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A B S T R A C T   

Fish are ectotherms and this means they are highly vulnerable to changes in ambient temperature, particularly 
during early developmental stages when temperature can induce persistent effects on phenotypic traits. In this 
study, the effect of egg incubation temperature on the response of juvenile European sea bass (Dicentrarchus 
labrax) to food deprivation and recovery after refeeding was assessed. Eggs were incubated at 11, 13.5 and 16 ◦C 
until hatching and then were reared at a common temperature until 9 months when fish were deprived of food 
for one week. The recovery from food deprivation was evaluated at 10 h and 2 days post-refeeding. Food 
deprivation in fish from eggs incubated at the highest temperature (16 ◦C) compared to 11 and 13.5 ◦C exhibited 
the most morphological and metabolic changes in the liver and foregut. Liver metabolism was changed as 
revealed by the significant reduction in lipid area and the increased number of hepatocyte nuclei. Foregut at-
rophy was coupled to a significant up-regulation of transcripts associated with gluconeogenesis (pck1) and 
peptide absorption (pept1). A modified metabolic response to the fast-refeed regime was revealed by the 
significantly decreased levels of plasma lactate, which may result from up-regulation of transcripts of the thyroid 
axis, deiodinase 2 (dio2) in the foregut. Fish incubated as eggs at a lower temperature (11 ◦C) exhibited less 
changes following the fast-refeed regime. Food deprivation did not significantly modify the morphology of the 
foregut and the liver parenchyma recovered sooner in fish from the 11 ◦C egg thermal regime compared to fish 
from the other thermal regimes following refeeding. The latter group of fish had a temporary stimulation of the 
GH-IGF axis with significant up-regulation of liver insulin-like growth factor I and II (igf-1 and igf-2) after fasting. 
The liver parenchyma of fish from the 13.5 ◦C egg thermal regime (the standard temperature of the hatchery 
stage) did not recover by the end of the experiment and transcripts of catalase (cat), encoding an antioxidant 
enzyme, were significantly downregulated compared to fish from the other egg thermal regimes. Our results 
suggest that thermal imprinting at the egg stage in European sea bass modified the juvenile metabolic response to 
food deprivation and the recovery response when feeding was resumed.   

1. Introduction 

Food deprivation for varying periods of time prior to manipulation is 
a common practice in aquaculture since it reduces physiological stress 
and improves sanitary conditions by minimizing faecal contamination 
(Farming, 2018). Contrary to what occurs during fish aquaculture where 

food is frequently supplied, periods of fasting are a normal occurrence in 
the wild, as a consequence of prey availability or reduced water tem-
peratures (Bar and Volkoff, 2012; Ibarz et al., 2010; Navarro and 
Gutiérrez, 1995). In the context of climate change, sea surface temper-
atures are increasing and modifying global marine ecosystems, and 
changing the distribution of marine organisms (including 
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phytoplankton) and food availability (EEA, 2021; FAO, 2008; IPCC, 
2014). Marine heatwaves are becoming more frequent and lengthier and 
are endangering marine life (Vasseur et al., 2014). As ectotherms, fish 
are highly susceptible to temperature shifts (Alfonso et al., 2021; Vagner 
et al., 2019), and the influence of temperature on early developmental 
stages can have long lasting effects since epigenetic marks that influence 
the phenotypic plasticity of adult fish may be modified (Anastasiadi 
et al., 2017; Jonsson and Jonsson, 2019; Kaitetzidou et al., 2015; 
Metzger and Schulte, 2016; Moghadam et al., 2017; Pittman et al., 2013; 
Sarropoulou et al., 2019). 

The impact of temperature on fish development can be detected 
before blatant physiological or biochemical modifications occur (Geor-
gakopoulou et al., 2007). Initial clues about the potential effects of 
exposure to modified thermal regimes during early life-stages comes 
from observations that fish eggs incubated at higher temperatures 
hatched earlier than eggs incubated at lower temperatures (Jennings 
and Pawson, 1991; Saka et al., 2001) and produced bigger larva during 
subsequent developmental stages (Ayala et al., 2001; Koumoundouros 
et al., 2001). Modified thermal regimes during development also impact 
the adult phenotype in fish and modify the incidence of skeletal de-
formities (Abdel et al., 2004; Boglione and Costa, 2011; Fraser et al., 
2015), muscle growth (Garcia de la serrana et al., 2012; Johnston, 
2006), bone homeostasis (Mateus et al., 2017a; Riera-Heredia et al., 
2018), thermal tolerance (Scott and Johnston, 2012), sex determination 
(Villamizar et al., 2012), reproduction (Donelson et al., 2014), the stress 
response (Mateus et al., 2017b; Varsamos et al., 2006), immune function 
and swimming performance (Kourkouta et al., 2021). Epigenetic marks 
are identified as one factor responsible for phenotypic plasticity and it 
was shown that abiotic factors such as temperature induce them 
(Anastasiadi et al., 2017; Jonsson and Jonsson, 2019; Kaitetzidou et al., 
2015; Metzger and Schulte, 2016; Moghadam et al., 2017; Pittman et al., 
2013; Sarropoulou et al., 2019). But although there is an increasing 
number of studies examining how thermal regimes during development 
affects the adult phenotype of fish, their influence on the response to 
food availability and more specifically prolonged food deprivation has 
not been studied. 

Since periodic lack of food is part of the natural lifecycle of animals 
in the wild a number of studies exist characterising the physiological 
response to food deprivation in fish, reptiles, birds and mammals (Bar 
and Volkoff, 2012; Furne and Sanz, 2018; Hervant, 2012; McCue, 2010; 
Navarro and Gutiérrez, 1995; Power et al., 2000; Secor and Lignot, 
2010; Wang et al., 2006). One of the first consequences of food depri-
vation in fish is modified behaviour since swimming is reduced pre-
sumably to conserve energy (Blaxter and Ehrlich, 1974; Killen et al., 
2011; Rescan et al., 2007; Simpkins et al., 2003; Zheng and Fu, 2021). If 
food deprivation is prolonged metabolic reserves are mobilized from the 
liver and muscles, the condition factor of fish falls (Hvas et al., 2021; 
Pottinger et al., 2003), and the growth rate slows or stops under the 
modulation of the growth axis (Davis and Gaylord, 2011; Fox et al., 
2006; Rescan et al., 2007; Rueda et al., 1998; Siharath et al., 1996). 
Generally, food deprivation induces a stress response in fish (Bermejo- 
Poza et al., 2016; Piccinetti et al., 2015; Rodgers et al., 2003), modifies 
osmoregulation (Alix et al., 2017; Polakof et al., 2006; Wood, 2019), 
improves the innate immune capacity (Agius and Roberts, 1981; Caruso 
et al., 2011; Liao et al., 2021; Martin et al., 2010; Vieira et al., 2011; 
Wang et al., 2019) and enhances antioxidant defence (Antonopoulou 
et al., 2013; Ensminger et al., 2021; Pascual et al., 2003; Yang et al., 
2019). 

The intestine and liver are the organs of the digestive system that 
most rapidly reflect morphological and functional changes in response 
to food deprivation (Rašković et al., 2011; Wang et al., 2006; Zaldúa and 
Naya, 2014). In starved fish, there is a decrease in the length of the gut 
and its wet mass, a reduction in the mucosal fold number and height, a 
decrease in enterocyte and microvilli height, and a modification (in-
crease or decrease) in goblet cell number (Emadi Shaibani et al., 2013; 
Hall and Bellwood, 1995; Krogdahl and Bakke-McKellep, 2005; Zaldúa 

and Naya, 2014; Zeng et al., 2012). Food deprivation not only affects the 
morphology of the gut but also changes the gut microbiome presumably 
to strengthen the immune defence as the intestinal mucosa is changed 
(Butt and Volkoff, 2019; Li et al., 2019; Tran et al., 2018; Xia et al., 
2014). Modifications in the liver of starved fish, such as hepatocyte at-
rophy and modified nuclear size (Hammock et al., 2020; Hur et al., 
2006; Mohapatra et al., 2017; Power et al., 2000; Zaldúa and Naya, 
2014; Zeng et al., 2012), are presumably part of the homeostatic 
response in the initial stage of food deprivation and result from 
increased mobilization of glycogen and lipids mediated by peptides, like 
glucagon, of the brain-gut-axis (Cardoso et al., 2018; Nadav, 2014; 
Navarro and Gutiérrez, 1995). Despite the substantial changes in 
behaviour, physiology, tissue structure and metabolism during short and 
long-term periods of food deprivation, fish can fully recover once 
feeding is resumed (Jia et al., 2019; Navarro and Gutiérrez, 1995; 
Pascual et al., 2003; Power et al., 2000). The mechanisms involved in 
the recovery response after food deprivation and if early thermal re-
gimes can influence this process remains to be established. 

European sea bass (Dicentrarchus labrax, Linnaeus, 1758) is an 
economically important Mediterranean aquaculture species, which in 
the wild spends its embryonic and larval development in a marine 
environment before migrating as juveniles to coastal lagoons and estu-
aries (Bagni, 2021; Jennings and Pawson, 1991). The lifecycle of the 
wild species, particularly the early stages that cannot migrate to cooler 
waters, are likely to be particularly vulnerable in the future to rising 
seawater temperatures as they inhabit regions that are likely to register 
the greatest increase in sea surface temperatures (Azzurro et al., 2019; 
EEA, 2021; Pinto et al., 2021). Under aquaculture conditions thermal 
regimes are controlled and recently there has been increased interest in 
using early thermal regimes to exploit the inherent phenotypic plasticity 
of fish and enhance beneficial traits or overcome less desirable traits 
such as male bias and their early sexual maturation during production 
(Gavery and Roberts, 2017; Moghadam et al., 2015; Vandeputte et al., 
2020; Vandeputte and Piferrer, 2018). The objective of the present study 
was to evaluate if modified temperatures during European sea bass egg 
incubation, when the digestive system is developing (e.g. gut, liver and 
accessory glands) (Cucchi et al., 2012; Zambonino Infante and Cahu, 
2001), modifies the response of juveniles to food deprivation and the 
recovery response on refeeding. Two key organs, the liver and foregut, 
were selected for evaluation by histology and to determine the molec-
ular response to fasting and refeeding, using qPCR and targeting genes 
associated with previously reported responses linked to the growth axis, 
metabolism and the antioxidant response. 

2. Materials and methods 

All experiments were performed at Ifremer, Palavas-Les-Flots, 
France. Experiments were authorized by the ethics committee agree-
ment APAFIS#10745 and all procedures involving animals were in 
accordance with the ethical standards of the institution and followed the 
recommendations of Directive 2010/63/EU. 

2.1. Temperature conditions during early development 

European sea bass eggs (Dicentrarchus labrax) from a West Mediter-
ranean population were obtained by combining eggs from 10 females 
and frozen sperm from 13 males by in vitro fertilization using a full 
factorial crossing design, in October 2016. Eggs were distributed into 9 
different tanks and incubated at 11 ◦C, 13.5 ◦C or 16 ◦C until hatching 
(within the optimal temperature range for European sea bass, Fig. 1A). 
Larvae from all temperature regimes (3 tanks per temperature) were 
then reared following previously optimized procedures for European sea 
bass (Chatain, 1994). Hatching temperatures were gradually changed at 
a rate of 1 ◦C/day to 15 ◦C until December 29th, and then gradually 
increased at the same rate to 25 ◦C by January 3rd of 2017. On February 
15th, 600 fish per experimental tank were randomly transferred into 
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larger tanks (1.5m3) and reared at 21 ◦C throughout the rest of the 
experiment (3 tanks per thermal regime). At 175 dpf, 225 fish per 
thermal regime were randomly selected from all rearing tanks and 
distributed into 3 replicate tanks (common garden design; n = 675 fish 
per common garden). All fish were PIT tagged and then an equal number 
of fish from each thermal regime was mixed in a common tank (a.k.a. 
common garden). The PIT tag permitted the fish from the different 
thermal regimes during the egg phase to be identified during the fast/ 
refeed experiment. Fish were fed using self-feeders until the food 
deprivation and refeeding experiment was run (≈ 9 months old fish). 
The egg temperature programming experiment produced a large stock of 
fish that were used for several independent experiments and provide 
complimentary information about the impact of thermal imprinting on 
several different physiological traits (Mateus et al., 2023; Sadoul et al., 
2021; Sadoul et al., 2022). 

2.2. Food deprivation and refeeding experiment 

To evaluate if egg incubation temperature impacted the general 
physiology of juveniles and their response to food deprivation and 
refeeding, ~9 months old fish from the common gardens were randomly 
distributed between 3 further tanks, which also had a common garden 
design (n = 16/thermal regime/common garden). During fish distribu-
tion, the intramuscular PIT tag in each fish was read to identify the 
thermal background and to ensure an equal distribution of fish from 
each thermal regime in the common garden tanks. Fish were then 
acclimated for 3 weeks prior to the start of the food deprivation and 
refeeding experiment. Four experimental groups were established with 
9 month old thermally imprinted fish from eggs incubated at 11 ◦C, 
13.5 ◦C or 16 ◦C: the Fed/Control group (F), were fed 2.5% their body 

mass per day using a rotating belt feeder; the Starved group (S), fish 
subjected to one week of food deprivation; and two Refed groups (R), 
fish deprived of food for one week and then refed using the same con-
ditions as for the Fed group and sampled at 10 h (10hR) and 2 days after 
refeeding (2dR, Fig. 1B). 

Fish from the fed/control group were sampled from one common 
garden (n = 8/thermal regime) while fish from starved and refed groups 
were sampled from the other 2 common gardens (n = 4/thermal regime/ 
experimental group/common garden). Fish from each experimental 
group (n = 8/thermal regime) were euthanized with 225 mg.L− 1 

benzocaine (E1501, Sigma, USA), and fish from each egg thermal regime 
identified by reading the PIT tag code with a handheld device were 
weighed and measured (Table 1). Blood was collected by caudal punc-
ture using a heparinized 1 mL syringe, transferred to a 1.5 ml micro-
centrifuge tube and centrifuged (10,000 rpm for 5 min) and the plasma 
stored at − 20 ◦C. The liver and the proximal portion of the intestine 
(hereafter named the “foregut”) were sampled and stored in RNAlater® 
(Sigma-Aldrich) at − 20 ◦C until subsequent molecular analysis or fixed 
in 4% paraformaldehyde (PFA) for histology. 

2.3. Plasma analysis 

The physiological condition and response of juvenile European sea 
bass to food deprivation and refeeding was evaluated by determining the 
concentration of cortisol, glucose and lactate in plasma samples (n = 8/ 
thermal regime/experimental group). A validated radioimmunoassay 
was used to determine the cortisol concentrations in plasma samples 
(Rotllant et al., 2005a; Rotllant et al., 2005b). Glucose and lactate were 
quantified in duplicate reactions in 96 well plates using 2.5 μL of non- 
diluted plasma and a commercial colorimetric kit (Ref. 1,001,192 and 

Fig. 1. Experimental design. A: Thermal regimes during early development of European sea bass. Eggs were incubated until hatching at different temperatures: 
11 ◦C, 13.5 ◦C (control) and 16 ◦C. After hatching, larvae from each batch of eggs (thermal regime groups) were reared in the same conditions: larvae were initially 
reared at 15 ◦C and then the temperature was gradually increased until 25 ◦C. Juvenile sea bass were PIT tagged for identification of egg thermal regime and then 
randomly distributed into 3 common garden tanks until the onset of the next experiment (~9 months old sea bass). B: Starvation and refeeding experiment. Juvenile 
fish from different egg thermal regimes (n = 8/thermal regime) were sampled without subjecting them to food deprivation (Control/Fed group = F). The remaining 
fish were deprived of food for one week (Starved group = S) and then sampled (n = 8/thermal regime). Fish remaining in the common garden tanks were refed and 
then sampled at 10 h (10hR) and at 2 days (2dR) after feeding was resumed (n = 8/thermal regime/experimental group). 

Table 1 
Summary of biometric parameters of juvenile sea bass incubated as eggs under different thermal regimes (11 ◦C, 13.5 ◦C and 16 ◦C) and subjected to food deprivation 
and then refeeding (F, S, 10hR and 2dR).   

Weight (g) Length (cm) K 

Time F S 10hR 2dR F S 10hR 2dR F S 10hR 2dR 

11 ◦C 37.6 ±
10.2 

34.5 ±
11.5 

28.3 ±
7.2 

27.1 ±
9.3 

14.1 ±
1.2 

13.9 ± 1.1 12.9 ±
1.0 

12.6 ±
1.3 

1.28 ±
0.06 

1.38 ±
0.13 

1.36 ±
0.15 

1.34 ±
0.02 

13.5 ◦C 
36.7 ±

7.6 25.9 ± 8.8 
32.3 ±
11.0 

33.2 ±
7.2 

13.8 ±
0.9 12.4 ± 1.2 

13.2 ±
1.2 

13.2 ±
1.1 

1.37 ±
0.05 

1.31 ±
0.06 

1.31 ±
0.07 

1.33 ±
0.02 

16 ◦C 
39.6 ±
13.6 

32.3 ± 9.1 
27.4 ±

4.5 
29.5 ±
12.8 

14.1 ±
1.2 

13.3 ± 1.1 
12.7 ±

0.7 
13.0 ±

1.8 
1.32 ±
0.16 

1.38 ±
0.11 

1.33 ±
0.15 

1.34 ±
0.02 

All ◦C 38.0 ±
2.0a 

30.9 ±
2.0ab 

29.4 ±
2.0b 

29.9 ±
2.0b 

14.0 ±
0.2a 

13.2 ±
0.2ab 

12.9 ±
0.2b 

12.9 ±
0.2b 

1.34 ±
0.05 

1.42 ±
0.10 

1.28 ±
0.12 

1.35 ±
0.02 

Body weight (g). standard length (cm) and condition factor (K) calculated as 100 x (body weight/length3) of fish exposed to different temperatures during egg in-
cubation that as juveniles (Control/Fed = F) were exposed to 1 week of starvation (S) and sampled 10 h and 2 days after refeeding (10hR and 2dR, respectively). Data is 
presented as the mean ± standard deviation (s.d., n = 8/thermal regime/experimental group). Different letters indicate the groups that were significantly different 
under food deprivation or refeeding, irrespective of the egg thermal regime. Two-way ANOVA; p < 0.05. 
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1,001,330, respectively; Spinreact, Spain), following the manufacturer’s 
instructions. The results of the glucose and lactate analysis were deter-
mined by reading the absorbance at 505 nm using a microplate reader 
(BioTek Synergy 4; BioTek Instruments, Inc., USA). 

2.4. Histology of the liver and foregut 

PFA-fixed liver and foregut samples were processed in an automated 
tissue processor (Leica TP1020). Samples were dehydrated through a 
graded ethanol series (70%, 96% and 100%), saturated in xylene and 
impregnated with low melting point paraffin wax (Histosec, Merck), 
followed by paraffin embedding. Serial sections (5 μm) of the liver and 
transverse sections of the foregut were mounted on 0.01% Poly-L-Lysine 
(Sigma-Aldrich) coated glass slides and stained using haematoxylin- 
eosin and the Alcian Blue-Periodic Acid Schiff technique (AB-PAS) 
(Myers et al., 2008), respectively. Stained sections were analysed and 
photographed using a microscope (Leica DM2000) coupled to a digital 
camera (Leica DFC480) and linked to a computer for digital image 
analysis with Fiji v1.52p software (Schindelin et al., 2012). 

2.4.1. Histomorphometry of the liver and foregut 
Histomorphology of the liver and foregut was assessed using an 

adaptation of the methods reviewed by Rašković et al. (2011). Histo-
morphometric analysis of the liver and foregut was performed on 3 
sections per fish with a space of 15–20 μm between the sections analysed 
and using tissue from 8 individuals/thermal regime/experimental 
group. One image was captured of the liver (taken at 400×; with an area 
of approximately 89 × 103 μm2) per section and was used to analyse 
nuclei number and area (μm2) and the total area (μm2 and %) occupied 
by lipids. The nuclei and lipid area were analysed using the Otsu method 
(Papadopulos et al., 2007; Zhang and Hu, 2008) by adjusting the colour 
threshold according to the targeted parameter. Caution was taken to 
avoid counting cell nuclei that were not from hepatocytes (e.g., blood 
cells since fish haemocytes are nucleated). 

Analysis of the foregut was carried out on merged images of each 
section (100× magnification) using the software Adobe Photoshop 
19.1.5 release (Adobe Systems, San Jose, CA, USA). Measurements of the 

foregut and mucosa areas (μm2), mucosa lining (perimeter, μm), number 
of goblet cells and width of the lamina propria of mucosa folds were 
executed as illustrated in Fig. 2. The foregut area was determined by 
drawing a circumference outlining the serosa layer and then subtracting 
the lumen area. The mucosal area was determined by circumscribing the 
foregut in transverse sections so that the submucosa, muscle/serosa 
layers were excluded. The lumen and mucosa areas and the mucosa 
lining from each transverse section of the foregut were analysed using 
the Otsu method. The total number of goblet cells (irrespective of the 
staining reaction) per transverse section was counted and the width of 
the lamina propria (μm) of four mucosa folds (one per quadrant on 
transverse sections of the foregut) was measured at the base of each 
villous. 

Mucosa area/lining and the goblet cell number were normalized by 
the foregut and the mucosa area, respectively, to compensate for 
changes in these parameters induced by variations in the foregut area. 
The results are presented using the parameters measured in the fish 
incubated as eggs at 13.5 ◦C (standard egg incubation temperature for 
European sea bass, (Morretti, 1999)) that were not exposed to food 
deprivation as the reference (normalized data was transformed into log2 
fold change). 

2.5. Molecular analysis 

2.5.1. RNA extraction and cDNA synthesis 
Total RNA was extracted from samples of the liver (Supp. Table S1) 

and foregut that had been fixed in RNAlater™ (Sigma-Aldrich) using an 
E.Z.N.A® Total RNA Kit I (R6834, Omega). Total RNA was extracted 
following the recommendations supplied with the kit. In brief, tissue 
samples (15–25 mg) were disrupted in lysis buffer containing β-mer-
captoethanol using iron beads and a Tissue Lyser (Retsch, Germany) set 
at a frequency of 30 Hz. Liver samples were disrupted for 30 s with one 
iron bead and the foregut samples were disrupted with 2 iron beads for 3 
× 30 seconds. RNA extracts were purified using the columns supplied 
with the E.Z.N.A® Total RNA Kit and treated with DNase to remove 
contaminating genomic DNA using an E.Z.N.A® RNase-Free DNase Set I 
(E1091, Omega) according to the manufacturer’s instructions. Total 

Fig. 2. Histomorphometry of foregut transverse 
sections. Measurements were performed with Fiji 
v1.52p software in the first section on 3 slides 
(sections analysed were separated by 25 μm) 
stained with ABPAS (100× magnification). Foregut 
area (μm2) was measured by subtracting the lumen 
area from the total area confined within the 
circumference (red) outlining the serosa layer. 
Mucosa area (μm2) was measured by cropping the 
area outside the circumference (red) to exclude 
submucosa, muscle and serosa layers and then the 
area obtained by the Otsu method. The mucosa 
lining or perimeter (μm) was determined with the 
Otsu method, which outlined the surface of the 
mucosa folds of the foregut. The lamina propria 
width was assessed at the base of 4 mucosa folds 
(one per quadrant of the section). Goblet cell 
number was obtained by manually counting the 
cells stained blue or purple. (For interpretation of 
the references to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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RNA quality and concentration were assessed with a Nanodrop spec-
trophotometer (Thermo Fisher Scientific), and the integrity of the 
extracted total RNA was verified by agarose gel (0.8%) electrophoresis. 
DNA-free total RNA (500 ng) was used for cDNA synthesis as previously 
described (Costa et al., 2017). The quality of the cDNA was verified by 
RT-PCR amplification of 18S ribosomal RNA (18S) with specific primers 
(Table 2) using the following thermocycle: 95 ◦C for 10 min, followed by 
25 cycles of 95 ◦C for 20 s, 60 ◦C for 20 s and 72 ◦C for 20 s and a final 
extension step of 5 min at 72 ◦C. To confirm the absence of genomic DNA 
contamination a cDNA reaction in which reverse transcriptase was 
omitted (− RT control) was included in all PCR experiments and the PCR 
products were run on a 1% agarose gel to confirm amplicon size and the 
absence of genomic DNA contamination. 

2.5.2. Analysis of gene expression by quantitative real-time PCR 
Quantitative real-time PCR (RT-qPCR) was used, as previously 

described (Costa et al., 2017) to analyse the expression of target genes 
(Table 2) in the liver and foregut of fish from the three thermal regimes 
(11 ◦C, 13.5 ◦C and 16 ◦C) and different experimental groups, fed 
(control), food deprived (S) and food deprived/refed [R at 10 h (10hR) 
and 2 days (2dR) after refeeding]. Quantification was performed using a 
StepOnePLus thermocycler (Applied Biosystems) and was based on the 
standard-curve method using serial dilutions (1:10) of purified PCR 
product for each gene (obtained using the same species, tissues and 
primers for qPCR analysis, software StepOne™ Real-Time PCR Software 
v2.2). The thermocycle used was as follows: 30 s at 95 ◦C, 45 cycles of 5 s 
at 95 ◦C and 15 s at 60 ◦C, and a final melting curve performed between 
60 ◦C and 95 ◦C which produced a single product dissociation curve for 
each primer pair. Reactions were performed in duplicate 10 μL reactions 
containing 10 ng of cDNA, 300 nM of specific primers (Table 2) and 
EvaGreen (Sso Fast EvaGreensupermix, Bio-Rad Laboratories, USA). 

Control reactions included a no-template control and a RT control. 
Relative gene expression was estimated after normalization of candidate 
gene expression with the geometric mean of 18S and ef1a. The reference 
genes used were selected as they did not vary significantly (p > 0.05) 
between samples. Log2 fold change was then determined for each gene 
analysed in the liver and foregut in relation to fish from eggs of the 
13.5 ◦C thermal regime, that had not been subjected to food deprivation 
(13.5-F, reference group). The fish from the 13.5 ◦C egg thermal regime 
was chosen as the reference group as this is the most common temper-
ature for European sea bass egg incubation (Morretti, 1999). 

2.6. Statistical analysis 

All statistical analysis were performed using IBM® SPSS® Statistics 
28.0 for Windows (IBM Corp., NY, USA) and after assessing if the data 
had a normal distribution. No significant differences were detected be-
tween tank replicates (t-test), so all data of fish from the same thermal 
background in each experimental group were pooled. Two-way ANOVA 
was performed to evaluate the impact of egg thermal regimes (11 ◦C, 
13.5 ◦C and 16 ◦C), food deprivation and food deprivation/refeeding (F, 
S, 10hR and 2dR), and the interactions between these factors on the 
experimental parameters analysed. Simple main effects were performed 
for pairwise comparisons and a Bonferroni adjustment was used to 
minimise the effect of type I errors. The significance cut-off was set at p 
< 0.05 for all the analysis performed. Graphs were constructed using 
GraphPad Prism 6.01 for Windows (GraphPad Software, CA, USA). 

Table 2 
List of primers used for gene expression analysis by quantitative real-time PCR in the liver and foregut of thermally imprinted European sea bass (Dicentrarchus labrax). 
The gene symbol and name, accession number, primer sequence, annealing temperature (Ta, ◦C), qPCR efficiency (%) and R2 are indicated for each primer pair (F =
forward and R = reverse primer).  

Tissue Gene 
symbol 

Gene name Accession number Primer sequence (5` → 3`) Amplicon 
(bp) 

Ta 
(◦C) 

Eff 
(%) 

R2 

Liver igf-1 Insulin-like growth factor 1 AY996779 F: TGTCTAGCGCTCTTTCCTTTCA 84 60 83 1 
R: 
AGAGGGTGTGGCTACAGGAGATAC 

igf-ii Insulin-like growth factor 2 AY839105 F: CCTGGCGCTCTACGTTGTGG 147 62 92 1 
R: CGGTTCTGGGTCCGTCTGTT 

igf-1r Insulin-like growth factor receptor 1 DLAgn_00167690 
F: TGGTGTCGTACTGTGGGAGA 

157 62 88 1 R: CTGCCAGCACATCCTCATCA 

ghr-1 Growth hormone receptor 1 DLAgn_00119640 
F: AGCACCGACAGGCACGAA 

118 62 87 1 R: GCGTCACGGACCCGATTT 

ghr-2 Growth hormone receptor 2 DLAgn_00087370 F: TGAGGTCGTCCGGCAAGG 159 62 88 0.999 
R: GCTCTGAGGTGTAACCCCAATG 

ppara 
Peroxisome proliferator-activated 
receptor alpha 

AY590300 
F: TGCTCAGACAAGGCTTCAGGC 

114 60 76 0.998 R: 
GTTGCGTTCACACTTATCATAATCC 

lipca Lipase C, hepatic type a DLAgn_00158270 
F: TTTGTACGGCATCCGAGACC 

171 60 95 1 R: GACAAGCAGAGCATGGCCTA 

Foregut 
pept1 Solute carrier family 15 member 1 

(SLC15A1) 
FJ237043.2 F: ACCAAATTGTGAAAACAGCATCC 151 60 81 0.999 

R: GGGTGCCTGTGAGTAGGAGAAC 

hes-1 Hairy and enhancer of split-1 DLAgn_00148410 F: AACTCATCCCCGCAGGTCC 154 62 94 1 
R: CCGCATTGGGTATGAGGAAA 

Liver and 
Foregut 

cat Catalase DLAgn_00171080 
F: TTTGCCTGATGGCTACCGC 

173 62 87 0.999 R: TGGCATAATCTGGGTTGGTG 

dio2 Deiodinase 2 DLAgn_00018780 
F: CGCCTACAAGCAGGTAAAACTCG 

146 60 89 0.998 R: GGCGGCACTCGTCTCCAA 

pck1 Phosphoenolpyruvate carboxykinase 1 DLAgn_000978 F: GCTTTTAGCTGGCAACACGG 127 60 95 1 
R: TGTAGCCGAAGAAGGGACGC     

sod1 Superoxide dismutase 1 DLAgn_00043240 F: CTAAAGACGGGCAATGCTGG 122 62 94 1 
R: GGTCTTAAGTGCTGTGGGGAA     

18 s 18S ribosomal protein (Pinto et al., 2010) 
F: TGACGGAAGGGCACCACCAG 

158 60 94 1 R: 
AATCGCTCCACCAACTAAGAACGG 

ef1a Elongation factor 1 alpha AJ866727.1 
F: GACACAGAGACTTCATCAAG 

114 60 87 1 
R: GTCCGTTCTTAGAGATACCA  
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3. Results 

3.1. Overall fish condition 

Main effects analysis demonstrated that, irrespective of the egg 
thermal regime, there was an overall decrease in mass and size of the 
food deprived/refed fish irrespective of the time post-refeeding, 10hR 
and 2dR, when compared to fish that were fed (Table 1). Simple main 
effects analysis did not reveal significant differences between sampling 
times for any thermal regime. 

Macroscopic observations of control and treated fish during sampling 
of the liver and foregut revealed all had a massive accumulation of fat in 
the abdominal cavity surrounding the intestine. After collecting the 
plasma of blood samples some were observed to be lipemic, which 
caused technical constraints during analysis of glucose and lactate in 
plasma. 

Two-way ANOVA showed that fasting significantly (p < 0.001) 
influenced the yield of RNA extracted from liver samples (Supp. Fig. S1). 
One week of food deprivation caused a significant (p < 0.05) increase in 
μg of RNA extracted per mg of tissue in 11 ◦C-S and 13.5 ◦C-S fish, 
compared to the respective controls/fed fish. The quantity of RNA 
extracted per mg of liver was also significantly (p = 0.002) increased in 
13.5 ◦C-S fish in relation to 16 ◦C-S fish. To enable comparison of gene 
expression between groups the same amount of RNA (500 ng) was used 
for cDNA synthesis, thus minimizing the effects of the difference in RNA 
yield. 

3.2. Plasma parameters 

Technical problems due to the high lipid content of the plasma in fed 
fish meant it was not possible to obtain valid results for all samples of the 
fed (control) group and anomalous samples had to be eliminated and led 
to a variable and generally low sample number from fed individuals of 
fish from the different egg thermal regimes. For this reason, the glucose 
and lactate levels of the fed fish were not included in the main statistical 
analysis, but the values obtained are presented in Supp. Fig. S2. 

Two-way ANOVA revealed that all plasma parameters were signifi-
cantly (p < 0.01) affected by food deprivation/refeeding. Lactate was 
also significantly (p = 0.02) affected by thermal regime and cortisol was 
significantly (p < 0.01) modified by the interaction between the two 
main factors (Fig. 3). 

Cortisol levels were similar (p > 0.05) in fed fish irrespective of the 
thermal regime at egg incubation (11, 13.5 or 16 ◦C). After one week of 
food deprivation, cortisol levels were significantly (p < 0.01) increased 
in all groups, with the amplitude of the cortisol response higher in 11 ◦C- 
S and 13.5 ◦C-S. Ten hours after refeeding, cortisol levels returned to 
initial concentrations in all thermal groups, except for 16 ◦C-10hR, 
which exhibited elevated cortisol levels throughout the experiment 
compared to 16 ◦C-F fish. At the end of the trial (2dR), cortisol levels of 
11 ◦C-2dR fish returned to basal levels and were significantly (p < 0.01) 
lower relative to other fish (13.5 ◦C-2dR and 16 ◦C-2dR). 

Lactate levels of fish incubated as eggs at 11 ◦C were significantly (p 
< 0.05) modulated by food deprivation/refeeding, while fish incubated 
as eggs at 13.5 ◦C and 16 ◦C thermal regimes had similar lactate levels 
throughout the experiment. Lactate levels of 13.5 ◦C-S and 13.5 ◦C-10hR 
fish were significantly (p < 0.05) higher compared to 16 ◦C-S and 16 ◦C- 
10hR fish, respectively. Lactate levels were significantly increased (p <
0.01) in plasma from 11 ◦C-10hR compared to 11 ◦C-S and were 
significantly (p < 0.01) higher than lactate levels of 16 ◦C-10hR fish. 
Two days post-refeeding, lactate levels of 11 ◦C-2dR fish returned to 
initial levels. Glucose levels also significantly (p < 0.01) decreased at 2d 
post-refeeding when compared to food deprived fish and 10 h post-refed 
fish, irrespective of the egg thermal regime (Fig. 3). 

3.3. Liver histology and histomorphometry 

The hepatic parenchyma of fed fish (before food deprivation) from 
all egg thermal regimes presented pronounced vacuolization due to lipid 

Fig. 3. Plasma levels of cortisol (ng.mL− 1), lactate (mmol.L− 1) and glucose 
(mmol.L− 1) of European sea bass from different thermal regimes. Cortisol levels 
are plotted in a Tukey box and whiskers plot and ‘+’ represents the mean. 
Lactate and glucose results are represented as mean ± s.e.m. Three different 
thermal regime groups are plotted (11 ◦C, 13.5 ◦C and 16 ◦C) for each exper-
imental group: before starvation (Control/Feeding), after one week of food 
deprivation (1w Starvation) and 10 h and 2 days after refeeding (10 h and 2d 
post refeeding). Due to technical constraints, lactate and glucose levels from the 
Feeding groups were not included in the analysis. Different letters denote sig-
nificant differences between different time points, within the same thermal 
group. Asterisks (*p < 0.05; **p < 0.01; ***p < 0.001) indicate significant 
differences between fish from different thermal regimes in each experimental 
group. Statistical significance (by two-way ANOVA) was set at p < 0.05, n = 8 
per thermal regime/experimental group. 
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accumulation, which caused hypertrophy of the hepatocytes, displace-
ment of the nucleus to the periphery of the cell and reduced eosinophilic 
cytoplasm (Fig. 4A - F fish). Hepatocyte nuclei were round and baso-
philic with evident nucleolus inside them. Discreet sinusoids with red 
blood cells were observed between hepatocyte cords. Two-way ANOVA 
demonstrated that the number of nuclei and infiltration of the liver with 
lipid (percentage of area) were significantly affected by food depriva-
tion/refeeding (p < 0.001) and by the interaction of food deprivation/ 
refeeding with egg thermal regime (p = 0.025 and p = 0.002, respec-
tively). The area occupied by lipid was also significantly (p < 0.001) 
affected by egg thermal regime. The area of the nuclei was not 

significantly modified during the experiment (p > 0.05, Fig. 4B). One 
week after food deprivation, there was a significant reduction (p <
0.001) in the area occupied by lipid in the liver and a significant increase 
(p < 0.001) in the number of nuclei, irrespective of the egg thermal 
regime. The reduction in the area occupied by lipid was significantly 
higher (p < 0.001) in 16 ◦C-S fish compared to 11 ◦C-S fish (Fig. 4A – S 
fish). In the parenchyma of 11 ◦C-S fish intermixed areas were observed, 
containing hepatocytes with a single, large lipid droplet or hepatocytes 
with many, small lipid droplets. 

The percentage of the liver occupied by lipid progressively increased 
to before-food deprivation levels during refeeding, irrespective of the 

Fig. 4. Histomorphology of European sea bass liver in juveniles raised from eggs incubated at different temperatures (11 ◦C, 13.5 ◦C and 16 ◦C) and challenged with 
one week of food deprivation and then refeeding (F = fed/control fish; S = starved fish; 10hR = 10 h post refeeding; 2dR = 2 days post refeeding). A: Morphology of 
the liver, stained with H&E. The liver parenchyma was composed of enlarged hepatocytes due to the large lipid droplets (arrow) that pressed the eosinophilic 
cytoplasm and basophilic nucleus (Nu) to the periphery of the hepatocytes, in fed fish (F). Occasionally, blood sinusoids (Sn) with red blood cells (RBC) were 
observed along hepatocyte cords. One week of starvation decreased the lipid vacuolization of the parenchyma, increasing the eosinophilic cytoplasmic area within 
the hepatocytes (S fish). In the hepatic parenchyma of 11-S fish there were hepatocytes with large, single lipid vacuoles (arrow) and hepatocytes with multiple, small 
lipid vacuoles (arrowhead). After resumption of feeding, the parenchyma started to acquire the before fasting tissue morphology, with an increased area of lipids 
within the hepatocytes. The exception was the 13.5-2dR fish, which maintained a significantly reduced lipid area compared to initial levels and to fish from the 
groups 11–2dR and 16-2dR. BV = blood vessel. Scale bar = 50 μm. B: Histomorphometric parameters analysed in the liver. Lipid area (μm2) and nuclei number and 
area (μm2) were measured in a captured field of liver taken at 400×, with approximately 89 × 103 μm2 area, and was performed in 3 sections/fish (n = 8/thermal 
regime/experimental group) spaced by 15–20 μm between the sections analysed, using the Otsu method (Papadopulos et al., 2007; Zhang and Hu, 2008). Results are 
presented as mean ± s.e.m. and were calculated relative to fish from eggs incubated at the most common temperature for European sea bass that were not exposed to 
food deprivation as adults (13.5 ◦C-F). Different letters denote significant differences between different experimental groups, within the same thermal regime group. 
Asterisks (*p < 0.05; **p < 0.01; ***p < 0.001) indicate significant differences between fish from different thermal regimes in each experimental group. Statistical 
significance (by two-way ANOVA) was set at p < 0.05, n = 8 per thermal regime/experimental group. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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egg thermal regime (Fig. 4A – 10hR and 2dR fish, Fig. 4B). The exception 
was the 13.5 ◦C-2dR fish, in which the lipid area in the liver remained 
significantly (p < 0.01) decreased compared to control fish (13.5 ◦C-F) 
and the 11 ◦C-2dR and 16 ◦C-2dR refed fish. The number of nuclei for a 
given area of the liver also progressively decreased during refeeding, to 
levels found in fed fish. The exception was the 16 ◦C-10hR fish that had 
significantly (p < 0.05) more nuclei/area than the fish of the 11 ◦C-10hR 
and 13.5 ◦C-10hR groups. 

3.4. Foregut histology and histomorphometry 

The morphology of the foregut was similar between fish from 
different egg thermal regimes at each time point. The foregut had a well 
conserved structure with elongated branching mucosa folds covered in a 
luminal facing mucosa layer, the submucosa, muscle layers and the 
encapsulating serosa layer (Fig. 5). The mucosa was highly folded and 
contained simple columnar enterocytes and scattered goblet cells that 
stained dark purple by AB-PAS. Analysis by two-way ANOVA showed 
that all the histomorphometric parameters analysed in the foregut were 
significantly (p < 0.001) modified by the food deprivation/refeeding 
challenge. The exception was the mucosa area and the width of the 
lamina propria, which were not significantly (p > 0.05) modified during 
the experiment. 

In fed fish, the foregut and mucosa areas (μm2), mucosa lining 
(perimeter, μm), the number of goblet cells and the width of the lamina 
propria were similar in fish from different egg thermal regimes (Fig. 6). 
Food deprivation caused a significant (p < 0.01) reduction in the foregut 
area and a significant (p < 0.05) increase in the number of goblet cells in 
13.5 ◦C-S and 16 ◦C-S compared to the fed fish. In fish incubated as eggs 
at 11 ◦C, a significant (p < 0.001) decrease in the foregut area was 
observed 10 h after refeeding compared to 11 ◦C-F. Two days post- 
refeeding (2dR) the foregut area and the number of goblet cells, 
returned to the levels seen in the fed fish, irrespective of the egg thermal 
regime. The exception was the 16 ◦C-2dR fish, in which the foregut area 
was significantly (p = 0.02) reduced compared to 16 ◦C-F. At 2d post- 
refeeding, the perimeter of the mucosa was significantly (p < 0.05) 
increased in 13.5 ◦C-2dR fish compared to 11 ◦C-2dR and 16 ◦C-2dR. 

3.5. Gene expression 

3.5.1. Expression of growth axis-related genes in the liver 
Analysis by two-way ANOVA revealed that the egg thermal regime 

did not significantly (p > 0.05) affect the expression of genes of the 
growth axis in the liver, but that food deprivation/refeeding had a sig-
nificant (p < 0.01) impact on the expression of genes ghr-2, igf-1 and igf-2 
(Fig. 7). The expression of ghr-2 was significantly (p < 0.05) down- 
regulated in 13.5 ◦C-10hR relative to 13.5 ◦C-F and 13.5 ◦C-S fish. 
Although two-way ANOVA revealed a significant impact of food depri-
vation/refeeding on the expression of ghr-1 (p = 0.005), simple main 
effects corrected with Bonferroni did not identify significant differences 
between fish with different egg thermal regimes within each experi-
mental group. Analysis of main effects revealed that ghr-1 in the fed fish 
was significantly different (p < 0.05) in food deprived and 10 h post- 
refeeding fish from all egg thermal regimes. 

The expression of igf-1 was significantly increased (p < 0.05) in 
11 ◦C-S fish compared to 11 ◦C-F but returned to levels of fed fish 10 h 
after the start of refeeding (11 ◦C-10hR). Expression of igf-1 in the 
13.5 ◦C-2dR fish was significantly lower (p < 0.05) than in the fed fish. 
Food deprivation and refeeding caused a significant (p < 0.05) up- 
regulation of igf-2 in 11 ◦C-10hR and 16 ◦C-10hR fish compared to 
levels in 11 ◦C-F and 16 ◦C-F, respectively. The expression of ghr-1 and 
igf-1r was not significantly modified (p > 0.05) throughout the experi-
ment in any of the egg thermal groups. 

3.5.2. Expression of genes associated with metabolism 

3.5.2.1. Expression of dio2 and pck1 in liver and foregut. Two-way 
ANOVA revealed that food deprivation/refeeding significantly (p <
0.05) modified the expression of dio2 and pck1 in the liver (Fig. 8). Egg 
thermal regime also significantly (p = 0.001) affected the expression of 
pck1. In the foregut, the expression of dio2 and pck1 was significantly (p 
< 0.001) modified by food deprivation/refeeding and by egg thermal 
regime (p = 0.03 and p = 0.001, respectively, two-way ANOVA, Fig. 8). 
Expression of pck1 in the foregut was also significantly modified (p <
0.05) by the interaction between food deprivation/refeeding and the egg 
thermal regime. 

Expression of dio2 in the liver was significantly (p < 0.05) up- 
regulated in 16 ◦C-10hR and in all fish at 2dR, irrespective of egg 
thermal regime compared to fed fish. In the foregut, one week of food 
deprivation caused a significant up-regulation (p < 0.05) of dio2 in 
13.5 ◦C-S relative to 13.5 ◦C-F fish. Dio2 mRNA levels returned to control 
levels in the 13.5 ◦C-10hR group and were significantly down-regulated 
(p < 0.05) compared to 11 ◦C-10hR and 16 ◦C-10hR. 

In the liver of fish from all egg thermal regimes one week of food 
deprivation caused a significant up-regulation (p < 0.001) in the 
expression of pck1 compared to levels in fed fish and levels stayed 
significantly up-regulated (p < 0.001) until 10 h post-refeeding (Fig. 8). 
At the end of the experiment, the expression of pck1 was significantly 
down-regulated (p < 0.05) in 11 ◦C-2dR and 13.5 ◦C-2dR compared to 
the levels in fed fish. The fish 16 ◦C-2dR had significantly up-regulated 
(p = 0.006) expression of pck1 compared to 11 ◦C-2dR fish. In the 
foregut of fish from eggs incubated at 16 ◦C, pck1 was significantly up- 
regulated (p < 0.05) compared to fish from eggs incubated at 11 ◦C, 
before (fed) and after food deprivation. After 1 week of food deprivation 
there was a significant up-regulation (p < 0.05) of pck1 in the foregut of 
13.5 ◦C-S fish compared to the foregut of fed fish (13.5 ◦C-F). Ten hours 
post-refeeding, pck1 was significantly up-regulated (p < 0.05) in the 
foregut of all fish compared to the fed fish and 16 ◦C-10hR fish had 
significantly (p < 0.05) increased levels of pck1 compared to 13.5 ◦C- 
10hR. Two days post-refeeding, the expression of pck1 in the foregut 
returned to the levels detected in fed fish but remained significantly up- 
regulated (p < 0.05) in the foregut of 16 ◦C-2dR compared to 11 ◦C-2dR 
fish. 

3.5.2.2. Expression of pparα and lipca in liver. Two-way ANOVA 
revealed that food deprivation/refeeding only caused a significant 
modification (up-regulation, p < 0.05) in the expression of pparα in the 
liver of fish from the 16 ◦C egg thermal regime (Fig. 8). A significant up- 
regulation in pparα (p < 0.05) transcription in the liver was observed 
between 16 ◦C-10hR and 16 ◦C-F and returned to that of fed fish in the 
16 ◦C-2dR fish. Expression of lipc was not significantly affected by the 
main factors nor by the interaction between them. 

3.5.2.3. Expression of pept1 and hes1 in foregut. Two-way ANOVA 
revealed that the expression of pept1 and hes1 in the foregut was 
significantly (p < 0.001 and p = 0.01, respectively) affected by food 
deprivation/refeeding and by the egg thermal regime (p < 0.05; Fig. 8). 
No significant differences were found in the expression of pept1 and hes1 
between fish from eggs exposed to different thermal regimes in the fed 
group. One week of food deprivation caused a significant up-regulation 
(p < 0.01) of pept1 in the foregut of 13.5 ◦C-S and 16 ◦C-S fish compared 
to the fed fish, and 10 h after refeeding the expression of pept1 had 
returned to the same level as found in fed fish. In the food deprived/ 
refed fish 10 h after refeeding the pept1 was significantly up-regulated (p 
< 0.05) in the foregut of 16 ◦C-10hR fish compared to 13.5 ◦C-10hR. By 
the end of the experiment after 2 days of refeeding (2dR) the expression 
of pept1 was significantly decreased (p < 0.01) in the foregut of 11 ◦C- 
2dR and 13.5 ◦C-2dR fish compared to the 11 ◦C-F and 13.5 ◦C-F, 
respectively. 
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Fig. 5. Morphology of the European sea bass foregut stained with AB-PAS, from juvenile fish incubated as eggs at different temperatures (11 ◦C, 13.5 ◦C and 16 ◦C) 
and challenged with one week of food deprivation and then refeeding (F = fed/control fish; S = starved fish; 10hR = 10 h post refeeding; 2dR = 2 days post 
refeeding). The morphology of the foregut was similar between fish from different thermal regimes in each experimental group and consisted of an inner layer of 
mucosa, submucosa (sm), muscle (mu) and then an outer layer of serosa (not visible). The mucosa was comprised of several mucosal folds (mf) projecting into the 
lumen that were lined by simple columnar enterocytes and scattered goblet cells that stained dark purple (arrowheads). Scale bar = 500 μm. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Expression of hes1 in the foregut was significantly down-regulated (p 
< 0.05) in 16 ◦C-10hR and 16 ◦C-2dR fish compared to the fed fish. 
Expression of hes1 in fish from eggs incubated at 11 ◦C and 13.5 ◦C was 
not significantly altered during the food deprivation/refeeding experi-
ment, but at 10 h post-refeeding, the expression of hes1 in the foregut of 
11 ◦C-10hR fish was significantly up-regulated (p < 0.05) compared to 
13.5 ◦C-10hR and 16 ◦C-10hR fish. 

3.5.3. Expression of antioxidant enzymes in liver and foregut 
Expression of sod1 and cat in both liver and foregut (Fig. 9) was 

significantly (p < 0.001) affected by food deprivation/refeeding as 
demonstrated by two-way ANOVA. In the liver, sod1 was significantly 
down-regulated (p < 0.05) in 16 ◦C-S fish, compared to 16 ◦C-F fish. Ten 
hours post-refeeding, all groups of fish irrespective of egg thermal 
regime had significantly down-regulated (p < 0.01) sod1 in the liver 
compared to fed fish. The expression of sod1 returned to the levels 
typical of fed fish, except for 13.5 ◦C-2dR fish. In the foregut, the only 
fish that had significant down-regulation (p < 0.05) of sod1 during the 
experiment compared to the fed fish was 13.5 ◦C-S and 13.5 ◦C-10hR 
fish. Two days after refeeding, the expression of sod1 in the foregut was 
significantly up-regulated (p < 0.05) in 11 ◦C-2dR compared to 11 ◦C-S 
and 11 ◦C-10hR. 

Expression of cat in the liver was significantly down-regulated (p <
0.05) in 13.5 ◦C-10hR and 16 ◦C-10hR fish compared to fed fish (Fig. 9). 
In the foregut, one week of food deprivation provoked a significant up- 
regulation (p = 0.02) of cat in 11 ◦C-S fish, compared to 11 ◦C-F. Ten 
hours post-refeeding, 13.5 ◦C-10hR fish had a significant down- 
regulation (p < 0.05) of cat in the foregut compared to fish from other 
thermal regimes (11 ◦C-10hR and 16 ◦C-10hR). Expression levels of cat 
were re-established to levels found in fed fish and in both tissues after 2 
days refeeding in all groups. 

4. Discussion 

Brief manipulation of temperatures during incubation of European 
sea bass eggs was sufficient to cause phenotypic plasticity in some of the 
juvenile responses to food deprivation and refeeding. Significant 
changes occurred in the morphology of the liver during food deprivation 
and refeeding. However, it was the foregut that exhibited the most 
notable molecular response to food deprivation and refeeding between 
fish from different egg incubation temperature regimes, suggesting 
imprinting occurred. This is a very intriguing aspect of our study, since 
the liver is recognized as fundamental for adaptation to food depriva-
tion, and the foregut as the segment of the intestine mainly responsible 

Fig. 6. Histomorphometric analysis of the foregut. The parameters evaluated included foregut transverse section and the area of the mucosa folds (μm2), perimeter of 
the mucosa folds (mucosa lining, μm), lamina propria width (μm) and total number of goblets cells per section, using Fiji v1.52p software (Schindelin et al., 2012). 
The foregut area was used to normalize the mucosa area and lining (perimeter), and the goblet cell number was normalized by the mucosa area. Methodological 
details are provided in section 2.4.1. Results of all parameters were normalized against the designated reference group (13.5-F), transformed in Log2 fold change and 
presented as mean ± s.e.m. Three different thermal regime groups are plotted (11 ◦C, 13.5 ◦C and 16 ◦C) for each experimental group: before food deprivation 
(Control/Feeding), after one week of food deprivation (1w Starvation) and 10 h and 2 days after refeeding (10 h and 2d post refeeding). Different letters denote 
significant differences between different experimental groups, within the same thermal regime group. Statistical significance (by two-way ANOVA) was set at p <
0.05, n = 8 per thermal regime/experimental group. 
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for nutrient digestion/absorption and is one of the first organs to sense 
nutritional modifications (Rašković et al., 2011). Different responses 
between the foregut and liver we speculate may be related to the timing 
of their organogenesis, and in the case of the liver primordium in Eu-
ropean sea bass it emerges from the thickening of the hindgut wall 
several hours after hatching (Diaz and Connes, 1997) when in our ex-
periments the thermal regime was common for all groups. 

Fish from eggs exposed to the highest thermal regime (16 ◦C) were 
the fish that underwent the most morphological changes in the liver and 
foregut after food deprivation, while fish incubated as eggs at lower 
temperatures (11 ◦C) exhibited less changes after the experimental 
treatments. Specifically, in 11 ◦C-10hR fish the appearance of the he-
patic parenchyma recovered earlier than fish from other egg thermal 
regimes. Fish from eggs exposed to the thermal regime normally used in 
European sea bass hatcheries (13.5 ◦C) did not recover after 2 days of 
refeeding and had a significantly reduced lipid area compared to the pre- 
food deprivation levels and to fish from other egg thermal regimes. 
Moreover, fish from eggs hatched under a standard temperature regime, 
13.5 ◦C after refeeding (13.5 ◦C-10hR) had significantly lower mRNA 

levels of gene transcripts encoding metabolic and the antioxidant 
enzyme, cat, in the foregut compared to fish from other egg thermal 
regimes. Even though recovery of metabolic and endocrine responses 
after food deprivation may differ between the onset of refeeding and 
later during refeeding (Jia et al., 2019; Power et al., 2000), our results 
suggest that the egg thermal regime influenced the rate of recovery in 
the European sea bass and that temperatures below and above (11 and 
16 ◦C, respectively) the current optimum used in hatcheries (13.5 ◦C) 
recovered sooner. 

Despite the observed atrophy of the foregut 10 h after refeeding in 
fish from eggs incubated at 16 ◦C, a significant up-regulation of pept1 
and pck1 occurred compared to fish from eggs hatched under standard 
hatchery conditions (13.5 ◦C-10hR), suggesting that oligopeptide ab-
sorption (Daniel, 2004; Wang et al., 2017) and extrahepatic gluconeo-
genesis (Yang et al., 2009) were compensated, if the capacity of the 
intestine to produce glucose is assumed despite the current lack of 
consensus about this subject (Croset et al., 2001; Martin et al., 2010; 
Mithieux, 2005; Mutel et al., 2011; Penhoat et al., 2014; Potts et al., 
2018; Rajas et al., 2000). In analogy with the up-regulation of Pck1 in 

Fig. 7. Relative expression of transcripts of the growth axis analysed by qPCR in the liver of thermally imprinted European sea bass during the food deprivation and 
refeeding experiment. Results obtained for ghr-1, ghr-2, igf-1, igf-2 and igf-1r were normalized by the geometric mean of 18 s and ef1a, and then expressed as Log2 fold 
change, calculated relative to fish from eggs incubated at the most common temperature for European sea bass that were not exposed to food deprivation as juveniles 
(13.5 ◦C-F). Each thermal regime group (11 ◦C, 13.5 ◦C and 16 ◦C) for each experimental group (before food deprivation [Control/Feeding], after one week of food 
deprivation [1w Starvation] and 10 h and 2 days after refeeding [10 h and 2d post refeeding]) are plotted in Tukey box and whiskers graphs and ‘+’ represents the 
mean. Different letters denote significant differences between different experimental groups, within the same thermal regime. Statistical significance (by two-way 
ANOVA) was set at p < 0.05, n = 8 per thermal regime/experimental group. 
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Fig. 8. Relative expression of transcripts related to metabolism analysed by qPCR in the liver and foregut of thermally imprinted European sea bass during the food 
deprivation and refeeding experiment. A: Transcripts associated with liver metabolism (dio2, pck1, pparα and lipca). B: Transcripts associated with foregut meta-
bolism (dio2, pck1, pept1 and hes1). Results were normalized by the geometric mean of 18 s and ef1a, and then expressed as Log2 fold change, calculated relative to 
fish from eggs incubated at the most common temperature for European sea bass that were not exposed to food deprivation as juveniles (13.5 ◦C-F). Each thermal 
regime group (11 ◦C, 13.5 ◦C and 16 ◦C) for each experimental group (before food deprivation [Control/Feeding], after one week of food deprivation [1w Starvation] 
and 10 h and 2 days after refeeding [10 h and 2d post refeeding]) are plotted in Tukey box and whiskers graphs and ‘+’ represents the mean. Different letters denote 
significant differences between different experimental groups, within the same thermal regime. Asterisks (*p < 0.05; **p < 0.01) indicate significant differences 
between fish from different thermal regimes in each experimental group. Statistical significance (by two-way ANOVA) was set at p < 0.05, n = 8 per thermal regime/ 
experimental group. 
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mammals by thyroid hormones (TH) (Hanson and Reshef, 1997; Hasan 
Al-bayati and ML AL-Khateeb, 2021; Matosin-Matekalo et al., 1998), we 
speculate that the up-regulation of pck1 might be related to the up- 
regulation of dio2 in 16 ◦C-10hR fish compared to 13.5 ◦C-10hR. Up- 
regulation of dio2 in the foregut suggests T3 increased in enterocytes 
and that TH signalling was enhanced (Bianco et al., 2019; Deal and 
Volkoff, 2020; Jarque and Piña, 2014; Orozco and Valverde, 2005). 
Interestingly, it has previously reported that fish (Carballo et al., 2018; 
Mateus et al., 2017a; Politis et al., 2018) and chicken (Loyau et al., 2014; 
Nassar et al., 2015) embryos incubated at higher temperatures had 
significantly up-regulated dio2. Taking into consideration the essential 
role of THs in fish development and metamorphosis (Power et al., 2001), 
it is not surprising that phenotypic plasticity induced by thermal 
imprinting during embryonic development of fish affects, and may be 
mediated in part, by the hypothalamic-pituitary-thyroid axis (HPT) 
(Carballo et al., 2018; Lema, 2020; Mateus et al., 2017a; Politis et al., 
2018; Salis et al., 2021). 

4.1. Temporary stimulation of igf-1 following food deprivation in fish 
from lower eggs thermal regime 

Higher temperatures during fish egg incubation are known to 
accelerate hatching and increase the growth rate and size of fish during 
their development (Ayala et al., 2001; Jennings and Pawson, 1991; 
Koumoundouros et al., 2001; Saka et al., 2001), a response mediated by 
the GH-IGF axis (Gabillard et al., 2003a; Konstantinidis et al., 2021; Li 
and Leatherland, 2008; Li et al., 2007). In the present study, fish from 
eggs incubated at higher temperatures (16 ◦C) hatched two days earlier 

than fish from eggs hatched at 11 ◦C (data not shown). But nine months 
later, body mass and size of fish from different egg thermal regimes that 
were used in the experiments were not significantly different, nor was 
the expression of genes of the GH-IGF axis. 

After one week of starvation, mRNA levels of igf-1 were significantly 
up-regulated in fish incubated at 11 ◦C as eggs (11 ◦C-S) compared to 
11 ◦C-F fish. The expression of igf-2 was also up-regulated in fish from 
the 11 ◦C egg incubation regime but only when feeding was resumed 
(11 ◦C-10hR). A significant down-regulation of igf-1 gene expression has 
previously been observed in fish deprived of food, and mRNA levels 
were reported to achieve basal mRNA levels very soon after refeeding or 
after several days delay (Hack et al., 2019; Terova et al., 2007; Tian 
et al., 2015). However, like in our study previous studies have also re-
ported an increase in igf-1 and igf-2 expression after food deprivation 
(Ayson et al., 2007; Kaneko et al., 2023). Although there is no clear 
rationale to explain the up-regulation of igf-1 after one week of food 
deprivation in our study, these results suggest that a temporary stimu-
lation of the GH-IGF axis occurred in fish from 11 ◦C egg incubation 
regime. The receptors for GH (ghr-1 and ghr-2) that regulate IGFs in the 
liver (Triantaphyllopoulos et al., 2020), were not significantly affected 
by food deprivation in our study, suggesting that these receptors were 
most likely not involved in the endocrine response to fasting (Delgadin 
et al., 2015). 

4.2. Modulation of the intestinal response to food deprivation in fish from 
higher thermal regimes 

Food deprivation caused a significant reduction in the area of the 

Fig. 9. Relative expression of antioxidant enzymes sod1 and cat analysed by qPCR in the liver (A) and foregut (B) of thermally imprinted European sea bass during 
the food deprivation and refeeding experiment. Results were normalized by the geometric mean of 18 s and ef1a, and then expressed as Log2 fold change, calculated 
relative to fish from eggs incubated at the most common temperature for European sea bass that were not exposed to food deprivation as juveniles (13.5 ◦C-F). Each 
thermal regime group (11 ◦C, 13.5 ◦C and 16 ◦C) for each experimental group (before food deprivation [Control/Feeding], after one week of food deprivation [1w 
Starvation] and 10 h and 2 days after refeeding [10 h and 2d post refeeding]) are plotted in Tukey box and whiskers graphs and ‘+’ represents the mean. Different 
letters denote significant differences between different experimental groups, within the same thermal regime. Asterisks (*p < 0.05; **p < 0.01) indicate significant 
differences between fish from different thermal regimes in each experimental group. Statistical significance (by two-way ANOVA) was set at p < 0.05; n = 8 per 
thermal regime/experimental group. 
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foregut in fish from eggs maintained under control and higher temper-
atures (13.5 ◦C-S and 16 ◦C-S, respectively), as previously reported in 
fish deprived of food (Emadi Shaibani et al., 2013; Hall and Bellwood, 
1995; Krogdahl and Bakke-McKellep, 2005; Zeng et al., 2012). No sig-
nificant changes were seen in the mucosa area, suggesting a proportional 
shrinkage of all components of the mucosal mass (Sokolović et al., 2007; 
Zeng et al., 2012). AB-PAS of goblet cells revealed that food deprivation 
stimulated the number of these cells in 13.5 ◦C-S and 16 ◦C-S fish despite 
the reduction in the foregut area, as previously reported in other fish 
species deprived of food (Baeverfjord and Krogdahl, 1996; Emadi 
Shaibani et al., 2013; Li et al., 2017). The presumptive increase in goblet 
cell differentiation may have been stimulated by inhibition of the Notch- 
Hes1 pathway, as seen in mammals (Jensen et al., 2000; van Es et al., 
2005; Zhou et al., 2015) and other fish (Crosnier et al., 2005; Wang 
et al., 2016), since in our experiment hes1 was significantly down- 
regulated in 13.5 ◦C-10hR and 16 ◦C-10hR sea bass compared to 
11 ◦C-10hR. Surprisingly, in the sea bass from eggs maintained at 11 ◦C, 
one week of food deprivation did not significantly modify the histo-
logical parameters analysed in the intestine. 

Sea bass with a significant reduction in the foregut area (13.5 ◦C-S 
and 16 ◦C-S) compared to the fed fish also had a significant up- 
regulation of pept1, a previously characterised transporter localised on 
the brush border of the enterocytes that takes up oligopeptides from the 
intestinal lumen (Daniel, 2004; Wang et al., 2017). In mice, food 
deprivation increased the expression of PepT1, in parallel with an 
enhanced absorption rate (Ma, 2010; Ma et al., 2012; Naruhashi et al., 
2002; Thamotharan et al., 1999) and loss of mucosal mass (Habold et al., 
2007; Ihara et al., 2000). This suggests that in the sea bass from eggs 
incubated at 13.5 ◦C and 16 ◦C, up-regulation of pept1 may reflect a 
compensatory mechanism for the presumptive reduction in small pep-
tide absorptive capacity that is associated with intestinal atrophy. 
However, in other species of fish, variable results were obtained for 
pept1 expression during long- or short-term food deprivation and in 
some it decreased (Bucking and Schulte, 2012; Orozco et al., 2017; 
Terova et al., 2009; Tian et al., 2015) while in others it increased 
(Bucking and Schulte, 2012; Hakim et al., 2009), suggesting the 
response of pept1 may depend on the duration of the fasting. Further 
studies are required on the effect of food deprivation in fish so that the 
results of gene and protein expression are coupled to function. In mice 
(Okamura et al., 2014; Shimakura et al., 2006) and chicken (Madsen and 
Wong, 2011), it was reported that starvation markedly increased the 
amount of PEPT1 mRNA and protein in the intestine, via increased 
expression of Pparα. However, in the present study of the European sea 
bass if a similar connection exists between the expression of pept1 and 
pparα in the foregut was not established since the latter gene was not 
measured. 

4.3. Differential modification of liver parenchyma following food 
deprivation in fish from different egg thermal regimes 

Food deprivation for one week severely affected the liver paren-
chyma of all fish irrespective of the egg thermal regime, with a signifi-
cant reduction in the lipid area measured and a significant increase in 
the number of hepatocyte nuclei, two morphometric indicators of 
altered liver metabolism previously reported to be induced by starvation 
in fish (Hammock et al., 2020; Hur et al., 2006; Mohapatra et al., 2017; 
Power et al., 2000; Zeng et al., 2012). The increased number of nuclei 
was probably due to atrophy of hepatocytes given the loss of lipid and 
glycogen vacuoles, which typically occurs after food deprivation 
(Hammock et al., 2020; Hur et al., 2006; Power et al., 2000; Zeng et al., 
2012). Although the hepatocyte size was reduced in the sea bass liver in 
the present study the size of the nucleus was unaffected, which has been 
taken to indicate continued nuclear activity during food deprivation 
(Power et al., 2000). 

Studies of the impact on the juvenile/adult liver of egg and larval 
thermal regimes in fish are scarce. One study in Atlantic cod (Gadus 

morhua) indicated that higher egg incubation temperatures enhanced 
the expression of several micro RNA (miR) in the liver of juveniles 
(Bizuayehu et al., 2015). Modified miR included miR-7a, previously 
reported in zebrafish as a regulator of lipid metabolism in times of liver 
cellular stress (Lai et al., 2018), and miR-221, which in chicken is 
described to increase lipid metabolism in liver (Zhang et al., 2020) via 
PPAR activated lipid catabolism (Chen et al., 2015). Activation of 
PPARα has previously been reported in the liver of fish deprived of food 
(Mohapatra et al., 2015; Ning et al., 2016), but in our study of the Eu-
ropean sea bass, modulation of pparα mRNA levels in the liver only 
occurred in one group of fish, 16 ◦C-10hR. At the time of thermal 
imprinting (egg stage), the biliary tract and exocrine pancreas (Beccaria 
et al., 1991; Diaz et al., 2002; Diaz and Connes, 1997), which synthesize 
the enzymes involved in lipid metabolism (e.g. lipc), only exist as a 
primordium, and may not have been significantly affected by the ther-
mal regime and this may explain the absence of change in lipc expression 
in the liver in the present study. These observations raise interesting 
questions about how thermal imprinting during the egg stage affects the 
liver parenchyma and modifies the hepatic response in juvenile fish. 
However, a strong possibility that explains the lasting effects of egg 
thermal imprinting may be epigenetic regulation of PPARα by miRNAs 
or epigenetic marks (Aibara et al., 2022; Peyrou et al., 2012). Further 
studies will be required to explore this possibility. 

On the resumption of feeding, the organisation of the liver paren-
chyma in fish from eggs of the 11 ◦C thermal regime (11–10hR) recov-
ered before that of the fish from the other thermal backgrounds. There is 
evidence in mice that activation of the Notch signalling pathway in the 
intestine enhances lipid uptake by the liver (Fowler et al., 2011). 
Intriguingly, in the foregut of the 11 ◦C-10hR fish the expression of hes1, 
a well-known Notch target (Wilson and Radtke, 2006), was significantly 
up-regulated compared to the fish from other thermal regimes and this 
may be a putative mechanism explaining the difference observed in the 
liver. Nonetheless, since the expression of lipc and pparα in the liver of 
fish from eggs incubated at 11 ◦C did not change, further studies will be 
required to explore the mechanism underpinning the modified lipid 
metabolism in response to food deprivation in European sea bass from 
eggs exposed to different thermal regimes. 

4.4. Gluconeogenic response to food deprivation in thermally imprinted 
fish 

The expression of pck1, a gluconeogenic rate-limiting enzyme (Yang 
et al., 2009), was significantly up-regulated following one week of food 
deprivation in the liver of all fish irrespective of the egg thermal regime. 
The impact of food deprivation on the expression of pck1 has previously 
been reported in other fish (Li et al., 2018; Tian et al., 2015) and 
mammals (Sokolović et al., 2008). In the present study the expression of 
pck1 in the foregut of food deprived European sea bass was also affected 
by the egg thermal regime; fish incubated as eggs at 13.5 ◦C had a sig-
nificant up-regulation of pck1 after one week of food deprivation, while 
the other fish had a significant up-regulation 10 h post-refeeding (11 ◦C- 
10hR and 16 ◦C-10hR), and the increase was greatest in 16 ◦C-10hR 
compared to 13.5 ◦C -10hR. Two days after the resumption of feeding, 
the expression of pck1 returned to pre-fasting levels in both the liver and 
foregut, but fish incubated at 16 ◦C as eggs (16-2dR) had a significant 
up-regulation of pck1 relative to 11 ◦C-2dR fish (a pattern repeated in 
fed fish, 16 ◦C-F versus 11 ◦C-F). The impact of thermal imprinting on 
gluconeogenesis is essentially unknown, but epigenetic changes in the 
promoter of PEPCK and decreased expression of miRNAs controlling 
post-transcriptional levels of PEPCK was reported in the offspring of rats 
with restricted food intake during pregnancy (Imam and Ismail, 2017; 
O’Sullivan et al., 2012; Saghazadeh et al., 2019) or exposed to psy-
chological stress (Wu et al., 2016), and was associated with increased 
expression of Pepck and hyperglycaemia. 

The liver is the main organ contributing to glucose homeostasis by 
production of endogenous glucose when dietary glucose is unavailable 
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(Klover and Mooney, 2004; Miyamoto and Amrein, 2017; Polakof et al., 
2012). However, in rats controversy surrounds the question of glucose 
production by the intestine during prolonged fasting (Croset et al., 2001; 
Martin et al., 2007; Mithieux, 2005; Mutel et al., 2011; Penhoat et al., 
2014; Potts et al., 2018; Rajas et al., 2000). In our study, despite the 
suggestion from molecular analysis that the gluconeogenic response was 
probably changed by the egg thermal regime, no significant differences 
in plasma glucose levels were identified between fish from eggs 
imprinted with different thermal regimes. There was no evidence in the 
present study that egg thermal regimes affected glucose homeostasis and 
modified plasma glucose levels. Unfortunately, due to technical prob-
lems with the plasma samples, linked to small sample volumes and 
hyperlipidaemia in control/fed sea bass meant we could not establish if 
significant differences in glucose existed between control groups. 
Nonetheless, taking into consideration the average glucose levels re-
ported in the literature for sea bass (Echevarria et al., 1997; Gutiérrez 
et al., 1991; Peres et al., 2014; Pérez-Jiménez et al., 2007; Viegas et al., 
2013), in our study the sea bass deprived of food had higher levels of 
glucose. Stress is the most common cause of elevated blood glucose 
levels in European sea bass (Acerete et al., 2009; Samaras et al., 2021; 
Samaras et al., 2018; Simontacchi et al., 2008), and the significantly 
elevated plasma cortisol following one week of food deprivation tends to 
support the idea that food deprived sea bass had elevated glucose. 

The notion that the gluconeogenic response was probably changed 
by the egg thermal regime is further supported by the significant change 
in plasma lactate between the sea bass from different thermal regimes 
during the experiment. Fish from 13.5 ◦C-S and 13.5 ◦C-10hR groups 
had significantly increased lactate levels compared to 16 ◦C-S and 16 ◦C- 
10hR fish, respectively. Lactate is both a gluconeogenic substrate for 
mitochondrial PEPCK (Stark and Kibbey, 2014) and a product of 
enhanced expression of Pepck1 in the murine intestine in short-term 
fasting (Mithieux et al., 2006; Mutel et al., 2011; Sokolović et al., 
2007). Interestingly, although no significant differences were seen in the 
expression levels of pck1 in the intestine between 13.5 ◦C-S and 16 ◦C-S 
fish, significant up-regulation of pck1 occurred in 16 ◦C-10hR compared 
to 13.5 ◦C-10hR fish when feeding was resumed. Divergent responses in 
pck1 expression and plasma lactate levels between food deprived and 
refed fish from different egg thermal regimes leads us to speculate that 
egg thermal regimes modified the metabolic response in juveniles. 

Although not established in fish, there is evidence in mammals that 
the adipose tissue is capable of lactate production independent of 
glucose metabolism (Jansson et al., 1990; Krycer et al., 2020). One very 
intriguing aspect of our study was the substantial perivisceral fat 
observed during dissection, the subcutaneous adipose observed in his-
tology (Mateus et al., 2023) and the evident lipemia in plasma samples 
from fed fish. Aside from the impact of egg thermal regimes on the 
expression of pck1 in the intestine, fish from eggs incubated at higher 
temperatures (16 ◦C) also had the greatest depletion of the liver lipid 
reserves following food deprivation. These observations lead us to 
speculate that the modulation of lactate may come from modified 
adipocyte metabolism. Further studies will be required to determine if 
modifications in plasma lactate resulted from modulation of pck1 in the 
intestine or from the HPT axis and why egg incubation temperatures 
modulated pck1 expression in the intestine but not in the liver. 

4.5. Different modulation of antioxidant enzymes in liver and foregut 

In fish, food deprivation often leads to oxidative damage, and one of 
the responses of the liver to counteract increased ROS is to up-regulate 
the activity of antioxidant enzymes, such as Sod1 and Cat (Bayir et al., 
2011; Choi et al., 2012; Dar et al., 2019; Hammock et al., 2020; Sakyi 
et al., 2020; Zheng et al., 2016). However, in our study, one week of food 
deprivation did not modify the expression of sod1 and cat in the liver and 
instead a significant down-regulation of sod1 and cat occurred 10 h post- 
refeeding compared to fed fish. Down-regulation of antioxidant gene 
transcripts and/or decreased activity of antioxidant enzymes have 

previously been reported in fish under a prolonged fast (Drew et al., 
2008; Furné et al., 2009; Malandrakis et al., 2014; Pascual et al., 2003; 
Rossi et al., 2015; Waagbø et al., 2017; Yang et al., 2019). Further 
studies will be needed to establish if 7 days of food deprivation induced 
oxidative stress in the European sea bass and if down-regulation of sod1 
and cat was the consequence of substrate induced negative feedback or 
due to a possible antioxidant defence failure (Pippenger et al., 1998). 

Food deprivation has also been associated with oxidative stress at the 
level of the intestinal mucosa and with increased levels of antioxidant 
enzymes in the intestine of fish (Antonopoulou et al., 2013; Bu et al., 
2021; Shi et al., 2022). Yet, in our experiments the expression of sod1 
was significantly down-regulated in 13.5 ◦C-S and 13.5 ◦C-10hR groups 
of fish compared to 13.5 ◦C-F, which is similar to what was observed in 
the liver. In contrast, cat had a different modulation in the foregut 
compared to the liver. Food deprivation did not significantly modify the 
expression of cat in the liver of fish incubated as eggs at 11 ◦C, but in the 
foregut cat was significantly up-regulated in 11 ◦C-S compared to 11 ◦C- 
F. In previous studies of the European sea bass and the Yangtze Sturgeon 
(Acipenser dabryanus) cat had a higher expression in the intestine 
compared to the liver when fish were deprived of food (Antonopoulou 
et al., 2013; Shi et al., 2022), suggesting that a tissue-specific response to 
food deprivation occurs and in our study the intestine seemed to be more 
sensitive to food deprivation mediated oxidative stress than the liver, 
despite the latter tissue’s vital role in antioxidant defence in fish (Furné 
et al., 2009; Morales et al., 2004). 

5. Conclusion 

This study evaluated for the first time if egg incubation temperature 
in European sea bass modified their response to food deprivation as 
juveniles (9 months old). The most divergent responses were found 
between fish incubated at higher and lower temperatures (16 ◦C and 
11 ◦C) than are normally used in aquaculture for incubation of European 
sea bass eggs (13.5 ◦C). Fish incubated as eggs at the lowest temperature 
(11 ◦C) had a temporary response of igf-1 after one week of food 
deprivation and this was not observed in fish from other egg thermal 
regimes. The fish incubated at 11 ◦C as eggs experienced less atrophy of 
the foregut and the liver parenchyma returned to that typical of fed fish 
when feeding was resumed, earlier than the juvenile fish from eggs 
incubated at 13.5 ◦C and 16 ◦C. The sea bass incubated as eggs at the 
most commonly used (13.5 ◦C) and highest temperatures (16 ◦C) un-
derwent the most pronounced morphological changes after one week of 
food deprivation, including atrophy of the foregut and a significant 
depletion of liver lipid reserves. Associated with the pronounced histo-
logical changes in the foregut and liver the sea bass from eggs incubated 
at 16 ◦C experienced the most pronounced molecular modifications and 
significant up-regulation of transcripts associated with gluconeogenesis, 
peptide absorption and antioxidant defence compared to sea bass 
incubated as eggs at 13.5 ◦C. Despite the tissue specific morphological 
changes, fish from eggs incubated at 16 ◦C were able to recover 
following 2 days of refeeding, while the liver parenchyma of food 
deprived fish incubated as eggs at control temperatures (13.5 ◦C) did not 
fully recover during refeeding. 

In the context of global climate change, shifting thermal regimes in 
the marine environment will affect early development in ectotherms and 
will affect food availability either by changed biogeography of nutrients 
or by induced fasting periods due to lower temperatures during tem-
perature shifts. Therefore, it is of utmost importance to understand if the 
response of the European sea bass to fasting-refeeding cycles under 
different egg thermal regimes could lead to beneficial metabolic adap-
tations or to a detrimental stress response with consequences for general 
fish welfare and survival. This study raises three exciting hypotheses for 
further investigation: 1) that the foregut displays more pronounced 
adaptations to food deprivation than the liver, 2) that egg thermal re-
gimes induce changes in fat and lactate metabolism in juvenile fish and 
3) that there is a role for the HPT axis in the phenotypic plasticity that 
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thermally imprinted juvenile fish show in cycles of food deprivation and 
refeeding. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.aquaculture.2023.739806. 
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Cucchi, P., Sucré, E., Santos, R., Leclère, J., Charmantier, G., Castille, R., 2012. 
Embryonic development of the sea bass Dicentrarchus labrax. Helgol. Mar. Res. 66 
(2), 199–209. https://doi.org/10.1007/s10152-011-0262-3. 

Daniel, H., 2004. Molecular and integrative physiology of intestinal peptide transport. 
Annu. Rev. Physiol. 66, 361–384. https://doi.org/10.1146/annurev. 
physiol.66.032102.144149. 

Dar, S.A., Srivastava, P.P., Varghese, T., Nazir, M.I., Gupta, S., Krishna, G., 2019. 
Temporal changes in superoxide dismutase, catalase, and heat shock protein 70 gene 
expression, cortisol and antioxidant enzymes activity of Labeo rohita fingerlings 
subjected to starvation and refeeding. Gene 692, 94–101. https://doi.org/10.1016/j. 
gene.2018.12.058. 

Davis, K.B., Gaylord, T.G., 2011. Effect of fasting on body composition and responses to 
stress in sunshine bass. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 158 (1), 
30–36. https://doi.org/10.1016/j.cbpa.2010.08.019. 

Deal, C.K., Volkoff, H., 2020. The role of the thyroid Axis in fish. Front. Endocrinol. 
(Lausanne) 11. https://doi.org/10.3389/fendo.2020.596585. 
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Sokolović, M., Sokolović, A., Wehkamp, D., van Themaat, E.V.L., de Waart, D.R., 
Gilhuijs-Pederson, L.A., Nikolsky, Y., van Kampen, A.H.C., Hakvoort, T.B.M., 
Lamers, W.H., 2008. The transcriptomic signature of fasting murine liver. BMC 
Genomics 9 (1), 528. https://doi.org/10.1186/1471-2164-9-528. 

Stark, R., Kibbey, R.G., 2014. The mitochondrial isoform of phosphoenolpyruvate 
carboxykinase (PEPCK-M) and glucose homeostasis: has it been overlooked? 
Biochim. Biophys. Acta 1840 (4), 1313–1330. https://doi.org/10.1016/j. 
bbagen.2013.10.033. 

Terova, G., Rimoldi, S., Chini, V., Gornati, R., Bernardini, G., Saroglia, M., 2007. Cloning 
and expression analysis of insulin-like growth factor I and II in liver and muscle of 
sea bass (Dicentrarchus labrax, L.) during long-term fasting and refeeding. J. Fish 
Biol. 70 (sb), 219–233. https://doi.org/10.1111/j.1095-8649.2007.01402.x. 
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