1 Supplementary Material

Regional and global impact of CO₂ uptake in the Benguela Upwelling System through preformed nutrients

4 Author Information

- 5 Claire Siddiqui^{*1}, Tim Rixen^{1,2}, Niko Lahajnar², Anja K. Van der Plas³, Deon C. Louw⁴, Tarron
- 6 Lamont^{5,6,7}, Keshnee Pillay⁵
- 7 ¹ Leibniz Centre for Tropical Marine Research ZMT, Fahrenheitstrasse 6, 28359 Bremen, Germany
- 8 ² Institute of Geology, Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
- 9 ³ National Marine Information and Research Centre, PO Box 912, Swakopmund, 13001, Namibia
- ⁴ Debmarine Namibia, 10 Dr Frans Indongo Street, Windhoek, 10005, Namibia
- ⁵ Oceans & Coasts Research Branch, Department of Environment, Forestry and Fisheries, PO Box 52126,
 Victoria & Alfred Waterfront, Cape Town, 8000, South Africa
- ⁶ Marine Research Institute & Department of Oceanography, University of Cape Town, Rondebosch,
 South Africa
- ⁷ Bayworld Centre for Research & Education, 5 Riesling Road, Constantia, Cape Town, 7806 South
 Africa
- 17 Claire Siddiqui*: claire.siddiqui@leibniz-zmt.de

18 Figure S1

Figure S1. Data coverage of sea surface pCO₂ measurements within the Benguela Upwelling System.
Number of observations on sea surface pCO₂ records per season within the northern (NBUS) and

southern (SBUS) subsystem. During the spring/summer (Sept.-Mar., red) and autumn/winter season

23 (Apr.-Aug., blue), observations amount to ~130,000 and ~25,000 in the NBUS, while the SBUS covers

~31,500 and ~6,000 measurements, respectively. The difference in number of pCO₂ records between the
 subsystems can partially be attributed to the defined upwelling area of the SBUS (177,600 km²), which is
 ~53% smaller than the NBUS (377,400 km²).

- 27
- 28
- 29
- 30

33 Figure S2. Annual and seasonal histograms of individual parameters used for CO₂ flux calculations.

34 Histogram of Sea Surface Temperature (SST) (a-c), salinity (d-f) and wind speed (g-i) within the northern

35 (blue) and southern (red) Benguela Upwelling System (NBUS, SBUS) for different time periods,

36 covering the austral spring and summer (September-March) and austral autumn and winter (April-August)

- 37 seasons.
- 38
- 39
- 40

41 Figure S3

Figure S3. Variogram models for ordinary kriging operation based on shipboard data. a Sea Surface Temperature (SST), b salinity, c wind speed and d sea surface pCO₂ for the northern (left) and southern (right) Benguela Upwelling System used for the ordinary kriging interpolation. The blue line indicates the individual model fit of the variogram (Ste: Matern, M. Stein's parameterization; Sph: Spherical model; Exp: Exponential model)¹. Numbers within each plot refer to the amount of paired measurements at each distance (here: in spherical distances), with range indicating the distance at which the spatial dependence (semi-variance, in parameter units) levels off.

Figure S4. Map of sampled stations within the Benugela Upwelling System. Location of CTD/Rosette
stations at which data collection of source water mass characteristics took place during the cruises a
Africana 258 (Afr258), Maria S. Merian 17/3 (MSM17/3), Meteor 100 and 103/1 (M100, M103/1), b
Meteor 153 (M153), c Sonne 285 (SO285) and d Discovery 356 (D356), Meteor 103/2 (M103/2),
including Global Ocean Data Analysis Project (GLODAP) data (GLODAPv2). Maps were generated with
python package matplotlib-basemap², and its dependencies PROJ-4³ and GEOS⁴, with country outlines
sourced from the GSHHG Dataset⁵.

60

61 Figure S5. Relation between sea surface alkalinity and salinity within the Benguela Upwelling

62 System. Linear regression based on sea surface alkalinity (TA, μmol kg⁻¹) and salinity (PSU) gathered

63 from underway shipboard measurements during cruise SO285, and CTD surface profiles from all cruises

64 (Supplementary Table 4) along the sampling locations (Supplementary Figure 4). Given are the linear

regression function and line (in red), together with the Pearson's correlation coefficient and p-value.

- 66
- 67
- 68
- 69
- 70
- 71

72 Table S1. List of expeditions to the Benguela Upwelling System with description of ID and timing of

73 the cruises included in the pCO₂ database of this study.

Research Vessel	Cruise ID	Time period		
Maria S. Merian	MSM07/2	10/03/2008 - 20/03/2008		
Meteor	M76/2	15/05/2008 - 05/06/2008		
Africana	Afr258	02/12/2009 - 16/12/2009		
Discovery	D356	10/09/2010 - 19/10/2010		
Maria S. Merian	MSM17/3	20/01/2011 - 07/03/2011		
Maria S. Merian	MSM18/4	24/07/2011 - 20/08/2011		
Maria S. Merian	MSM19/1b	02/10/2011 - 11/10/2011		
Meteor	M99	31/07/2013 - 23/08/2013		
Meteor	M100/1	31/08/2013 - 01/10/2013		
Meteor	M100/2	04/10/2013 - 21/10/2013		
Meteor	M102	06/12/2013 - 23/12/2013		
Meteor	M103/1	27/12/2013 - 18/01/2014		
Meteor	M153	15/02/2019 - 31/03/2019		

Table S2. CO₂ exchange coefficients and flux rates for the northern and southern Benguela Upwelling System (NBUS, SBUS).

Annual and seasonal mean air-sea CO_2 gas exchange rates, with positive flux values indicating CO_2 outgassing. Each CO_2 exchange coefficient represents the average value calculated on the basis of shipboard data gathered during the 14 cruises and those embedded into SOCAT v2020⁶, which we interpolated on a $0.1^{\circ}x0.1^{\circ}$ grid using ordinary kriging. Uncertainties are given as the standard error. The corresponding *n* number of observations equals the number of effective grid cells outside of the spatial decorrelation lengths (except for *n**), which were derived for each parameter from semi variograms on the basis of observations during the respective time period (Annual, September-March, April-August).

Douomotou		NBUS		SBUS				
rarameter	Annual	SepMar.	AprAug.	Annual	SepMar.	AprAug.		
Sea Surface Temperature (°C)	17.63 ± 1.97 n=1596	17.96 ±1.98 <i>n</i> =1391	15.99 ±0.31 <i>n</i> =477	17.34 ± 1.27 n=951	17.70 ±1.24 <i>n</i> =686	15.67 ±0.91 <i>n</i> =225		
Sea Surface Salinity (PSU)	35.26 ±0.39 <i>n</i> =1555	35.26 ±0.4 <i>n</i> =1382	35.23 ±0.12 n=512*	35.04 ± 0.52 n=804	35.03 ± 0.51 n=709	35.06 ± 0.28 n=233		
Wind Speed (m/s)	7.88 ±2.98 <i>n</i> =1542	7.78 ±3.01 <i>n</i> =1391	7.84 ±0.95 <i>n</i> =512*	7.99 ±2.09 <i>n</i> =672	7.75 ±2.12 <i>n</i> =521	5.74 ±0.91 <i>n</i> =64		
pCO2,sw (µatm)	492.3 ±115,82 <i>n</i> =1578	$481.0 \pm 116.82 $ <i>n</i> =1365	560.7 ±66.36 <i>n</i> =406	383.9 ±53.73 <i>n</i> =994	381.7 ±36.43 <i>n</i> =843	388.5 ±44.27 <i>n</i> =332		
Solubility coefficient of CO_2, K_0	0.0346 ±0.0021	0.0342 ±0.002	0.0363 ± 0.0004	0.0349 ±0.0013	0.0345 ±0.0013	0.0366 ±0.001		
Piston velocity, <i>k</i> . upper / lower boundary	14.58 29.1 / 5.36	14.33 28.97 / 5.12	13.83 17.52 / 10.59	14.88 24.45 / 7.86	14.13 23.6 / 7.23	7.35 10.1 / 5.08		
Carbon Flux rate (mol C m ⁻² yr ⁻¹) upper / lower boundary	3.45 16.14 / -0.65	2.87 15.07 / -0.82	6.44 11.75 / 2.73	-1.38 1.68 / -2.11	-1.39 0.27 / -1.57	-0.61 0.58 / -1.57		

- 96 Table S3. Carbon flux rates of the northern and southern Benguela Upwelling System (NBUS,
- 97 SBUS) based on various gas transfer coefficient (k) calculations (given in cursive numbers) with
- 98 shipboard data on wind speeds that were interpolated using ordinary kriging.

Parameter		NBUS			SBUS	
(k, Flux rate*)	Annual	SepMar.	AprAug.	Annual	SepMar.	AprAug.
Wanninkhoff 1002	24.92,	24.58,	23.53,	25,35,	24.29,	13.43,
wallinikilon, 1992	5.89	4.92	10.96	-2.36	-2.39	-1.11
Wanninkhoff &	24.57,	23.81,	23.43,	25.48,	23.43,	9.01,
McGillis, 1999	5.81	4.77	10.79	-2.37	-2.31	-0.75
	15.35,	15.12,	14.57,	15.64,	14.96,	8.20,
Nightingale et al., 2000	3.63	3.03	6.79	-1.45	-1.47	-0.68
MaGillia at al. 2001	14.99,	14.66,	14.19,	15.39,	14.48,	7.31,
Weedinis et al., 2001	3.55	2.94	6.61	-1.43	-1.42	-0.61
Ho et al. 2006	15.45,	15.19,	14.66,	15.78,	15.02,	7.79,
110 et al., 2000	3.66	3.05	6.83	-1.47	-1.48	-0.65
Wanninkhoff 2014	14.58,	14.33,	13.83,	14.88,	14.17,	7.35,
w amminikii011, 2014	3.45	2.87	6.44	-1.38	-1.39	-0.61

9	9	* Flux rate	in mol	$C m^{-2} yr^{-1}$

- 11 Table S4. Shipboard data on source water mass characteristics gathered during various cruises to the northern and southern Benguela Upwelling System
- 12 (NBUS, SBUS), including Global Ocean Data Analysis Project (GLODAP) data version 2.2020. Uncertainties are given as the standard error, with n

13 corresponding to the number of observations.

Cruise	DIC ^{*1} (Dissolved Inorganic Carbon)	TA ^{*1} (Total Alkalinity)	O2 ^{*1} (Oxygen)	Ptotal ^{*1} (Total Phosphate)	P Pref ^{*1} (Preformed Phosphate)	P Pref -% (%-Preformed Phosphate)	Ntotal ^{*1} (Total Nitrate)	N Pref ^{*1} (Preformed Nitrate)	N Pref - % (%-Preformed Nitrate)	SWT^{*2} (Source Water Temperature)	SWS ^{*3} (Source Water Salinity)
NBUS						•		·			
Afr258	2200.32 ±9.44 n=26	2301.26 ±1.9 n=48	47.34 ± 5.95 n=49	2.07 ±0.06 n=48	0.51 ±0.04 n=47	24.91 ±1.6 n=47	27.86 ± 0.8 n=48	5.59 ± 0.6 n=39	19.26 ±1.9 n=39	11.8 ±0.19 n=49	35.09 ± 0.02 n=49
D356	2220.40 ± 5.03 n=82	2306.02 ± 1.05 n=90	44.36 ± 6.43 n=32	1.88 ±0.04 n=97	0.29 ± 0.03 n=29	16.39 ± 1.3 n=29	32.62 ± 0.8 n=97	9.01 ±0.3 n=29	27.94 ± 1.3 n=29	11.94 ± 0.12 n=102	35.12 ± 0.02 n=102
MSM17/3	2232.95 ±5.61 n=47	2304.76 ± 1.42 n=45	58.69 ± 8.69 n=47	2.33 ±0.12 n=45	0.86 ±0.09 n=45	34.3 ± 2.4 n=45	27.12 ± 0.8 n=44	5.77 ± 0.6 n=35	21.76 ±2.2 n=35	11.65 ±0.21 n=48	35.09 ± 0.03 n=48
M100	-	2308.20 ±2.59 n=118	85.33 ±47 n=134	1.84 ±0.04 n=130	0.54 ±0.03 n=129	29.64 ± 2.0 n=129	25.99 ± 0.4 n=130	8.76 ±0.4 n=107	32.91 ± 1.8 n=107	11.9 ±0.1 n=134	35.07 ± 0.01 n=134
M103/1	-	2302.50 ± 1.45 n=41	67.37 ±9.44 n=51	1.90 ±0.12 n=33	0.72 ±0.06 n=33	37.54 ± 1.4 n=33	22.68 ± 1.1 n=32	5.99 ±0.5 n=28	26.26 ± 1.7 n=28	11.37 ±0.19 n=51	35.01 ±0.03 n=51
M103/2	-	2306.57 ± 2.9 n=16	35.68 ±4.49 n=53	2.25 ±0.05 n=49	0.61 ±0.03 n=49	26.59 ± 1.0 n=49	25.03 ± 1.3 n=49	4.59 ± 0.3 n=33	14.64 ± 0.9 n=33	11.49 ±0.19 n=53	35.05 ± 0.02 n=53
M153	2314.23 ±6.9 n=95	2298.73 ± 1.7 n=97	85.44 ±2.8 n=267	1.87 ±0.03 n=96	0.54 ±0.01 n=96	29.29 ± 0.1 n=96	24.52 ± 0.5 n=96	4.58±0.4 n=96	18.06 ±1.7 n=96	11.5 ±0.09 n=267	35.04 ± 0.01 n=267
SO285	2250,51 ±2.82 n=134	2308.53 ± 0.59 n=140	75.05 ± 2.69 n=287	-	-	-	-	-	-	11.8 ±0.07 n=287	35.06 ± 0.01 n=287
GLODAP	2209.40 ±5.41 n=39	$2298.56 \pm 0.0000000000000000000000000000000000$	115.32 ±7.22 n=64	1.73 ±0.05 n=61	0.58 ±0.02 =61	34.47 ± 1.3 n=61	26.09 ± 0.8 n=62	7.27 ± 0.4 n=62	29.03 ± 1.5 n=62	10.77 ±0.19 n=64	34.93 ± 0.02 n=64
mean	2237.97	2303.9	67.77	1.97	0.59	29.27	26.49	6.44	23.73	11.58	35.05
std. error SBUS	18.48	1.35	8.47	0.08	0.06	2.50	1.04	0.61	2.22	0.13	0.02
Afr258	2165.47 ±9.78 n=34	2299.53 ± 1.81 n=34	131.94 ± 10.23 n=39	1.89 ±0.11 n=35	0.99 ± 0.08 n=35	52.21 ±2.3 n=35	21.42 ± 0.8 n=35	7.43 ± 0.4 n=34	37.35 ± 2.4 n=34	10.45 ± 0.18 n=39	34.87 ± 0.02 n=39
M103/1	-	2302.14 ± 1.79 n=20	138.26 ± 10.86 n=19	1.67 ±0.11 n=20	0.72 ±0.04 n=19	44.15 ± 1.9 n=19	21.35 ± 1.1 n=20	6.47±0.6 n=19	31.89 ± 3.1 n=19	10.42 ±0.25 n=20	34.84 ± 0.03 n=20
M153	2246.17 ±6.2 n=102	2283.94 ±2.6 n=101	146.87 ±3.71 n=245	1.6 ±0.05 n=79	0.75 ±0.02 n=79	49.78 ± 0.2 n=79	20.57 ± 0.7 n=79	7.67 ±0.5 n=79	40.52 ± 2.7 n=79	10.5 ±0.06 n=265	34.83 ± 0.01 n=265
SO285	2203.06 ±4.03 n=150	2303 ± 0.51 n=154	156.39 ±2.18 n=391	-	-	-	-	-	-	10.09 ± 0.07 n=391	34.8 ±0.01 n=391
GLODAP	2160.73 ±4.38 n=52	2297.98 ±0.79 n=51	180.81 ±4.75 n=52	1.48 ±0.05 n=63	0.75 ±0.02 n=63	52.14 ± 0.98 n=63	21.02 ± 0.9 n=47	8.32 ± 0.2 n=46	41.37 ±1.4 n=46	10.19 ± 0.15 n=105	34.83 ± 0.02 n=105
mean	2193.86	2297.49	150.74	1.66	0.80	48.85	21.06	7.44	37.73	10.33	34.83
std. error	22.91	3.89	9.57	0.09	0.06	2.00	0.20	0.36	2.13	0.09	0.01

14 Units in *1 µmol kg $^{-1}$, *2 °C, *3 PSU

- 115 Table S5. List of accession codes to all files included in the PANGAEA database on sea surface and
- 116 water column characteristics as used in this study.

Research	Cruise ID	Accession Code on PANGAEA				
Vessel	Cruise ID	Sea Surface pCO ₂	Water column characteristics			
Maria S. Merian	MSM07/2	https://doi.pangaea.de/10.1594/PANGAEA.880384	-			
Meteor	M76/2	https://doi.pangaea.de/10.1594/PANGAEA.880395	-			
Africana	Afr258	https://doi.pangaea.de/10.1594/PANGAEA.880382	https://doi.pangaea.de/10.1594/PANGAEA.779586			
Discovery	D356	https://doi.pangaea.de/10.1594/PANGAEA.880383	https://doi.pangaea.de/10.1594/PANGAEA.779634			
Maria S. Merian	MSM17/3	https://doi.pangaea.de/10.1594/PANGAEA.880385	https://doi.pangaea.de/10.1594/PANGAEA.779638			
Maria S. Merian	MSM18/4	https://doi.pangaea.de/10.1594/PANGAEA.880392	-			
Maria S. Merian	MSM19/1b	https://doi.pangaea.de/10.1594/PANGAEA.880393	_			
Meteor	M99	https://doi.pangaea.de/10.1594/PANGAEA.957810	-			
Meteor	M100/1	https://doi.pangaea.de/10.1594/PANGAEA.957810	https://doi.pangaea.de/10.1594/PANGAEA.853623			
Meteor	M100/2	https://doi.pangaea.de/10.1594/PANGAEA.957810	https://doi.pangaea.de/10.1594/PANGAEA.853623			
Meteor	M102	https://doi.pangaea.de/10.1594/PANGAEA.957810	-			
Meteor	M103/1	https://doi.pangaea.de/10.1594/PANGAEA.957810	https://doi.pangaea.de/10.1594/PANGAEA.853624			
Meteor	M153	https://doi.pangaea.de/10.1594/PANGAEA.957810	https://doi.pangaea.de/10.1594/PANGAEA.957862			
Sonne	SO285	https://doi.pangaea.de/10.1594/PANGAEA.957810	https://doi.pangaea.de/10.1594/PANGAEA.957862			

129 Supplementary References

130

- Pebesma, E. Multivariable geostatistics in S: The GSTAT package. *Computers & Geosciences* 30, 683-691, doi:10.1016/j.cageo.2004.03.012 (2004).
- Hunter, J. D. Matplotlib: A 2D graphics environment. *Computing in Science & Engineering* 9, 90-95 (2007).
- PROJ contributors. PROJ coordinate transformation software library. Open Source Geospatial
 Foundation. doi:10.5281/zenodo.5884394. URL https://proj.org/ (2023).
- 4 GEOS contributors. GEOS computational geometry library. Open Source Geospatial Foundation.
 URL https://libgeos.org/ (2021).
- Wessel, P. & Smith, W. H. F. A Global Self-consistent, Hierarchical, High-resolution Shoreline
 Database. *Journal of Geophysical Research* 101, 8741-8743 (1996).
- Bakker, D. C. E. *et al.* A multi-decade record of high-quality fCO2 data in version 3 of the
 Surface Ocean CO2 Atlas (SOCAT). *Earth Syst. Sci. Data* 8, 383-413 (2016).