations such as biomasses, catches, sizes at age, 
maturation ogives, and diets. The model also produces compelling spatial responses of the 
bioenergetic fluxes to temperature variations.  

The Bioen-OSMOSE framework is also intended to be used for hindcast or forecast simulations. 
Hindcasting could help disentangling the effects of temperature increase and/or oxygen depletion on 
the historical trends in life-history traits. Hindcasting with Bioen-OSMOSE could also be useful to 
understand the contribution of temperature- and oxygen-induced physiological changes in 
population and community dynamic alterations that were observed in past periods. Given the 
increasing need to reliably forecast biodiversity under future climate change scenarios, we believe 
that Bioen-OSMOSE will also allow improving projections of regional ecosystem dynamics by taking 
into account future individual-level physiological changes and their consequences at the population 
and community levels.  
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temperature and oxygen 

 A successful confrontation of the model to data in a North Sea case study 

 An efficient model for simulating size-at-age, maturation, diet, biomass, and catch patterns 

 A suitable tool to explore the spatial variation of individual indicators in response to 
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