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Simple Summary: Husbandry practices in aquaculture production may lead to stress processes and
oxidative stress damages on fish tissues. Functional ingredients have profiled as suitable candidates
for reinforcing the fish antioxidant response and stress tolerance. In addition, selective breeding
strategies have also demonstrated a correlation between fish growth and stress reactiveness, which
may be a key component in species domestication. The present study evaluates the potential of three
different functional additives for gill endogenous antioxidant capacity and stress relief in a growth
selected genotype of European sea bass (Dicentrarchus labrax) juveniles fed low-FM/FO diets. For
this purpose, after 72 days of a feeding trial, all fish were subjected to an oxidative stress challenge
consisting of a 1 h bath exposure to hydrogen peroxide (H2O2) at a total concentration of 50 ppm.
The functional additives induced a better recovery from the stress process, with a higher reduction
in fish circulating plasma cortisol 24 h after oxidative stress. In addition, the functional additives
induced higher catalase gill gene expression in response to the oxidative stress insult.

Abstract: Functional ingredients have profiled as suitable candidates for reinforcing the fish antioxi-
dant response and stress tolerance. In addition, selective breeding strategies have also demonstrated
a correlation between fish growth performance and susceptibility to stressful culture conditions as a
key component in species domestication processes. The aim of the present study is to evaluate the
ability of a selected high-growth genotype of 300 days post-hatch European sea bass (Dicentrarchus
labrax) juveniles to use different functional additives as endogenous antioxidant capacity and stress re-
sistance boosters when supplemented in low fish meal (FM) and fish oil (FO) diets. Three isoenergetic
and isonitrogenous diets (10% FM/6% FO) were supplemented with 200 ppm of a blend of garlic
and Labiatae plant oils (PHYTO0.02), 1000 ppm of a mixture of citrus flavonoids and Asteraceae and
Labiatae plant essential oils (PHYTO0.1) or 5000 ppm of galactomannan-oligosaccharides (GMOS0.5).
A reference diet was void of supplementation. The fish were fed the experimental diets for 72 days
and subjected to a H2O2 exposure oxidative stress challenge. The fish stress response was evaluated
through measuring the circulating plasma cortisol levels and the fish gill antioxidant response by the
relative gene expression analysis of nfKβ2, il-1b, hif-1a, nd5, cyb, cox, sod, cat, gpx, tnf-1α and caspase 9.
After the oxidative stress challenge, the genotype origin determined the capacity of the recovery of
basal cortisol levels after an acute stress response, presenting GS fish with a better pattern of recovery.
All functional diets induced a significant upregulation of cat gill gene expression levels compared to
fish fed the control diet, regardless of the fish genotype. Altogether, suggesting an increased capacity
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of the growth selected European sea bass genotype to cope with the potential negative side-effects
associated to an H2O2 bath exposure.

Keywords: phytogenics; galactomannan-oligosaccharides; selective breeding; European sea bass
(Dicentrarchus labrax); oxidative stress; stress response

1. Introduction

The use of biocide compounds is an extended practice in aquaculture production in
order to eliminate microorganisms and other pathogenic agents in aquaculture facilities [1,2].
Among them, hydrogen peroxide (H2O2) is a powerful oxidizer compound used against
fish external parasites and bacteria [3–5] with proven effectiveness in treating diseases in
European sea bass (Dicentrarchus labrax) [6,7]. However, this compound is an important source
of reactive oxygen species (ROS), which may induce severe tissue damages, especially on
those directly exposed to the surrounding environment [8,9].

Fish gills act as a physical and biochemical semipermeable barrier with an important
role in fish respiratory processes, hydromineral balance and immune responses [10,11].
In response to a stress process, such as those derived from biocides or other pollutants
exposure, cortisol will target gill tissue, triggering mitochondrial rich cells (MRCs) oxida-
tive phosphorylation (OXPHOS) in order to supply ATP to the Na+/K+ ATPase pumps
involved in fish hydromineral and osmotic balance reestablishment [12,13]. During OX-
PHOS, some electrons may leak the electronic transport chain (ETC) prior to being reduced
by the cytochrome c oxidase, reacting in the mitochondrial intermembrane with oxygen
(O2) to form superoxide anions (O2−) [14,15]. Then, superoxide- will be transformed by
the superoxide dismutase enzyme (SOD) into H2O2, which will be finally detoxified by
catalase (CAT) and glutathione peroxidase (GPX) into water and O2 [16]. Nevertheless, in a
high-stress-susceptible fish species such as the European sea bass [17,18], the cumulative
effects of both internal and external ROS increased concentrations may overwhelm fish
antioxidant defense, leading to oxidative stress processes including cellular membrane
lipid peroxidation and protein and DNA destruction [14,19].

Supplementing fish diets with phytogenic feed additives (PFAs) has shown poten-
tial in reinforcing the fish antioxidant status [20,21]. PFAs are plant-derived bioactive
compounds with elevated contents of flavonoids, tannins and mucilages with high an-
tioxidant properties [22–24]. Additionally, supplementing fish diets with PFAS has been
reported to be capable of attenuating different fish species’ stress responses [25–29]. Plant-
derived prebiotic compounds are another variety of functional additives with a potential
reinforcing fish antioxidant defense [22,29]. Prebiotics have the ability to benefit the host
health by selectively modulating the fish microbiome composition [30]. In previous studies,
the galactomannan-oligosaccharides (GMOS) protected European sea bass juveniles’ gills
against the damages derived from oxidative stress [26,31,32]. Even though a wide variety
of studies report the benefits of functional additives supplementation, the mechanisms by
which these compounds may favor the fish health status and welfare are still not clearly
defined. Several factors can define the functional additives’ effects on fish performance,
such as the different bioactive compounds’ properties, dietary inclusion levels, dietary
production methodologies and the fish’s capacity to harness these products [29,31,33–35].

In this scenario, selective breeding has been recognized as a permanent and cumulative
solution for improving fish feed efficiency and feed utilization [36–38], resulting in increased
growth performance and better health and welfare [39]. Fish genotype selection may also
contribute to increased growth performance, even coping with the nutritional variations
associated with low fish meal (FM)- and fish oil (FO)-based diets [40]. Furthermore, one of
the main effects of selective breeding is the fish species domestication processes by which
the captive species becomes adapted to the rearing conditions [36], reducing the negative
side effects associated with cultured conditions’ stress processes [41].
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Accordingly, the aim of the present study was to determine the gill antioxidant capacity
and stress tolerance against an H2O2 exposure oxidative stress challenge in a growth
selected European sea bass genotype fed low FM/FO-based diets supplemented with three
different plant-derived functional additives, PHYTO0.02, PHYTO0.01 or GMOS0.5.

2. Materials and Methods
2.1. Experimental Diets

Four low FM/FO (10%/6%) diets with isoenergetic and isonitrogenous formulations
were produced by Biomar (Brande, Denmark), meeting the nutritional requirements for
European sea bass juveniles [42,43]. A reference diet void of supplementation (Control),
a diet supplemented with 200 ppm of a blend of garlic and Labiatae plant oils (87.5 mg
terpenes/kg diet; PHYTO0.02), a diet supplemented with 1000 ppm of a mixture of cit-
rus flavonoids and Asteraceae and Labiatae plant essential oils (57 mg terpenes/kg diet;
PHYTO0.1) and a diet supplemented with 5000 ppm of galactomannan-oligosaccharides
(GMOS0.5). The functional ingredients were supplemented according to the producer’s
recommendations (Delacon, Engerwitzdorf, Austria). The PHYTO0.1 and GMOS0.05 addi-
tives were included in the mix during the pre-extrusion process in order to ensure product
stability. The PHYTO0.02 additive was homogenized with the dietary oils and included by
vacuum coating during the post-extrusion process (Table 1).

Table 1. Main ingredients and analyzed proximal composition of the experimental diets.

Ingredients
Diet (%)

Control PHYTO0.02 PHYTO0.1 GMOS0.5

Fish meal 1 9.6 9.6 9.6 9.6
Soya protein concentrate 18.2 18.2 18.2 18.2
Soya meal 11.6 11.6 11.6 11.6
Corn gluten meal 24.1 24.1 24.1 24.1
Wheat 8.585 8.565 8.485 8.085
Wheat gluten 1.9 1.9 1.9 1.9
Guar meal 7.7 7.7 7.7 7.7
Rapeseed extracted 3.0 3.0 3.0 3.0
Fish oil 2 6.5 6.5 6.5 6.5
Rapeseed oil 3 5.2 5.2 5.2 5.2
Vitamin and mineral premix 4 3.6 3.6 3.6 3.6
Antioxidant 5 0.015 0.015 0.015 0.015
Phytogenic (garlic and Labiatae plant essential oils) 6 0 0.02 0 0
Phytogenic (citrus fruits and Asteraceae and Labiatae
plant essential oils) 7 0 0 0.1 0

Galactomannan-oligosaccharides (GMOS) 8 0 0 0 0.5
Proximate composition (% of dry matter)
Crude lipids 19.91 20.44 20.44 20.47
Crude protein 49.30 49.27 49.27 49.76
Moisture 5.10 5.01 5.01 5.06
Ash 7.02 6.41 6.41 6.49

Dietary ingredient composition and proximal composition expressed as % of dry weight. Control (Control diet),
PHYTO0.02 (PHYTO diet, 200 ppm mixture of garlic and Labiatae plant essential oils), PHYTO0.1 (PHYTO diet,
1000 ppm mixture of citrus fruits and Asteraceae and Labiatae plant essential oils), GMOS (GMOS diet, 5000 ppm
galactomannan-oligosaccharides). 1 South American, Superprime 68%. 2 South American fish oil. 3 DLG AS,
Denmark. 4 Vilomix, Denmark. 5 BAROX BECP, BHT. 6 Delacon Biotechnik GmbH, Austria. 7 Delacon Biotechnik
GmbH, Austria. 8 Delacon Biotechnik GmbH, Austria.

2.2. Population Design and Fish Production

The experimental design contemplated two European sea bass genotypes, a high
growth selected genotype (GS) and a wild type genotype (WT), with the same scheme of
selection and details previously described in [40,44].

Briefly, both genotypes were produced in the facilities of Palavas-les-flot (France) by
mating 7 dams selected for growth from the MARBEC-IFREMER broodstock with 33 sires
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(genetically selected, GS) derived from the breeding nucleus of the EMG Ecloserie Marine
de Gravelines (Gravelines, France) breeding company or 32 wild sires captured in the gulf
of Lion (Wild type genotype, WT). Dams’ eggs were collected by stripping and pooled
in equal representation between dams, and they were transferred into 65 tubes (one per
sire). The two resulting genotypes were incubated separately at 14 ◦C until hatching. One-
day-old hatched larvae were pooled by the equi-representation of each dam and shipped
to the University of Las Palmas de Gran Canaria (ULPGC, Las Palmas de Gran Canaria,
Spain) by airplane into oxygen-saturated water transport bags that were kept in insulated
boxes. The larvae were grown in separated tanks following the standardized methodology
of the Research Group in Aquaculture [45,46] at the ULPGC facilities. Progenies from
both genotypes were kept at similar conditions during the preweaning, weaning and early
juvenile growing phases.

2.3. Experimental Conditions

At 300 days post-hatching (dph), the fish genotype induced significant differences in
fish growth. A total of 180 GS fish with a mean weight of 104.9 ± 3.1 g were randomly
pooled and distributed in four 500 L tanks (30 fish/tank, 1 tank per dietary treatment).
On the other hand, 360 WT fish with a mean weight of 58 ± 1.6 g were randomly pooled
and distributed in twelve 500 L tanks (45 fish/tank, 3 tanks per dietary treatment). The
experimental tanks presented similar initial culture densities. The tanks were supplied
with filtered sea water (18.8–20 ◦C and 6.1–6.6 ppm dissolved oxygen) in a flow-through
system under a natural photoperiod (12L:12D). The experimental diets were fed 3 times a
day, 6 days a week until apparent satiation from 12 March to 29 May 2020 (72 days). The
feed intake was monitored daily, and the growth performance and feed utilization were
calculated at the end of the feeding experience.

At the end of the feeding experience, six fish per dietary treatment and genotype level
(two fish/WT tank and six fish/GS tank) were used to obtain blood plasma samples for
circulating plasma cortisol analysis and gill samples for relative gene expression analysis.
This sampling point was considered as the basal point, t = 0 h (pre-stress challenge), in the
statistical analysis.

2.4. Oxidative Stress Challenge

After 72 days of a feeding trial, experimental fish were subjected to an oxidative
stress challenge consisting of a 1 h bath exposure to hydrogen peroxide (H2O2), following
the procedure previously described by Roque and co-authors in 2010 [8]. Briefly, H2O2
treatment was applied by stopping experimental tanks’ water flow and aeration and adding
H2O2 at a nominal concentration of 50 ppm. After 1 h of exposure, the tanks’ water flow
and aeration were restored and kept at maximum renovation rate for 2 h in order to remove
all the remaining H2O2.

At 2 h and 24 h after the oxidative stress challenge, six fish per dietary treatment
and genotype level (two fish/WT tank and six fish/GS tank) were used to obtain blood
plasma samples for circulating plasma cortisol analysis and gill samples for relative gene
expression analysis.

2.5. Sampling Methodology

Prior to manipulation, the fish were anesthetized using diluted clove oil (diluted in
ethanol 100% (1:2)) (Guinama S.L; La Pobla de Vall Bona, Valencia (46185), Spain, Ref.
Mg83168) at a concentration of 0.02 mL/L.

Blood samples were obtained by a caudal sinus puncture with 1 mL syringes, stored
on an heparin-coated Eppendorf and immediately centrifuged at 3000 g for 5 min at 4 ◦C
in order to obtain plasma samples. Plasma samples were stored at −80 ◦C until plasmatic
cortisol analysis. The plasmatic cortisol concentration was determined using the assay
kit (Access Cortisol ref 33600, ©2010 Beckman Coulter, Inc.; Alcobendas, Madrid (28108),
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Spain) by an external laboratory Animal Lab (Las Palmas de Gran Canaria, Gran Canaria,
Canary Island, Spain).

Gill samples for relative gene expression were obtained after fish euthanasia by head
blow. The second and third holobranch from the fish’s left side were excised, placed in
1.5 mL Eppendorf with RNAlater and kept at 4 ◦C for 24 h. Afterwards, RNAlater was
removed, and the samples were frozen at−80 ◦C until the relative gene expression analysis.
RNAlater was prepared by dilution in 1 L deionized water of 650 g ammonium sulfate,
7.4 g sodium citrate dihydrate, 7.4 g EDTA di sodium salt and 200–500 µL concentrated
sulfuric acid, with a final pH of 5.2, obtaining 1.4 L of RNAlater.

2.6. RNA Extraction and Real-Time PCR Analysis

The gill (approx. 50 mg/sample) total mRNA (ng/µL) was extracted by employing
TRI-reagent (Sigma-Aldrich, Sant Louis, MO, USA) from the extraction kit RNeasy Minikit
from Qiagen. An iScriptTM cDNA synthesis Kit (Bio-Rad, Hercules, CA, USA) was em-
ployed to perform the reverse transcriptions to obtain cDNA in a 20 µL reaction containing
1 µL of the total mRNA at a concentration of 0.5 µg/µL.

The real-time PCR analysis was performed with an iCycler with the optical module
in a final volume of a 20 µL reaction, containing 10 µL iQTM-SYBER® Green Supermix
(Bio-Rad, Hercules, CA, USA), 5 µL of free-nuclease water, 3 µL of cDNA (1:10 dilution) and
1 µL of forward and reverse primer. The target genes were the nuclear factor kappa beta-2
(nfκβ2), interleukin 1β (il1β); hypoxia inducible factor 1α (hif-1α), NADH dehydrogenase
subunit 5 (nd5), cytochrome b (cyb), cytochrome oxidase subunit 1 (cox), mitochondrial
respiratory uncoupling protein 1 (ucp1), superoxide dismutase (sod), catalase (cat), glu-
tathione peroxidase (gpx), tumor necrosis factor 1α (tnf-1α) and caspase 9 (casp-9). The
specific primer sequences, annealing temperatures and accession numbers are presented
in Table 2. The real-time running conditions were: 95 ◦C for 1 min, followed by 40 cycles
at 95 ◦C for 10 s and an annealing temperature for 30 s (Table 2). All reactions were per-
formed in duplicate for each sample, and a blank control containing nuclease-free water
instead of cDNA in the final volume mix was included in each assay. Two constitutive
genes were tested: α-tubulin (α-tub) and the ribosomal protein L17 (rpl17). Applying the
CFX MaestroTM Software selection tool (CFX Maestro™ Software User Guide Version 1.1,
Biorad), the α-tub was selected as the most stable and amplification-efficient reference gene.
The relative gene expression levels were calculated using the 2−∆∆Ct method [47,48], using
α-tubulin as the housekeeping gene. The gene expression was calculated relative to the
transcript levels of WT fish fed the control diet at t = 0 h (pre-stress challenge).

2.7. Statistical Analyses

All the analyses were performed with R Project for Statistical Computing. Means and
standard deviations (SD) were calculated for each parameter measured.

To assess differences in fish growth and feed utilization among the genotypes, differ-
ences in the mean specific growth rate (SGR), feed conversion ratio (FCR) and individual
feed intake among the selected genotypes were tested by one-way analysis of variance
(ANOVA) and a Tukey test. Similarly, to assess differences in fish growth and feed uti-
lization among the experimental diets, differences in the mean SGR, FCR and individual
feed intake among the selected experimental diets were tested by one-way analysis of
variance (ANOVA) and a Tukey test. A three-way analysis of variance (ANOVA) and a
Tukey test were performed to assess differences in the fish stress response and gill relative
gene expression between the genotypes and experimental dietary treatments along the
different sampling points.
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Table 2. Primer sequences of the different genes analyzed and their RT-PCR conditions.

Gene Access.
Number Primer Nucleotide Sequence 5′-3′ Annealing T (◦C) Reference

nfKβ2 KM225790
Fw CTGGAGGAAACTGGCGGAGAAGC

60 [49]Rv CAGGTACAGGTGAGTCAGCGTCATC

il-1b AJ53742
Fw ATTACCCACCACCCACTGAC

60 [50]Rv TCTCTTCCACTATGCTCTCCAG

hif-1a DQ171936
Fw GACTTCAGCTGCCCTGATTC

60 [51]Rv GGCTGGTTTATAGCGCTGAG

nd5 KF857307
Fw CCCGATTTCTGTGCCCTACTA

60 [52]Rv AGGAAAGGAGTGCCTGTGA

cyb EF427553
Fw TGCCTACGCTTCCTTCGCTCGATCC

60 [53]Rv TAACGCCAACACCCCGCCCAAT

cox KF857308
Fw ATACTTCACATCCGCAACCATAA

60 [53]Rv AAGCCTCCGACTGTAAATAAGAAA

ucp1 MH138003
Fw CGATTCCAAGCCCAGACGAACCT

60 [53]Rv TGCCAGTGTAGCGACGAGCC

sod FJ860004.1
Fw CATGTTGGAGACCTGGGAGA

60 [54]Rv TGAGCATCTTGTCCGTGATGT

cat FJ860003.1
Fw TGGGACTTCTGGAGCCTGAG

60 [54]Rv GCAAACCTCGATCGCTGAAC

gpx FM013606.1
Fw AGTTCGTGCAGTTAATCCGGA

60 [54]Rv GCTTAGCTGTCAGGTCGTAAAAC

tnf-1α DQ200910.1
Fw GCCAAGCAAACAGCAGGAC

60 [52]Rv ACAGCGGATATGGACGGTG

casp-9 DQ345775
Fw GGCAGGACTCGACGAGATAG

62.7 [55]Rv CTCGCTCTGAGGAGCAAACT

α-tub (hk) AY326429.1
Fw AGGCTCATTGGCCAGATTGT

60 [31]Rv CAACATTCAGGGCTCCATCA

rpl17 AF139590
Fw GAGGACGTGGTGGTTCATCT

60 [56]Rv CTGGCTTGCCTTTCTTGACT

Fw: Forward primer sequence, Rv: Reverse primer sequence.

Prior to analysis, all data were tested for outlying values through linear regression
adjustment, defining the outside cut-offs as 1.5 times the Inter-Quantile Range (IQR) below
the first and above the third quantiles [57,58]. Before the analysis, a Kolmogorov–Smirnov
test was used to assess the quantile normality, and Levene’s test was used to assess the
homogeneity of the variance. Where there was significant variance heterogeneity, the data
were transformed by the square root or log transformation. When transformations did not
remove the heterogeneity, the analysis was performed with untransformed data with the
F-test α-value set at 0.01 [59].

3. Results
3.1. Feeding Experience

All fish grew properly along the feeding trial (72 days), presenting GS fish with
significantly (p < 0.05) higher final body weights than those of WT fish (p < 0.05). GS fish
presented significantly improved FCR values and lower individual feed intake values than
WT fish (Table 3). Within each genotype, dietary functional additives did not affect the fish
final body weight and length. No significant differences in the fish specific growth rate
were found (Table 3).
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Table 3. Growth parameters and feed utilization of European sea bass (Dicentrarchus labrax) juveniles
(at age 372 dph) after 72 days of the feeding experience.

WT Genotype GS Genotype

Diet Control PHYTO0.02 PHYTO0.1 GMOS0.5 Control PHYTO0.02 PHYTO0.1 GMOS0.5

One-way ANOVA

Diet
(Inside Each
Genotype)

IBW (g)
(300
dph)

58 ± 9.2 57.8 ± 10.2 58.6 ± 10 57.5 ± 9.4 108.7 ± 15.4 106.2 ± 17.1 102.2 ± 17 102.4 ± 15.6 ns

IL
(300
dph)

17.6 ± 1 17.6 ± 0.9 17.7 ± 1 17.6 ± 0.87 20.8 ± 1.1 20.9 ± 1.1 20.5 ± 1.2 20.6 ± 1.3 ns

FBW (g)
(372 dps) 99.4 ± 18.3 95.3 ± 18.2 103 ± 19 99.8 ± 18.1 192.8 ± 31.7 189.7 ± 34 176.1 ± 33.2 180.4 ± 30.3 ns

FL (cm)
(372
dph)

21 ± 2.1 20.8 ± 1.2 21 ± 2.1 21.1 ± 1.2 25.6 ± 1.1 25.5 ± 1.3 25.1 ± 1.3 24.8 ± 1.4 ns

One-way ANOVA

Diet Genotype
1 SGR

(%/day) 0.75 ± 0.03 0.70 ± 0.06 0.78 ± 0.04 0.76 ± 0.01 0.80 ± 0.01 0.83 ± 0.01 0.81 ± 0.01 0.80 ± 0.01 ns ns

2 FCR 1.84 a ± 0.16 1.99 a ± 0.29 1.78 a ± 0.17 1.70 a ± 0.12 1.48 b ± 0.01 1.46 b ± 0.01 1.58 b ± 0.01 1.58 b ± 0.01 ns
F = 8.335,
p-val =
0.0119

3 FI
(g feed/

100 g
BW/day)

0.48 a ± 0.02 0.48 a ± 0.02 0.47 a ± 0.02 0.46 a ± 0.01 0.27 b ± 0.00 0.28 b ± 0.00 0.27 b ± 0.00 0.29 b ± 0.00 ns

F = 364.1,
p-val =
2.03 ×
10−11

Different lowercase letters denote significant differences (p < 0.05) between genotypes in each sampling point (three-
way ANOVA: Genotype×Diet× Time; Tukey post hoc test). ns = not significant. Values expressed in the mean± SD.
Control (Control diet); PHYTO0.02 (PHYTO0.02 diet, supplemented with a 200 ppm blend of phytogenic feed
additives consisting of a mixture of garlic and Labiatae plant essential oils with 87.5 mg terpens/kg diet); PHYTO0.1
(PHYTO0.1 diet, supplemented with a 1000 ppm blend of phytogenic feed additives, consisting of a mixture of
citrus fruits and Asteraceae and Labiatae plant essential oils with 57 mg terpens/kg diet); GMOS0.5 (GMOS0.5 diet;
supplemented with 5000 ppm galactomannan-oligosaccharides); GS (high-growth selected genotype); WT (wild type
genotype); IBW (initial body weight (g)); FBW (final body weight (g) 72 days after feeding experience); FL (final
length (g) 72 days after feeding experience); SGR (specific growth rate 72 days after feeding experience). 1 SGR = [(ln
average final body weight − ln average initial body weight/no days] × 100. 2 FCR = Feed consumption (g)/weight
gain (g). 3 FI = Individual feed intake (g).

3.2. Stress Response

At the end of the feeding experience (pre-oxidative stress challenge, t = 0 h), the GS fish
presented significantly lower (p < 0.05) levels of mean basal circulating plasma cortisol than
the WT fish. The GS fish presented a mean basal concentration of 1.7± 0.51 ng/mL per fish g;
meanwhile, the WT fish presented a mean basal concentration of 3.67± 0.15 ng/ mL per fish g
(Table 4).

In response to the oxidative stress challenge, at 2 h after H2O2 exposure, all the
experimental groups presented a significant increase (p < 0.05) in circulating cortisol levels
compared to the basal levels, regardless of the genotype or the dietary treatment fed. The
H2O2 exposure increased the GS fish cortisol up to levels ×2.4 fold higher compared to the
basal levels. Meanwhile, the WT fish presented an increase in cortisol levels of ×1.7 fold
compared to their basal levels.

After 24 h of the oxidative stress challenge, all experimental groups presented a
significant reduction (p < 0.05) in plasmatic cortisol levels down to the basal levels observed
at t = 0 h pre-oxidative stress challenge, regardless of the genotype or the dietary treatment
fed. The GS fish presented a decrease in cortisol levels of ×2.2 fold compared to those
levels observed at 2 h post-oxidative stress challenge, whereas the WT fish cortisol levels
presented a decrease of ×1.7 fold compared to those levels observed at 2 h after the
oxidative stress challenge.
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Table 4. Circulating plasma cortisol level expressed in ng/mL per fish g of European sea bass
(Dicentrarchus labrax) juveniles at t = 0 h pre-oxidative stress challenge and at t = 2 h and 24 h after the
oxidative stress challenge.

WT Genotype GS Genotype

Control PHYTO0.02 PHYTO0.1 GMOS0.5 Control PHYTO0.02 PHYTO0.1 GMOS0.5

Time
0 h 3.49 a1 ± 1.10 3.77 a1 ± 0.62 3.61 a1 ± 0.92 3.83 a1 ± 1.15 0.92 b1 ± 0.23 1.96 b1 ± 0.89 1.95 b1 ± 0.21 1.97 b1 ± 0.85
2 h 7.22 a2 ± 2.95 5.80 a2 ± 1.62 5.51 a2 ± 1.29 6.20 a2 ± 1.13 3.43 b2 ± 0.53 3.43 b2 ± 0.53 4.23 b2 ± 1.43 3.81 b2 ± 0.24

24 h 3.26 a1 ± 0.31 3.54 a1 ± 1.35 3.57 a1 ± 1.73 4.10 a1 ± 1.32 2.14 b1 ± 0.41 1.61 b1 ± 0.47 1.58 b1 ± 0.13 1.79 b1 ± 0.68

Three-way ANOVA

Diet Genotype Time D × G D × T G × T D × G × T

Plasmatic
cortisol ns F = 0.41;

p-val = 2 × 10−16
F = 55.023;

p-val = 3.16 × 10−16 ns ns ns ns

Different lowercase letters denote significant differences (p < 0.05) between genotypes in each sampling point
(three-way ANOVA: Diet × Genotype × Time; Tukey post hoc test). Different numbers denote significant
differences (p < 0.05) between experimental sampling points (three-way ANOVA: Genotype × Diet × Time;
Tukey post hoc test). ns = not significant. Values expressed in mean ± SD. Control (Control diet); PHYTO0.02
(PHYTO0.02 diet, supplemented with a 200 ppm blend of phytogenic feed additives consisting of a mixture of
garlic and Labiatae plant essential oils with 87.5 mg terpens/kg diet); PHYTO0.1 (PHYTO0.1 diet, supplemented
with a 1000 ppm blend of phytogenic feed additives, consisting of a mixture of citrus fruits and Asteraceae and
Labiatae plant essential oils with 57 mg terpens/kg diet); GMOS0.5 (GMOS0.5 diet; supplemented with 5000 ppm
galactomannan-oligosaccharides); GS (high-growth selected genotype); WT (wild type genotype).

3.3. Gill Relative Gene Expression

Prior to the oxidative stress challenge (t = 0 h), the fish gill antioxidant defense-related
gene expression presented significant differences (p < 0.05) associated with the interaction
between the genotype and the dietary treatment fed (Figure 1). The GS fish fed the control
and PHYTO0.1 diets showed a higher (p < 0.05) cat basal gill expression compared to the
WT fish fed the same dietary treatments. The GS fish fed the control diet also presented
upregulated (p < 0.05) sod gene expression levels compared to the WT fish fed the same
diet. On the contrary, the WT fish fed the GMOS0.5 diet presented a higher (p < 0.05) sod
basal gene expression than the GS fish fed the same dietary treatment.

Within the WT fish genotype, the diet fed directly affected the fish gill basal antioxidant
gene expression. The fish fed the GMOS0.5 diet presented the highest (p < 0.05) sod expression
levels, followed by PHYTO0.02 and PHYTO0.1, respectively. Similarly, those fish fed with
PHYTO0.1 and GMOS0.5 diets presented the highest (p < 0.05) gpx gill expression levels. Those
fish fed the GMOS0.5 diet presented significantly higher (p < 0.05) hif-1α relative expression
levels than those fish fed the control and PHYTO0.1 diets (Appendix A Table A1).

Two hours post-oxidative stress challenge, a generalized upregulation of antioxidant
defense-related gene expression was observed. All fish presented a significant increase
(p < 0.05) in cat and gpx gill expression levels (Appendix A Table A1), whereas the gill sod
gene expression presented significant differences associated with the fish genotype and the
dietary treatment fed. The GS fish fed the control diet presented an upregulation (p < 0.05)
of gill sod relative expression levels compared to the WT fish fed the same dietary treatment.
In fact, within the GS genotype, the fish fed the control diet induced the highest (p < 0.05)
sod expression levels. Accordingly, as a response to the H2O2 exposure, an up-regulation of
the mitochondrial ETC-related gene expression was observed. All the experimental fish
groups presented a general increase (p < 0.05) in cox transcript levels, independently of the
fish origin or diet fed. However, this response was more acute for GS fish fed the PHYTO0.1
diet, which presented a higher (p < 0.05) expression than the WT fish fed the same diet.
The GS fish fed the control diet were the only experimental group presenting an increase
(p < 0.05) in gill ucp1 relative gene expression in relation to their basal levels (Figure 2).
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Figure 1. European sea bass gill relative gene expression heat map at 0 h pre-oxidative stress
challenge for high-growth selected genotype (GS) and wild type genotype (WT) European sea
bass. Control (Control diet); PHYTO0.02 (PHYTO0.02 diet, supplemented with a 200 ppm blend
of phytogenic feed additives consisting of a mixture of garlic and Labiatae plant essential oils with
87.5 mg terpens/kg diet); PHYTO0.1 (PHYTO0.1 diet, supplemented with a 1000 ppm blend of
phytogenic feed additives, consisting of a mixture of citrus fruits and Asteraceae and Labiatae plant
essential oils with 57 mg terpens/kg diet); GMOS0.5 (GMOS0.5 diet; supplemented with 5000 ppm
galactomannan-oligosaccharides).

In regard to the results observed on genes related with a proinflammatory response,
2 h after the oxidative stress challenge, all the experimental groups presented a significantly
increased (p < 0.05) nfKβ2 gill gene expression. Only the WT fish fed the PHYTO0.2 and
GMOS0.5 diets presented significantly increased (p < 0.05) il-1β gill transcription levels in
relation to basal levels. At this sampling point, feeding a GMOS0.5 diet to WT fish resulted
in an increase (p < 0.05) in the casp-9 gill relative gene expression, whereas the GS fish fed
the GMOS0.5 diet presented an increased (p < 0.05) hif-1α gill relative gene expression.

Twenty-four hours after the oxidative stress challenge, the GS fish fed the control diet
and the WT fish fed the GMOS0.5 diet presented a downregulation (p < 0.05) of sod and
gpx gill relative gene expression, respectively. Despite the changes mentioned above, no
significant differences were found among the different experimental groups in terms of the
antioxidant defense gene response (Figure 3).

At this sampling point, the GS fish fed the PHYTO0.1 diet presented a significant
downregulation (p < 0.05) of gill cox relative gene expression. No differences among the
groups were observed in the fish cox gill gene expression. On the contrary, the WT fish fed
the PHYTO0.1 diet presented higher (p < 0.05) ucp1 gill relative gene expressions than the
WT fish fed the GMOS0.5 diet.

At the end of the oxidative stress challenge, no significant change in the fish gill pro-
inflammatory gene response was observed, with an exception for the il-1β gill relative gene
expression, which was increased (p < 0.05) in the WT fish fed the control diet in relation to
the previous sampling point (Appendix A Table A1).
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Figure 2. European sea bass gill relative gene expression heat map at 2 h after oxidative stress
challenge for high-growth selected genotype (GS) and wild type genotype (WT) European sea
bass. Control (Control diet); PHYTO0.02 (PHYTO0.02 diet, supplemented with a 200 ppm blend
of phytogenic feed additives consisting of a mixture of garlic and Labiatae plant essential oils with
87.5 mg terpens/kg diet); PHYTO0.1 (PHYTO0.1 diet, supplemented with a 1000 ppm blend of
phytogenic feed additives, consisting of a mixture of citrus fruits and Asteraceae and Labiatae plant
essential oils with 57 mg terpens/kg diet); GMOS0.5 (GMOS0.5 diet; supplemented with 5000 ppm
galactomannan-oligosaccharides).
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Figure 3. European sea bass gill relative gene expression heat map at 24 h after oxidative stress
challenge for high-growth selected genotype (GS) and wild type genotype (WT) European sea
bass. Control (Control diet); PHYTO0.02 (PHYTO0.02 diet, supplemented with a 200 ppm blend
of phytogenic feed additives consisting of a mixture of garlic and Labiatae plant essential oils with
87.5 mg terpens/kg diet); PHYTO0.1 (PHYTO0.1 diet, supplemented with a 1000 ppm blend of
phytogenic feed additives, consisting of a mixture of citrus fruits and Asteraceae and Labiatae plant
essential oils with 57 mg terpens/kg diet); GMOS0.5 (GMOS0.5 diet; supplemented with 5000 ppm
galactomannan-oligosaccharides).
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4. Discussion

The results of the present study highlight the strong effect exerted by breeding selec-
tion, leading to a two-fold higher body weight for GS fish compared to WT at the same age,
300 days post-hatching. At the end of the feeding trial, both genotypes presented proper
growth, almost doubling the initial body weight regardless of the dietary treatment fed.
Despite the fish from both genotypes presenting similar specific growth rates, the GS fish
presented improved feed conversion ratios and lower individual feed intakes than the WT
fish, indicating a better capacity to harness feed even when dealing with low FM/FO-based
diets. In agreement with these results, in the study carried out by Montero and co-authors
in 2023 [40], GS fish belonging to the same breeding program presented a higher growth
performance and a better plasticity to cope with the possible nutritional imbalances derived
from low FM/FO-based diets. At the end of the feeding experience, GS fish presented a
higher body weight, decreased fish perivisceral fat deposition and increased flesh DHA
and ARA contents compared to WT fish.

The use of selective breeding strategies as a tool to increase fish growth performance
may lead to favoring the selection of secondary functional phenotypes, such as stress
tolerance and behavioral traits [38], which are keystones in domestication processes [60].
In 2016, Vandeputte and co-authors [61] studied the stress response of three different
genotypes of European sea bass (wild, domesticated and selected for growth) subjected
to acute confinement followed by a swimming stress challenge. The authors reported
a negative correlation between the fish body weight and the circulating plasma cortisol
levels after the stress challenge, concluding that selective breeding may favor fish’s low
stress responsiveness. Accordingly, in the present study, the GS fish presented significantly
lower basal cortisol levels than the WT fish, pointing to a possible effect of growth selective
breeding on fish stress indicators. Furthermore, and despite presenting higher cortisol
levels than the WT fish in the first hours after the oxidative stress challenge, the GS fish
presented a better recovery back to the basal cortisol levels at 24 h post-H2O2 exposure.
A better competence for recovering a homeostatic status might be advantageous under
aquaculture conditions in which fish are constantly exposed to stressful conditions [17,18].
An effective and controlled physiological stress response will avoid the negative side-
effects associated with a chronic cortisol exposure [39,62]. An example of stress tolerance
benefits for aquaculture production was reported by Øverli and co-authors in 2006 [63].
The authors studied the effects of a transport stress challenge on the feed utilization of two
different genotypes of rainbow trout (Oncorhynchus mykiss) selected for low or high stress
responsiveness. The low stress responsive genotype presented a significantly higher feed
efficiency and a lower food waste production after the stress challenge.

In the present study, the genetic selection also induced differences in fish antioxidant
defense gene expression. At the basal level, at t = 0 h pre-stress challenge, the GS fish
presented higher cat gene expression levels than the WT fish. Similarly, other studies have
reported higher antioxidant defenses in the selected genotypes of other fish species. For
example, Solberg and co-authors, in 2012 [64], described higher glutathione reductase,
Cu/Zn sod and gpx relative gene expression levels in response to environmental stress
processes for a domesticated strain of Atlantic salmon (Salmo salar) in comparison to a wild
strain. In 2010, Sauvage and co-authors [65] observed a higher gene expression of three
genes associated with protective properties against oxidative stress processes (precursor
of hemopexin, heme-binding protein 2, precursor of fibrinogen γ chain and precursor of
the inter-α trypsin inhibitor heavy chain H2) on a selected strain of Brook charr (Salvelinus
fontinalis) (F4 generation) compared to a reference population obtained from randomly
mixed breeders (F1 generation) kept at the same environmental conditions. Palinska-Zarska
and co-authors, in 2021 [66], compared the antioxidant enzymatic activity of two genotypes,
domesticated and wild, of perch (Perca fluviatilis) larvae presenting higher sod and cat
activities than the domesticated strain. These authors suggested that a higher antioxidant
enzyme activity in the selected strain resulted in a better adaptation to the formulated feed,
leading to better survival rates and performance during the larval weaning period. In the
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present study, the functional additives also presented an effect on fish antioxidant defense.
The WT fish fed functional diets presented higher sod, cat and gpx basal gene expression
levels than the WT fish fed the control diet. In the same way, at two hours after H2O2
exposure, those fish fed the functional additives presented the highest cat gene expression
levels compared to the fish fed the control diet, regardless of the genotype. This could
suggest an enhanced antioxidant capacity associated with functional additives supplemen-
tation, as catalase is the main enzyme contributing to H2O2 removal when found in high
concentrations in the intercellular space [66]. Dietary supplementation with plant origin
compounds may reinforce the fish antioxidant status through the interaction with several
signaling transcription factors modulating fish antioxidant-related gene expression [33].
Li and co-authors, in 2018 [67], evaluated the effects of pinostrobin, a potent flavonoid
extracted from pines, on zebra fish’s (Danio rerio) neural antioxidant status. This phytogenic
compound increased fish GSH-PX, GSH/GSSG, SOD and CAT enzymes, reducing fish
neural oxidative stress damages and apoptotic processes. Mansour and co-authors, in
2020 [68], analyzed the antioxidant capacity of sea bream (Sparus aurata) fed diets supple-
mented with Moringa (Moringa oleifera) against an H2O2 exposure at a concentration of
50 ppm. The authors reported an enhanced response of the fish fed the supplemented diets,
with an increased gill cat gene expression compared to that of those fish fed diets void of
supplementation. In addition, these compounds are rich in terpenes and flavonoids, which
present high antioxidant properties preventing the formation or directly quenching the
oxygen and nitrogen reactive species derived from aerobic metabolism [22,69].

An increased aerobic metabolism rate, in order to respond against a stress process,
may also suppose an important source of oxidative stress processes. During oxidative
phosphorylation, between 1 and 3% of all electrons may “leak” from the electron transport
chain [14] being released into the mitochondrial intermembrane space, where they will react
with O2 generating ROS. In the present study, the stress challenge resulted in a generalized
overexpression of the ETC-related genes nd5, cyb and cox, regardless of the fish genotype
or the dietary treatment fed. However, an interesting response was observed for GS fish
fed the control diet, which, unless presenting similar levels of expression as the other
experimental groups, presented an increased ucp1 gene expression after H2O2 exposure. In
the absence of an external surplus of antioxidant defenses such as the antioxidant properties
of functional additives, this may suggest a feedback mechanism limiting mitochondrial
ROS formation, in a process called “uncoupling to survive” [15], and protecting gill tissue
from oxidative stress processes.

ROS are important metabolic agents involved in fish inflammatory responses through
the interaction with the nuclear factor kappa beta (NFKβ) [70,71] and leading to the
activation of the pro-inflammatory cytokines IL-1β and TNF-α [72]. In the present study,
all experimental treatments presented similar expressions of pro-inflammatory genes in
gills after H2O2 exposure. Nevertheless, the GS fish fed the GMOS0.5 diet presented
upregulated hif-1α gill expression levels compared to the fish fed the rest of the dietary
treatments. Under hypoxic conditions associated with inflammatory processes [73], the
hif-1α mediates the activation of the O2-independent glycolytic pathway, ensuring ATP
production to cope with the bio-energetic requirements [74,75]. On the other hand, the WT
fish fed GMOS0.5, which did not present an increased expression of hif-1α, presented an
increased expression of caspase 9, which is the activator of caspase-dependent apoptotic
processes [76], suggesting a lower ability to cope with the side-effects associated with the
inflammatory process.

5. Conclusions

In conclusion, H2O2 exposure induced the triggering of both the fish stress response
and oxidative stress defense. The GS genotype fish presented a better capacity to recover the
basal cortisol levels, suggesting a higher tolerance to potential stressful scenarios associated
with fish rearing conditions. In addition, the use of functional additives enhanced the
fish antioxidant response via upregulating the expression of cat in gill expression levels in
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response to the oxidative insult. The GMOS0.5 diet induced the activation of hif-1α gene
expression in the gills of GS fish, modulating the triggering of pro-inflammatory-associated
processes. Nevertheless, in the view of the complexity of interactions between fish genetic
traits and the diversity of functional ingredients, more experiences must be carried out to
address the best nutritional and genetic selection strategies in order to promote fish health
and welfare under rearing conditions.
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Appendix A

Table A1. Gill relative gene expression of European sea bass (Dicentrarchus labrax) juveniles at t = 0 h pre-oxidative stress challenge and at t = 2 h and 24 h after the
oxidative stress challenge.

High-Growth Selected Genotype (GS) Wild Type Genotype (WT)

Control PHYTO0.02 PHYTO0.1 GMOS0.5 Control PHYTO0.02 PHYTO0.1 GMOS0.5

Sampling
Point

Target
Gene

t = 0 h
(pre-H2O2
exposure)

nfKβ2 0.89 1 ± 0.26 1.36 1 ± 0.19 1.17 1 ± 0.13 1.49 1 ± 0.35 1.02 1 ± 0.17 0.90 1 ± 0.14 1.41 1 ± 0.48 0.98 1 ± 0.58
il-1β 2.58 ± 1.04 1.94 ± 0.43 1.94 ± 0.45 2.48 ± 0.48 0.95 1 ± 0.33 0.93 1 ± 0.33 1.42 1 ± 0.49 0.93 1 ± 0.23
hif-1α 0.60 ± 0.16 0.64 ± 0.07 0.45 ± 0.19 0.33 a1 ± 0.20 0.78 A ± 0.41 1.22 AB ± 0.44 0.73 A ± 0.13 1.61 bB ± 0.16
nd5 1.42 ± 0.76 1.24 ± 0.31 1.01 1 ± 0.14 1.34 ± 0.41 0.89 1 ± 0.13 1.05 1 ± 0.16 1.28 1 ± 0.15 0.85 ± 0.31
cyb 1.32 ± 0.07 0.53 ± 0.11 0.54 1 ±0.18 0.46 ± 0.18 0.92 ± 0.20 1.20 ± 1.12 1.50 ± 0.55 1.39 ± 0.63
cox 1.16 1 ± 0.11 1.63 1 ± 0.42 1.59 1 ± 0.46 0.91 1 ± 0.21 0.84 1 ± 0.11 1.45 1 ± 0.32 1.56 1 ± 0.47 1.01 1 ± 0.50

ucp1 1.46 1 ± 0.65 2.07 ± 1.27 2.39 ± 1.24 2.98 ± 1.52 0.75 ± 0.09 0.53 ± 0.07 1.10 1 ± 0.20 0.68 ± 0.30
sod 1.06 a1± 0.23 1.32 1 ± 0.20 1.24 1 ± 0.27 1.44 a1± 0.17 0.81 bA1 ± 0.23 2.14 B1 ± 0.19 2.00 AB1 ± 1.13 4.28 bC ± 0.88
cat 3.40 a1± 0.62 4.59 1 ± 0.86 3.97 a1 ± 0.34 3.44 1 ± 0.50 0.85 b1 ± 0.26 2.16 1 ± 1.28 1.25 b1 ± 0.45 1.60 1 ± 0.74
gpx 1.62 1 ± 0.46 1.85 1 ± 0.29 1.88 1 ± 0.26 2.00 1 ± 0.36 0.85 A1 ± 0.18 1.80 A1 ± 0.06 3.21 C1 ± 1.59 2.55 B1 ± 1.27

tnf-1α 0.55 1 ± 0.55 0.29 ± 0.11 0.28 1 ± 0.07 0.30 1 ± 0.28 0.96 ± 0.28 1.03 ± 0.62 1.15 ± 0.92 2.32 ± 0.80
casp-9 1.69 ± 1.68 1.36 ± 0.24 1.33 ± 0.34 1.46 ± 0.21 0.82 ± 0.26 0.98 ± 0.17 1.70 ± 0.58 1.01 1 ± 0.34

t = 2 h
(post-H2O2
exposure)

nfKβ2 2.75 2 ± 0.39 2.66 2 ± 0.33 3.34 2 ± 0.32 3.90 2 ± 0.96 2.55 2 ± 0.25 2.92 2 ± 0.40 3.08 2 ± 0.58 2.95 2 ± 0.10
il-1β 5.75 ± 4.14 4.80 ± 1.42 4.78 ± 1.28 5.65 ± 0.62 5.47 12 ± 0.19 5.66 2 ± 2.25 5.38 ± 1.04 6.06 2 ± 0.79
hif-1α 0.96 ± 0.12 1.02 ± 0.14 0.94 ± 0.11 1.29 2 ± 0.41 0.84 ± 0.13 0.88 ± 0.06 0.89 ± 018 0.93 ± 0.06
nd5 6.03 ± 1.46 5.99 ± 2.15 6.69 2 ± 5.13 5.95 ± 1.08 6.56 2 ± 0.34 6.70 2 ± 1.50 6.62 2 ± 0.52 5.55 ± 1.35
cyb 2.59 ± 0.86 1.72 ± 0.48 2.59 2 ± 0.23 1.90 ± 0.82 1.89 ± 0.87 2.21 ± 0.87 1.47 ± 0.25 1.15 ± 0.30
cox 4.13 AB2 ± 0.41 4.77 AB2 ± 1.56 7.12 aB2 ± 0.45 3.69 A2 ± 0.46 3.21 2 ± 0.49 4.10 2 ± 0.94 3.20 b12 ± 0.33 2.84 12 ± 0.80

ucp1 6.65 2 ± 1.29 4.38 ± 1.93 2.94 ± 2.33 3.72 ± 1.94 2.56 ± 1.54 1.84 ± 0.90 3.72 12 ± 3.14 3.30 ± 0.72
sod 7.45 aA2 ± 0.84 4.38 B2 ± 0.27 3.90 B2 ± 0.82 3.41 B2 ± 0.66 3.88 b2 ± 0.83 4.01 2 ± 0.41 3.85 2 ± 0.30 3.98 ± 0.37
cat 4.97 A2 ± 1.62 7.51 AB12 ± 0.49 9.18 B2 ± 0.81 7.86 AB2 ± 0.42 7.39 A2 ± 2.05 11.29 AB2 ± 2.06 11.23 AB2 ± 1.23 12.58 B2 ± 0.11
gpx 8.34 2± 1.41 6.24 2 ± 0.18 8.62 2 ± 1.21 8.99 2 ± 0.79 6.83 2 ± 0.84 6.47 2 ± 0.80 6.44 2 ± 1.29 6.00 2 ± 0.70

tnf-1α 4.70 2 ± 1.34 2.47 ± 1.68 4.49 2 ± 4.24 2.45 12 ± 2.51 2.27 ± 1.23 1.55 ± 0.51 1.42 ± 0.39 2.02 ± 0.93
casp-9 3.32 ± 2.36 3.64 ± 2.30 3.50 ± 1.73 2.98 ± 1.33 3.72 ± 1.00 3.93 ± 0.59 4.24 ± 0.51 5.34 2 ± 2.14
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Table A1. Cont.

High-Growth Selected Genotype (GS) Wild Type Genotype (WT)

Control PHYTO0.02 PHYTO0.1 GMOS0.5 Control PHYTO0.02 PHYTO0.1 GMOS0.5

Sampling
Point

Target
Gene

t = 24 h
(post-H2O2
exposure)

nfKβ2 3.20 2 ± 0.17 3.20 2 ± 0.24 3.21 2 ± 0.55 3.69 a2 ± 0.17 2.42 2 ± 0.45 2.64 2 ± 0.77 2.91 2 ± 0.39 2.37 b2 ± 0.15
il-1β 3.50 ± 0.24 3.42 ± 0.22 4.88 ± 1.30 5.43 ± 1.79 3.81 2 ± 1.60 5.27 2 ± 2.50 4.72 ± 1.20 3.73 2 ± 1.43
hif-1α 0.91 ± 0.30 1.09 ± 0.13 0.90 ± 0.15 1.24 2 ± 0.09 0.94 ± 0.15 1.00 ± 0.23 0.92 ± 0.14 0.93 ± 0.37
nd5 6.05 ± 1.40 6.99 ± 1.43 3.22 12 ± 1.41 6.28 ± 3.56 4.45 12 ± 1.31 4.45 12 ± 1.11 4.44 12 ± 1.44 3.70 ± 0.72
cyb 1.61 ± 0.28 1.53 ± 0.19 1.63 12 ± 0.21 1.55 ± 0.41 1.27 ± 0.43 1.41 ± 0.43 1.69 ± 0.36 2.00 ± 0.86
cox 4.88 2 ± 0.71 4.33 2 ± 0.47 4.05 3 ± 0.33 5.47 2 ± 2.84 3.30 2 ± 0.71 4.00 2 ± 1.03 3.92 2 ± 1.36 3.14 2 ± 0.22

ucp1 3.42 12 ± 1.82 2.31 ± 1.01 2.29 ± 0.54 3.90 ± 1.55 2.99 AB ± 0.58 3.22 AB ± 1.43 6.96 A2 ± 1.23 1.54 B ± 0.74
sod 3.60 3 ± 0.66 3.35 2 ± 0.30 3.64 2 ± 0.43 3.41 2 ± 0.28 3.93 2 ± 0.57 4.16 2 ± 0.68 4.32 2 ± 0.38 4.77 ± 0.68
cat 8.69 2 ± 1.45 9.61 2 ± 2.34 10.30 2 ± 1.05 9.77 2 ± 1.17 6.80 2 ± 0.72 7.87 2 ± 2.22 7.42 2 ± 1.50 7.31 3 ± 1.47
gpx 8.82 2 ± 0.94 8.74 2 ± 1.12 8.49 2 ± 0.45 7.89 2 ± 0.86 5.69 2 ± 0.84 5.5 2 ± 1.10 6.76 2 ± 0.73 6.68 2 ± 0.79

tnf-1α 2.44 12 ± 1.08 2.04 ± 0.81 2.41 12 ± 0.94 3.82 2 ± 1.53 1.68 ± 0.40 2.04 ± 0.89 3.28 ± 1.65 1.23 ± 0.34
casp-9 3.96 ± 2.26 4.06 ± 1.28 4.47 ± 1.32 5.83 ± 3.45 2.88 ± 0.38 2.54 ± 0.62 2.39 ± 0.33 2.63 12 ± 0.30

Three-way ANOVA

Diet Genotype Time D × G D × T G × T D × G × T

nfKβ2 F = 4.306
p-val = 0.009

F = 16.398
p-val = 0.0018

F = 158.176
p-val = < 2 × 10−16

F = 3.481
p-val = 0.0229 ns F = 3.335

p-val = 0.0474 ns

il-1β ns F = 8.798
p-val = 0.0047

F = 65.499
p-val = 1.91 × 10−14 ns ns ns ns

hif-1α
F = 5.231

p-val = 0.0033
F = 4.422

p-val = 0.041
F = 5.714

p-val = 0.006 ns ns F = 21.397
p-val = 2.27 × 10−7

F = 4.260
p-val = 0.00162

nd5 ns ns F = 63.876
p-val = 2.97 × 10−14 ns ns ns ns

cyb ns ns F = 19.325
p-val = 6.97 × 10−7 ns ns F = 5.819

p-val = 0.005 ns

cox F = 4.108
p-val = 0.0113

F = 21.469
p-val = 2.77 ×

10−5

F = 127.517
p-val = < 2 × 10−16 ns ns F = 4.051

p-val = 0.0237
F = 2.616

p-val = 0.028
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Table A1. Cont.

High-Growth Selected Genotype (GS) Wild Type Genotype (WT)

Control PHYTO0.02 PHYTO0.1 GMOS0.5 Control PHYTO0.02 PHYTO0.1 GMOS0.5

Sampling
Point

Target
Gene

Three-way ANOVA

Diet Genotype Time D × G D × T G × T D × G × T

ucp1 ns F = 7.93
p-val = 0.007

F = 19.895
p-val = 5.09 × 10−7

F = 4.471
p-val = 0.007 ns F = 5.287

p-val = 0.008
F = 2.699

p-val = 0.024

sod ns F = 10.086
p-val = 0.002

F = 181.372
p-val = < 2 × 10−16

F = 17.654
p-val = 7.36 ×

10−8

F = 13.457
p-val = 6.98 ×

10−9

F = 19.065
p-val = 8.06 × 10−7

F = 2.748
p-val = 0.022

cat
F = 9.911

p-val = 3.38 ×
10−5

F = 10.017
p-val = 0.002

F = 242.091
p-val = < 2 × 10−16 ns F = 2.914

p-val = 0.017
F = 44.054

p-val = 1.37 × 10−11 ns

gpx F = 2.859
p-val = 0.046

F = 35.012
p-val = 3.36 ×

107

F = 294.593
p-val = < 2 × 10−16 ns ns F = 13.893

p-val = 1.74 × 10−5
F = 3.079

p-val = 0.013

tnf-1α ns ns F = 25.759
p-val = 2.51 × 10−8 ns ns F = 10.79

p-val = 0.0001 ns

casp-9 ns ns F = 39.156
p-val = 8.23 × 10−11 ns ns F = 5.946

p-val = 0.005 ns

Different uppercase letters denote significant differences (p < 0.05) between dietary treatments inside each fish genotype at each sampling point (three-way ANOVA: Diet × Geno-
type × Time; Tukey post hoc test). Different lowercase letters denote significant differences (p < 0.05) between genotypes at each sampling point (three-way ANOVA: Diet × Geno-
type × Time; Tukey post hoc test). Different numbers denote significant differences (p < 0.05) between experimental sampling points (three-way ANOVA: Diet × Genotype × Time;
Tukey post hoc test). ns = not significant. Values expressed in mean ± SD. Control (Control diet); PHYTO0.02 (PHYTO0.02 diet, supplemented with a 200 ppm blend of phytogenic feed
additives consisting of a mixture of garlic and Labiatae plant essential oils with 87.5 mg terpens/kg diet); PHYTO0.1 (PHYTO0.1 diet, supplemented with a 1000 ppm blend of phytogenic
feed additives, consisting of a mixture of citrus fruits and Asteraceae and Labiatae plant essential oils with 57 mg terpens/kg diet); GMOS0.5 (GMOS0.5 diet; supplemented with 5000 ppm
galactomannan-oligosaccharides); GS (high-growth selected genotype); WT (wild type genotype).



Animals 2023, 13, 2265 17 of 20

References
1. Acosta, F.; Montero, D.; Izquierdo, M.; Galindo-Villegas, J. High-level biocidal products effectively eradicate pathogenic γ-

proteobacteria biofilms from aquaculture facilities. Aquaculture 2021, 532, 736004. [CrossRef]
2. Magara, G.; Sangsawang, A.; Pastorino, P.; Oddon, S.B.; Caldaroni, B.; Menconi, V.; Kovitvadhi, U.; Gasco, L.; Meloni, D.; Dörr,

A.J.M.; et al. First insights into oxidative stress and theoretical environmental risk of Bronopol and Detarox® AP, two biocides
claimed to be ecofriendly for a sustainable aquaculture. Sci. Total Environ. 2021, 778, 146375. [CrossRef] [PubMed]

3. Avendaño-Herrera, R.; Magariños, B.; Irgang, R.; Toranzo, A.E. Use of hydrogen peroxide against the fish pathogen Tenacibaculum
maritimum and its effect on infected turbot (Scophthalmus maximus). Aquaculture 2006, 257, 104–110. [CrossRef]

4. Pedersen, L.F. Investigations of Environmental Benign Aquaculture Therapeutics Replacing Formalin; DTU Aqua Report, no. 218–2010;
DTU Aqua: Charlottenlund, Denmark, 2010.

5. Hodkovicova, N.; Chmelova, L.; Sehonova, P.; Blahova, J.; Doubkova, V.; Plhalova, L.; Fiorino, E.; Vojtek, L.; Vicenova, M.; siroka,
Z.; et al. The effects of a therapeutic formalin bath on selected immunological and oxidative stress parameters in common carp
(Cyprinus carpio). Sci. Total Environ. 2019, 653, 1120–1127. [CrossRef] [PubMed]

6. Seoud, S.S.M.; Zaki, V.H.; Ahmed, G.E.; Abd El-Khalek, N.K. Studies on Amyloodinium infestation in European seabass
(Dicentrarchus labrax) fishes with special reference for treatment. Int. J. Mar. Sci. 2017, 7. [CrossRef]

7. Ragab, R.H.; Elgendy, M.Y.; Sabry, N.M.; Sharaf, M.S.; Attia, M.M.; Korany, R.M.; Abdelsalam, M.; Eltahan, A.S.; Eldessouki,
E.A.; El-Demerdash, G.O.; et al. Mass kills in hatchery-reared European seabass (Dicentrarchus labrax) triggered by concomitant
infections of Amyloodinium ocellatum and Vibrio alginolyticus. Int. J. Vet. Sci. Med. 2022, 10, 33–45. [CrossRef]

8. Roque, A.; Yildiz, H.Y.; Carazo, I.; Duncan, N. Physiological stress responses of sea bass (Dicentrarchus labrax) to hydrogen
peroxide (H2O2) exposure. Aquaculture 2010, 304, 104–107. [CrossRef]

9. Seker, E.; Ispir, U.; Yonar, S.M.; Yonar, M.E.; Turk, C. Antioxidant responses of rainbow trout (Oncorhynchus mykiss) gills after
exposure to hydrogen peroxide. Fresenius Environ. Bull. 2015, 24, 1837–1840.

10. Hwang, P.-P.; Lee, T.-H.; Lin, L.-Y. Ion regulation in fish gills: Recent progress in the cellular and molecular mechanisms. Am. J.
Physiol. -Regul. Integr. Comp. Physiol. 2011, 301, R28–R47. [CrossRef]

11. Li, M.; Zhu, X.; Tian, J.; Liu, M.; Wang, G. Dietary flavonoids from Allium mongolicum Regel promotes growth, improves immune,
antioxidant status, immune-related signaling molecules and disease resistance in juvenile northern snakehead fish (Channa argus).
Aquaculture 2019, 501, 473–481. [CrossRef]

12. Rodnick, K.J.; Planas, J.V. The stress and stress mitigation effects of exercise: Cardiovascular, metabolic, and skeletal muscle
adjustments. In Fish Physiology; Academic Press: Cambridge, MA, USA, 2016; Volume 35, pp. 251–294. [CrossRef]

13. Gorissen, M.; Flik, G. The endocrinology of the stress response in fish: An adaptation-physiological view. In Fish Physiology;
Academic Press: Cambridge, MA, USA, 2016; Volume 35, pp. 75–111. [CrossRef]

14. Spiers, J.G.; Chen, H.-J.C.; Sernia, C.; Lavidis, N.A. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular
oxidative stress. Front. Neurosci. 2015, 8, 456. [CrossRef]

15. Zhao, R.-Z.; Jiang, S.; Zhang, L.; Yu, Z.-B. Mitochondrial electron transport chain, ROS generation and uncoupling. Int. J. Mol.
Med. 2019, 44, 3–15. [CrossRef] [PubMed]

16. Zafir, A.; Banu, N. Modulation of in vivo oxidative status by exogenous corticosterone and restraint stress in rats. Stress 2009, 12,
167–177. [CrossRef] [PubMed]

17. Fanouraki, E.; Mylonas, C.C.; Papandroulakis, N.; Pavlidis, M. Species specificity in the magnitude and duration of the acute
stress response in Mediterranean marine fish in culture. Gen. Comp. Endocrinol. 2011, 173, 313–322. [CrossRef] [PubMed]

18. Samaras, A.; Pavlidis, M.; Lika, K.; Theodoridi, A.; Papandroulakis, N. Scale matters: Performance of European sea bass,
Dicentrarchus labrax, L. (1758), reared in cages of different volumes. Aquac. Res. 2017, 48, 990–1005. [CrossRef]

19. Hematyar, N.; Rustad, T.; Sampels, S.; Kastrup Dalsgaard, T. Relationship between lipid and protein oxidation in fish. Aquac. Res.
2019, 50, 1393–1403. [CrossRef]

20. Irkin, L.C.; Yigit, M.; Yilmaz, S.; Maita, M. Toxicological Evaluation of Dietary Garlic (Allium sativum) Powder in European Sea
Bass Dicentrarchus labrax Juveniles. Food Nutr. Sci. 2014, 5, 46429. [CrossRef]
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