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Abstract

Invasion risks may be influenced either negatively or positively by climate change, depending on the species.

These can be predicted with species distribution models, but projections can be strongly affected by input 

environmental data (climate data source, Global Circulation Models and Shared Socio-economic Pathways 

SSP). We modelled the distribution of Phelsuma grandis and P. laticauda, two Malagasy reptiles that are 

spreading globally. We accounted for drivers of spread and establishment using socio-economic factors (e.g., 

distance from ports) and two climate data sources, i.e.,  Climatologies at High Resolution for the Earth’s and 

Land Surface Areas (CHELSA) and Worldclim. We further quantified the degree of agreement in invasion 

risk models that utilised CHELSA and Worldclim data for current and future conditions. Most areas 

identified as highly exposed to invasion risks were consistently identified (e.g. in Caribbean and Pacific 

Islands). However, projected risks differed locally. We also found notable differences in quantitative invasion

risk (3% difference in suitability scores for P. laticauda and up to 14% for P. grandis) under current 

conditions. Despite both species native distributions overlap substantially, climate change will drive opposite

responses on invasion risks by 2070 (decrease for P. grandis, increase for P. laticauda). Overall, projections 

of future invasion risks were the most affected by climate data source, followed by SSP. Our results highlight

that assessments of current and future invasion risks are sensitive to the climate data source, especially in 

Islands. We stress the need to account for multiple climatologies when assessing invasion risks.

Keywords

CHELSA climatologies; Invasive alien species; Madagascar reptiles; Species distribution models; Socio-

economic factors; Worldclim climatologies.



Introduction

Invasive Alien Species (IAS) are increasingly raising concerns about their impact in the future, notably due 

to their rising economic cost and ecological impact (Diagne et al. 2021). Invasion risks can be influenced by 

climate change either positively or negatively depending on the species (Bellard et al. 2013). The assessment 

of invasion risks and how they will be influenced by climate change has become paramount to the 

development of proactive conservation actions.

Early detection is a key determinant to prevent invasions, suggesting the urgent need to identify priority 

areas for surveillance efforts. In this regard, a widely advocated management tool in conservation biology is 

Species Distribution Modelling (SDM; Gallien et al. 2012; Lanner et al. 2022). This approach consists of 

identifying the environmental factors explaining the distribution of a species and predicting areas of high 

environmental suitability. In the case of IAS that are expanding, such tools allow identification of areas that 

have not yet been invaded, but where environmental conditions are suitable and where factors of introduction

and spread are present (e.g. maritime traffic). The distribution of IAS may be explained and predicted by a 

combination of environmental and socio-economic predictors (Bellard et al. 2016; Lanner et al. 2022). 

Environmental predictors (e.g. climate and habitat) may be used to identify areas where a candidate IAS is 

likely to further establish, while socio-economic predictors (e.g., proximity to ports and airports) represent 

factors of spread and entry points (Bertelsmeier and Courchamp 2014; Hulme 2021). The areas at high risk 

of invasion can then be prioritised for surveillance efforts.

Invasion risks may vary with climate change, and this can be assessed using SDMs that incorporate future 

climate projections (Bellard et al. 2013; Gillard et al. 2017). Such projections depend on the Shared Socio-

economic Pathways (SSP, also known as Representative Concentration Pathway RCP, i.e., the scenario) and 

the Global Circulation Model (GCM, i.e., a methodological aspect). These factors can strongly affect SDMs 

and induce uncertainty in assessments of climate suitability (Buisson et al. 2010). More recently, the choice 

of the source of climate data (e.g., CHELSA or Worldclim; Fick and Hijmans 2017; Karger et al. 2017) used 

for model calibration has been identified as a major source of uncertainty in SDMs (Baker et al. 2016; Dubos

et al. 2022a). In spite of this, most SDM studies aimed at projecting future distributions use climate data 



from a single source. To our knowledge, no study has considered the uncertainty induced by the source of 

climate data in invasion risk assessments.

Reptiles represent one of the costliest invasive taxa in terms of damage and management, with an estimated 

economic cost of more than one billion dollars per year in the last decades (Diagne et. al. 2021). The 

increasing pace of reptile invasions, along with the associated ecological (e.g., trophic disruptions), 

evolutionary/conservation (e.g., through hybridisation or introgression), and sanitary costs (e.g. pathogen 

transmission) have led to a growing attention towards some species (Reed and Kraus 2010; Sauteur et al. 

2013; Kraus 2015; Vuillaume et al. 2015; Bellinati et al. 2022; Breuil et al. 2022). However, invasive alien 

reptiles remain understudied compared to invertebrate and plant species (e.g., Bellard et al. 2013) and there 

is a need to fill a knowledge gap in how climate change influences reptile invasion risks.

The Madagascar giant day gecko Phelsuma grandis Gray 1870 and the Gold-dust day gecko Phelsuma 

laticauda Boettger 1880 are two Malagasy reptiles that have spread throughout the world. Phelsuma grandis 

is one of the largest living species of the genus, reaching up to 30 cm in total length (i.e. twice the length of 

most Phelsuma species). Phelsuma laticauda is a medium-sized gecko, reaching up to 13 cm in total length; 

however, the species is considered an aggressive competitor towards other smaller gecko species (e.g., in 

French Polynesia, Lund 2015; but also in its native range, Gehring et al. 2010). Due to their human-mediated

spread and resulting risks to native communities, both are considered IAS outside of their native range, 

including areas in central-eastern Madagascar, Mauritius, Reunion Island, Florida, French Polynesia and 

Hawaii (Ota and Ineich 2006; Krysko and Borgia 2012; Dubos 2013; Buckland et al. 2014; Dubos et al. 

2014; Lund 2015; Fieldsend and Krysko 2019; Fieldsend et al. 2020, 2021c). The coexistence of Phelsuma 

spp. (or other reptiles sharing similar habitats such as anoles) may cause shifts in habitat use through 

competition (Harmon et al. 2007; Porcel et al. 2021; Wright et al. 2021) that might be detrimental to the 

more specialised native species. In Mauritius, the introduction P. grandis was associated with the extirpation 

of four populations of endemic Phelsuma species (Buckland et al. 2014). Both P. grandis, P. laticauda as 

well as several other Phelsuma species (e.g., P. kochi) are known to prey on other gecko specimens of 

smaller size (Gehring et al. 2010; Buckland et al. 2014; Rakotozafy 2019), which suggests potential 

predation risks to smaller species or juveniles of similar-sized species. Their introduction also raised 



concerns regarding the risk of disease and parasite transmission to native species (Dervin et al. 2014; Barnett

et al. 2018; Fieldsend and Krysko 2019; Fieldsend et al. 2021b; Unger et al. 2022), despite no evidence of 

cross-species infection having been found so far (Goldberg and Bursey 2000; Leinwand et al. 2005). The 

spread of IAS can be facilitated by the international pet trade, as it is the case for Phelsuma spp. (Andreone 

et al. 2012; Masin et al. 2014; Stringham and Lockwood 2018; Pragatheesh et al. 2021). The spread of P. 

grandis and P. laticauda has led to increased attention regarding the conservation status of the native (and 

often endemic) fauna from Madagascar, Mauritius and Reunion Island (Dubos 2013; Buckland et al. 2014; 

Dubos et al. 2014). Their co-occurrence with native Phelsuma species has raised concerns regarding the 

long-term persistence of P. lineata, P. serraticauda, P. inexpectata, P. borbonica, P. cepediana, P. guimbeaui,

P. ornata, and P. rosagularis (Andreone et al. 2003; Glaw and Vences 2007; D’Cruze et al. 2009; D’Cruze 

and Kumar 2011; Blumgart et al. 2017; Porcel et al. 2021). Both the IAS considered here are commonly 

found in urbanised areas, on ornamental plants and in orchards, as well as primary rainforests, reflecting a 

large niche flexibility that may help to explain successful establishments (Fieldsend et al. 2021a). This 

illustrates the need to characterise their climatic niche in order to identify potential areas at risk of invasion at

the global scale.

Here we modelled the distribution of P. grandis and P. laticauda under current and projected future climatic 

conditions, and predicted their invasion risks at the global scale. To determine whether the choice of climate 

data source affects invasion risk assessments, we quantify the degree of agreement between current invasion 

risks based on the two main climate data sources available at global scale (i.e., CHELSA and Worldclim). We

account for multiple sources of uncertainty for each climate data (Shared Socio-economic pathways, SSP and

Global Circulation models, GCM). To provide the most reliable conservation guidelines, we identify areas 

that are in agreement between projections derived from both climate data sources, and point out priority 

areas for monitoring to enhance the chances of early detection and prevent potential invasions.

Methods

Both P. grandis and P. laticauda are found in a variety of habitat types, including primary forests, highly 

degraded forests, orchards, and urbanised habitats (D’Cruze et al. 2009; D’Cruze and Kumar 2011; Dubos et 



al. 2014; Blumgart et al. 2017). We thus assume that habitat variables represent poor predictors of their 

environment, and that the species’ distribution may be better predicted by climate variables (e.g., Fieldsend 

et al. 2021a). Our analysis includes socio-economic factors such as proximity to roads, ports and airports, 

which we interpret as factors of spread or potential entry points.

Occurrence data

We retrieved occurrence data from the literature and opportunistic observations, both from native and non-

native ranges (Glaw and Vences 2007; Raxworthy et al. 2007; Pearson and Raxworthy 2009; Dubos 2013; 

Buckland et al. 2014; Dubos et al. 2014; Fieldsend and Krysko 2019; Fieldsend et al. 2021a; Fieldsend et al. 

2021c; Porcel et al. 2021). In total, we obtained 338 unique occurrence records for P. grandis and 113 for P. 

laticauda. We thinned the data to avoid pseudo-replication and mitigate spatial biases, selecting one 

occurrence per pixel at the resolution of the environmental variables (5 arc minutes, see below). This resulted

in a sample of 91 presence points for P. grandis based on CHELSA, of which 50 are within the native area 

and 41 in non-native areas (90 based on Worldclim; 49 and 41 points in native and non-native areas, 

respectively). For P. laticauda, the final sample represents 58 presence points, of which 19 are distributed in 

the native area and 39 in the non-native area (59 points based on Worldclim; 18 and 41 points in native and 

non-native areas, respectively).

Climate data

We used 19 bioclimatic variables (description available at https://www.worldclim.org/data/bioclim.html) 

at 5 arc minutes (approximately 10 km) resolution for the current and future (2070) climate from two 

sources: CHELSA (Karger et al. 2017) and Worldclim global climate data (Fick and Hijmans 2017). These 

data sources used different methods to compute the climatologies. Worldclim is based on interpolated data 

with elevation and distance to the coast as predictors in addition to satellite data (Fick and Hijmans 2017), 

while CHELSA is based on statistical downscaling for temperature, and precipitation estimations 

incorporating orographic factors (i.e., wind fields, valley exposition, boundary layer height; Karger et al. 

https://www.worldclim.org/data/bioclim.html


2017). We decided to include all 19 bioclimatic variables because both temperature and precipitation are 

related to the species’ biology, and use a statistical process to select the most relevant ones (see below). For 

each climate data source, we selected one predictor variable per group of inter-correlated variables to avoid 

collinearity (Pearson’s r > 0.7; Dormann et al. 2013) using the removeCollinearity function of the 

virtualspecies R package (Leroy et al. 2016). When mean values were collinear with extremes, we selected 

the variables representing extreme conditions (e.g., warmest / driest condition of a given period) because 

these are more likely to drive mortality and local extirpation, and be causally related to the species 

establishment (Parmesan et al. 2000; Mazzotti et al. 2016; Maxwell et al. 2019). 

For future projections, we used three Global Circulation Models (GCMs; i.e., BCC-CSM1-1, MIROC5, and 

HadGEM2-AO) and two greenhouse gas emission scenarios (the most optimistic RCP26 and the most 

pessimistic RCP85) to consider a wide panel of possible invasion risk in 2070.

Socio-economic factors

We used distance to port and airports as factors of introduction and proxies for propagule pressure (Bellard et

al. 2016). We obtained port data from the World Port Index (https://msi.nga.mil/Publications/WPI, accessed 

December 2020) and airport data from the OpenFlights Airport database (https://openflights.org/data.html, 

accessed December 2020). We used distance to main roads and highways as an indicator of potential spread, 

since Phelsuma species can be accidentally transported by terrestrial vehicles over short distances (Deso 

2001). We selected the largest two categories of road size (highways and primary roads) and computed 

distance from roads using the Global Roads Inventory Project (GRIP4) dataset (Meijer et al. 2018). 

Distribution modelling

We modelled and projected species distributions using an ensemble model approach (four modelling 

techniques). We selected a set of top-performing modelling techniques according to Valavi et al. (2021). 

These were Random Forest down-sampled (RF down-sampled, i.e., RF parametrised to deal with a large 

number of background samples and few presence records; Prasad et al. 2006), and three of the best 



performing models available in the biomod platform (Thuiller et al. 2009): a recent implementation of 

MaxEnt, i.e. MaxNet (Phillips 2017), Generalised Boosting Model (GBM, also known as Boosted 

Regression Tree, BRT; Elith et al. 2008) and Generalised Additive Model (GAM; Guisan et al. 2002). RF 

down-sampled was set to run 1000 bootstrap samples/trees.

Our dataset consisted of presence-only data. Hence, we generated pseudo-absences at locations where the 

species has never been detected (Sillero et al. 2021). We first generated five different sets of 50,000 

randomly-selected pseudo-absences (or background points). Our occurrence data were retrieved from 

opportunistic observations, and were thus subject to spatial biases (e.g., more observations around populated 

or accessible areas). To account for sample bias, we reperformed all calculations applying a correction based 

on a different pseudo-absence generation strategy (both corrected and uncorrected models are needed to 

reliably measure the effect of sample bias correction; Dubos et al. 2021b; details below). In corrected 

models, we produced five sets of pseudo-absences concentrated around the presence points to reproduce the 

spatial bias of the sample, following Phillips et al. (2009). We used a null geographic model (i.e., a map of 

the geographic distance to presence points) generated with the dismo R package (Hijmans 2012) and used it 

as a probability weight for pseudo-absence selection. This technique was deemed appropriate for IAS that 

are still expanding (i.e., not at equilibrium), because it reduces the generation of pseudo-absences in regions 

that are suitable but not yet invaded (e.g., Lanner et al. 2022). Since no independent data are available to 

assess the effect of sample bias correction, we used the Relative Overlap Index (ROI) based on Schoener’s D

overlap (Dubos et al. 2021b). The ROI enables assessment of whether the effect of correction is negligible 

compared to the variability between model runs. It computes (1) the mean overlap between the uncorrected 

and the corrected predictions (i.e., the absolute effect of correction), and (2) the overlap between every pair 

of model replicates (between each pseudo-absence and cross validation runs, individually for each modelling

technique, i.e., model stochasticity). We computed the ROI as follows: 

ROI=
D̄0− D̄ ( px , py )

D̄ 0

Where D̄0 is the mean overlap between model runs of the corrected group and D̄ ( px , p y) is the mean 

overlap between runs of the uncorrected and corrected models. A value close to 0 represents negligible effect 



of correction (i.e., the effect of sample bias correction is of same magnitude than model stochasticity). A 

value close to 1 represents a week effect of correction and strong model stochasticity. A negative value 

suggests that the correction effect is of lower magnitude than the model stochasticity and hence, irrelevant. 

We assumed that the correction affected our predictions if the overlaps between uncorrected and corrected 

groups were smaller than the overlaps between runs (i.e., ROI > 0; Dubos et al. 2021b). 

We selected environmental predictors using a statistical approach, incorporating uncorrelated variables for 

which we had hypotheses of causality in the establishment or spread of the species. For each climate data 

source and species individually, we assessed the relative importance of each variable kept with 30 

permutation per modelling technique (total = 120 per variable, data source, and species). The variables 

included in the final models were those with the highest relative importance. These were selected using the 

elbow criterion at the upper hinge of variable importance (i.e., the 25% best performing models per variable),

setting a maximum of nine for P. grandis and five variables selected for P. latiauda following the ‘number of

observations m/10 predictors’ rule-of-thumb proposed by Harrell et al. (1996) (see also Guisan and 

Zimmermann 2000). In total, we computed 400 models per species (4 modelling techniques × 5 pseudo-

absence runs × 5 cross-validation runs × 2 modalities of sample bias correction × 2 climate data source) for 

the current distribution, and 2400 projections using future climate data (400 models × 3 GCMs × 2 SSPs).

Model evaluation

Spatial partitioning is generally recommended to reduce spatial autocorrelation between training and testing 

data (i.e., block cross-validation; Valavi et al. 2019). In our case, occurrence data were highly aggregated, 

which results in strong unbalances between blocks. Therefore, we randomly partitioned the data, with 80% 

of the data being used for model calibration (training) and 20% for model evaluation (testing). This process 

was repeated five times (cross-validation runs) for each species, pseudo-absence dataset, correction modality,

and climate data source. We assessed model performance using the Boyce index (Hirzel et al. 2006), 

assumed to be the best evaluation metric for pseudo-absence data (Leroy et al. 2018). A Boyce index value of

1 suggests that models predicted the presence points well, while a value of 0 means that model performance 

was not better than random. For ensemble models (i.e., the mean predictions across modelling techniques), 



pseudo-absence runs, and cross-validation runs for highly performing models, we discarded models for 

which the Boyce index was below 0.5. 

Quantifying the level of agreement in current invasion risks between climate data

Treating each species and sample bias correction modality separately, we compared the predicted current 

invasion risks obtained from CHELSA and Worldclim data. Firstly, we summed the suitability scores (total 

value of all pixels) of each ensemble model obtained and computed the absolute difference between 

CHELSA- and Worldclim-based predictions. This approach is the equivalent of the Species Range Change 

method (SRC; Buisson et al. 2010), except that we compared two projections of current distributions instead 

of two projections from different periods. The SRC indicates the overall level of agreement between two 

projections across the whole predicted area. A high SRC suggests a strong effect of the climate data source, 

either in terms of overall suitability scores or surface of suitable environment. We express the results as a 

percent absolute difference as follows:

|∑ PCHELSA j−∑ PWorldclim j|
∑ PCHELSA j

×100

where PCHELSA and PWorldclim are the suitability score of pixel j for CHELSA and Worldclim projections, 

respectively.

Secondly, we used an approach that takes into account spatial information, i.e., spatial overlap (Muscatello et

al. 2021; Petford and Alexander 2021; Dubos et al., 2022a). We computed the Schoener’s D overlap between 

projections of current invasion risk between predictions based on the two climate datasets considered. A 

value of 1 indicates a perfect spatial match between the two projections produced (i.e., no effect of climate 

data source) and a value of 0 represents a perfect mismatch. We computed the Schoener’s D overlap between

CHELSA and Worldclim projections using the ENMTools R package (Warren et al. 2010). Schoener’s D was

computed as follows:

D( px , p y)=1−
1
2∑i

|pxi
−p yi

|



where pxi and pyi are the normalised suitability scores for uncorrected x and corrected y prediction in grid cell 

i, for each species, cross-validation run, and pseudo-absence run individually.

We quantified the uncertainty in SRC and Schoener’s D related to the climate scenarios, GCMs, and climate 

data source. For SRC (difference in summed scores), we quantified the proportion of deviance explained by 

climate data modalities using linear models (LM, assuming Gaussian errors), with SRC as the response 

variables, and the aforementioned sources of uncertainty as explanatory variables, following Baker et al. 

(2016). We then assessed the proportion of deviance explained by each source of uncertainty f as follows:

Pf =
Df − D 0

D1

where, Pf = proportion of deviance explained by factor f, D1 = deviance of full model, Df = deviance of full 

model minus factor f, and D0 = deviance of null model. 

 We repeated this analysis for the Schoener’s D overlap using beta-regression GLM instead of LM, since 

overlap measures range continuously between 0 and 1 (glmmTMB R package; Brooks et al. 2019).

Identifing priorities for surveillance

To identify areas at highest overall risk of invasion, we ranked countries and islands according to the 

invasion risk quantified for each species in the previous steps. We used border data obtained from the Global 

ADMinistrative area (GADM v4.0.4.; https://gadm.org/data.html) to associate the predicted invasion risks 

with the corresponding country, island, or archipelago (all territories with an ISO country code, e.g., 

Madagascar, Reunion Island, Comoros). We then computed the mean invasion risk per territory. To do so, we

extracted the predicted values of our ensemble models and averaged them across all pixels of the territory. 

This approach may downplay the risks in large countries with only small regions at risk, but is useful for our 

study species which are mostly found in small islands. Since we had no a priori on which climate data source

is best for ecological modelling, we based the ranking on the mean value between predictions obtained 

between CHELSA and Worldclim. To account for uncertainty, we penalised the mean prediction by 

subtracting its standard deviation (mean – SD), following the approach developed by Kujala et al. 

https://gadm.org/data.html


(2013) applied to single species (Dubos et al. 2022a). This enabled us to prioritise areas where the invasion 

risk is most-consistently identified as high across climate data sources and model replicates. For comparison,

we also provide the rankings obtained from both individual climate data sources (tables available in 

supporting information).

Projected effect of future climate change

We projected the predicted values of our models on future climate data. For each species, climate data, 

GCM, and scenario individually, we quantified the difference between current and future predicted 

distributions with the two aforementioned complementary approaches, i.e., difference in total (unpenalised) 

suitability scores and spatial overlap (Dubos et al. 2022a). We computed SRC as the difference between the 

summed suitability scores of future projections and current distribution and show the proportion of 

increase/decrease relative to current suitability scores, following Buisson et al. (2010) and Baker et al. 

(2016). Secondly, we quantified spatial suitability change using the Schoener’s D overlap to account for 

spatial information (for instance, allowing us to identify distributional shifts even when the total suitability 

does not change). We verified that models were well-informed for predictions on novel (future) data using 

clamping masks and examining the shape of predictor responses.

Results

Species distribution models

We selected six or seven variables for P. grandis depending on climate data source and five for P. laticauda 

(Table 1; Fig. S1–S8). The current distribution of both species was best explained by socio-economic 

variables ‘distance to ports’ and/or ‘distance to airports’ (Table 1) and climatic variables related to 

temperature variability (diurnal range bio2 and temperature seasonality bio4) or minimum temperature 

(bio6). Precipitation of warmest quarter (bio18) was also important for P. grandis. For this species, we 

discarded ‘distance to roads’ because this predictor produced spurious results, which did not correspond to 

our biological hypothesis (i.e., increasing invasion risk after 100 km distance) and would reduce the 



transferability of our models. Both species were present in the proximity of ports (approximately within 

250km) and airports (approx. within 100km), in areas with low temperature variability, and with high 

minimum temperatures (> 10°C on average for coldest month) and in the case of P. grandis, avoiding dry 

regions (summer precipitation > 250mm; Fig. S3–S4, S7–S8).

Models generally did a good job of predicting known presences (most Boyce indices > 0.5), with higher 

Boyce indices for Worldclim-based predictions and corrected models compared to CHELSA-based and 

uncorrected models, respectively (Table 2; Fig. S9–S10). The effect of sampling bias correction was more 

important than model stochasticity (ROI = 0.07 with CHELSA, ROI = 0.09 with Worldclim for both 

species). We discarded 5 to 25 poorly performing models out of 100 per modality (species, climate data 

source, and sample bias correction; Table 2) 

Table 1 Selected environmental variables for the distribution modelling of two invasive Phelsuma 

species. Bio2: Temperature diurnal range; Bio4: Temperature seasonality; Bio5: maximal summer 

temperature; Bio6: minimal winter temperature; Bio14: precipitation of driest month; Bio18: 

summer precipitation.

Climate data P. grandis P. laticauda

CHELSA

Bio2, Bio4, Bio5, Bio6, Bio14, 
Distance to airports, Distance to
ports

Distance to airports, 
Bio4, Bio5, Bio6, Bio14 

Worldclim

Bio2, Bio4, Bio6, Bio18, 
Distance to airports, Distance to
ports

Distance to airports, 
Bio4, Bio5, Bio6, Bio14 

Table 2 Model performance of the distribution models for two invasive Phelsuma species, inferred from 

mean Boyce indices. We show the number of poorly performing models (Boyce < 0.5) which were removed 

from the ensemble models (out of 100 models per modality).

P. grandis P. laticauda

Source Sample bias Mean Boyce
n models 
removed Mean Boyce

n models 
removed

CHELSA Uncorrected 0.46 25 0.58 20



Corrected 0.73 5 0.70 7
Worldclim Uncorrected 0.60 18 0.68 12

Corrected 0.71 8 0.68 12

Current invasion risks

We identified important invasion risks in multiple regions throughout the world, mostly in tropical islands 

(Fig. 1, 2). In both species, we found the highest invasion risks in islands of the Indian Ocean (e.g., Comoros,

Mayotte), Pacific Ocean (e.g., Niue, New Caledonia), the Caribbean region (especially in the Greater 

Antilles and the Bahamas), both coasts of central Africa (Angola, Congo, Tanzania, Mozambique), and the 

Indo-Pacific region (Philippines, Vietnam, New Guinea). Suitable conditions are also met in Cape Verde and 

the coast of Brazil for both species. We found different invasion risks between both species in the Lesser 

Antilles, Vanuatu, and the Hawaiian archipelago, with greater invasion risks for P. laticauda in these regions 

(Fig. 3).

Projections of current invasion risks differed locally when calibrated using the different climate sources (see 

example of the Caribbean in Fig. 3; individual ensemble models are available in supporting information, Fig.

S11–S18). We found notable differences between both projections in summed suitability scores and spatial 

overlap (Table 3). Climate data source affected the ranking of invasion risk per territory, with sometimes 

dramatic differences (e.g., 36 rank difference for Saint Helena, Ascension, and Tristan da Cunha for P. 

grandis; 30 rank difference for Saint Martin for P. laticauda; Table S1, S2).



Fig. 1 Current consensus global invasion risks for Phelsuma grandis. Consensus invasion risk was obtained 

from mean predictions between all simulations (including models based on CHELSA and Worldclim climate 

data), subtracting the standard deviation to account for uncertainty. Closed black circles represent the 

presence points. Climate data source-specific maps are available in supporting information (Fig. S11–S14).
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Fig. 2 Current consensus global invasion risks for Phelsuma laticauda. Consensus invasion risk was 

obtained from mean predictions between all simulations (including models based on CHELSA and 

Worldclim climate data), subtracting the standard deviation to account for uncertainty. Closed black circles 

represent the presence points. Climate data source-specific maps are available in supporting information 

(Fig. S15–S18).
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Fig. 3 Predicted invasion risks of Phelsuma grandis (top) and Phelsuma laticauda (bottom) based on two 

sources of climate data (left: CHELSA; right: Worldclim) in the Caribbean region. Predicted values are 

averaged across model replicates (n = 100 per species and climate data source) and are penalised by 

uncertainty (standard variation across replicates). Red represents high invasion risk with high certainty, blue 

represents moderate invasion risk and grey represents areas where uncertainty was higher than invasion risks.

Table 3 Degree of agreement between current invasion risks assessed from CHELSA and Worldclim climate 

data. We computed the absolute difference between the summed suitability scores (expressed as percentage), 

and Schoener’s D spatial overlap (expressed as spatial difference: 1-D). A higher value suggests a lower 

agreement.

Difference in 
scores (%)

1-Schoener’s 
D overlap 
(%)

P. grandis 13.9 17.5
P. laticauda 2.8 12.0



Future invasion risks

We predict a decrease in invasion risk by 2070 in most cases (Fig. 4; S19–22). We found important 

differences between projections based on different climate data, with higher SRC for Worldclim-based 

projections overall (Fig. 4). For P. grandis, we predict a decrease in total invasion risk in all cases, ranging 

between 8.6 and 16.1 % (total scores), and a spatial change ranging between 9.9 and 19.4 % (1-Schoener’s D

overlap) depending on the scenario and the climate data. For P. laticauda, the effect of climate change 

differed between climate data sources, ranging between -4.7 % (decline) and +18.8 % (increase) in overall 

invasion risk, and a spatial change ranging between 11.7 and 20.8 %. Clamping masks indicated novel 

conditions for one variable throughout the native and invaded range, for Worldclim only (Fig. S23, S24). 

These novel conditions seem to be mostly driven by maximal temperatures (Bio5; Fig. S25). Given the shape

of the relationships between this variable and suitability (Fig. S3, S7, S8), there is little risk of uncertain 

predictions due to extrapolation.

In most cases, the source of climate data was the most important driver of uncertainty in future invasion risk 

projections (Fig. 5). In terms of total scores (SRC), the source of climate data explained as much uncertainty 

as the scenario for P. laticauda. Otherwise, climate data source was by far the largest driver of uncertainty in 

terms of spatial overlap for both species.



Fig. 4 Effect of climate data source on Species Range Change (SRC, overall difference between current and 

future suitability, here expressed as a proportion relative to current suitability) and Schoener’s D overlap 

(percentage of common spatial information between current and future projections) for the invasive P. 

grandis and P. laticauda. Models were corrected for sample bias. Indices were computed individually for 

each climate data source, scenario (SSP) and Global Circulation models (GCMs, represented by the black 

points). Boxes represent the 25th and 75th percentile and the bars represent the median.

Fig. 5 Proportion of deviance explained by climate data modalities (Scenario, Global Circulation Model and 

climate data source) in climate change effect (Overlap and Suitability scores) on (a) Phelsuma grandis and 



(b) Phelsuma laticauda. Overlap was computed with Schoener’s D between current and future projections; 

Suitability scores are the difference in total scores between current and future projections.

Discussion

We modelled the current and future distribution of two invasive alien reptile species using a recently 

advocated approach, accounting for socio-economic factors and a wide panel of climate data. We identified 

several areas at high risk of invasion, findings that were robust to the choice of climate data. We propose that

these areas be considered priority areas for surveillance efforts and monitoring, but areas identified at risk by

single climate data must be also considered. We found important differences relating to the source of climate 

data. Overall, climate change will reduce invasion risks for P. grandis and slightly increase for P. laticauda.

Drivers of spread and establishment

The spread of both species is driven by maritime and/or aerial transportation. The importance of proximity to

ports and airports may be caused by the insularity of our study species (ports and airports are present in most 

islands). However, with our pseudo-absence sampling strategy (being more concentrated around presence 

points), the detection of this effect of these variables suggests that species are more present near ports and 

airports than random. Both P. grandis and P. laticauda are commonly found on anthropogenic structures 

including hotels and plant nurseries (pers. obs., Ineich, Choeur, Crottini; Gehring et al. 2010), as well as 

ornamental plants and plantation crops such as bananas and coconuts (Gill et al. 2001; D’Cruze et al. 2009; 

Porcel et al. 2021). Hence, individuals may be regularly carried via containers and accidentally introduced 

into shipments (Fritts 1987; Dubos et al. 2014; Khoury et al. 2021). Introductions were also caused by 

intentional or accidental release from captivity in regions where they are imported for the pet trade (e.g., in 

Florida; Andreone et al. 2012; Fieldsend and Krysko 2019).

Both species were able to establish in areas with a low variability in temperature, both at the daily and annual

scale. Their native range is located at the north of Madagascar, close to the shores, where the climate is 

mainly equatorial (Peel et al. 2007), with little annual and daily thermal variation. Their affinity with low 



thermal variability may be related to the strong effects of temperature fluctuation on activity and 

reproduction (Georges 2013; Noble et al. 2018. Choeur et al. 2022). Our study species are active throughout 

the year, which may explain their affinity with low temperature seasonality. Their year-round activity implies

a need for continuous food availability. A low seasonality may serve to maintain fruit/nectar production and 

insect activity, all sources of food for both P. grandis and P. laticauda (Dervin et al. 2013; Dubos et al. 2020; 

Hoarau et al. 2021). The link with low variability at the daily and annual scale may be due to temperature-

dependant sex determination, a common feature in reptiles. Both, P. grandis and P. laticauda lay their eggs 

on the surface of the substrate, exposing them to daily fluctuation in temperature. In our case, a relatively 

constant temperature during the day and throughout the year may help balancing the sex-ratio and maintain 

population dynamics (Georges 2013).

We found that our study species were not able to establish in regions with low minimal temperature 

(< 10°C), presumably because the cold reduces the activity of ectotherms and hence, their survivability. This 

corresponds to the lower bound of thermal tolerance commonly found in tropical reptiles (Sunday et al. 

2011). Minimal temperature may also influence incubation duration and sex determination (Georges 2013; 

Roesch et al. 2021). An extended incubation period may increase the probability of hatching failure and egg 

predation. Lower nesting success and unbalanced sex ratio could disrupt population dynamics and prevent 

persistence in colder regions. The establishment of both species in Florida may be surprising given the low 

temperatures occasionally occurring during winter compared to northern Madagascar. Recent assessments of 

the climatic niche of P. grandis revealed an important dissimilarity between the climate of its native range 

and the invaded areas of Florida (Fieldsend et al. 2021a). This suggests a high potential for either thermal 

plasticity or adaptation to new environments (Card et al. 2018; Lapwong et al. 2021), or underlies that the 

species’ native distribution is strongly limited by biotic interactions (predation and competition; e.g., 

competition with P. kochi; Fieldsend et al. 2021a). This is consistent with findings on Hemidactylus frenatus 

and Anolis sagrei which were able to spread in areas colder than their native range (Angetter et al. 2011; 

Lapwong et al. 2021). Invasive success is often facilitated by high genetic diversity (Angetter et al. 2011), 

which may be enhanced by multiple native-range sources as it is the case for P. grandis in Florida (Fieldsend



et al. 2021c). Further research may assess the level of genetic diversity of both species throughout their 

invaded range to better understand the species ability to persist in new environments.

Both gecko species did not establish in regions with arid seasons, presumably because low precipitation 

limits primary and secondary production and therefore food availability (Dubos et al. 2019). Prolonged 

drought periods are associated with body condition declines, increased mortality, and local extirpation in 

reptiles (Maxwell et al. 2019), conditions which may prevent the establishment of our study species. 

 

Current invasion risks

Areas predicted to be at high risk of invasion were consistent between CHELSA- and Worldclim-based 

projections, but with locally important differences. These were mostly located in islands of the Caribbean, 

the islands of the Western Indian Ocean, South-East Asia, and Eastern Oceania. The potential establishment 

of invasive alien Phelsuma species in these areas may expose the local fauna to new competitors or 

predators. Both P. grandis and P. laticauda are highly flexible in terms of habitat use (D’Cruze and Kumar 

2011; Dubos et al. 2014), which raises concerns for native synanthropic species as well as for species 

dwelling in natural forested habitats. Species at risk include native Phelsuma species (as suggested by the 

reduction of the P. lineata population in the eastern seaport town of Toamasina), or any other diurnal arboreal

reptiles with similar habitat use (e.g., perch height, substrate; Augros et al. 2018; Wright et al. 2021), such as 

the Critically Endangered brown red-bellied anole Anolis koopmani from Haiti, the Endangered black-

throated stout anole Anolis armouri from Haiti and the Dominican Republic, or the Critically Endangered 

Finca Ceres anole Anolis juangundlachi from Cuba. Given the broad range of habitat types occupied by our 

study species, conservation concern should also be given to all smaller species for which distribution 

matches the areas at risk (e.g., Bavaya spp. or Eurodactylodes spp. from New Caledonia). The Critically 

Endangered 'Eua Forest Gecko Lepidodactylus euaensis from Tonga is of particular concern, given its 

conservation status and the very high invasion risk identified for this island. Both P. grandis and P. laticauda 

are diurnal, but can also be active at night due to artificial light (Dubos et al. 2020; Baxter-Gilbert et al. 

2021), highlighting the risk of competition with nocturnal species living near anthropogenic structures such 

as the Critically Endangered Barbados leaf-toed gecko Phyllodactylus pulcher (Williams et al. 2016). The 



potential impact of invasive Phelsuma species on native fauna may be mitigated by potential plasticity, 

which could promote microclimatic and/or habitat partitioning (Noble et al. 2011; Porcel et al. 2021; Ryan 

and Gunderson 2021). Future studies should investigate the potential for spatial, temporal, or environmental 

shift for P. grandis, P. laticauda, and their sympatric species to better understand which species are at greater

risk.

The choice of climate data source

We identified local differences between predicted invasion risks using different climate data sources. 

Differences may be driven by the selection of different variables (e.g., models calibrated with CHELSA data 

selected ‘Daily temperature range’ but not with Worldclim for P. grandis); however, a recent study showed 

that differences can persist even when the same predictors are selected (Dubos et al. 2022a; see also 

Jiménez-Valverde et al. 2021). The mismatch may be better explained by the methods used to compute the 

climatologies. Worldclim is built from interpolated data with elevation and distance to the coast as predictors

in addition to satellite data (Fick and Hijmans 2017). CHELSA used statistical downscaling for temperature, 

and precipitation estimations incorporate orographic factors (i.e., wind fields, valley exposition, boundary 

layer height; Karger et al. 2017). Such differences may be exacerbated in areas with strong topographic 

heterogeneity such as Oceanic Islands (e.g., Lannuzel et al. 2021). The difference in temporal coverage may 

represent another source of mismatch, with Worldclim representing the conditions of the 1960–1990 period 

while CHELSA was computed for 1979–2013. Since we have no a priori knowledge of which climate data 

source is most useful for predicting invasion risks, we suggest that studies aiming to predict current and 

future invasion risks should consider multiple climate data sources and quantify the uncertainty related to 

these.

Future invasion risks

Overall (i.e. when considering SRC), we predict that future climate change will reduce invasion risk for P. 

grandis according to both Worldclim and CHELSA, as commonly found for invasive reptiles (Bellard et al. 



2013; but see Piquet et al. 2021). Note that in absence of biosecurity measures, a high probability of invasion

might persist despite climate effects. On the other hand, invasion risk will increase for P. laticauda according

to Worldclim but will not change according to CHELSA. For both species, Worldclim-based projections 

tended to predict higher risks than CHELSA-based projections. The spatial mismatch (overlap) was also 

greater with Worldclim. The differences between future projections based on CHELSA and Worldclim were 

of similar, or greater extent to that between the two extreme scenarios (SSP126 and SSP585; Fig. 4). This 

suggests that the inclusion of multiple climate datasets is of similar importance to that of emission scenarios.

Reptiles may shift their phenology in response to environmental change (Kearney et al. 2009), and this has

already been observed in Phelsuma spp. (Dubos et al. 2020; Baxter-Gilbert et al. 2021). Behavioural 

response to climate change—and therefore phenological shifts—may interact with geographic response 

(Kearney et al. 2010). Further research is needed to fully understand the response of invasive reptiles to 

climate change and improve proactive actions.

Concluding remarks

The source of climate data was not accounted for in SDM studies until recently (Baker et al. 2016; Morales-

Barbero and Vega-Álvarez 2019; Datta et al. 2020; Ocon 2020; Dubos et al. 2022b, a; Stewart et al. 2022). 

To the best of our knowledge, this study is the first to account for multiple sources of climate data in invasion

risk assessments. We highlighted spatial differences in the quantification of environmental suitability, 

potentially leading to the omission of at-risk regions. Further studies should assess the sensitivity of invasion

risks to climate data at broader taxonomic scales, and across different landscapes (especially smaller oceanic 

islands vs. continents).

The economic cost of IAS is low when detected early, but rises rapidly if not detected because of the damage

caused and increased management efforts (Renault et al. 2021). Reptiles represent the second worst invasive 

vertebrate class in terms of annual economic cost worldwide (Diagne et al. 2021). Therefore, it seems largely

economically viable to promote efficient biosecurity measures in order to ensure early detections (Cuthbert 

et al. 2022) and develop public awareness to reduce intentional release (Perry and Farmer 2011). Given the 



ecological and economic stakes, surveillance programmes should be considered in areas identified as at high 

risk of invasion based on single climate data. However, surveillance efforts should be prioritised where high 

invasion risks are identified with high certainty, i.e., based on predictions accounting for multiple climate 

data sources.
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