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A ten-year numerical hindcast 
of hydrodynamics and sediment 
dynamics in the Loire Estuary
Florent Grasso   ✉ & Matthieu Caillaud

A numerical hindcast of the macrotidal Loire Estuary (France) has been generated to provide a long-
term dataset (2008–2018) of estuarine hydrodynamics, temperature, salinity, and sediment dynamics. 
This hindcast is based on simulations coupling water motion, wave and mixed sediment models, forced 
with realistic conditions and extensively validated in the salinity gradient and turbidity maximum areas. 
These data represent extremely valuable information for diverse scientific communities, providing (i) 
environmental parameters for ecosystemic studies along the Loire River–sea continuum, (ii) a singular 
estuarine configuration for inter-comparison of estuarine functioning, and (iii) a ten-year synoptical 
view of a major estuarine environment of the North Atlantic Ocean.

Background & Summary
Estuaries represent crucial interfaces along the land-sea continuum, impacted by marine, riverine, and atmos-
pheric forcing. The mixing between freshwater and seawater strongly impacts the fate of dissolved and partic-
ulate matters between continental and marine environments (e.g., nutrients, contaminants and sediments)1. 
Moreover, estuarine circulation and tidal currents can induce high levels of suspended sediment concentra-
tion (SSC) and form estuarine turbidity maxima (ETM)2–12, directly affecting estuarine morphodynamics and 
biogeochemical processes13. In addition to natural forcing, human-induced changes (e.g., estuary deepen-
ing and narrowing) have drastic impacts on the physical and ecological estuary functioning14–18. Exceptional 
hydro-meteorological conditions, associated with inter-annual variability and/or climate changes, exacerbate 
drought, flood and stormy periods that have a major impact on estuary physics. Therefore, it is essential to 
understand the estuarine dynamics during such critical periods (from events to years) to be able to provide 
insights into estuary trajectories under future climatic and human pressures15.

Recent developments in realistic numerical models, i.e., based on realistic bathymetry and forcing con-
ditions, enable hindcasts to be generated over decadal periods15. Such multi-year simulations, validated with 
long-term in-situ high-frequency monitoring networks9,19,20, provide valuable four-dimensional parameters (i.e., 
horizontal, vertical, and temporal components) of environmental conditions, such as water level and current, 
temperature, salinity, SSC, and bed substrate composition. Such hindcasts are especially useful: (i) to study the 
impacts of anthropogenic and climate changes on estuarine physics and ETM dynamics;11,15,16,21–23 and (ii) to 
provide abiotic explanatory parameters for biogeochemical and ecological studies24–27.

Numerical hindcasts have recently been realised for two of the three largest French estuaries (Seine15 and 
Gironde21), arousing interdisciplinary studies and tackling challenges on habitats and species distributions24–26. 
The aim of this study is to complete these datasets with a ten-year hindcast (2008–2018) for the Loire Estuary 
(France; Figs. 1, 2). On the one hand, it offers environmental parameters for ecosystemic studies along the Loire 
River–sea continuum; and on the other hand, it provides a contrasted estuarine configuration for inter-estuary 
comparisons5,28–32.

The Loire Estuary is the second largest French estuary, extending 100 km from Saint Florent-le-Vieil at 
the upstream limit of tidal influence to the Bay of Biscay on the Atlantic Coast (Fig. 1a,b). The estuary has a 
semi-diurnal macrotidal regime with a tidal range varying from 1.5 to 6.4 m at Saint Nazaire close to the estuary 
mouth (Fig. 1c). Tides and river flow induce large seasonal, fortnightly, and semi-diurnal salinity changes27. 
Moreover, the Loire Estuary is characterized by a well-developed turbidity maximum (i.e., SSC exceeding 0.5 g/l 
at the surface and ETM mass up to 1 Mt)9, migrating from Nantes to Donges during low to high river discharges 
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(Fig. 1c,d). Between 2009 and 2018, the Loire River discharge ranged from 100 to 3700 m3/s, with a mean fresh-
water runoff of around 730 m3/s and a terrigenous sediment load of around 1.1 Mt/year.

Fig. 1  Bathymetry of the Loire Estuary, France (with h0 the water depth relative to mean sea level). (a) Location 
of the estuary in the Bay of Biscay (Western French Atlantic Coast), (b) full domain of the MARS3D model with 
every tenth grid cell represented, (c) focus on the estuary with every fifth grid cell represented, and (d) focus on 
the lower estuary with every grid cell represented. Black circles represent locations of water level, salinity, and 
SSC comparisons: Saint Nazaire ‘SN’, Donges ‘Do’, Paimboeuf ‘Pa’, Cordemais ‘Co’, Le Pellerin ‘LP’, Usine Brulée 
‘UB’, and Bellevue ‘Be’.
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Methods
A realistic three-dimensional numerical model has been set up to simulate the hydrodynamics, temperature, 
salinity, and sediment dynamics along the Loire Estuary. Similar models have previously been implemented in 
the Seine11,15,16,22,23,25,33 and Gironde21,24,26 estuaries (France). Hereafter is presented an overview of the model 
characteristics both in terms of hydrodynamics and sediment transport.

Hydrodynamic model.  The model is based on a non-nested (i.e., unique) configuration using the hydro-
static model MARS3D34. An orthogonal curvilinear grid is used to better represent the estuarine shape and to 
optimize computational costs while refining the grid resolution in some specific areas (i.e., in the river mean-
ders, in the central estuary, and at the estuarine mouth; Fig. 1). Horizontal cell size ranges from around 50 m 
in the meanders to approximately 1.3 km offshore while the vertical grid is divided into 10 equidistant sigma 
layers.

The 114 main tidal components, extracted from the CST France database, https://maree.shom.fr (Service 
Hydrographique et Océanographique de la Marine, SHOM), are used to force the circulation at the open 
boundaries. Surges, provided by a configuration of the two-dimensional MARS2D model applied to a larger 
domain (i.e., over the Bay of Biscay), are added to the water elevation at these same boundaries. Realistic fresh-
water discharges and sediment loads are prescribed at the upstream boundary of the Loire River (i.e., Saint 
Florent-le-Vieil) and at the Vilaine Estuary mouth for the Vilaine River (see further details on river supplies in 
the “Data records” section). In addition, the model is forced by wind stresses and pressure gradients obtained 
from the high‐resolution meteorological AROME model (Météo‐France): https://donneespubliques.meteof-
rance.fr. The simulated turbulence is based on a k-ε turbulence closure scheme. Waves are simulated with the 
WAVEWATCH III® (WW3) numerical model35 using the same computational grid as the one used by MARS3D 
in this study. The hourly free surface elevation and current velocity provided by the MARS3D hydrodynamic 
model, along with local winds and swell data extracted from a larger model, were used to force the WW3 config-
uration. However, the wave effects on hydrodynamic circulation are not taken into account because of the dom-
inance of tidal currents over wave-induced currents. The bottom orbital velocities simulated by the wave model 
were used to compute the wave-induced bed shear stress. Finally, the total bed shear stress (τ) was expressed as 
a combination of the current-induced and wave-induced bed shear stresses, accounting for non-linear interac-
tions following the formulation of Soulsby36.

The hydrodynamic bottom roughness z0b is spatially distributed according to the observed sediment sub-
strate. However, the sediment nature in the estuary changes according to the ETM location and the presence 
of fluid mud layers, which depend on the Loire River discharge. Therefore, following an approach adopted by 
ARTELIA37, the bottom roughness also depends on the Loire River discharge38. More details on the hydrody-
namic model configuration are provided by Khojasteh Pour Fard39.

Fig. 2  Numerical hindcast of the Loire Estuary (2009–2018). (a) Significant wave height Hs at the offshore 
model boundary (grey) and at Saint Nazaire ‘SN’ (black), and (b) Loire River discharge Q at the upstream model 
boundary for freshwater (blue) and mud supply (orange). Width-averaged along-estuary transects of surface: 
(c) temperature Tsurf, (d) salinity Ssurf, and (e) suspended sediment concentration SSCsurf. In (c–e), white-dashed 
lines represent Saint Nazaire ‘SN’ and Nantes locations, at x = 0 and 53 km respectively.
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Sediment transport model.  The hydrodynamic model is coupled with the process-based, multiclass, mul-
tilayer sediment transport model MUSTANG40–42, which computes the temporal and spatial variations of sand 
and mud content in the bed under hydrodynamic forces and consolidation process. The MARS3D-MUSTANG 
coupling resolves advection-diffusion equations in the water column and sediment exchanges between the bed 
and the water column for different particle classes. Based on hundreds of granulometric samples collected in the 
Loire Estuary43, five sediment classes are prescribed in this hindcast: one mud, three sands, and one gravel (see 
sediment class diameters in Table 1). Sediment classes are initially distributed according to bed substrate obser-
vations from the SHOM.

Particle diameter

Gravel 1 mm

Based on local granulometric data

Medium sand 450 µm

Fine sand 200 µm

Very fine sand 100 µm

Mud <63 µm

Mud settling velocity (Eq. 1)

ws,min 0.1 mm/s

ws,max 1 mm/s

c1 0.003

c2 0.79

a 0.3

b 0.18

Erosion law

Non-cohesive nsand 1.6

Cohesive

nmud 1

E0,mud 10−3

α1 10−5

α2 2

Table 1.  Main sediment model calibration parameters.

Stations SN Do Pa Co LP UB Be

Water level ζ

r2 0.99
0.99

0.98
0.99

0.97
0.97

0.97
0.98

0.96
0.97

erms (m) 0.15
0.14

0.20
0.16

0.26
0.25

0.23
0.22

0.27
0.24

b (m) −0.02
0.00

0.00
−0.06

0.02
0.03

−0.04
−0.05

−0.01
−0.04

Surface salinity

Salhf

r2 0.91
0.79

0.69
0.65

erms (psu) 2.6
3.5

0.5
0.5

b (psu) −1.7
0.7

−0.3
−0.1

Saltide

r2 0.96
0.91

0.73
0.78

erms (psu) 1.9
1.9

0.4
0.3

b (psu) −1.6
0.6

−0.3
−0.1

Surface suspended sediment concentration

SSChf

r2 0.12
0.09

0.14
0.42

0.29
0.3

0.35
0.38

erms (kg/m3) 1.10
0.49

1.07
0.56

0.59
0.75

0.03
0.008

b (kg/m3) −0.38
0.00

−0.41
−0.12

−0.21
−0.30

0.01
−0.01

SSCtide

r2 0.40
0.19

0.51
0.87

0.71
0.65

0.42
0.41

erms (kg/m3) 0.61
0.31

0.77
0.32

0.47
0.59

0.03
0.05

b (kg/m3) −0.40
−0.02

−0.42
−0.12

−0.21
−0.31

0.01
−0.01

Table 2.  Numerical model skills (i.e., correlation coefficient r2, root mean square error erms, and bias b) for 
water level, salinity and SSC at Bellevue ‘BE’, Usine Brulée ‘UB’, Le Pellerin ‘LP’, Cordemais ‘Co’, Paimboeuf 
‘Pa’, Donges ‘Do’, and Saint Nazaire ‘SN’. Bold and normal font type values correspond to the 2008 and 2018 
simulations, respectively. ‘hf ’ and ‘tide’ subscripts define high-frequency (i.e., every 30 minutes) and tide-
averaged values, respectively.
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Non-cohesive sediment classes (sands and gravel) have constant settling velocities depending on their diam-
eters36. The coarser classes are transported in the bottom layer only, except for the very fine sand, which was 
treated in three dimensions. In two dimensions, the velocity in the bottom layer is corrected to account for a 
logarithmic profile for the velocity in the whole water column, and the calculated sand concentration is then 
assumed to follow a Rouse profile44. The mud class is computed as a three-dimensional variable with a settling 
velocity ws,mud varying with concentration and turbulence to represent flocculation processes following van 
Leussen45:

Fig. 3  Hindcast validation of water levels ζ along the Loire Estuary. (a) Loire River discharge Q at the upstream 
model boundary and tidal range TRSN at Saint Nazaire ‘SN’ (blue). Water surface elevations at (b,c) Usine Brulée 
‘UB’, (d-e) Le Pellerin ‘LP’, (f,g) Cordemais ‘Co’, (h,i) Donges ‘Do’, and (j,k) Saint Nazaire ‘SN’ (see station locations 
in Fig. 1c). (Left panels) Measurements (blue) and simulations (red) from April 19 to 28, 2008. (Right panels) 
simulations versus measurements from January to December 2008.
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with Cmud the mud concentration (kg/m3), G the turbulent shear rate (s−1), and ws,min, ws,max, a, b, c1, c2 calibration 
parameters detailed in Table 1. A dependency between the mud settling velocity and salinity (S) is also consid-
ered to account for the influence of salinity on flocculation46: below a critical salinity of 5 psu, the mud settling 
velocity decreases with salinity (see details in Diaz, et al.21).

The erosion flux is based on Partheniades-Arathurai equation47:

Fig. 4  Hindcast validation of water levels ζ along the Loire Estuary. (a) Loire River discharge Q at the upstream 
model boundary and tidal range TRSN at Saint Nazaire ‘SN’ (blue). Water surface elevations at (b,c) Usine 
Brulée ‘UB’, (d,e) Le Pellerin ‘LP’, (f,g) Cordemais ‘Co’, (h,i) Donges ‘Do’, and (j,k) Saint Nazaire ‘SN’ (see station 
locations in Fig. 1c). (Left panels) Measurements (blue) and simulations (red) from June 7 to 16, 2018. (Right 
panels) simulations versus measurements from January to December 2018.
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with E the erosion flux, E0 an erodibility parameter (kg/m2/s), τce the critical shear stress for erosion (N/m2),  
and n a calibration parameter. A distinction between cohesive and non-cohesive sediment behaviours are made 
based on the mud fraction in the bed surficial layer (fm). In both cases, the Partheniades equation was prescribed 
with different calibration parameters. For a non-cohesive behaviour (fm < fm,cr1 where fm,cr1 = 1000.d50,sand, 
with d50,sand the weighted mean diameter of sand classes in the surficial layer), the erosion regime follows a 
pure sand behaviour. The critical shear stress for erosion is determined by the Shields criteria36, the erosion 
rate is derived from erodibility measurements48, and the calibration parameter n is defined as nsand (Table 1).  
In the presence of a cohesive seabed (fm > 0.7; Le Hir, et al.41), the formulation follows a pure mud erosion 
regime with n = nmud and E = E0,mud (Table 1). The critical shear stress for mud erosion τce,mud depends on the 
bed consolidation state, which is represented by the relative mud concentration (Crelmud) through a classical 

Fig. 5  Hindcast validation of salinity Sal along the Loire Estuary. (a) Loire River discharge Q at the upstream 
model boundary and tidal range TRSN at Saint Nazaire ‘SN’ (blue). Surface salinity at (b,c,f,g) Le Pellerin ‘LP’ 
and (d,e,h,i) Paimboeuf ‘Pa’ (see station locations in Fig. 1c). (Left panels) Measurements (blue) and simulations 
(red), and (right panels) simulations versus measurements, from January to December 2008. (b–e) High-
frequency salinity Salhf (i.e., every 30 minutes) and (f–i) tide-averaged salinity Saltide.
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power law τce,mud = α1.Crelmud
α2 (see Grasso, et al.40), with α1 and α2 defined in Table 1. Here, Crelmud is defined as 

the mud concentration in the space between sand particles49. Finally, for a mixed erosion regime, the erosion 
law parameters are linearly interpolated between pure sand and pure mud behaviours. The main empirical 
parameters are identified in Table 1 and further details on the formulations used in this model can be found in 
Grasso, et al.11 and Diaz, et al.21.

The deposition flux is calculated using a critical shear stress for deposition for each sediment class following 
the law of Krone11,21,41,50. Sediment sliding along the slope is taken into account to prevent an excessive increase 
of bed slope between depositing banks and the eroding channel. This process is computed by assigning a part of 
the deposition flux from one cell to the neighbouring one based on the slope between the two cells. The fraction 
of fresh deposit transposed to a deeper adjacent cell linearly depends on the local slope.

Hindcast simulations over the 2008–2018 period were run through independent years following a mor-
phostatic approach, i.e., no morphodynamic coupling, which is relevant when morphological changes remain 
relatively small to hydrodynamic processes15. This assumption holds for the 2008–2018 period because the 
Loire Estuary is heavily dredged at a constant depth and no significant changes have been observed in the 
bathymetry since 20009,29. This is confirmed by the model validation presenting similar skills in 2008 and 
2018 (Table 2). Each year was run twice to consider a 1-year spin-up period before analysing the half-hourly 
outputs11,16,23.

Fig. 6  Hindcast validation of salinity Sal along the Loire Estuary. (a) Loire River discharge Q at the upstream 
model boundary and tidal range TRSN at Saint Nazaire ‘SN’ (blue). Surface salinity at (b,c,f,g) Le Pellerin ‘LP’ 
and (d,e,h,i) Paimboeuf ‘Pa’ (see station locations in Fig. 1c). (Left panels) Measurements (blue) and simulations 
(red), and (right panels) simulations versus measurements, from January to December 2018. (b–e) High-
frequency salinity Salhf (i.e., every 30 minutes) and (f–i) tide-averaged salinity Saltide.

https://doi.org/10.1038/s41597-023-02294-w


9Scientific Data |          (2023) 10:394  | https://doi.org/10.1038/s41597-023-02294-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

Data Records
Hindcast repository.  The data files containing the results of the Loire Estuary hindcast, i.e., hydrodynamics, 
temperature, salinity, and sediment dynamics, are available on the CurviLoire Hindcast repository51.

The repository is structured in four directories:

•	 /hydro (NetCDF files): 3D half-hourly results for water column variables:

•	 Hydrodynamics: water depth ‘H0’, water level ‘XE’, horizontal current velocity ‘U,V’;
•	 Temperature ‘TEMP’, salinity ‘SAL’;
•	 Waves: significant height ‘hs’, direction ‘dir’, bottom orbital velocity ‘ubrx,ubry’;
•	 Suspended sediment concentration: mud ‘Mud’, very fine sand ‘Veryfinesand’, fine sand ‘Finesand’, 

medium sand ‘Mediumsand’, and gravel ‘Gravel’.

•	 /sedim (NetCDF files): 3D half-hourly results for bed compartment variables:

•	 Bed shear stress: wave-induced ‘TENFONW’, current-induced ‘TENFONC’, and total components 
‘TENFON’;

•	 Sediment bed: total thickness ‘EPTOT’, number of layers ‘NBNIV’, layer thickness ‘DZS’;
•	 Bed sediment concentration: mud ‘Mud’, very fine sand ‘Veryfinesand’, fine sand ‘Finesand’, medium sand 

‘Mediumsand’, and gravel ‘Gravel’.

Fig. 7  Hindcast validation of high-frequency suspended sediment concentration SSChf along the Loire Estuary. 
(a) Loire River discharge Q at the upstream model boundary and tidal range TRSN at Saint Nazaire ‘SN’ (blue). 
Surface SSChf at (b,c) Bellevue ‘Be’, (d,e) Le Pellerin ‘LP’, (f,g) Cordemais ‘Co’, and (h,i) Paimboeuf ‘Pa’ (see 
station locations in Fig. 1c). (Left panels) Measurements (blue) and simulations (red), and (right panels) 
simulations versus measurements, from January to December 2008.
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•	 /source_code (fortran files): the MARS3D-MUSTANG source codes used to provide the hindcast;
•	 /param_files (ascii files): the parameter files used to configure the simulations.

Hindcast forcing conditions.  The hindcast gathers eleven individual years of simulations (from 2008 to 
2018) with the following forcing conditions:

•	 Bathymetry: 2008;
•	 Atmospheric forcing: Météo-France AROME (1.3 × 1.3 km² spatial resolution and hourly outputs);
•	 Open boundary conditions:

•	 Tides: 114 main tidal components extracted from the CST France database (SHOM);
•	 Storm surges: MARS2D-MANGAE2500 (2.5 × 2.5 km2 spatial resolution and hourly outputs);
•	 Waves: WAVEWATCH III®-NORGASUG 4 (5 × 5 km2 spatial resolution and hourly outputs).

•	 River discharge:

•	 Freshwater: daily-measured runoffs of the Loire and Vilaine rivers (QL and QV, respectively);
•	 Sediment load: suspended mud concentration (SMC, in g/l) associated with the river runoff following the 

following relationships:

Fig. 8  Hindcast validation of high-frequency suspended sediment concentration SSChf along the Loire Estuary. 
(a) Loire River discharge Q at the upstream model boundary and tidal range TRSN at Saint Nazaire ‘SN’ (blue). 
Surface SSChf at (b,c) Bellevue ‘Be’, (d,e) Le Pellerin ‘LP’, (f,g) Cordemais ‘Co’, and (h,i) Paimboeuf ‘Pa’ (see 
station locations in Fig. 1c). (Left panels) Measurements (blue) and simulations (red), and (right panels) 
simulations versus measurements, from January to December 2018.
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Technical Validation
The numerical hindcast has been validated with the water level, salinity and SSC measurements in 2008 and 
2018 provided by the GIP Loire Estuaire in the framework of the SYVEL high-frequency continuous monitoring 
network: https://www.loire-estuaire.org/accueil/nos-outils/reseau-de-mesures-en-continu-syvel-2. Simulations 
are compared after a one-year spin-up period.

Water level.  Free surface elevation is compared at five tidal gauges along the estuary, where the salt wedge 
and turbidity maximum take place (i.e., Saint Nazaire ‘SN’, Donges ‘Do’, Cordemais ‘Co’, Le Pellerin ‘LP’, and Usine 
Brulée ‘UB’; Fig. 1c). Measured and simulated water levels are presented over a spring-neap tidal cycle in April 
2008 and June 2018, illustrating the tidal propagation from Saint Nazaire to Usine Brulée (left panels in Figs. 3, 4). 
The model properly simulates the tidal variations and correctly captures the tidal asymmetries along the estuary. 
Comparisons over the entire years (right panels in Figs. 3, 4) provide good agreements with correlation coeffi-
cients r2 ≤ 0.96 and root mean square errors erms ≤ 0.27 m (Table 2).

Fig. 9  Hindcast validation of tide-averaged suspended sediment concentration SSCtide along the Loire Estuary. 
(a) Loire River discharge Q at the upstream model boundary and tidal range TRSN at Saint Nazaire ‘SN’ (blue). 
Surface SSCtide at (b,c) Bellevue ‘Be’, (d,e) Le Pellerin ‘LP’, (f,g) Cordemais ‘Co’, and (h,i) Paimboeuf ‘Pa’ (see 
station locations in Fig. 1c). (Left panels) Measurements (blue) and simulations (red), and (right panels) 
simulations versus measurements, from January to December 2008.
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Salinity.  The surface salinity (at 1-m below the surface) is compared at Paimboeuf ‘Pa’ and Le Pellerin ‘LP’ 
stations (Fig. 1c), within the maximal salinity gradient area. High-frequency (i.e., every 30 minutes) salinity 
dynamics are well captured by the model along hydrological cycles (Figs. 5b–e, 6b–e). The model underestimates 
salinity at Le Pellerin in 2008, but the salinity intrusion during the low river discharge period (i.e., from August 
to November) is well reproduced. In Figs. 5f–I, 6f–i the tide-averaged salinity comparison further illustrates the 
model’s ability to simulate salinity variations at the hydrological and neap-spring time scales with good skills 
(r2 ≥ 0.7; Table 2).

Suspended sediment concentration.  The surface SSC (at 1-m below the surface) is compared at five 
stations along the estuary, where the turbidity maximum takes place (i.e., Paimboeuf ‘Pa’, Cordemais ‘Co’, Le 
Pellerin ‘LP’, and Bellevue ‘Be’; Fig. 1c). The seasonal and neap-spring variability of high-frequency SSC is rea-
sonably well captured by the model at the different stations, but there is a main underestimation of highly-turbid 
events (Figs. 7, 8). This is especially visible at the downstream stations during summer (i.e., LP, Co, and Pa). Such 
underestimations are relatively common in the numerical modelling of estuarine sediment dynamics53, as mon-
itoring stations along the shore may measure large and local sediment resuspensions that models cannot capture 
with a 50 to 100 m resolution21. However, the model presents better skills at tidal timescales (Table 2), providing 
confidence in its ability to simulate the main SSC levels along the year (Figs. 9, 10). This is confirmed by the com-
parison of measured and simulated SSC in function of tidal range and river discharge conditions (Fig. 11). We 
observe that the model underestimates the SSC at Cordemais and Le Pellerin in 2008 (Fig. 11i,j,m,n), which is 
not the case in the wetter year 2018 (Fig. 11k,l,o,p). In addition, the model proves to be able to simulate the main 
tidal and river dynamics.

The model validation of the Loire Estuary hydrodynamics, salinity, and sediment dynamics provides a suf-
ficient level of confidence for using the numerical hindcast in various interdisciplinary studies. However, it is 
important to acknowledge the model’s limitations and errors (Table 2) to properly use the derived environmental 

Fig. 10  Hindcast validation of tide-averaged suspended sediment concentration SSCtide along the Loire Estuary. 
(a) Loire River discharge Q at the upstream model boundary and tidal range TRSN at Saint Nazaire ‘SN’ (blue). 
Surface SSCtide at (b,c) Bellevue ‘Be’, (d,e) Le Pellerin ‘LP’, (f,g) Cordemais ‘Co’, and (h,i) Paimboeuf ‘Pa’ (see 
station locations in Fig. 1c). (Left panels) Measurements (blue) and simulations (red), and (right panels) 
simulations versus measurements, from January to December 2018.
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parameters. For instance, this hindcast provides reasonable estimates of SSC changes in terms of order of magni-
tude, from tidal to hydrological timescales, but it is associated with greater uncertainties at sub-tidal timescales.

Code availability
The MARS3D-MUSTANG model chain used to provide the hindcast is an open-access software: https://mars3d.
ifremer.fr. The source codes and parameter files are available on the CurviLoire Hindcast repository51.
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