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ABSTRACT:

Mapping and monitoring marine ecosystems imply several challenges for data collection and processing: water depth, restricted
access to locations, instrumentation costs or weather constraints for sampling, among others. Nowadays, Artificial Intelligence
(AI) and Geographic Information System (GIS) open source software can be combined in new kinds of workflows, to annotate and
predict objects directly on georeferenced raster data (e.g. orthomosaics). Here, we describe and share the code of a generic method
to train a deep learning model with spatial annotations and use it to directly generate model predictions as spatial features. This
workflow has been tested and validated in three use cases related to marine ecosystem monitoring at different geographic scales:
(i) segmentation of corals on orthomosaics made of underwater images to automate coral reef habitats mapping, (ii) detection
and classification of fishing vessels on remote sensing satellite imagery to estimate a proxy of fishing effort (iii) segmentation of
marine species and habitats on underwater images with a simple geolocation. Models have been successfully trained and the models
predictions are displayed with maps in the three use cases.

1. INTRODUCTION

The world’s oceans are concurrently affected by anthropogenic
activities and climate change impacts (Lyu et al., 2021, Hoegh-
Guldberg et al., 2017). Mapping and monitoring marine ecosys-
tems are key to improve understanding of ecosystems globally,
minimize these impacts, and guide ecosystem conservation and
restoration. (Westoby et al., 2020, Anthony et al., 2017). How-
ever, monitoring marine ecosystems imply several challenges
for data collection and processing: water depth, restricted ac-
cess to locations, instrumentation costs and weather constraints
for sampling. Nowadays, artificial intelligence (AI) and Geo-
graphic Information System (GIS) open source software can
be combined in new kinds of workflows, to generate, among
others, marine habitat maps from deep learning models predic-
tions. While it has been suggested that at least 80% of all data
are geographic in nature (VoPham et al., 2018), AI is a relevant
and powerful tool to assist (by automated labeling) the ecolo-
gical analyses associated to temporal and spatial ecosystem sur-
veys (Hopkinson et al., 2020, Pavoni et al., 2022, Yuval et al.,
2021). Nevertheless, one of the major issues for geoAI consists
in tailoring usual AI workflow to better deal with spatial data
formats used to manage both vector annotation and large geor-
eferenced raster images (e.g. orthomosaics, drone or satellite
images). A critical goal consists in enabling computer vision
models to be trained directly with spatial annotations (Touya
et al., 2019, Courtial et al., 2022), as well as delivering model
predictions through spatial data formats to automate the produc-
tion of marine maps from raster data. Moreover, another goal
is addressing large raster constraints (whose size exceeds the
GPU cache memory) in terms of machine resources for training
∗ Corresponding author

deep learning models. In this paper, we describe and share the
code of a generic method used to annotate and predict objects
within georeferenced images. This has been achieved by set-
ting up a workflow which relies on the following process steps:
(i) spatial annotation of raster images by editing vector data
directly within a GIS, (ii) splitting large raster images (ortho-
mosaics, satellite images) into tiles to fit available machine re-
sources, and while keeping raster (images) and vector (annota-
tion) quality unchanged, (iii) training of deep learning models
(CNN) thanks to the transfer learning strategy (iii) model pre-
dictions delivered in spatial vector formats. Here, we demon-
strate that open source tools can be used to develop a work-
flow capable of automating map production using deep learning
models trained on georeferenced images and spatial and non-
spatial (pixel-value) annotations. Also, we test the impact of
three data processing and model training strategies on model
accuracies : (i) overlapping tiles or non-overlapping tiles, (ii)
sizes of raster tiles (500x500 and 1500x1500 pixels), (iii) two
pre-trained models.

The whole framework relies on Python libraries for both geo-
spatial processing and AI and is shared on GitHub and has been
assigned a DOI on Zenodo, along with sample data. Moreover,
a QGIS plugin is available to facilitate the use of pre-trained
deep learning models to automate the production of maps from
raster data (e.g. underwater orthomosaics or satellite images).

2. MATERIAL AND METHODS

2.1 Input data

The current workflow is meant to process different types of geo-
spatial data : raster data (e.g. orthomosaics or remote sens-
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Datasets Deepmosaics Gillnet Seatizen
Dataset type orthomosaic satellite imagery simple georeferenced images
Annotation type vector polygons pixel-value bounding boxes pixel-value instance segmentation polylines
Annotation tool Qgis Biigle Biigle
Computer vision task Instance segmentation Object detection Instance segmentation
Categories 49 3 41
Annotated samples 3 833 1200
Size (px) 21392 - 32097 x 14879 - 30990 8192 x 5452 3648 x 2736

Table 1. Description of the datasets used to implement the presented workflow

ing satellite imagery) or underwater images associated with a
unique spatial coordinate. The tool is built to support rasters
with as much channels as they have (RGB, multispectral. . . ).
AI annotation process is based on training supervised deep
learning models with manually annotated images. The work-
flow has been designed to handle both geospatial (vector an-
notations) and non-geospatial annotation (pixel-values annota-
tions) formats.

This workflow has been implemented in three use cases related
to marine ecology and based on different types of computer vis-
ion tasks, images and annotations (Table 1). The choice of the
annotation tool is left to the annotator and does not generate
any constraint for the data processing because these formats are
then converted into a reference format : the COCO format (Lin
et al., 2015) commonly used to train computer vision models.

2.1.1 Deepmosaics Orthomosaics of three coral reef sites
(about 6m depth, total surface area around 620 m²) on Mayotte
lagoon were performed. A consistent underwater photogram-
metry protocol by structure from motion has been used to col-
lect the images using SCUBA (upper than 70% overlapping
between images). Ecological analyses were conducted using
QGIS (QGIS Development Team, 2009), (version 3.24.1) to de-
scribe reef-building corals, colonies are manually delineated as
polygons (by drawing edges of colonies) considering an indi-
vidual as a colony growing independently from its neighbor.
Each colony was classified by genus and species.

The resulting dataset has 49 classes and 27 were underrepres-
ented. Indeed, these classes had less than 50 occurrences per
class while 119 was the mean number of occurrences per class
in the full dataset. Annotations related to these species were
removed from the dataset for training and testing. Despite this
choice, the dataset is still very unbalanced : the most represen-
ted class had 867 occurrences and the less represented class had
54 occurrences.

2.1.2 Gillnet The overall goal of this work is to better doc-
ument and describe tuna drift gillnet fleets in the northern In-
dian Ocean using satellite imagery, including the number of
gillnet vessels and their characteristics (e.g. vessel length, pres-
ence or absence of gear on board). This work focuses on the
Pakistani tuna drift gillnet fleet as a case study, given the on-
going and dedicated monitoring of the gillnet fleet by WWF
Pakistan, which has provided a dearth of information to supple-
ment our satellite analysis (Kiszka et al., 2021).

Following consultation with WWF Pakistan, polygons within
three major fishing harbors were selected in Pakistan as the
areas of interest (AOI) to collect satellite imagery: Karachi,
Gwadar, and Pishukan. Two sources of satellite imagery are be-
ing used for this analysis: freely and widely-available Google
Earth Pro and WorldView-3. The WorlView-3 portion is cur-
rently ongoing, so we only focus on Google Earth Pro in this
document. We reviewed all publicly available satellite imagery

Figure 1. Example of Seatizen platforms

from Google Earth Pro from January 2021 to December 2022
that was available at 700-750 feet digital elevation through
January 25, 2023. We used Google Earth Pro’s “save image”
feature and downloaded imagery at the highest resolution avail-
able.

To annotate the images, we selected BIIGLE 2.0 as our image
annotation software (Langenkämper et al., 2017). We categor-
ized bounding boxes with three categories for image annotation:
yes, maybe, and no. A vessel labeled as yes indicated that the
analyst detected it to be a gillnet vessel; maybe referred to ves-
sels that had the shape and other defining features of a tuna drift
gillnet but could not definitively be categorized as a gillnet ves-
sel due to image quality or similarity to other gear (e.g. trawls);
and no referred to vessels which were definitely not gillnet ves-
sels, such as water supply vessels.

Although the Gillnets dataset contains only 3 classes, the data-
set is very unbalanced. For the training, the dataset has been
rebalanced between classes by deleting images which contain
only the most represented class (e.g. no) resulting in an even
lower number of images (262 samples after rebalancing against
564 in the initial training set).

2.1.3 Seatizen This project proposes a new approach to
monitor underwater species. The methodology explores the
possible use of data collected from citizens practicing water
sports (kitesurfing, paddle, snorkeling, etc.) in order to build
a participatory science project: Seatizen. Data acquisition was
carried out using instrumented marine platforms. These plat-
forms can be divided into two groups, citizen platforms and
scientific platforms. The first type of platforms (paddles, kite-
surf and masks) are designed for being used by citizens practi-
cing marine sports. These platforms are equipped with a camera
and, most of the time, with a differential GPS module allowing
the acquisition of georeferenced images with centimeter accur-
acy (Figure 1 on the left). The second type of platform is an
autonomous board, developed by Ifremer as part of the IOT (In-
dian Ocean sea Turtles) project, equipped with a GPS module
and a GoPro (Figure 1 on the right).

This dataset currently contains images collected in the Indian
Ocean and, at its latest update, consists of images sampled
from Reunion island, Mauritius, Europa island, Aldabra, Saint-
Brandon and Mayotte. Images can be georeferenced, some are
annotated or not. Annotations were made by indicating the
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presence or absence of 41 classes including corals, fauna asso-
ciated with corals, algae, marine plants and classes introduced
specifically to describe a participatory science problem. Im-
ages were taken between 2015 and 2023 and present different
quality and resolution and among these images 1200 were an-
notated using the instance segmentation technique by an expert
in marine biology.

This dataset is stronlgy unbalanced between classes. Classes
that had less than 20 occurrences per class were removed for
the model training and testing processes.

2.2 Tile georeferenced imagery

Depending on machine resources (such as GPU cache storage)
available to user, the process to prepare the data for model train-
ings can be adapted.

Figure 2. Tiling process on annotated orthomosaics (a). Tiles are
cut according to a regular grid (b) and produces georeferenced

tiles (c) with their matching annotations (d).

Figure 2 presents a method to handle large raster data by sli-
cing them into tiles. Indeed, the orthomosaic exposed is large
(1.6 GB) and cannot be supported as is in GPU memory for
training a deep learning model. The size of the tiles (defined
in pixels or in meters) is defined by the user according to his
constraints (available machine resources, size of the annotated
objects or sampled surface). Both wide geospatial raster data
and related vector annotation data are split into a large number
of raster tiles (for instance, 500 x 500 pixels) along with smal-
ler vector files sharing the exact same boundaries as the raster
tiles (converted in GeoJSON files). This tiling process can then
be used either in the training phase of the model or in infer-
ence. The workflow also offers the possibility to use different
tile cutting strategies. The tiles can be cut according to a regu-
lar cutting grid (without overlaps), or by allowing the superpos-
ition of some tiles. Figure 3) introduces the two tiling strategy
tested. On this example, a regular grid produces 9 tiles without
overlapping whereas splitting with 25% overlap between tiles
produces 16 tiles for the same tiled area. The degree of over-
lap can be set by the user. The superposition of tiles leads, in
some cases, to the presence of the same object on several tiles
and carries out a data-augmentation process that can be relevant
depending on the model training or inference strategies.

2.3 Train a deep learning model

The workflow presented here can be used with both spatial
and non-spatial annotations and supports different annotation

Figure 3. Tiling strategies for georeferenced rasters : a regular
grid (left) and an overlapping grid (right).

formats. The annotations and raster formats generated by the
workflow when slicing large datasets are fully compatible with
the dataloading processes available in Pytorch (Paszke et al.,
2019) or Detectron2 (Wu et al., 2019a). Indeed, the annota-
tions are converted to the COCO format (Figure 4) widely used
to train deep learning models. Thus, the geospatial masks or
bounding boxes are converted into pixel values on the image
thanks to an inverse affine transformation.

Models are trained using the transfer learning technique (Weiss
et al., 2016). This method reuses the weights of the pre-trained
models on large datasets (ImageNet in our case) and trains the
last layers of these models specifically on the available data.

The models used as a backbone were chosen from the
Detectron2 models’ benchmark (Wu et al., 2019b). Models
adapted to each computer vision task (instance segmentation or
object detection) were chosen according to their average accur-
acy ranking. The best were chosen for a test on our data. Mod-
els were trained with 1 GPU (Quadro RTX 4000), 32 cpus and
64GB of RAM, using 80% of the dataset. 10% of the dataset
were kept for the validation step and 10% for the testing step.
Models were evaluated using the COCO-style evaluation (Lin
et al., 2015). The average precision (AP) and average precision
at 50% of intersection over union (AP50) will be the metrics
used to evaluate the models trained.

Figure 4. Labeled raster tiles (.tif format) (a) and vector tiles of
annotation (.geojson format) (b). COCO file containing

annotations (c) to train models.

2.4 Spatialized model predictions

Our workflow uses the affine transformation to convert the an-
notation results of the model into geometric shapes holding spa-
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tial coordinates that match the predicted image. The model pre-
dictions are merged according to their class to form closed poly-
gons or bounding boxes.

The annotations provided by the trained deep learning model
are produced in the same Coordinate Reference System (CRS)
as the input image. The annotations can be exported in a geo-
spatial format such as geojson, shapefile or geopackage in order
to be displayed on maps with GIS software.

2.5 Implementation

The workflow has been built with open source Python pack-
ages. Main geospatial packages used are : geopandas (Jordahl
et al., 2022), rasterio (Gillies et al., 2015) and solaris

(CosmiQ, 2020). detectron2 (Wu et al., 2019a) is the pack-
age that provided pre-trained computer vision models. Pre-
dictions of the computer vision models were centralized using
the Fiftyone package (Moore and Corso, 2020). The whole
workflow to process rasters and simple georeferenced images,
train and evaluate deep learning models, spatialize model’s pre-
dictions is available under a pip package (Talpaert Daudon,
2023a) and a DOI has been assigned along with tutorials
(Talpaert Daudon, 2023b) and sample data. Moreover, a QGIS
plugin (Talpaert Daudon, 2023c) performs inference with the
models trained on the three datasets (Section 2.1). It is possible
to select a geographic area and produce spatial occurrences of
objects or marine species there.

3. EXPERIMENTS AND RESULTS

3.1 Orthomosaics

Three deep learning models have been trained on this data-
set using different data processing strategies. A Mask-RCNN
(X101-FPN pre-trained model) was chosen as a backbone for
the transfer learning strategy. First, we trained models on tiles
of 500 pixels by 500 pixels and a regular grid cut. Second, we
trained a model with tiles of the same size but cut according to
a grid with a 25% overlap between adjacent tiles. Finally, we
repeated these two operations with tiles of 1500 pixels x 1500
pixels (Table 2).

Model AP (%) AP50 (%)
Tiles 500 px no overlap 16,2 26,4
Tiles 500 px overlap 25% 17,6 26,7
Tiles 1500 px overlap 25% 18,7 31,7

Table 2. Models metrics for the three tiling strategies explored.

These models have been then applied to a manually unan-
notated orthomosaic and the results of these models were spa-
tialized (Figure 5).

3.2 Satellite imagery

Models have been trained on tiles (8000 pixels per 5000 pixels)
split with a regular grid. Two pre-trained models were imple-
mented in the training process : a X101 pre-trained on Im-
ageNet and a R50 pre-trained on PASCAL VOC object detec-
tion. The X101 achieved 69.9% and the R50 achieved 71%
of AP50 after training on a balanced datasets including 261
samples. Trained models were used to detect gillnet fishing ves-
sels (Figure 6).

Figure 5. A non-annotated orthomosaic (a) and the same
orthomosaic where coral species are detected and classified (b)

by a deep learning model trained on 500 by 500px tiles split
with a regular grid (model called ’Tiles 500 px no overlap’).

Figure 6. Predictions with model’s confidence from an X101
model on a satellite image.
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3.3 Georeferenced images

We fine tuned a MaskRCNN-R50 achieving 12% of AP and
22% of AP50. Predictions were matched with the geolocation
belonging to the images predicted (Figure 7) and maps could be
created to monitor marine corals in the area (Figure 8).

Figure 7. Model’s prediction of a dead coral patch on a
georeferenced image.

Figure 8. Model ’s predictions of dead coral patches on
georeferenced images within a study area.

4. DISCUSSION AND PERSPECTIVES

Extending deep learning frameworks to geospatial data has
already been implemented in deep learning model training pro-
cesses(Soliman and Terstriep, 2019, Stewart et al., 2022, Cos-
miQ, 2020). While some tools provides an end-to-end pro-
cess to train and predict on rasters (Beilschmidt et al., 2023,
GeoAlert, 2021) there is a need of free and open source soft-
ware to automatically produce maps. Here, we described a
package that combines new pre-trained computer vision mod-
els from detectron2 (Wu et al., 2019b) package and achieves
automatic maps production.

4.1 Input data types

We have widened the spectrum of input data by offering not
only deep learning on satellite images (CosmiQ, 2020, Stewart
et al., 2022, Soliman and Terstriep, 2019) but also on ortho-
mosaics covering small areas or underwater images associated
with a single GPS point.

Furthermore, the need for multiple disciplines to be involved in
the geoAI process has already been identified (VoPham et al.,

2018). Indeed, the expertise of cross-disciplinary skills from
the application field (e.g. marine ecology), data science and
data engineering is necessary to establish best practices for how
to deal with the complexity of geospatial and environmental
data. The ubiquity of the input data assimilated by this work-
flow and the implementation into three research projects makes
this code robust for different user profiles, whatever the data
they have.

We have worked on various data sources but our workflow is
only suitable for 2D images. However, photogrammetry is a
new tool for precisely measuring key parameters for monitor-
ing coral reefs (Urbina-Barreto et al., 2022) and generates 3D
models that this workflow cannot handle so far. Future work
could be done to spatialize the predictions on 3D models using
digital elevation model (DEM) or directly training a deep learn-
ing model on the mesh (Hopkinson et al., 2020, Pierce et al.,
2021).

4.2 Annotation tools

The workflow was tested on manually annotated input data
using geospatial tools (QGIS) or non-spatial annotation tools
commonly used in computer vision. The annotations coming
from spatialized or non-spatialized annotation tools did not gen-
erate any obstacles in the training of the models. On the one
hand, annotation of rasters via QGIS allows to benefit from
functionalities adapted to spatial data such as the native sup-
port of data in geotiff format and associated metadata by us-
ing vector data formats to manage annotations. On the other
hand, computer vision annotation tools (Biigle, CVAT (CVAT.ai
Corporation, 2022)) provide functionalities (Sager et al., 2021)
that speed up object segmentation by implementing pre-trained
models (like segment anything (Kirillov et al., 2023)) and al-
lows the creation of collaborative annotation projects with dif-
ferent users. Both products of annotations tools are handled in
this workflow. This makes the use of annotations versatile and
non-restrictive for users both familiar and unfamiliar with geo-
spatial software.

4.3 Tiling strategies

Grid functionalities for tiling were already explored (Soliman
and Terstriep, 2019, CosmiQ, 2020) but the effects of the tiling
strategies were not documented yet. In our study, different tiling
strategies were tested on orthomosaics. The trained model on
1500 pixels by 1500 pixels tiles cut with a 25% overlap between
tiles resulted in better evaluation metrics than the trained model
on 500 pixels by 500 pixels tiles also sliced with overlap. This
metrics improvement could be explained by the fact that smal-
ler tiles do not allow to encompass patches of corals while lar-
ger tiles allowed the identification of shape characteristic (e.g.
texture and arrangement of coral species) (Figure 9). This is
crucial information for the detection and classification of ob-
jects. Thus, tiles size must be chosen as an input variable while
processing data. It must be defined not only according to the
available machine resources but also according to the size of the
objects to be classified. These findings suggest that the tiling
method for geospatial data probably impacts the performance
of deep learning models. We recommend further studies to take
into account annotated objects size on the rasters to ensure the
integrity of the annotations after tiling the dataset.

In addition, we compared the effect of two tile-cutting strategies
on the performance of the model (tiling according to a regular
grid and an overlapping grid) (Table 2). In our use case, the use
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Figure 9. (a) A 500x500 pixel tile and (b) a 1500x1500 pixel tile
showing that a single object is more fragmented when cut with

small ones than with larger ones.

of a slicing strategy with 25% overlap between tiles had little
impact on model metrics. To further explore this parameter it
would be appropriate to test larger overlaps (e.g. 50% and 75%)
to confirm the hypothesis that tiles overlap helps to create a be-
neficial data-augmentation process for object recognition (Yang
et al., 2022).

4.4 Models performance

In our use case related to satellite images, we tried two pre-
trained models during the transfer learning process. The R50
performed slightly better on our test dataset compared to the
X101 and this is in line with the benchmark performed by
detectron2 (Wu et al., 2019b).

For the three use cases, model metrics are currently weak com-
pared to similar computer vision tasks in the terrestrial domain
and in other deep learning tasks (Rottensteiner et al., 2012,
Stewart et al., 2022). This is mainly due to the fact that the
training datasets are too small and, in the meanwhile, contain a
large number of unbalanced classes.

The lack of training data is a limitation for models performance.
However, we identified two ways to address the issue. Trained
models can already predict unlabeled rasters. Admittedly, these
predictions are not accurate, but they constitute a basis on which
the annotator can rely to speed up the annotation process (e.g.
a human-in-the-loop process) (Wu et al., 2022). Next, tasks
related datasets (Ionescu et al., 2022) can help to strengthen
datasets presented (Section 2.1) by providing more annotations.

A major limitation in the valuation of spatial data by the work-
flow is the lack of consideration of spatial information in the
model training process. This information is all the more relev-
ant when the objects to be predicted (e.g. boats or living spe-
cies) present polymorphism linked to the geographical context
(McLean and Stuart-Fox, 2014, Munday et al., 2003). Imple-
mentation of spatial information as a variable by deep learning
models constitutes a perspective for improving this work (Yang
and Tang, 2021, Janowicz et al., 2020).

5. CONCLUSION

We introduce a GeoAI tool, fully built with open source pack-
ages that enables to train and test deep learning models on
different types of geospatial data. It automatically gener-
ates maps using deep learning models.The technical workflow
which manages spatialized predictions has been implemented in

three use cases related to marine ecosystems and fishing mon-
itoring. It has been validated and already provides results prov-
ing that AI-assisted mapping can value different types of marine
images.

Optimizing the model scores is the next step in the development
of this tool. This optimization will be done by increasing the
number of samples available for training the models. Beyond
the optimization of model scores, one of the major perspectives
of this work is to improve and ease AI-assisted mapping, as
well as to include spatial information as input variables into
a multi-channel deep learning model to make the most from
spatial imagery.
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l’Océan Indien) is a project funded by the European Union, the
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from Prefecture de La Réunion/DEAL programme 123 action
2). The authors thank the Monaco Explorations for enabling
the acquisition of georeferenced data during the 2022 mission.
Regarding the gillnet portion of this study, the authors wish to
thank both the National Geographic Society (grant number EC-
93100C-22) and WWF Australia (grant number P0716-NLD-
SWE-PWDI-BycatchGrant-03) for their generous support of
this research.

REFERENCES

Anthony, K., Bay, L. K., Costanza, R., Firn, J., Gunn, J.,
Harrison, P., Heyward, A., Lundgren, P., Mead, D., Moore,
T., Mumby, P. J., van Oppen, M. J. H., Robertson, J.,
Runge, M. C., Suggett, D. J., Schaffelke, B., Wachenfeld,
D., Walshe, T., 2017. New interventions are needed to save
coral reefs. Nature Ecology & Evolution, 1(10), 1420–1422.
https://doi.org/10.1038/s41559-017-0313-5.

Beilschmidt, C., Drönner, J., Mattig, M., Schweitzer, P., See-
ger, B., 2023. Geo Engine: Workflow-backed Geo Data Portals.
B. König-Ries, S. Scherzinger, W. Lehner, G. Vossen (eds),
BTW 2023, Gesellschaft für Informatik e.V.

CosmiQ, 2020. solaris. github.com/CosmiQ/solaris/tree/0.5.0
(18 March 2023).

Courtial, A., Touya, G., Zhang, X., 2022. Representing Vec-
tor Geographic Information As a Tensor for Deep Learning
Based Map Generalisation. AGILE: GIScience Series, 3, 1–8.
https://agile-giss.copernicus.org/articles/3/32/2022/. Publisher:
Copernicus GmbH.

CVAT.ai Corporation, 2022. Computer Vision Annotation Tool
(CVAT). github.com/opencv/cvat (23 November 2022).

GeoAlert, L., 2021. Mapflow ai. mapflow.ai/ (07 April 2023).

Gillies, S., Perry, M., Erickson, T., 2015. rasterio. git-
hub.com/rasterio/rasterio (02 April 2023).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W7-2023 
FOSS4G (Free and Open Source Software for Geospatial) 2023 – Academic Track, 26 June–2 July 2023, Prizren, Kosovo

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-223-2023 | © Author(s) 2023. CC BY 4.0 License.

 
228



Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W., Dove,
S., 2017. Coral Reef Ecosystems under Climate Change
and Ocean Acidification. Frontiers in Marine Science, 4. ht-
tps://www.frontiersin.org/articles/10.3389/fmars.2017.00158.

Hopkinson, B. M., King, A. C., Owen, D. P., Johnson-
Roberson, M., Long, M. H., Bhandarkar, S. M., 2020.
Automated classification of three-dimensional reconstructions
of coral reefs using convolutional neural networks. PLOS ONE,
15(3), 1–20. https://doi.org/10.1371/journal.pone.0230671.
Publisher: Public Library of Science.

Ionescu, B., Müller, H., Peteri, R., Rückert, J., Ben Abacha,
A., Garcı́a Seco de Herrera, A., Friedrich, C., Bloch, L., Singh,
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