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A gridded salinity dataset with high resolution is essential for investigating global

ocean salinity variability and understanding its role in climate and the ocean

ecosystem. In this study, a new version of the Institute of Atmospheric Physics

gridded salinity dataset with a higher resolution (0.5° by 0.5°) is provided by using

a revised ensemble optimal interpolation scheme with a dynamic ensemble. The

performance of this dataset is evaluated using “subsample test” and the high-

resolution satellite-based data. Compared with the previous 1° by 1° resolution

IAP product, the new dataset is more capable of representing regional salinity

changes with the meso-scale and small-scale signals (i.e., in the coastal and

boundary currents regions), meanwhile, maintains the large-scale structure and

variability. Therefore, the new dataset complements the previous data product.

Besides, the new dataset is compared with in situ observations and several

international salinity products for the salinity multiscale variabilities and patterns.

The comparison shows the smaller magnitude of mean difference and Root-

mean-square deviation (RMSD) in basin scale for the new dataset, some

differences in strength and fine structure of the “fresh gets fresher, salty gets

saltier” surface and subsurface salinity pattern amplification trends from 1980 to

2017, a broad similarity for the salinity changes associated with El Niño-Southern

Oscillation (ENSO) and a consistent salinity dipole mode in the tropical Indian

Ocean (S-IOD). These results support the future use of gridded salinity data.

KEYWORDS

Ocean salinity, mapping method, climate variability, observations, climate change
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1108919/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1108919/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1108919/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1108919/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1108919&domain=pdf&date_stamp=2023-03-16
mailto:chenglij@mail.iap.ac.cn
https://doi.org/10.3389/fmars.2023.1108919
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1108919
https://www.frontiersin.org/journals/marine-science


Li et al. 10.3389/fmars.2023.1108919
1 Introduction

Ocean salinity, as one of the fundamental properties of ocean

water, has important implications for the global ocean climate

system and ecosystem. For example, the long-term changes in the

surface and subsurface salinity are of worldwide concern, as they are

ideal indicators of an intensified global water cycle (Durack and

Wijffels, 2010; Rhein et al., 2013; Cheng et al., 2020). Furthermore,

salinity contributes to the intensity of upper ocean stratification,

and thus modulates the vertical oceanic exchanges and large-scale

ocean circulation processes, such as the thermohaline circulation in

the North Atlantic (Collins et al., 2013; Rahmstorf et al., 2015). The

importance of salinity is also highlighted by its role in changes in

marine productivity, through the modulation of the spatio-

temporal structure of water stratification (Greene et al., 2012), or

influencing the adaptation of marine creatures (Ross and Behringer,

2019). Therefore, it is important to investigate salinity variability to

understand its role in climate change.

Estimating ocean salinity change is challenging due to the

sparse distribution of salinity data and instrumental bias, mainly

before the Argo era (Durack, 2015). Since 2005, the Argo

observation network has provided more than 300,000 salinity

profiles per year, and has achieved near-global coverage since

2007 (Roemmich et al., 2009). Some mainstream data centers

publish their salinity products and update them continuously,

aiming to provide more accurate estimates of the ocean state,

including objective analyses with long time coverage (i.e., the EN

dataset from the UK Met Office Hadley Centre) (Good et al., 2013)

and Argo-based products, such as the Scripps Institution of

Oceanography (SCRIPPS) dataset (Roemmich and Gilson, 2009),

the Japanese Agency for Marine-Earth Science and Technology

(JAMSTEC) dataset (Hosoda et al., 2008), and the Global Ocean

Argo gridded dataset (BOA-Argo) (Lu et al., 2018). Furthermore,

advanced data assimilation technologies allow the combination of

multiple sources of observations and models, providing a complete

three-dimensional salinity field in a physically consistent manner,

for instance, the Ocean Reanalysis System (ORA) (Balmaseda et al.,

2013) from the European Center for Medium-Range Weather

Forecasts (ECMWF) and the Simple Ocean Data Assimilation

(SODA) (Carton et al., 2018) from the University of Maryland.

These products have been widely used to investigate the salinity

variability and model simulations in previous studies (Xue et al.,

2017; Carton et al., 2019). For example, the imprints of interdecadal

and multidecadal variabilities of sea surface salinity (SSS) as an

indicator of change in the hydrological cycle in recent decades has

been explored using several salinity datasets, such as Durack and

Wijffels (2010) (named DW10), Skliris et al. (2014); Li et al. (2016)

using EN4, Vinogradova and Ponte (2017) using the ECCO

estimate, and Cheng et al. (2020) using IAP. El Ninão-Southern

Oscillation (ENSO) is the dominant mode of variability at

interannual scale in the global ocean and the salinity change in

the tropical Pacific has been reported to closely correlate the

characteristics of the ENSO cycle (Roemmich and Gilson, 2011;

Zhu et al., 2014; Zhi et al., 2019). The salinity changes can also affect

the upper ocean temperature and the evolution of ENSO by

modulating the upper stratification in the Pacific Ocean (Zheng
Frontiers in Marine Science 02
and Zhang, 2015). Previous studies indicate that the ENSO-related

salinity variability and its role during the Argo era are well

illustrated by Argo-based products, such as the SCRIPPS and

JAMSTEC datasets (Roemmich and Gilson, 2011; Zheng and

Zhang, 2015). The JAMSETC analysis has also been used to

investigate the formation and propagation of subsurface salinity

anomalies and water masses in the North Pacific Ocean (Qiu and

Chen, 2012; Yan et al., 2013; Katsura et al., 2019). The advantages of

these datasets have been demonstrated in specific applications, but

few studies have compared them.

Of considerable interest is the comparison of multiscale salinity

changes among different salinity products, as they lead to

uncertainties in the salinity variability. For instance, the long-

term amplification of global salinity contrast, either at the sea

surface or the subsurface layer, has been estimated by several

studies, but with large discrepancies in the rates of trends

(Hosoda et al., 2009; Durack et al., 2012; Skliris et al., 2014; Jan

et al., 2018). In the study of Cheng et al. (2020), the estimates of the

basin means of the upper-2000 m salinity changes in different

salinity datasets demonstrated the substantial differences,

particularly in the Southern Ocean and before the Argo era.

These disparities can be attributed to various factors, such as

quality control procedures, bias correction schemes, choice of

climatology, the mapping methods used to fill the data gaps, and

so on (Abraham et al., 2013; Boyer et al., 2016; Cheng et al., 2020).

Since the beginning of the Argo period, the quality of salinity data

has substantially improved due to advanced observations and

technologies. Multiple salinity products have consistently revealed

a notable vertical contrast, with an increase in salinity in the upper

200 m layer and freshening within the 200-600 m layer in the past

decade (Li et al., 2019). However, substantial discrepancies between

various Argo-based salinity products are still found in the

subsurface North Atlantic and Southern oceans (Liu et al., 2020).

Therefore, comparison of regional and global salinity variability

between all the available salinity products is still an important issue

in salinity research.

Recently, a new version of the salinity gridded dataset from the

Institute of Atmospheric Physics (IAP) with a horizontal resolution

of 1°×1° (IAP-1) has been released and evaluated (Cheng et al.,

2020). A large number of salinity observations over the 1960-2020

period are also found in Northwest Pacific, Northwest Atlantic, and

some coastal regions (Figure S1). On this basis, the goal of this study

is to explore the possibility to increase the spatial resolution (given

the fact that there are many places with dense observations), and

improve the performance along the coastline and boundary regions.

The new version of the salinity gridded dataset provided in this

study has an improved horizontal resolution of 0.5°×0.5° (named

IAP-05) (Table 1). The mapping scheme for the IAP-05 dataset and

the salinity data used for comparison will be described in section 2.

In section 3, we first evaluate the quality of IAP-05 dataset and

its uncertainty using a subsample test. The new dataset is also

validated by in situ observations and independent observations,

including hydrographic observations and satellite products. A

comparison of the global and regional salinity variability is then

conducted to examine the consistency of the new dataset with other

available products. Finally, a discussion is given in section 4.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1108919
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2023.1108919
2 Data and methods

2.1 Mapping method

The mapping method is based on the ensemble optimal

interpolation with a dynamic ensemble (ENOI-DE) scheme

proposed by Cheng and Zhu (2016). This approach has been

applied in the reconstruction of the historical subsurface salinity

and temperature fields with 1°×1° horizontal resolution (Cheng

et al., 2017; Cheng et al., 2020).

The source of ocean salinity observations is the World Ocean

Database (WOD) of historical hydrographic profiles (Garcia et al.,

2018). The erroneous profiles have been removed using the quality

control procedure provided by WOD18, which has been widely

used in the ocean subsurface dataset. The WOD quality flags

include the flags for entire cast as a function of variable and flags

on individual observations (Garcia et al., 2018). All the salinity

profiles have their monthly climatology averaged from 1990 to 2010

subtracted to obtain the salinity anomaly field. Considering the

design of the proposed mapping algorithm, the anomaly profiles

were then averaged into their horizontal 0.5°×0.5° gridded means

for each month and 41 vertical standard depth levels (same as

Cheng et al. (2020)). Given the slowness of ocean temporal

variation, the salinity observations in different levels were

combined to infill the data gaps within a certain time window,

which uses the temporal bins (before and after) increasing from 3

months at the surface to 18 months at 2000 m.

In the temperature/salinity reconstruction of the IAP gridded

dataset with 1° horizontal resolution (named IAP-1), the Coupled

Model Inter-comparison Project Phase 5 (CMIP5) simulations

(Taylor et al., 2012) were used to provide a dynamic ensemble (N

> 30) of the model background and its spatial covariance (Cheng

and Zhu, 2016). One of its advantages is that it provides an

improved estimate on the error covariance, that is the major
Frontiers in Marine Science 03
source of information in propagating the information from

observed regions to regions with data gaps. However, the

previous approach used in IAP-1 relies on the 1°×1° horizontal

resolution models in CMIP5 thus not applicable in higher

resolution reconstruction.

Here we used a new ensemble of the high-resolution model

outputs (N = 26) from high-resolution model simulations and

ocean reanalyses, including the High Resolution Model

Intercomparison Project (HighResMIP) simulations for CMIP6

(N = 20) (Haarsma et al., 2016), LASG/IAP Climate system

Ocean Model version 2.0 (LICOM 2.0) from China (N = 1) (Yu

et al., 2012) and Geophysical Fluid Dynamics Laboratory Coupled

Climate Model version 4 (GFDL-CM4) (Held et al., 2019) from the

United States (N = 1), the fifth generation of climate model of the

Institute for Numerical Mathematics (INM-CM5-0) from Russian

(N = 1) (Volodin et al., 2017) and three members of Euro-

Mediterranean Center for Climate Change (CMCC) Historical

Ocean Reanalysis system (CHOR) (Yang et al., 2017) from Italy

(N = 3), which use different atmospheric forcings and/or different

assimilation methods.

The HighResMIP is one of the CMIP6 endorsed MIPs and it

incorporates the model resolution that ranges from typical CMIP6

resolutions of 100 km to higher resolutions of 8~25 km in the

ocean (Roberts et al., 2020). LICOM is the eddy-revolving ocean

model with nearly global coverage in longitude-latitude grids (i.e.,

without the Arctic Ocean). GFDL-CM4 is the latest generation of

the high-resolution GFDL model for CMIP6 and outperforms the

previous GFDL model components (i.e., GFDL-CM3 for CMIP5;

CM2.6: eddy-revolving model). Both models can capture the

large-scale features of the ocean state, as well as the small-scale

and mesoscale activity. Furthermore, they show a better

representation along the coastline and boundary regions. INM-

CM5-0 is an evolutionary upgraded generation for CMIP6 with a

modified dynamical core and two times higher resolution than
TABLE 1 IAP ocean salinity 0.5-degree gridded product (IAP-05).

Dataset

Dataset title IAP Ocean Salinity 0.5-degree gridded product (IAP-05)

Corresponding
author

Lijing Cheng (chenglij@mail.iap.ac.cn)

Time range 1960-2020

Geographical
scope

Global

Data format NetCDF3
The volume of each file:
Monthly, 1-2000m/4D (40.5MB -one month)

Data service
system

Ocean and Climate (Observations, Products, Understanding, Insights)
http://www.ocean.iap.ac.cn/

Source(s) of
funding

This study is jointly supported by the National Key R&D Program of China (Grant No. 2017YFA0603202), the Strategic Priority Research Program of
the Chinese Academy of Sciences (Grant No.XDB42040402), National Natural Science Foundation of China (Grant No. 42122046, Grant No.
42076202, Grant No. 42206208) and the Young Talent Support Project of Guangzhou Association for Science and Technology.

Dataset
composition

The dataset is the monthly mean global ocean salinity gridded products with 0.5-degree spatial resolution and 41 vertical standard depth levels. The full
list of available variables, including the further variable information and downloading script, can be searched through the website of Ocean and Climate
(http://www.ocean.iap.ac.cn/).
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previous version INM-CM4. More detailed information on the

selected members is presented in Tables 2, 3. This new covariance

statistic with a dynamic ensemble of multiple sources provides a

better representation of the error covariance and can minimize the

potential impact of model bias in each individual model through

the optimal interpolation process.

A localization strategy was also used in this mapping method,

which assumes that only data within a specified length scale

(defined by the influence radius) can propagate the signals during

the analysis of a grid point. The fraction coverage of the mapping

method was used to indicate the fraction of total ocean area that can

be constrained by observations. The size of this area was defined by

the influencing radius or spatial correlation length scales. This

application helps to reduce the impact of the imperfect error

covariance (i.e., the spurious remote correlations). Here we

adopted a larger influence radius (R = 26°) from the sea surface

down to 2000 m to obtain a near-global fractional coverage (more

than 90%) for analysis (not shown here). Using this larger influence

radius helps to utilize the remote spatial covariances and it helps to

achieve a near-global fractional coverage for analysis and minimize

a reconstruction bias in data-sparse regions due to the drift towards

the prior guess (Durack et al., 2014; Cheng et al., 2017; Stammer

et al., 2019; Cheng et al., 2020). However, the use of a large influence

radius will lead to a smoothed spatial pattern by filtering out the
Frontiers in Marine Science 04
smaller-scale signals. Following previous mapping methods (Cheng

et al., 2020), the use of multi-step iterative scans shows a significant

improvement in re-inserting the ocean variability across those

spatial scales. Therefore, three iterative scans were performed

using radii of 26°, 8°, and 4°. Other key parameters in this

method can be found in the definitions in the study of Cheng

et al. (2020).

To evaluate the performance of our reconstructed salinity

results, a “subsample test” based on Argo-period observations

(since 2007) was used in this study. Such a method has been

validated in previous temperature/salinity reconstructions,

including the impact of a localization strategy and the uncertainty

due to the mapping method (Cheng and Zhu, 2016; Cheng et al.,

2017; Cheng et al., 2020). We remark here that this procedure tested

the impact of the changing sampling and climate state, it does not

test the impact of the changes in the covariance function over time

which requires further studies. In a subsample test, the observed

salinity fields every six months from January 2007 to July 2017 were

defined as the “truth” field (named “truth-obs”, total 22). For each

“truth-obs”, the data within -2 to 2 months centered on each

selected month were averaged to construct each “truth-obs” field

to increase the data coverage. We subsampled each “truth-obs” as

defined above, using different historical observation masks, selected

every 60 months from January 1960 to January 2015 (so 12
TABLE 2 Ensemble members of CMIP6 HighResMIP simulations used for the construction of background error covariance fields in the mapping
scheme.

Number Model Modelling centers Horizontal Resolution Vertical Resolution

1 BCC-CSM2-HR BCC 25km (1440×688) 50 (5316.1m)

2 CMCC-CM2-HR4 CMCC 25km (1442×1051) 50 (5903.9m)

3 CMCC-CM2-VHR4 CMCC 25km (1442×1051) 50 (5903.9m)

4 CNRM-CM6-1 CNRM-CERFAC 100km (362×294) 75 (5902.1m)

5 CNRM-CM6-1-HR CNRM-CERFACS 25km (1442×1050) 75 (5902.1m)

6 CESM1-CAM5-SE-HR NCAR 25km (3600×2400) 62 (5874.99m)

7 CESM1-CAM5-SE-LR NCAR 100km (320×384) 33 (5500m)

8 EC-Earth3P EC-Earth-Consortium 100km (362×292) 75 (5902.1m)

9 EC-Earth3P-HR EC-Earth-Consortium 25km (1440×1050) 75 (5902.1m)

10 ECMWF-IFS-HR ECMWF 25km (1442×1021) 75 (5902.1m)

11 ECMWF-IFS-LR ECMWF 100km (362×292) 75 (5902.1m)

12 ECMWF-IFS-MR ECMWF 25km (1440×1021) 75 (5902.1m)

13 GFDL-ESM4 GFDL 50km (720×576) 35 (6500m)

14 HadGEM3-GC31-HH MOHC 10km (4320×3604) 75 (5902.1m)

15 HadGEM3-GC31-HM MOHC 50km (1440×1205) 75 (5902.1m)

16 HadGEM3-GC31-LL MOHC 250km (360×330) 75 (5902.1m)

17 HadGEM3-GC31-MM MOHC 100km (1440×1205) 75 (5902.1m)

18 INM-CM5-H INM 100km (360×180) 33 (5500m)

19 MPI-ESM1-2-HR MPI-M 50km (802×404) 40 (5720m)

20 MPI-ESM1-2-XR MPI-M 50km (802×404) 40 (5720m)
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observation masks are tested). Then all the subsampled fields (total

12×22, i.e., sampling 22 truth with 12 observation masks) were

reconstructed by the mapping method and compare with the

corresponding “truth-obs”. Here we defined their differences as

the “sampling errors” to quantify the performance of

the reconstruction.

Besides the Argo-period observations, synthetic observations

were used to evaluate the mapping performance. The synthetic data

were re-sampled from a high-resolution (0.25°×0.25° horizontally)

CNRM-CM6-1-HR model in CMIP6 archive by the National

Centre for Meteorological Research, Météo-France, and CNRS

laboratory, and spans from 2007 to 2018 (historical simulation

before 2015 and SSP2-4.5 after 2015) (Voldoire et al., 2019). The

model simulations were regarded as “truth” field (named “truth-

model” hereafter), which has global coverage and are dynamically

consistent. We adopted 22 “truth-model” fields selected January

and August from 2005 to 2015 and then we re-sampled them

according to the observation locations on every 60 months from

January 1960 to January 2015 (12 subsampled fields for each “truth-

model” field, which are synthetic observations). There are a total of

N=22×12 synthetic observation fields. Both IAP-1 and IAP-0.5

mapping methods were tested using this synthetic data approach

and they have been averaged into 1° and 0.5° version, respectively.
2.2 Other salinity products

Five observational gridded products were used in this study for

the comparison of multiscale salinity variability (Table S1): (1) EN4

from the UK Met Office (Gouretski and Reseghetti, 2010; Good

et al., 2013); (2) Ishii from Japan (Ishii et al., 2017); (3) NCEI from

the United States (Levitus et al., 2012); (4) IAP-1 from China

(Cheng et al., 2020); (5) one Argo-based gridded monthly analysis,

SCRIPPS from the United States (Roemmich and Gilson, 2009).

Two additional ocean reanalysis data were included: (1) ORAS4

from the ECMWF (Balmaseda et al., 2013); (2) SODA from NOAA,

USA (Carton et al., 2018). Among these products, SODA has the

same horizontal resolution as the IAP-05 data, and the others have
Frontiers in Marine Science 05
1°×1° horizontal resolution. All the available products are converted

into the same horizontal resolution and vertical depth levels as the

new dataset for comparison. The climatology was constructed by

the 12-month salinity data for the 1990–2010 period for the

observations and model, which are used for mapping method to

fill the data gaps. The salinity anomaly fields were then obtained by

removing their own monthly climatology average before the

analyses. Anomaly fields are compared in this study because of

the following reasons: (1) It is a common practice to use anomalies

to investigate variability and trend, so anomalies are much more

relevant for climate variability and change researches; (2) In all

previous studies, the mapping procedure is applied to the anomaly

field rather than the absolute field because the anomalies are used to

minimize the aliasing of the large spatial gradients of the

climatological and seasonal fields into the mapping as a result of

the sparse spatial resolution; (3) The procedure for constructing the

absolute field (i.e. climatology) is always different from the mapping

for anomalies, and their error sources and structure are different.

Therefore, the climatology of each dataset should be removed to

reduce the error related to climatology construction. The time span

for each product is more than 55 years since 1960, with the

exception of SODA, for which we used the 1980–2017 period.

To assess the quality of the new dataset, independent

observations were also used. (1) The historical hydrographic

observations in the Labrador Sea provided by the Bedford

Institute of Oceanography (BIO) (Yashayaev, 2007). This

hydrographic dataset includes the independently validated and

bias-corrected multi-section surveys (i.e., AR7W) and profiles in

the Labrador Sea, which span from 1896 to present. The physical

parameters and transient anthropogenic traces from this dataset

have been used to investigate the structures, properties, and impacts

of Labrador Sea water, and some studies of the climate dynamics

and change in the subpolar North Atlantic (Yashayaev and Loder,

2017). (2) The monthly SSS gridded version 3 product from the

European Space Agency (ESA) Sea Surface Salinity Climate Change

Initiative (CCI) consortium (Boutin et al., 2021). This dataset

provides the improved calibrated global SSS fields with a 25km

horizontal resolution of near-global coverage spanning from 2010
TABLE 3 Four members of models and ocean reanalyses used for the construction of background error covariance fields in the mapping scheme.

LICOM GFDL-CM4 CHOR INM-CM5-0

Modelling centers IAP, CAS NOAA, GFDL CMCC INM

Types Forced hindcast Historical simulation Reanalysis Historical simulation

Grid Longitude-Latitude grid Tripolar ORCA05 tripolar Tripolar

Experiment Number 1 1 3 1

Horizontal resolution 0.1°×0.1° 1/4°×1/4° 0.5°×0.5° 0.5°×0.25°

Vertical levels 55 (5600m) 75 (6500m) 75 (5902m) 40 (5500m)

Period 1948–2007 1850–2100 1900–2010 1850–2100

Atmospheric forcing CORE II IAF AM4.0 NOAA 20CRv2/ERA-20C INM-AM5-0

Ocean models LICOM2.0 OM4 MOM6 NEMO v3.4 + LIM2 sea-ice model INM-OM5

Assimilation scheme N/A N/A Multivariate 3DVAR N/A
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to 2019 based on the long-term multi-sensor salinity Climate Data

Record, such as the SMOS (2010 to present), Aquarius (2011-2015)

and SMAP (2015 to present) L-band radiometers. Consequently, it

has the capacity to monitor the global SSS features, including its

mesoscale variability and covers a longer period. (3) the gridded sea

surface salinity dataset for the Atlantic Ocean, named LEGOS,

which spans from 1980 to 2016 (Reverdin et al., 2007). The LEGOS

data are based on the available data collected from 1970 to 2016

mostly from Voluntary Observing Ships, PIRATA moorings and

Argo profiles and subsequently validated. This monthly SSS

products is mapped by the objective analyzed method and covers

the region between 95°W –20°E and 50°N–30°S in the Atlantic

Ocean. Here we employed these observational datasets to test the

ability of the IAP-05 dataset to capture small-scale and regional

signals, and estimate of long-term linear trends.
3 Results

3.1 Evaluation based on the subsample test

3.1.1 Examples of the subsample test
The spatial pattern of the 50 m depth salinity anomalies on

January 2017, the subsampled fields (for observation location of

Januarys of 1960, 1990 and 2010 separately) and the reconstruction

fields are presented in Figure 1. This subsample test uses the Argo-

period observations. The ocean salinity field in January 2017

manifested as a dissipated La Ninãa-like pattern, with freshening

in the tropical North Pacific and the Intertropical Convergence

Zone (ITCZ), together with a salinity increase in the central and

eastern Pacific. The northwest and southwest Pacific also

experienced a significant salinity increase. The patterns of the

reconstructed fields (Figure 1B) agree well with the “truth-obs”

field for 2017, with a high spatial correlation coefficient of 0.61. The

global-mean RMSD of the sampling errors for 2017 is 0.08, which is

smaller than the reconstructed signals in most part of the global

ocean. A good resemblance can be also found in the results of other

subsample tests with a sparse historical distribution (Figures 1B, F,

H). This consistency can also be found in their zonal patterns and

the results for other periods (i.e., 1970, 1980 and 2000), with the

positive salinity anomalies within 20°N–40°N,10°S–0° and 55°N–

60°N, and negative values within 5°N–15°N and 20°S–10°S

(Figure 1J). They provide indication that the new mapping

method can reconstruct the “truth-obs” field given the sparse data

distribution even back to 1960.

In addition, it is apparent that the reconstruction field is very

different from the first guess field, which is provided by the mean of

ensemble members (used as a prior), even in the data sparse region

such as the southern oceans (Figures 1B vs. 1I). To further quantify

the potential impact of the first guess field, we manually replaced

the first-guess field in IAP-05 mapping scheme with the climatology

(zero anomaly), and then compared the reconstructed field with the

previous reconstructed results, taking the 50m-depth salinity

anomaly in January 1960 as an example (Figure S2). Both

reconstructed fields show a consistent pattern (Figures S2B, S2D)

and their difference also has a much smaller magnitude than the
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reconstructed results (Figure S2E). This test confirms that the first

guess does play a minor role in our reconstruction, mainly because

of the strong constraint of observations with the current

mapping technique.

However, there are still some differences between the

reconstructed field and the “truth-obs”, particularly before the

Argo Period (i.e., 1960 and 1990), such as in the Southeast

Pacific, South of Australia, and the southern subtropical Atlantic

(Figure 1), indicating the uncertainty in reconstruction, which will

be quantified by “subsample test” in the next section.

3.1.2 Subsample test using Argo-period data
The basin means of the salinity anomalies averaged over 0–2000

m (named S2000 hereafter) from 1960 to 2020 are shown in

Figure 2, along with the corresponding mean sampling errors and

sampling uncertainties. The global mean S2000 change (Figure 2A)

shows a good resemblance to the IAP-1 result, decreasing with a

rate of 0.005 ± 0.006 psu per century over the period 1960–2020

(The error range represents the 95% confidence interval of linear

trends based on the ordinary least squares (OLS) linear fit). The

Pacific Ocean experiences a robust freshening (−0.016 ± 0.004 psu

per century) during 1960–2020, and the Atlantic Ocean yields a

dramatic increase of 0.024 ± 0.013 psu per century since 1960. This

shows that the new dataset can capture the increasing salinity

contrast between the Atlantic and Pacific oceans (Curry et al.,

2003; Durack et al., 2012). In the Indian Ocean, the S2000 change

shows a strong decadal fluctuation, but with a slightly larger salinity

value than the IAP-1 results before the 1980s. The S2000 for the

IAP-05 and IAP-1 data show consistent decadal variation and a

long-term decreasing trend (−0.008 ± 0.007 psu per century) of

S2000 in the Southern Ocean. The reconstructed S2000 change in

the Atlantic Ocean reveals a slightly positive systematic bias, while

all other basins have negative systematic bias. The bias indicates the

errors in the mapping method, likely rising from the bias in the

error covariance given by models. Future improvement will be

made if more and better high-resolution models are included to

better estimate covariance. However, a systematic bias means an

error in the mean state, and it has a small impact on the decadal and

multi-decadal variabilities because the negative/positive bias is

consistent over time within the uncertainty range. Moreover, the

uncertainty in sampling error (2 standard deviations) reduced

significantly after 2005 compared with before 2005, particularly in

the Indian and Southern oceans. This reveals that the sampling

uncertainty was decreasing with the increasing number of

salinity observations.

To quantify the impact of sampling on the reconstructed

interannual variability (smaller than 7 years) and decadal/

multidecadal variability (greater than 7 years), we define the

“signal over noise” ratio (SNR), calculated as the standard

deviation (1s) of the salinity time series divided by 1s of the

sampling error given in Figure 2. A 7-year high-pass filter was

applied to the entire 1960–2020 time series to extract the

interannual variation, and the 7-year low-pass filter was applied

to obtain the interdecadal/multidecadal variation during the 1960-

2020 period, consistent with Cheng et al. (2017); Cheng et al.

(2020). Figure 2F shows the SNR for the decadal/multidecadal
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and interannual signals in different basins, separated into two

different periods: the Pre-Argo period and the Argo period.

These interannual variations are smaller than or close to the

sampling uncertainty (SNR ≤ 1) for almost all basins, especially for

the Pre-Argo period, suggesting that the reconstructed interannual

signals are more affected by the sampling uncertainty and then less

reliable. For the decadal/multidecadal timescale, the SNR in all the

basins is larger than 1, particularly in the Pacific, Atlantic and

Indian oceans (SNR > 2). Since 2005, the reconstructed decadal

variations in all the basins are significantly larger than the sampling

uncertainty (SNR > 2). This suggests a more reliable reconstruction

of decadal/multidecadal salinity variability in the recent decades,
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thanks to the establishment of Argo network. Meanwhile, for both

time scales, the SNR during the Argo period is larger than that

before 2005, suggesting a better reconstruction.

3.1.3 Subsample test using synthetic observations
Here we used the synthetic data to test IAP-1 and IAP-0.5

mapping performance. Figure 3 shows their vertical structures of

global-mean salinity changes since 1960. Both versions showed

consistent long-term changes of salinity, with significant freshening

trends at sea subsurface (200~1200 m) and salinification trends at

upper 200m (Figures 3A, B). To quantify the reconstruction

performance, Figures 3C–F compares the reconstruction with the
A B

C D

E F

G H

I J

FIGURE 1

Reconstruction of historical salinity anomaly fields at 50 m depth (units: psu). (A–H) shows the truth field of salinity anomaly at 50 m in January 2017
and their subsampled fields according to the location of observations in Januarys of 1960, 1990 and 2010 (left panels). The reconstructed fields are
shown in the right panels. (I) is the first guess field, and (J) is the reconstructed global zonal mean salinity anomaly along with the truth field (black
line). The truth fields are based on the Argo-period observations in January 2017. The grid number of in situ observations in Januarys of 1960, 1970,
1980, 1990, 2000, 2010, 2017 are 2660, 5942, 6722, 8167, 5590, 15563 and 20397 for the 720×360 grid boxes.
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“truth-model” and shows the sampling error and its standard

deviation for IAP-05 and IAP-1 respectively. The mean sampling

errors for both IAP datasets are much smaller than the salinity

anomalies (Figures 3C vs. A, D vs. B), indicating a reliable

reconstruction by both approaches. IAP-1 mapping results in an

overall positive bias (0~1200 m) and a negative bias below 1200m

(Figure 3D), For the IAP-05 mapping, there is a small negative

sampling error above 400m and a positive bias within 400–1600m

before 2005. Since 2005, the negative bias extends down to 1000m

and the positive error confines to depths 1000–1800m (Figure 3C).

Besides, IAP-05 also shows smaller standard deviation than the IAP-1

data for all depths (Figures 3E vs. 3F). Figure S3 further shows the 0–

2000m mean sampling errors for the global ocean and four major

basins. In all the basins, the global and basin means of salinity errors

for both mapping methods are smaller than the actual salinity change

(Figure 2). By contrast, the mean sampling errors for the IAP-05

mapping method are smaller than that for IAP-1 method.

The geographical distributions for the linear trends of the 0-2000

mean sampling errors and the globally zonal mean sampling errors of

both IAP mapping methods based on the synthetic data are presented

in Figure S4. Both IAP schemes display a similar pattern of change in

sampling errors over time, and the magnitude of trend errors for the

IAP-05 mapping method is generally smaller than IAP-1. For IAP-05,

there are the negative biases appeared in the tropical and subtropical

South Pacific Ocean, and the positive biases in West Atlantic Ocean.
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We note that the large sampling errors of both IAP salinity datasets

occur in the Southern Ocean and their vertical distributions of negative

anomalies correspond with the subduction pathway from the high

latitudes (Figures S4C, S4D). Nevertheless, the sampling errors for both

reconstructions are smaller than the actual salinity change signals

(comparing Figure S4 of this study with Figure 6 in Cheng et al.,

2020), indicating the robustness of the identified salinity trend patterns.

Figure S5 further shows the distributions of standard deviation of linear

trends of the sampling errors for both mappings, indicating a large

uncertainty of trends reconstruction in the Boundary Current regions

and subtropical gyres (Figures S5A, S5B) in the upper-200m ocean

(Figures S5C, S5D). Compared with the IAP-1 results, the IAP-05

scheme shows a smaller and shallower uncertainty, which is mainly

located in the boundary current regions in Southern hemisphere.

These results based on synthetic data with known “truth” suggest

a better performance of the IAP-05 mapping method than the IAP-1

in illustrating the basin-scale salinity changes over the past decades.
3.2 Comparison with CCI
satellite-based product

Here we provided additional assessments of the IAP-05 data by

comparing the new dataset with the independent and high-

resolution satellite gridded salinity product. As one goal of the
A B

C D

E F

FIGURE 2

Global and basin means of the 0–2000 m salinity anomaly with sampling uncertainty. (A) Global (Glo), (B) Pacific (Pac), (C) Atlantic (Atl), (D) Indian
(Ind), and (E) Southern oceans (So) (units: psu). The black line is the time series of the yearly mean of the salinity anomaly for IAP-05 and the red line
is for the IAP-1 data. The grey line shows the monthly mean anomaly time series with the shading corresponding to two standard deviations of the
ensemble members from the mean. The blue dots represent the sampling errors corresponding to 22 different truth fields based on the Argo-period
observations, with the ensemble mean shown by the blue line and the vertical bars corresponding to two standard deviations. (F) The “signal over
noise” ratio (SNR) for two different timescales: decadal/multidecadal (>7 years) and interannual (<7 years) for the pre-Argo (before 2005) and Argo
(since 2005) periods.
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IAP-05 is to provide a higher horizontal resolution dataset than

IAP-1, CCI v3 gridded data at 25km horizontal resolution help us to

testify its capacity to reveal the small-scale signals of the ocean. The

mean SSS fields from January 2017 to December 2017 for CCI, IAP-

05, and IAP-1 are shown in the Figure 4. For a fair comparison, both

IAP salinity datasets were interpolated into the same horizontal

resolution with CCI salinity product. All these products can

reproduce the large-scale salinity characteristics, with a salinity

maximum in the mid-latitudes, which is dominated by evaporation,

and low values in the precipitation-dominated regions (i.e., the

tropical and North Pacific) (Figures 4A, C, E). Both IAP datasets

have the high spatial correlation coefficients of more than 0.97 with

CCI data. Moreover, IAP-05 shows more details of mesoscale and

small-scale spatial salinity distributions than the IAP-1 products.

The magnitude of the horizontal gradients of SSS was also

calculated in Figure 4 by the square root of the sum of squared zonal

gradient and meridional gradient of SSS averaged from January

2017 to December 2017, following the method adopted in

Vinogradova et al. (2019). This metric can illustrate the fine

structure of the spatial variability of salinity. All the three

products show similar salinity gradient patterns, including the

stronger variability in the coastal and boundary currents regions,

upwelling zones, and large-scale circulation convergence zones. The

new IAP-0.5 dataset shows better consistency with CCI than IAP-1,

such as the strong salinity fronts in the North Pacific Ocean, North

Indian Ocean and Kuroshio extension regions.

Figure 5 shows the spatial maps of the mean difference and

RMSD of SSS between both IAP datasets and CCI v3 satellite data

from 2010 to 2019. Compared with CCI, IAP-05 and IAP-1 datasets
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have the global mean difference of –0.012 psu and –0.013 psu,

respectively, and they show a consistent large-scale pattern with the

positive differences in the tropical and subpolar regions in Pacific

and Atlantic oceans, Bay of Bengal, Subtropical South Indian

Ocean, and with the negative differences in the subtropical Pacific

and Atlantic oceans, Arabian Sea and Southern oceans (South of 30°

S), corresponding to the evaporation and precipitation dominated

regions. We note that the magnitude of SSS signals for IAP-05 data

are slightly smaller than the IAP-1 results. The largest values (>0.3

psu) are located in some coastal regions, such as the north of 45°N

in the North Atlantic, and Antarctic Circumpolar Current (ACC)

regions, where the large errors were present in CCI satellite data.

Albeit for this difference, the spatial patterns of RMSD for both IAP

datasets (Figures 4B, D) are consistent with the higher salinity

values (>0.3 psu) in ITCZ regions, ACC regions in Indian Ocean,

Kuroshio Current and its extension. They correspond to the largest

mean difference for IAP products in these regions. The large RMSD

for IAP-05 and IAP-1 (>0.4 psu) are also located in the coastal

regions, where the CCI data have a larger uncertainty.

In summary, by comparing with an independent high-

resolution satellite data, we show that the new IAP-05 data can

better produce the smaller-scale signals than the 1° results.
3.3 Comparisons with other
available observations

The subsample test and assessments using the independent

satellite observations show that the 0.5° salinity field reconstructed
A B

C D

E F

FIGURE 3

The reconstructed global-mean ocean salinity anomaly variations over depth from surface to 2000m (units: psu) for (A) IAP-05 and (B) IAP-1 data.
(C) and (D) are their mean sampling errors for IAP-05 and IAP-1 data based on the “synthetic” subsample test, respectively, and (E) and (F) show their
standard deviation of sampling errors.
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using the proposed mapping method is a better representation of

the salinity than 1° salinity field. In this section, we further compare

the new dataset with other available gridded salinity datasets, in

order to evaluate how well the current datasets could present the

historical salinity variations on various spatial and time scales.

3.3.1 Salinity snapshots in the boundary and
coastal regions

The increase in resolution should provide a better

representation of some regional features that are not recognized

in the 1° gridded resolution data, particularly in the western

boundary and coastline regions. The 10 m depth salinity

anomalies of the Kuroshio Current and its extension in January

2015 are shown in Figure 6 (this month is selected arbitrarily, using

other time yields similar results). The IAP-05, IAP-1, EN4, Ishii,

SCRIPPS, and both reanalyses (i.e., ORAS4 and SODA) are

included for comparison. For a fair comparison, the 1° gridded

datasets (i.e., IAP-1, EN4, Ishii, SCRIPPS and ORAS4) were

interpolated into the horizontal resolution of 0.5°. As indicated in

Figure 6, all the datasets can capture the large-scale characteristics

of the salinity distribution in regions such as the zonal band of

positive anomalies in the south of 20°N for the northwest Pacific.

The patterns of EN4, Ishii and IAP-1 are smoother, while SCRIPPS

and ORAS4 are able to show a few small-scale and mesoscale

salinity signals. Compared with the 0.5° interpolated dataset, the

high-resolution (including IAP-05 and SODA) results show a better

representation of the salinity anomaly distribution in this selected

region than other products in Figure 6. IAP-0.5 shows meandering

features in the Kuroshio extension, which are more physically

reasonable than other data such as IAP-1, EN4, and Ishii. Besides,
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the small-scale features in IAP-0.5 data are more consistent with in

situ observations (Figures 6A vs. 6B).

Figure 6 shows that another improvement of the IAP-05 is the

physical description of the coastline. This is because the 0.5° grid

box is closer to the land and more confined to the coast than the 1°

grid box (Locarnini et al., 2018). In particular, as SCRIPPS is based

only on Argo observations, it shows no signal in some nearshore

regions due to the absence of Argo data in shallow waters, such as

the Bohai Sea, the Yellow Sea, East China Sea. This comparison

suggests that higher resolution mapping could more effectively use

the large amount of data near the coastal regions and in the

boundary current regions.

3.3.2 Comparison with in situ observations
Here we compare different datasets with in situ salinity

observations, based on the anomaly fields computed by removing

the climatology over the 1990–2010 period. The in situ salinity data

are the 0.5° gridded averaged fields without application of any

spatial interpolation, which is used to reduce the sub-grid variability

and to compensate the irregular spatial sampling. Figure 7 shows

the 0–2000m averaged salinity anomalies differences between the

gridded in situ data for the 1980-2017 period. The differences in

coastal regions and regions where the depth is less than 2000m are

estimated by using the salinity anomalies averaged to the local

bottom. The small values in mean difference and RMSD for the new

data with in situ gridded data could be expected because the

observational sources of IAP-05 data are based on the in situ

gridded data. IAP-05, IAP-1 and Ishii show a smaller magnitude

of differences compared with the EN4 and two reanalysis products.

The global average mean difference for IAP-05 is 0.003 psu; this
A B

C D

E F

FIGURE 4

SSS (left panels, units: psu) and its horizontal gradient magnitude field averaged from January 2017 to December 2017 (right panels, units: psu/100
km) based on different products: (A, B) for CCI, (C, D) for IAP-05, and (E, F) for IAP-1. The SSS fields of IAP-05 and IAP-1 have been interpolated into
the same horizontal resolution as the CCI data.
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value is smaller than that of other products. Both EN4 and SODA

show the largest global average mean difference (0.007 psu). The

largest salinity differences for all salinity datasets are located in some

coastal regions and high-latitude areas, such as the big differences in

East China Sea, subpolar North Atlantic, equatorial West Atlantic,
Frontiers in Marine Science 11
and ACC region, revealing the impacts of large salinity variability.

IAP-05 data shows notably smaller biases in the West Pacific,

Intertropical Convergence Zone (ITCZ) and South Pacific

Convergence Zone (SPCZ) regions than the other datasets. For

EN4 and the two reanalyses, the positive biases of the salinity (>0.02
A B

C D

FIGURE 5

Mean difference (left panels) between (A) the IAP-05 and CCI SSS, (C) IAP-1 and CCI SSS during the 2010–2019 period. Root-mean-square deviation
(RMSD, right panels) of the SMAP SSS with (B) IAP-05 SSS and (D) IAP-1 SSS during the 1990–2010 period. The SSS fields of IAP-05 and IAP-1 have
been interpolated into the same horizontal resolution as the CCI data.
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FIGURE 6

Comparison of 10m depth salinity anomaly (January 2015) in the Kuroshio Current and its extension for different gridded products. (A) Observations,
(B) IAP-05, (C) EN4, (D) IAP-1, (E) Ishii, (F) SCRIPPS, (G) ORAS4, and (H) SODA (units: psu). The 1° gridded IAP-1, EN4, Ishii, SCRIPPS and ORAS4 have
been interpolated into 0.5° versions.
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psu) are evident in the tropical Indian and southern Atlantic oceans,

and the negative biases in the southeast Pacific and southern Indian

oceans (<–0.02 psu).

Figure S6 illustrates the spatial distribution of the 0–2000m and

1980–2017 averaged RMSD of salinity products relative to the

gridded in situ salinity data. All the datasets show the smaller

RMSD (mostly <0.03 psu) in the tropical oceans and subtropical

North Pacific than in other places. Large RMSD values (>0.05 psu)

can be found in the Boundary current regions (i.e., Kuroshio

Current and its extension) and some coastal areas, and the

subtropical North Atlantic and ACC regions in Indian Ocean.

IAP-05, IAP-1 and Ishii data have lower values of RMSD than

EN4 and two reanalysis products in most places, with the global-

mean RMSD of 0.057 psu for EN4, 0.059 psu for ORAS4 and 0.065

psu for SODA. The IAP-05 data show the smallest values of 0.045

for the global mean of RMSD, and the global-mean RMSD for IAP-

1 is 0.052 psu. For the SODA, the largest RMSD (>0.05 psu) also

appears in the Southeast Pacific, which is not found in

other datasets.

Figure 8 further shows the global mean difference and RMSD of

salinity anomalies compared with observations from surface to

2000m. All the datasets indicate the larger values of difference

and RMSD in the near surface layer and they decrease with depth.

The IAP-05 shows the smallest difference and RMSD in these

gridded salinity products and its large values are found in the

upper 50m with <0.01 psu for mean difference and <0.02 psu for

RMSD. For other datasets, larger salty biases are found at the upper

200m. Among them, SODA shows the larger salty bias above 1000m
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and the largest RMSD in the 0–200m layer and 600–1000m

reaching to more than 0.03.

Figure S7 indicates the time variations of global mean difference

of globally 0–2000m mean salinity anomalies during 1980–2020

compared with in situ observations. Although salt is conserved in

the global ocean, it is expected that the mean salinity of the upper

2000 m is not constant and has the global mean freshening

associated with the melting of land ice, and large decadal

variations. Most products (except SODA) show the significant

decrease of errors after 2005. ORAS4 shows a peak of salty bias

over the 1995–2005 period. IAP-05 data shows the smallest values

of mean difference over the whole period and IAP-1 also has the

similar magnitude except within 1995–2000. SODA salinity data

show an exceptional large positive bias before 1990 and a negative

bias after 2005.

In summary, by comparing with in situ observations, we show

that the new IAP-0.5 dataset has smaller mean difference and

RMSD than the other products. However, we note that the in situ

observations are processed by the authors’ group, thus the results in

this section can’t be regarded as a fully independent and fair

comparison between IAP-05 with other products. This is a caveat,

but such comparison is still a useful addition to the tests provided in

previous sections because all products are based on essentially the

same in situ data from WOD.

3.3.3 Long-term trends of salinity
The long-term changes of SSS and subsurface salinity have been

identified as indicators of the global-warming induced water cycle
A B
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FIGURE 7

Mean differences of 0-2000m averaged salinity anomalies between (A) IAP-05, (B) IAP-1, (C) EN4, (D) Ishii, (E) ORAS4, (F) SODA and the gridded in
situ data during 1980–2017. All the salinity climatology fields are relative to 1990–2010. The 1° gridded IAP-1, EN4, Ishii and ORAS4 have been
interpolated into 0.5° versions.
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intensification, thus it is useful to compare different products for

their representation of the long-term trends.

Figure 9 shows the spatial pattern of the salinity trends from

1980 to 2017 for all the gridded products. All ocean analyses (IAP-

05, IAP-1, EN4, Ishii, NCEI) show a robust signature of the salinity

pattern amplification, that is “the fresh gets fresher, and the salty

gets saltier”, including the increased salinity contrast with the

freshening (salinification) in Pacific (Atlantic) Ocean

(Figures 9A–E). But there are major differences in magnitude and

locations. Ishii data shows the weakest salinity increase in the

subtropical Pacific and a much broader freshening in the tropical

Pacific Ocean compared with other observational analyses

(Figure 9D). The results of EN4 and NCEI (Figures 9C, E) show

some patchy or spotty distributions (contours are isotropic), which

is likely associated with the use of a parameterized covariance

assuming Gaussian distribution (Boyer et al., 2005; Good

et al., 2013).

The reanalyses (i.e., ORAS4 in Figure 9F and SODA in Figure 9G)

show marked differences in trend’s magnitudes compared with the

observational analyses (Figures 9A–E): their linear trends are much

larger than the observational analyses in most places. Their spatial

pattern correlations against the observational analyses are always

smaller than 0.33 (Table 4). By contrast, the correlations between

observational analyses are always >0.30 and even get to ~0.73 (between

IAP-05 and IAP-1) (Table 4). Besides, for ORAS4, the signals of salinity

increase in the subtropical Pacific are distributed more southward than

the other products. And the inter-basin contrast of SSS trend between

the Pacific (fresher) and Atlantic (salter) is smaller for ORAS4 and

SODA than the other products (Figures 9F, G). These comparisons

indicate a distinction between reanalyses (ORAS4 and SODA) and the

observational datasets, which are probably impacted by the surface

forcing, model biases and its assimilation scheme (Balmaseda et al.,

2013; Carton et al., 2019).
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The new estimate of SSS trend is further compared with the

LEGOS and other data in the tropical and subtropical Atlantic (30°

S–50°N) during the period of 1980–2016 (Figure S8). All the

datasets show are consistent for the large-scale patterns, showing

the salinity increase in the subtropical North and South Atlantic

and the freshening in the tropical Atlantic Ocean. The magnitude of

trend in IAP-05 data is slightly weaker than the results for the IAP-

1, EN4 and two reanalyses, but more consistent with Ishii and

LEGOS. The Ishii also shows the weakest magnitude and SODA

displays the largest SSS trends in the tropical and subtropical

Atlantic. The spatial patterns are similar for all datasets, to

quantify the similarity of the spatial pattern between LEGOS and

different salinity products, here we calculated the spatial

correlations. The highest correlation coefficient is 0.33 for LEGOS

versus IAP-05, and Ishii data shows the smallest coefficient (~0.14),

indicating LEGOS and IAP-05 are more consistent than LEGOS

versus the other datasets. We note that the spatial correlation

between IAP-05 and IAP-1 data is 0.55.

The long-term trends in the globally zonal mean subsurface

salinity of these datasets also show an overall enhancement of the

existing mean pattern (Figure 10), with the high correlation

coefficients between two spatial fields for both datasets and even

reaching to 0.83 (between IAP-1 and EN4) (Table 4). This is closely

associated with a downward propagation of salinity anomalies into

the ocean interior in recent decades, corresponding to a salinity

increase of the salty subtropical waters and freshening of the high-

latitude waters. Again, the spatial correlations between reanalyses

(ORAS4 and SODA) and other observational datasets are low or

even negative (i.e., –0.11 and 0.12 for ORAS4 and SODA vs Ishii

suggesting major differences are in the subsurface ocean. The

biggest differences between ORAS4 and other datasets are located

around 40°N extending to depths of ~2000 m and ~30°S above 200

m (Figure 10F).
A B

FIGURE 8

The vertical distribution of mean difference (A) and RMSD (B) of global-mean salinity anomalies over 2000m between the gridded in situ data and
IAP-05, IAP-1, EN4, Ishii, ORAS4 and SODA during 1980–2017. All the salinity climatology fields are relative to 1990–2010. The 1° gridded IAP-1,
EN4, Ishii and ORAS4 have been interpolated into 0.5° versions.
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Given the distinction between reanalysis and analysis in our

comparison, a thorough comparison among reanalysis products is

urgently needed to better understand the uncertainty. A similar

analysis has been done for ocean heat content (Palmer et al., 2017),

showing much larger spread among ocean reanalyses than

observational products. Similar results are expected for salinity as

well, because the reanalysis products are subject to additional errors

from the inaccurate ocean model (especially at subsurface), surface

forcing, and assimilation scheme.
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3.3.4 ENSO-related SSS variability in the
Pacific Ocean

ENSO is a dominant mode of variability in the tropical Pacific

(Qu and Yu, 2014; Zhi et al., 2019). The phase of ENSO is

commonly indicated by the Ninão 3.4 index, which is defined as

the three-month running mean of SST averaged in the region of 5°

S–5°N, 170°W–120°W (Trenberth, 1997). To compare the

capability of different products in demonstrating the ENSO-

related SSS changes in the tropical Pacific, we regressed the SSS
A B

C D

E F

G

FIGURE 9

Spatial patterns of the sea surface salinity (SSS) long-term trends during the 1980–2017 period. (A) IAP-05, (B) IAP-1, (C) EN4, (D) Ishii, (E) NCEI, (F)
ORAS4, and (G) SODA (units: 10−3 psu yr−1). Contour lines show the associated climatological mean salinity (1990–2010; units: psu). Linear trends
are significant at the 95% confidence level in the dotted areas. The 1° gridded IAP-1, EN4, Ishii and ORAS4 have been interpolated into 0.5° versions.
TABLE 4 The correlation of linear trends of global SSS (above diagonal) and globally zonal mean of subsurface salinity (below diagonal) between the
0.5-degree salinity data (all data are interpolated to 0.5°×0.5° resolution).

IAP-05 IAP-1 Ishii EN4 NCEI ORAS4 SODA

IAP-05 0.73 0.46 0.49 0.40 0.24 0.19

IAP-1 0.58 0.44 0.51 0.54 0.25 0.28

Ishii 0.45 0.75 0.47 0.31 0.04 0.16

EN4 0.51 0.83 0.68 0.54 0.22 0.23

NCEI 0.67 0.81 0.69 0.77 0.27 0.31

ORAS4 0.15 0.07 -0.11 0.16 0.13 0.04

SODA 0.38 -0.03 -0.12 0.07 0.15 0.11
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anomalies onto the Ninão3.4 index for each individual dataset

during the Argo period (2005–2017) and the Pre-Argo period

(1980-2004), respectively (Figure 11).

All the regressed SSS patterns in our study are similar to those in

previous studies (Roemmich and Gilson, 2011). During the El

Ninão phase, the strongest negative SSS anomalies occur in the

western-central equatorial Pacific, centered near 175°E and

extending to the northeastern Pacific along the west coast of

North America, which roughly coincides with the eastward

displacement of the warm pool along the Equator. Three positive

cores are also found near the Philippine coast, over the SPCZ, and in

the southeastern tropical Pacific. However, a better consistency is

found during the Argo period (right panels in Figure 11) than the

Pre-Argo period (left panels in Figure 11), associated with the

increasing data amount and data quality since 2005 (Riser et al.,

2016). For the objective analysis products, the magnitude of the

regressed anomalous SSS fields before the Argo period is weaker

than that during the Argo period, particularly in the southeast

Pacific (Figures 11A–H). The EN4 and Ishii data display some

patchy and spotty distributions in the western and southeast Pacific,

particularly before the Argo Period. While the ENSO patterns for

IAP-05 and IAP-1 are more physically consistent than that for EN4

and Ishii during the Pre-Argo Period, because they are well

constrained by observations, given the near-global fraction

coverage (>90%) of their mapping methods. The positive
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anomalies in the SPCZ for the ORAS4 and Ishii data

(Figures 11G, I) are much larger than the results from other

datasets. The SODA reanalysis shows another negative anomaly

pole in the tropical northern Pacific (>0.15 psu °C-1), and its

magnitude is larger than other datasets (Figure 11K). Compared

with other salinity products, the new dataset and IAP-1 seems to be

more capable of depicting the ENSO-related SSS modes during

these two periods.

3.3.5 S-IOD events
Strong salinity variations are also found in the tropical Indian

Ocean (IO). Previous studies have shown that the meridional

salinity dipole mode in the tropical Indian Ocean (S-IOD) is a

predominant mode of SSS variability in the tropical IO (Zhang et al.,

2016; Zhang et al., 2017). In its positive phase, there is a contrast

with low (high) salinity anomalies in the southern equatorial

(tropical southeastern) IO. The S-IOD shows multiple time-scale

variabilities and is triggered by many processes, including the ocean

advection driven by equatorial IO winds and the surface freshwater

flux variability in the Southern tropical IO, the decadal modulation

of the Indo-Pacific Walker circulation and Indonesian Throughflow

(Zhang et al., 2017). Furthermore, the S-IOD index is used to

represent the evolution of the S-IOD events, which is defined as the

SSS anomaly (SSSa) difference between the southeastern IO (22°–

12°S, 98°–118°E) and the central equatorial IO (8°S–2°N, 70°–90°E)
A B

C D

E F

G

FIGURE 10

Spatial patterns of the long-term trends in globally zonal mean subsurface salinity (0–2000 m) during the 1980–2017 period. (A) IAP-05, (B) IAP-1,
(C) EN4, (D) Ishii, (E) NCEI, (F) ORAS4, and (G) SODA (units: 10−3 psu yr−1). Contour lines show the associated climatological mean salinity (1990–
2010, units: psu). Linear trends are statically significant at the 95% confidence level in the dotted areas. The 1° gridded IAP-1, EN4, Ishii and ORAS4
have been interpolated into 0.5° versions.
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(Zhang et al., 2016). Here, S-IOD index is calculated in each

individual dataset, and then it is regressed onto the spatial SSS

anomalies in the tropical IO for each dataset. The analysis is

separated into two periods (2005–2017 and 1980–2004) to test

the robustness of the results (Figures S9, S10).

The typical S-IOD mode of the significant meridional SSSa

dipole during the Argo period is well indicated by all the salinity

results (Figure S9), with contrasting low (high) SSS anomalies at its

northern (southern) poles. With higher resolution, IAP-05 and

SODA are able to provide a more detailed description of the salinity

distribution. Before the Argo period, all the salinity products can

capture the main characteristics of the S-IOD mode, but with some

differences in the locations and magnitude (Figure S10). For

example, compared with the regression results during the Argo

period, the center of the positive SSS anomaly for EN4 is located

farther north and east; the scope of the positive salinity anomalies

for the Ishii data is stronger but located farther east; and IAP-05

shows a weaker southern pole but strong positive anomalies inWest

Indian Ocean (Figure S10A).
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3.3.6 Interdecadal salinity change in the Subpolar
North Atlantic

The Atlantic Meridional Overturning Circulation (AMOC) is

the key component of world ocean’s thermohaline circulation, and

its variation plays an important role in modulating the global

climate variability (Rahmstorf et al., 2015; Lozier et al., 2019). As

the primary ventilation region in the North Atlantic, the

interdecadal variations in deep convection of the Labrador Sea is

one of major issues for AMOC research.

The hydrographic datasets for the Labrador Sea have

accumulated a large number of historical salinity profiles (they

are not included in WOD) and thus can be considered as an

independent data for the validation of our new dataset and other

products. On the basis of these hydrographic observations,

Figure 12 shows the time series of the mean salinity anomaly

averaged over 200–2000 m in the Central Labrador Sea since

1960. The salinity change in this layer acts as a regulator of the

density in the Labrador Sea with the significant interdecadal

variability, corresponding to the concurrent deep convection
A B
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FIGURE 11

Linear regressions of the SSS (anomalies on the Niño 3.4 index during the Pre-Argo period (1980–2004, left panels) and during the Argo period
(2005–2017, right panels) for different gridded products (units: psu °C−1). (A) and (B) for IAP-05, (C) and (D) for IAP-1, (E) and (F) for EN4, (G) and (H)
for Ishii, (I) and (J) for ORAS4, and (K) and (L) for SODA. All variables are detrended and smoothed using a three-month running mean. The blank
regions indicate that the regression coefficients are not statically significant at the 95% confidence level. Black dashed lines indicate the location of
180°E. The 1° gridded IAP-1, EN4, Ishii and ORAS4 have been interpolated into 0.5° versions.
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process and variation in AMOC strength (Yashayaev and Loder,

2016). The salinity decreased from the early 1970s, picked up in the

early 1990s, and then began to decrease again during 2012–2013. In

2011, the salinity anomaly returned to a relatively strong positive

value, but smaller than its peak value in the early 1970s. This may be

attributed to the impact of global warming on the salinity in this

region and the AMOC (Collins et al., 2013).

For the salinity products, SODA can capture the change in

phase since the 1990s, but it had some spikes within 1982–1987 that

are stronger than the magnitude of the positive peak in the early

1970s. ORAS4 also had some spikes in the time series around 1999,

and did not return to the positive phase after 2005. All the datasets

could capture the positive peak during the period of 1960s and

1970s, and Ishii and ORAS4 show the relatively smaller magnitude.

Since then, the IAP-05, NCEI, EN4, and Ishii data show relatively

weaker negative salinity anomalies during the 1980–2000 period.

After 2005, all the salinity products tended to be consistent, except

for the ORAS4, and IAP-05 shows a slightly weaker positive

anomalies than other datasets. The salinity variation of IAP-1

data agrees better with the independent observations than the

IAP-05 results, and it has the highest correlation of ~0.81 with

that of observations, despite the high correlation of ~0.75 for

IAP-05.
4 Discussions

Few salinity observations are available spatially or temporally,

leaving numerous data gaps. Several salinity analysis and reanalysis

datasets have been implemented based on different reconstruction

schemes and sources of observations in recent decades. This study

introduced a new IAP salinity gridded dataset with a horizontal

resolution of 0.5° from surface to 2000m since 1960. We first

describe the mapping framework of IAP-05 and evaluate its

performance. This new dataset is built from a new ENOI-DE

scheme of dynamic ensembles, which are derived from the

ensemble members of high-resolution models and ocean

reanalyses. The evaluation of IAP-05 performance includes the

subsample test based on the Argo observations and Synthetic

data; comparisons with in situ observations, high-resolution

satellite-based product, gridded SSS dataset for the Atlantic Ocean
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and independent observations in Labrador Sea. Collectively, our

evaluation results indicate that the proposed method can better

reconstruct the historical salinity changes than IAP-1 product and

can better represent the ocean salinity structure.

A comparison of the salinity multiscale variabilities and

patterns between the IAP-05 and several salinity gridded datasets

is also presented, including ocean analyses (i.e., IAP-1, EN4, Ishii,

SCRIPPS and NCEI) and reanalyses (i.e., ORAS4 and SODA). We

focused on the following main aspects: (1) the spatial patterns in the

western boundary regions and near the coastline; (2) the long-term

mean state and linear trends of SSS and the global zonal mean

subsurface salinity; (3) the ENSO-related salinity variability in the

tropical Pacific Ocean; (4) the S-IOD variability in the tropical

Indian Ocean; (5) the decadal salinity variation in the subpolar

North Atlantic. The results are summarized below.

The comparison of salinity anomalies with in situ data in the

western boundary regions demonstrates the advantage of high-

resolution version. It provides a better representation of salinity

anomaly features, particularly in the mesoscale and small scale, and

near the boundary current systems and coastal regions. Besides, the

dataset allows more effective use of observations near the coastal

regions and in the boundary current regions. For the long-term

trends of surface and subsurface salinity, the ocean analyses can

represent an amplification of the existing salinity mean state, while

ORAS4 and SODA reanalyses show much larger spread. The

ENSO-related salinity patterns and S-IOD associated patterns

show a good consistency among multiple products, albeit with

some differences in locations and magnitude, and time periods.

Both IAP datasets indicate better consistency with the hydrographic

datasets in illustrating the interdecadal salinity variation in subpolar

North Atlantic. However, this study only provides an inter-

comparison among products, regional differences and their

relationship with controlling factors (i.e., rainfall change and

ocean advection) need to be further investigated, for example, by

analyzing specific ENSO and S-IOD events.

The comparison of the gridded salinity datasets is useful for

understanding climate changes at different temporal and spatial

scales, and the improvement of data reconstruction. The differences

among products provide reference points for the application of salinity

gridded datasets. In the future, an important step is to understand the

source of error in salinity datasets, including data quality control,
FIGURE 12

Mean salinity anomaly changes averaged over 200–2000m in the central Labrador Sea (units: 10−2 psu). The vertical bars correspond to the
individual observations and the different colored lines represent different salinity products.
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vertical interpolation method, mapping method, choice of climatology,

data bias etc. The reanalysis also has additional errors from the

inaccuracy of ocean model, surface forcing and assimilation scheme.

Therefore, a comprehensive comparison and further analysis on the

available analysis and reanalysis datasets are recommended, as a start to

uncover the uncertainty in these datasets.

We acknowledge that our mapping method has some caveats.

For example, the proposed method in this study can be impacted by

the performance of the high-resolution model simulations because

they provide covariance and first-guess estimate. Improvements

and updates of models will feed back to the reconstruction of the

historical subsurface salinity field in the future. The care also needs

to be taken when using IAP salinity data for model evaluation and

for detection and attribution studies. Furthermore, merging the SSS

fields derived from recent and future satellites (i.e., Aquarius, SMOS

and SMAP) into the in situ observation products will also be useful

to better estimate the four-dimensional salinity state.
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