Supplementary Material and Figures

Title: Assembly processes and functional diversity of marine protists and their rare biosphere

Authors and affiliations: Pierre Ramond^{1*}, Raffaele Siano², Marc Sourisseau², Ramiro Logares¹

¹Institute of Marine Sciences (ICM), Department of Marine Biology and Oceanography,

CSIC, 08003 Barcelona, Catalunya, Spain

² Ifremer-Centre de Brest, DYNECO/Pelagos, Technopôle Brest Iroise, 29280 Plouzané,

France

* **Corresponding author**: email: pierre@icm.csic.es; address: Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalunya, Spain.

Competing Interests: The authors declare no competing interests.

Supplementary Material 1: Complementary diversity analysis.

OTUs' total read abundance was calculated across our complete dataset, for the three size-fractions (micro, nano and pico-plankton) and across the years covered by our survey (2009-2015). The rarefaction curves as well as diversity extrapolations were then computed with function *iNEXT(datatype="abundance")* from R package iNEXT [1]. The results are summarized in the Figure S1A below. We also investigated the relation between the abundance and occurrence of all OTUs across the samples of each size-fraction (Figure S1B). Finally, we studied OTUs distribution across size-fractions with a Venn diagram (Figure S1C).

Figure S1: Complementary diversity analyses. A) Rarefaction curves for our complete dataset and across size-fractions (top plot), as well as across years (bottom plot). The solid lines correspond to the interpolated rarefaction curves computed by iNEXT, the circles correspond to the observed number of reads and OTUs, the dashed lines represent the extrapolated rarefaction curves computed by iNEXT. B) Relation between OTUs' abundance and occurrence across samples, each circle corresponds to an OTU. Abundance, estimated by the total number of reads of an OTUs across the samples of each size-fraction, was log10 transformed for better representation. C) Venn diagram of the presence of OTUs across three size-fractions.

The asymptote of a rarefaction curve is used as a proxy for diversity saturation. Across our complete dataset, the three size-fractions and years, rarefaction curves did not reach diversity saturation (Figure S1A). Diversity extrapolation indicated that diversity in our dataset would amount to ca. 93 500 OTUs, which based on our approach would require 5.5×10^7 reads. However, our dataset represents a very good share of this diversity, as we retrieved 90 432 OTUs, i.e. 96% of the estimated diversity. It is likely that the portion of diversity that was missed by our approach corresponds to very rare OTUs with very low abundance. Saturation depended on the number of samples included, we thus decided to work on the largest subsets of dataset possible (per size fractions), and decided against further sub-division of our dataset (across years of spatial regions). Although there existed high variability, we observed that abundant OTUs tended to occur in a larger number of samples, while rarer OTUs occurred in less samples (Figure S1B). It is thus likely that the rare portion of diversity that was missed by our approach would occur in very few samples. The Venn diagram (Figure S1C) indicated that most OTUs were found in several size-fractions. As expected adjacent size-fractions (micronano: 21 015 shared OTUs, and nano-pico: 15 446 shared OTUs) shared more OTUs than non-adjacent size-fractions (micro-picoplankton: 2461).

Supplementary Material 2: Defining rare and abundant OTUs based on Multivariate Cutoff Level Analysis.

We defined rare and abundant OTUs across size-fraction following the method detailed in references [2,3]. This approach studies the correlation between the original distance matrix of a dataset (all pairwise samples' comparison) and distance matrices computed on subsets of the community from which an increasing number of rare OTUs are removed. In this approach, rare OTUs are those OTUs from which the removal does not affect the correlation between the original and subset distance matrices. The Bray-Curtis distance was used to infer distance matrices from the original and subset datasets [4,5]. The correlation between the original and subset distance matrices was inferred using Spearman's rank correlation and Mantel test, both proxies range between 1 (good correlation) and 0 (poor correlation). Across the rank abundance curves of all size-fractions correlations below 0.9 steeply decreased (Figure S2C), we thus choose this values as the cutoff above which the removed OTUs were considered rare (and the OTUs left as abundant). The subsets correspond to even removals of reads from the total read abundance, i.e. we removed the amount of rare OTUs from which the abundance corresponded to a given percentage of reads.

Figure S2: Rank abundance curves of all size-fractions and multivariate definition of rarity. Rank abundance curves In Figure S2A were computed based on the number of reads of each protistan OTUs across all the samples included in each size-fraction, each OTU is represented by a circle. Figure S2B represent a zoom on the first 100 OTUs of all rank abundance curves. The multivariate definition for rarity presented by Figure S2C relies on the correlation (Mantel or Spearman tests) between the Bray-Curtis distance of the original dataset (one for each size-fraction) and the distance within subsets of this dataset from which an increasing number of rare reads and OTUs are removed. When the correlation reaches values under 0.9, the OTUs left are considered abundant while the OTUs removed are considered rare. This threshold value is represented as a red line across plots and the following gray area represents rare reads or OTUs.

The multivariate method (Figure S2C) highlighted that there were 38, 32 and 40 abundant OTUs, respectively accounting for 40% (2.46 of 6.15×10^6 reads), 55% (5.02 of 9.13×10^6 reads) and 55% (4.01 of 7.3×10^6 reads) of the total number of reads per size-fraction (micro, nano and picoplankton; Figure S2A &B). Reversely, there were 44 775, 71 348 and 51 528 rare OTUs in the micro, nano and picoplankton (Figure S2A).

Supplementary Material 3: Testing the phylogenetic signal of niche divergence.

This section was performed using functions from R package 'iCAMP', parametrization of the commands followed the recommendations from the supplementary material of the original iCAMP paper [6]. This procedure was performed per size-fraction, using samples for which environmental conditions were available (Temperature, Salinity, NH4, NOX, PO4 and SiOH4). For this test, we selected only OTUs present in at least 10 different samples per size fractions, considering this threshold as the minimum number of occurrence to give a reliable estimate of environmental niche. The test was performed for 3106, 6410 and 4041 OTUs, across 191, 254 and 238 samples, respectively for micro, nano and pico-plankton.

The procedure of the test is:

- A distance matrix of niche values is computed for the OTUs of each size-fraction and for each environmental variable with the function 'dniche(method = "niche.value")'.
- 2) A phylogenetic distance matrix is computed for the OTUs of each size-fraction with the function 'pdist.big()'.
- 3) Based on each phylogenetic distance matrix, phylogenetic bins (containing phylogenetically similar OTUs) are computed with function 'taxa.binphy.big(ds = 0.2, bin.size.limit = 24)'. This command generated 51, 118 and 70 phylogenetic bins, respectively for the OTUs of micro, nano and pico-plankton.
- 4) For each phylogenetic bin of each size-fraction, the correlation between the phylogenetic distance and the niche distance matrices are compared with function 'ps.bin(cor.method = "pearson")', using Pearson's Correlation coefficient. The output of this command is a coefficient of correlation (R²) between each phylogenetic bin and environmental variable, with the associated p.value.

Overall, there existed a significant correlation between protistan phylogeny and environmental variables within most bins in all size-fractions (40 of 51, 91 of 118, and 51 of 70 phylogenetic bins, within micro, nano, and picoplankton, respectively), thus warranting the use of phylogenetic turnovers for investigating the assembly processes driving the community patterns in our dataset.

Supplementary Material 4: Testing the fit between environmental variables and assembly processes.

We studied whether some of the environmental factors measured in our survey could explain the assembly processes of marine protists along subsets of the ranbk abundance curves we built for each size-fraction. we performed a Permutational Multivariate Analysis of Variance between the phylogenetic turnover (ßMNTD) and our set of environmental parameters (PERMANOVA; 'adonis()' function of R package 'vegan' [7]). The variables were not co-varying (Pearson correlation between variables < 0.8), all environmental factors measured were thus included in this analysis. The PERMANOVA's R2 is a proxy of how well the environmental variables fit with the ßMNTD.

B: Assembly Processes of Abundant OTUs and along Rank Abundance Curves

C: PERMANOVA of Abundant OTUs and along Rank Abundance Curves

Figure S3: Protistan taxonomic composition, underlying assembly processes and environmental drivers along rank abundance curves. Abundant OTUs (left side of all graphs) were selected using the multivariate approach of ref. [5]. Subsets of 5000 OTUs were computed with a sliding window along rank abundance curves (X axis on all plots). The last two subsets contain less OTUs because rank abundance curves are not exact multiples of 2500. A) Taxonomy is given at the Division level (as annotated with the PR2 database v4.13.0), taxonomic ranks were sorted by Supergroups. B) Assembly processes were inferred from the distribution of the OTUs in each subset using R package iCAMP ref. [6], the number of samples from which assembly processes were inferred was annotated on top of each barplot (the same procedure was applied in C). Assembly processes were converted into types of rarity following the nomenclature of ref. [3]. C) PERMANOVAs were computed using the β MNTD of each subset (computed during the inference of assembly processes) and the environmental variables measured in our survey. The barplots represent the total R^2 of each PERMANOVA and the color code represent the contribution of each variable to the fit. The overall fit sometimes includes variables for which the individual fit is non-significant (see the gray color code, N.S. stands for not-significant), not to be confused with residual correlation (= 1 – overall fit).

The assembly processes (Figure S3B) fitted significantly with different environmental variables across size-fractions (Figure S3C). The fit ranged between 0.05 and 0.36 across subsets (value of the R²). The explaining power of environmental variables peaked within the subsets containing the most abundant OTUs and decreased towards the rare-end of rank curves (Figure S3C). It also varied across size-fractions with maxima of 0.25, 0.21, and 0.36 in the micro, nano, and pico-plankton. Micro-plankton appeared to be mostly driven by physical (temperature and salinity) and chemical conditions (nutrient concentrations); Nano-plankton was driven evenly by physico-chemical conditions and distance, both geographic (latitude and longitude) and bathymetric (depth); Pico-plankton was mostly driven by physical conditions (temperature) and geographic distance (Figure S3C). Overall, the set of environmental conditions driving OTUs remained the same along RAC, with few exceptions, e.g. the influence of depth on OTUs in the ranks 15 000 to 20 000 in the micro-plankton (Figure S3C).

The environmental variables measured in our study thus explained only a small fraction of the variation of community patterns across size-fractions, suggesting that un-measured variables (e.g. biotic) or legacy effects (i.e. lags between shifts in community and the environment) could have a large importance on the assembly of marine protists [8]. We hypothesized that the explaining power of environmental variables would peak in subsets where variable selection would dominate the assembly processes and decrease in subsets driven by stochastic processes (Figure S3B). Counterintuitively the explaining power peaked in the most abundant subsets where dispersal limitation dominated (Figure S3B). However, variables involved in dispersal limitation explained most of the fit in these subsets, as temperature, reflecting thermal boundaries between water masses (fronts or thermoclines) and seasonal contrasts [9], and geographic distance, directly related to dispersal, were the main explaining variables for abundant OTUs (Figures S3B and S3C). The explaining power was thus higher for the communities in these subsets because they were driven both by dispersal and selection. Among intermediate levels of rarity, from the start to the middle of the RAC where variable selection was more pro-eminent (Figure S3B), nutrients had a larger influence for the micro and pico-plankton. Variability in nutrient concentrations is indeed a strong selection factor for phototrophic microbes [10], which constitute a large share of coastal protistan communities [11]. Ammonium (NH_4^+) is a proxy of the remineralization performed by heterotrophic protists within the microbial loop [12,13], but it is also a resource, preferably for small phytoplankton in poor light conditions [14]. The good fit between ammonium concentration, water depth (linked to light availability) and the most abundant protists of the nano-plankton thus stresses the role of this size-class on remineralization and the uptake of ammonium. Finally, pico-sized protists showed a higher fit with geography, which could be explained by a generally narrower geographic distribution compared with larger size-classes [15,16].

Supplementary Material 5: Phylogenetic signal of rarity.

We tested whether OTUs closely related in terms of phylogeny were also close in abundance and within rank abundance curves. To do this, we studied the correlation between the phylogenetic, abundance and rank-based distances among pairs of OTUs. The computation of complete distance matrices was hampered by the large number of OTUs involved, e.g. 90 432 amounts to a distance matrix of 90 $432^2 = 8.18$ billions of cells. To circumvent this, we created 999 random subsets of 100 OTUs from which we created and compared the phylogenetic to the abundance and rank-based distance matrices (10 000 cells). The phylogenetic distance matrix was computed in R following [17], using OTUs V4 sequences and functions 'AlignSeqs()' and 'dist.ml()' from R packages 'DECIPHER' [18] and 'phangorn' [19]. Both rank and abundance distance matrices were computed using Euclidean distance [4]. The correlation between distance-matrices was studied using Pearson's correlation coefficient (R² and p.value) and a linear regression, the coefficients were collated for the 999 OTUs subsets.

Figure S4: Testing the phylogenetic signal of rarity among protists. A) Relation between OTUs' phylogenetic distance and distance within the rank abundance curves of micro, nano and pico-plankton. These results originate from 999 subsets of 100 OTUs per size-fraction. Pearson correlation was performed and a linear model was fitted on the results of each subset. The linear model and the correlation on these plots correspond to the averaged coefficients across the subsamples. B) Relation between OTUs' phylogenetic distance and abundance distance (computed as the difference in number of reads in each respective size-fraction). This plot follows the same computational procedures. In average, the correlation of phylogeny with rank and phylogeny with abundance were not

significant (p.value > 0.05). This was confirmed with the linear models which did not show any

trend (Figure S4). We conclude that there exists no phylogenetic signal for rarity among marine protists, i.e. abundant or rare taxa are not composed of specific phyla.

Supplementary Material 6: Quantifying functional diversity in the rare protistan biosphere.

To compute metrics of functional diversity we used the subset of functionally annotated OTUs (41 614) and R package 'mFD'. Only non-weighted metrics were computed [20]. Functional richness represents the breadth of ecological strategies in a community (a high number of ecological strategies leads to high functional richness), functional dispersion represents how evenly distributed are the ecological strategies in this breadth (the higher the value the more a community is dominated by a specific ecological strategy) [21]. Functional metrics were computed by aggregating OTUs at the taxonomic reference level, i.e. we studied the presence/absence of 1380 protistan taxonomic references annotated with 13 traits. Not all subsets of rank abundance curves harbored the same amount of annotated taxonomic references, yielding between 315 and 583 taxonomic reference per subset.

Figure S5: Functional diversity of marine protists along rank abundance curves (A) and relationship with the number of taxonomic references per subset (B). Functional richness represents the breadth of ecological strategies in a community, functional dispersion represents how evenly distributed are the ecological strategies in this breadth. Both indexes were computed for each subsets of rank abundance curves containing 5000 OTUs, using the taxonomic references annotated with traits (315 and 583 taxonomic references across all subsets) and R package 'mFD'. The 3 highest values of each proxy in each size-fraction were circled and highlighted by a letter corresponding to the size-fraction in the relationship plots ("M" for micro, "N" for nano and "P" for pico-plankton).

Along rank abundance curves, both functional richness (ranging between 0.57 and 0.81) and dispersion (ranging between 0.53 and 0.62) were high suggesting that ecological strategies were numerous but that subsets were often dominated by few similar strategies (Figure S5A). Both functional richness and dispersion were only weakly correlated to the number of taxonomic references annotated with traits per subsets (Figure S5B), suggesting that the values were not affected by the quality of the trait annotation among subsets. In general, both functional richness, 0.71, 0.68 and 0.67 respectively in micro, nano and pico-plankton, and dispersion, 0.59, 0.57 and 0.55, were lower in smaller size-fractions. High values of functional richness were observed both among subsets of abundant and rare OTUs, in all size-fractions

(Figure S5A). Functional dispersion showed less variability (Figures S5A). Nevertheless, dispersion decreased towards the rarest subsets in the micro-plankton but increased in those of the pico-plankton (Figure S5A), indicating that ecological strategies were more evenly distributed among rare micro-sized protists, and more dominated by few strategies among rare pico-sized protists.

Supplementary material 7: Analyses with OTUs clustered at 95% of identity.

Aware that the phylogenetic resolution of our study could affect our results [47,48], we generated a second dataset in which the Swarm2-OTUs were further clustered at 95% of identity using vsearch (--cluster_size 0.95) [49]. We reproduced: 1) the RACs per-size fraction and subsets of 5000 OTUs (see section *Defining rarity* in the Material and Methods of the original manuscript), 2) the computation of assembly processes and PERMANOVA (see section *Inferring the assembly processes…* in the Material and Methods of the original manuscript), and, 3) the analysis of the link between phylogeny and abundance (see section *Correlation between rarity, traits, and phylogeny* in the Material and Methods of the original manuscript).

Figure S6: Protistan taxonomic composition, underlying assembly processes and environmental drivers along the rank abundance curves of our datasets with OTUs clustered at 95% of identity. Abundant OTUs (left side of all graphs) were selected using the multivariate approach of ref. [5]. Subsets of 5000 OTUs were computed with a sliding window along rank abundance curves (X axis on all plots). The last two subsets contain less OTUs because rank abundance curves are not exact multiples of 2500. A) Taxonomy is given at the Division level (as annotated with the PR2 database v4.13.0), taxonomic ranks were sorted by Supergroups. B) Assembly processes were inferred from the distribution of the OTUs in each subset using R package iCAMP ref. [6], the number of samples from which assembly processes were inferred was annotated on top of each barplot (the same procedure was applied in C). Assembly processes were converted into types of rarity following the nomenclature of ref. [3]. C) PERMANOVAs were computed using the ßMNTD of each subset (computed during the inference of assembly processes) and the environmental variables measured in our survey. The barplots represent the total R^2 of each PERMANOVA and the color code represent the contribution of each variable to the fit. The overall fit sometimes includes variables for which the individual fit is non-significant (see the gray color code, N.S. stands for not-significant), not to be confused with residual correlation (= 1 – overall fit).

With a lower number of OTUs (8589, 11441 and 9538 OTUs respectively for micro, nano and pico-plankton) and thus less subsets of 5000 OTUs along RACs, we retrieved generally similar results as the ones observed in Figure S3. Briefly, taxonomic diversity remained stable along RACs despite an increase in taxonomically unclassified OTUs towards the rarest-end of RACs, from 22 to 36%, 23 to 33%, and 19 to 36% in the most abundant subset to the rarest, respectively for micro, nano, and pico-plankton (Figure S6A). Assembly processes showed a dominance of dispersal limitations in the first subset containing the 5000 more abundant OTUs (53, 37, and 54% of assembly processes, respectively for micro, nano, and picoplankton), a peak in variable selection in intermediate levels of rarity (29, 46, and 19%, respectively for micro, nano, and pico-plankton) and a larger influence of stochastic processes (see the proportion of undominated scenario, 85, 90, and 89%, respectively for micro, nano, and picoplankton) in the rare-end of the RACs (Figure S6B). Homogenizing Selection persisted in low proportions along the rare subsets of RACs (between 3 and 6%, Figure S6B). The same environmental variables fitted with the phylogenetic turnover of the different size fraction as in the results observed in Figure S3 (see supplementary material 4 for interpretation). We observed the same decrease in explicative power after the first subset of RACs (R² from 0.25 to 0.08, 0.20 to 0.08, and 0.31 to 0.07, respectively for the micro, nano, and pico-plankton).

We then studied whether the correlation between phylogeny, rank and abundance changed in the datatset with OTUs clustered at 95% of identity (Figure S7). The average p.value of the correlation between variables across subsets of 100 OTUs were non-significant except for the pico-plankton (average p.value of 0.4). Nevertheless, the average trends (displayed in the linear model) and distribution of the variables showed no co-variance between phylogeny, rank and abundance. We conclude that at this coarser phylogenetic resolution, there was also no phylogenetic signal for rarity among marine protists, i.e. abundant or rare taxa are not composed of specific phyla.

Overall, despite a clear effect on the number of OTUs included in each analysis, the results of supplementary material 7 showed that the phylogenetic resolution (percentage of identity at which OTUs are clustered) had little effect on the patterns we observed in the original

dataset (see manuscript). This, and the large sampling coverage of our study, suggest that the results and hypotheses presented in our manuscript could be extrapolated to other communities sampled at the regional scale.

Figure S7: Testing the phylogenetic signal of rarity among protists based on the dataset of OTUs clustered at 95% of identity. A) Relation between OTUs' phylogenetic distance and distance within the rank abundance curves of micro, nano and pico-plankton. These results originate from 999 subsets of 100 OTUs per size-fraction. Pearson correlation was performed and a linear model was fitted on the results of each subset. The linear model and the correlation on these plots correspond to the averaged coefficients across the subsamples. B) Relation between OTUs' phylogenetic distance and abundance distance (computed as the difference in number of reads in each respective size-fraction). This plot follows the same computational procedures.

References

1. Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol. 2016;7:1451–6.

2. Sauvadet A-L, Gobet A, Guillou L. Comparative analysis between protist communities from the deep-sea pelagic ecosystem and specific deep hydrothermal habitats. Environ Microbiol. 2010;12:2946–64.

3. Jia X, Dini-Andreote F, Falcão Salles J. Community Assembly Processes of the Microbial Rare Biosphere. Trends Microbiol [Internet]. Elsevier Ltd; 2018;26:738–47. Available from: https://doi.org/10.1016/j.tim.2018.02.011

4. Legendre P, Legendre L. Numerical Ecology. Third English Edition. Third Engl. Developments in Environmental Modelling 24, Numerical, editors. Amsterdam (The Netherlands): Elsevier; 2012.

5. Gobet A, Quince C, Ramette A. Multivariate cutoff level analysis (MultiCoLA) of large community data sets. Nucleic Acids Res. 2010;38.

6. Ning D, Yuan M, Wu L, Zhang Y, Guo X, Zhou X, et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat Commun [Internet]. Springer US; 2020;11. Available from: http://dx.doi.org/10.1038/s41467-020-18560-z

7. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. vegan: Community Ecology Package [Internet]. 2018. Available from: https://cran.rproject.org/package=vegan

8. Ladau J, Eloe-Fadrosh EA. Spatial, Temporal, and Phylogenetic Scales of Microbial Ecology. Trends Microbiol [Internet]. The Author(s); 2019;27:662–9. Available from: https://doi.org/10.1016/j.tim.2019.03.003

9. Cloern JE. Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California. Rev Geophys. 1996;34:127.

10. Litchman E, Klausmeier CA, Schofield OM, Falkowski PG. The role of functional traits and trade-offs in structuring phytoplankton communities: Scaling from cellular to ecosystem level. Ecol Lett. 2007;10:1170–81.

 Ramond P, Sourisseau M, Simon N, Romac S, Schmitt S, Rigaut-Jalabert F, et al. Coupling between taxonomic and functional diversity in protistan coastal communities. Environ Microbiol [Internet]. John Wiley & Sons, Ltd (10.1111); 2019;21:730–49. Available from: https://doi.org/10.1111/1462-2920.14537

12. Dolan JR. Phosphorus and ammonia excretion by planktonic protists. Mar Geol. 1997;139:109–22.

13. Legendre L, Rassoulzadegan F. Plankton and nutrient dynamics in marine waters.

Ophelia. 1995;41:153-72.

14. Maguer JF, L'Helguen S, Caradec J, Klein C. Size-dependent uptake of nitrate and ammonium as a function of light in well-mixed temperate coastal waters. Cont Shelf Res. 2011;31:1620–31.

15. Burki F, Sandin MM, Jamy M. Diversity and ecology of protists revealed by metabarcoding. Curr Biol [Internet]. The Authors; 2021;31:R1267–80. Available from: https://doi.org/10.1016/j.cub.2021.07.066

16. Sommeria-Klein G, Watteaux R, Ibarbalz FM, Pierella Karlusich JJ, Iudicone D, Bowler C, et al. Global drivers of eukaryotic plankton biogeography in the sunlit ocean. Science (80-). 2021;374:594–9.

17. Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP. Bioconductor workflow for microbiome data analysis: From raw reads to community analyses [version 1; referees: 3 approved]. F1000Research. 2016;5:1–49.

18. Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016;8:352–9.

19. Schliep KP. phangorn: Phylogenetic analysis in R. Bioinformatics. 2011;27:592–3.

20. Bálint M, Bahram M, Eren AM, Faust K, Fuhrman JA, Lindahl B, et al. Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker

genes. FEMS Microbiol Rev [Internet]. 2016;6:189–96. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/27358393

21. Mouillot D, Gaham NAJ, Villéger S, Mason NWH, Bellwood DR. A functional approach reveals community responses to disturbances. Trends Ecol Evol. 2013;28:167–77.

Supplementary Table 1: Information on the number of OTUs, number of taxonomic references and number of OTUs susccessfully annotated with traits across Eukaryotic Divisions.

Taxonomy			OTUs and Taxonomic	Trait annotation		
		Number of OTHs	Number of unique	Average number of	Number of OTUs	% of OTUs
Kingdom	Division	Number of 0105	taxonomic refererences	taxonomic reference per OTU	with trait annotation	annotated with trait
Eukaryota	Alveolata	31170	640	48,70	15980	51,26724415
Eukaryota	Apusomonadida	83	21	3,95	83	100
Eukaryota	Breviatida	5	3	1,67	5	100
Eukaryota	Centrohelida	136	28	4,86	90	66,17647059
Eukaryota	Conosa	5	5	1,00	5	100
Eukaryota	Cryptophyta	2656	19	139,79	2651	99,81174699
Eukaryota	Haptophyta	1279	46	27,80	742	58,01407349
Eukaryota	Holomycota	706	105	6,72	395	55,9490085
Eukaryota	Holozoa	1342	37	36,27	997	74,29210134
Eukaryota	Katablepharidida	521	13	40,08	481	92,32245681
Eukaryota	Lobosa	47	14	3,36	47	100
Eukaryota	Mantamonadida	1	1	1,00	1	100
Eukaryota	Metamonada	7	3	2,33	7	100
Eukaryota	Microhelida	1	1	1,00	1	100
Eukaryota	Picomonadida	1278	2	639,00	1278	100
Eukaryota	Planomonadida	21	10	2,10	21	100
Eukaryota	Rhizaria	5556	211	26,33	1923	34,6112311
Eukaryota	Rigifilida	3	1	3,00	3	100
Eukaryota	Stramenopiles	22839	386	59,17	12666	55,4577696
Eukaryota	Telonemida	843	5	168,60	843	100
Eukaryota	Viridiplantae	3520	99	35,56	3395	96,44886364
Eukaryota	Unclassified	18413	30	613,77	0	0
Eukaryota	Total	90432	1680	53,83	41614	46,01689667

upplementa	ry Table 2: Total abundance (# of read	s), occurence (# of samples), rank, and taxonom	y of abundant OTUs across	the three size fractions (mi	cro, nano, and picoplankton)

					-					-	
tu ID SF	Nb of Reads	Nb of Occurrence Rar	nk K	Kingdom	Supergroup	Division	Class	Order	Family	Genus	Species
11 Micro	461349	256	1 E	ukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Gymnodiniaceae	Gyrodinium	Gyrodinium_spirale
19 Micro	326629	211	2 E	Eukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gonyaulacales	Ceratiaceae	Tripos	Tripos_fusus
5 Micro	234638	257	3 E	Eukarvota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Kareniaceae	Karenia	Karenia brevis
28 Micro	172879	167	4 F	lukarvota	Alveolata	Unclassified	Unclassified	Unclassified	Unclassified	Unclassified	Unclassified
20 Miero	145029	107		Lukarueta	Alucolata	Dinoflagollata	Dinonhuseae	Unclassified	Unclassified	Unclassified	Unelessified
39 1011010	145038	168	2 6	ukaryota	Alveolata	Dinonagenata	Dinophyceae	Unclassified	Unclassified	Unclassified	Unclassified
20 Micro	140373	224	6 E	Eukaryota	Stramenopiles	Ochrophyta	Bacillariophyta	Bacillariophyta_X	Radial-centric-basal-Coscinodiscophyceae	Guinardia	Guinardia_delicatula
4 Micro	140000	256	7 E	ukaryota	Alveolata	Dinoflagellata	Dinophyceae	Peridiniales	Heterocapsaceae	Heterocapsa	Unclassified
44 Micro	121482	115	8 E	ukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Warnowiaceae	Warnowia	Warnowia_sp.
46 Micro	121252	144	9 E	Eukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Gymnodiniaceae	Unclassified	Unclassified
26 Micro	112429	193	10 E	Eukarvota	Rhizaria	Radiolaria	Acantharea	Chaunacanthida	Chaunacanthida X	Acanthometron	Acanthometron sp.
62 Micro	109559	119	11 F	ukarvota	Alveolata	Dinoflagellata	Dinophyceae	Gonvaulacales	Goniodomataceae	Alexandrium	Unclassified
42 Miero	105759	170	12 0	Lukarueta	Alucolata	Dinoflagollata	Dinophyseac	Cumpediniales	Sumpadiniasaaa	Guradinium	Guradinium hataragrammum
42 1011010	103708	1/0 .	12 0		Alveolata	Dillonagenata	Diriophyceae	dynnounnales	Gynnouniaceae	Gyrodinian	Gyrounnunn_neterogrammun
31 Micro	98613	200	13 E	ukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Gymnodiniaceae	Lepidodinium	Lepidodinium_chlorophorum
33 Micro	94753	172 :	14 E	ukaryota	Stramenopiles	Ochrophyta	Bacillariophyta	Bacillariophyta_X	Radial-centric-basal-Coscinodiscophyceae	Leptocylindrus	Leptocylindrus_convexus
38 Micro	86742	242	15 E	ukaryota	Alveolata	Dinoflagellata	Syndiniales	Dino-Group-I	Dino-Group-I-Clade-1	Dino-Group-I-Clade-1_X	Dino-Group-I-Clade-1_X_sp.
78 Micro	83312	140	16 E	Eukaryota	Alveolata	Dinoflagellata	Noctilucophyceae	Noctilucales	Noctilucaceae	Noctiluca	Noctiluca_scintillans
7 Micro	81514	244	17 E	Eukarvota	Stramenopiles	Ochrophyta	Bacillariophyta	Bacillariophyta X	Polar-centric-Mediophyceae	Chaetoceros	Chaetoceros tenuissimus
18 Micro	80566	225	18 F	lukarvota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Unclassified	Unclassified	Linclassified
	77000	22.5	10 0	ukai yota	Characterilles	Oskasakuta	Desillarianhata	Dealling and the M	Delas sentris Madianhusana	Adia Indiana	Adalation and a
8 IVIICIO	//226	213	19 6	ukaryota	stramenopiles	Ochrophyta	Bacillariophyta	Bacillariophyta_X	Polar-centric-iviediophyceae	winidiscus	winidiscus_comicus
1 Micro	75629	180	20 E	Eukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gonyaulacales	Goniodomataceae	Alexandrium	Unclassified
54 Micro	73403	112 2	21 E	Eukaryota	Rhizaria	Cercozoa	Filosa-Thecofilosea	Ebriida	Ebriidae	Ebria	Ebria_tripartita
23 Micro	73388	252	22 E	Eukaryota	Stramenopiles	Ochrophyta	Bacillariophyta	Bacillariophyta_X	Polar-centric-Mediophyceae	Minidiscus	Minidiscus_variabilis
40 Micro	69602	58 2	23 E	ukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Warnowiaceae	Warnowia	Warnowia_sp.
60 Micro	65914	138	24 E	Eukaryota	Stramenopiles	Opalozoa	MAST-12	Unclassified	Unclassified	Unclassified	Unclassified
72 Micro	58532	64	25 E	Eukarvota	Alveolata	Dinoflagellata	Dinophyceae	Unclassified	Unclassified	Unclassified	Unclassified
53 Micro	51459	105	26 F	ukarvota	Alveolata	Dinoflagellata	Dinophyceae	Prorocentrales	Prorocentraceae	Prorocentrum	Unclassified
00 Milero	40000	104		- dia yota	Characterilles	Oskasakuta	Desillarianhata	Dealling and the M	Palas sentris Madianhusana	Unaless field	Understflad
80 IVIICIO	49969	104	2/ 6	ukaryota	stramenopiles	Ochrophyta	Bacillariophyta	Bacillariophyta_X	Polar-centric-iviediophyceae	Unclassified	Unclassified
123 Micro	44354	112 2	28 E	Eukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Ceratoperidiniaceae	Ceratoperidinium	Ceratoperidinium_falcatum
68 Micro	44251	74	29 E	Eukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Unclassified	Unclassified	Unclassified
116 Micro	42734	117	30 E	Eukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Chytriodiniaceae	Unclassified	Unclassified
41 Micro	40509	195	31 E	ukaryota	Stramenopiles	Ochrophyta	Bacillariophyta	Bacillariophyta X	Polar-centric-Mediophyceae	Unclassified	Unclassified
51 Micro	40280	240	32 F	lukarvota	Alveolata	Dinoflagellata	Dinophyceae	Suessiales	Suessiaceae	Biecheleria	Biecheleria sp
160 Miero	27200	11	22 0	Lukarueta	Phizoria	Padialaria	Delugaritinga	Colledaria	Sebaaraaaidaa	Collegour	Collegeum inorme
105 101010	37300	11 :	55 E		Rillizaria	Rauloidiid	Polycystillea		sphaerozoluae	Collozoulli	conozoum_merme
25 Micro	34610	229	54 E	ukaryota	Aiveolata	Unoflagellata	Dinophyceae	Gymnodiniales	Gymnodiniaceae	Gyrodinium	Gyrodinium_neiveticum
63 Micro	31532	206	35 E	ukaryota	Stramenopiles	Stramenopiles_X	Stramenopiles_X-Group-7	Stramenopiles_X-Group-7_X	Stramenopiles_X-Group-7_XX	Stramenopiles_X-Group-7_XXX	Stramenopiles_X-Group-7_XXX_sp.
29 Micro	29845	88	36 E	Eukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gonyaulacales	Gonyaulacaceae	Gonyaulax	Gonyaulax_spinifera
95 Micro	27186	126	37 E	Eukaryota	Stramenopiles	Ochrophyta	Bacillariophyta	Bacillariophyta_X	Raphid-pennate	Pseudo-nitzschia	Unclassified
64 Micro	26609	211	38 F	ukarvota	Alveolata	Ciliophora	Spirotrichea	Choreotrichida	Strobilidiidae I	Pelagostrobilidium	Pelagostrobilidium nentuni
5 Mana	420410	225	1 0	ukarvota	Alveolato	Dinoflagellata	Dinonhyceae	Gymnodiniales	Karenjaceae	Karenia	Karenia brevis
11 New	420419	325	2 0	ukanuta	Alveolata	Dinoflagolleta	Dinophyceae	Gymnodinialas	Gumpodiniaceas	Gyrodinium	Guradinium cairala
11 Nano	407695	325	2 5	ukaryota	Alveolata	Dinonagenata	Dinophyceae	Gymnodiniales	Gymnodiniaceae	Gyrodinium	Gyrodinium_spirale
4 Nano	388757	325	3 E	Eukaryota	Alveolata	Dinoflagellata	Dinophyceae	Peridiniales	Heterocapsaceae	Heterocapsa	Unclassified
18 Nano	247007	312	4 E	Eukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Unclassified	Unclassified	Unclassified
10 Nano	211664	310	5 E	Eukaryota	Alveolata	Dinoflagellata	Dinophyceae	Unclassified	Unclassified	Unclassified	Unclassified
8 Nano	202808	292	6 F	ukarvota	Stramenopiles	Ochrophyta	Bacillariophyta	Bacillariophyta X	Polar-centric-Mediophyceae	Minidiscus	Minidiscus comicus
25 Nano	155701	318	7 6	ukarvota	Alveolata	Dinoflagellata	Dipophyceae	Gymnodiniales	Gymnodiniaceae	Gyrodinium	Gyrodinium belveticum
22 Mana	150902	221	0 0	Lukaruota	Stramononilos	Ochronhuto	Basillarianhuta	Basillarianhuta X	Polar contris Medianhusean	Minidiseus	Minidiseus veriabilis
25 Nalio	130602	321	0		Stramenopiles	Ochrophyta	Bacillariophyta	Baciliariopriyta_x	Polar-centric-ivieulophyceae	Willingscus	Winnuscus_variabilis
22 Nano	119674	321	9 6	ukaryota	Hacrobia	Cryptopnyta	Cryptophyceae	Cryptomonadales	Cryptomonadales_X	Plagioselmis	Plagioselmis_prolonga
32 Nano	113909	325	10 E	ukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Gymnodiniaceae	Gymnodinium	Gymnodinium_sp.
16 Nano	107617	268	11 E	ukaryota	Hacrobia	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadales_X	Teleaulax	Teleaulax_acuta
2 Nano	107485	306	12 E	Eukaryota	Archaeplastida	Chlorophyta	Mamiellophyceae	Mamiellales	Bathycoccaceae	Ostreococcus	Ostreococcus_lucimarinus
30 Nano	105866	319	13 E	Eukarvota	Hacrobia	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadales X	Teleaulax	Teleaulax gracilis
28 Nano	105161	240	14 6	ukaryota	Alveolata	Unclassified	Unclassified	Unclassified	Unclassified	Inclassified	Unclassified
20 Nano	100101	240	10 0	ukai yota	Characterilles	Orleassined	Desillarianhuta	Deellesterkete V	Dedial controls haved Considerations have a	Cultaradia	Culoradia dellastula
20 Nano	100827	296	15 6	ukaryota	stramenopiles	Ochrophyta	Bacillariophyta	Bacillariophyta_X	Radiai-centric-basai-coscinodiscophyceae	Guinardia	Guinardia_delicatula
38 Nano	94441	292	16 E	ukaryota	Alveolata	Dinoflagellata	Syndiniales	Dino-Group-I	Dino-Group-I-Clade-1	Dino-Group-I-Clade-1_X	Dino-Group-I-Clade-1_X_sp.
40 Nano	88662	53	17 E	Eukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Warnowiaceae	Warnowia	Warnowia_sp.
33 Nano	88556	181	18 E	Eukaryota	Stramenopiles	Ochrophyta	Bacillariophyta	Bacillariophyta_X	Radial-centric-basal-Coscinodiscophyceae	Leptocylindrus	Leptocylindrus_convexus
31 Nano	84194	284	19 E	Eukarvota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Gymnodiniaceae	Lepidodinium	Lepidodinium chlorophorum
7 Nano	84137	311	20 F	ukarvota	Stramenoniles	Ochronhyta	Bacillarionbyta	Bacillarionhyta X	Polar-centric-Medionbyceae	Chaetoceros	Chaetoceros tenuissimus
7 Nano	77510	222	20 0	ukai yota	Alverlate	Disaflassilata	Disashussas	bacinariopriyta_x	I selectified	Lineland find	Understein d
48 Nano	//518	322		ukaryota	Alveolata	Dinonagenata	Dinophyceae	Unclassified	Unclassified	Unclassified	Unclassified
41 Nano	/5200	284 .	22 8	ukaryota	Stramenopiles	Ochrophyta	Bacillariophyta	Bacillariophyta_X	Polar-centric-Mediophyceae	Unclassified	Unclassified
56 Nano	73226	305 3	23 E	Eukaryota	Alveolata	Dinoflagellata	Dinophyceae	Peridiniales	Heterocapsaceae	Heterocapsa	Heterocapsa_nei/rotundata
93 Nano	66758	319	24 E	ukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Gymnodiniaceae	Gyrodinium	Gyrodinium_dominans
74 Nano	62704	221	25 E	ukaryota	Unclassified	Unclassified	Unclassified	Unclassified	Unclassified	Unclassified	Unclassified
60 Nano	61721	144	26 F	- Lukarvota	Stramenoniles	Onalozoa	MAST-12	Unclassified	Unclassified	Unclassified	Unclassified
20 Nano	59290	202	27 6	lukaryota	Alveolata	Dinoflagellata	Dinophycese	Unclassified	Unclassified	Unclassified	Unclassified
2C Name	53541	202 2	20 0	ukai yota	Distanta	Dadialasia	Assetheses	Chausanathida	Chausanathlida V	Assethenessined	A
26 Nano	57541	201 .	28 6	ukaryota	Knizaria	Radiolaria	Acantharea	Chaunacanthida	Chaunacanthida_X	Acanthometron	Acanthometron_sp.
59 Nano	56386	302 2	29 E	ukaryota	Hacrobia	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadales_X	Unclassified	Unclassified
45 Nano	56093	273	30 E	ukaryota	Stramenopiles	Ochrophyta	Bacillariophyta	Bacillariophyta_X	Radial-centric-basal-Coscinodiscophyceae	Leptocylindrus	Leptocylindrus_sp.
42 Nano	54745	225	31 E	Eukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Gymnodiniaceae	Gyrodinium	Gyrodinium_heterogrammum
78 Nano	51471	160	32 E	Eukarvota	Alveolata	Dinoflagellata	Noctilucophyceae	Noctilucales	Noctilucaceae	Noctiluca	Noctiluca scintillans
2 Pico	628227	290	1 F	Lukarvota	Archaenlastida	Chlorophyta	Mamiellonhyceae	Mamiellales	Bathycoccaceae	Ostreococcus	Ostreococcus lucimarinus
1E Dico	244477	200	2 0	Lukaruota	Archaeplastida	Chlorophyta	Mamiellenhusses	Mamiellales	Mamiellasona	Micromonas	Micromonos, commada A2
15 PICO	244477	290	2 5	ukaryota	Archaepiastida	Chiorophyta	wamieliopnyceae	wamiellales	Mamiellaceae	wicromonas	wicromonas_commoda_Az
21 Pico	222671	289	3 E	Eukaryota	Archaeplastida	Chlorophyta	Mamiellophyceae	Mamiellales	Bathycoccaceae	Bathycoccus	Bathycoccus_prasinos
4 Pico	128778	289	4 E	ukaryota	Alveolata	Dinoflagellata	Dinophyceae	Peridiniales	Heterocapsaceae	Heterocapsa	Unclassified
14 Pico	128185	286	5 E	Eukaryota	Archaeplastida	Chlorophyta	Mamiellophyceae	Mamiellales	Mamiellaceae	Micromonas	Micromonas_bravo_B2
35 Pico	127188	290	6 E	ukaryota	Archaeplastida	Chlorophyta	Mamiellophyceae	Mamiellales	Mamiellaceae	Micromonas	Unclassified
5 Pico	117091	290	7 F	ukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Kareniaceae	Karenia	Karenia_brevis
22 Pico	112722	289	8 -	Lukarvota	Hacrobia	Cryptonhyta	Cryptophyceae	Cryptomonadales	Cryptomonadales X	Plagioselmis	Plagioselmis prolonga
10 Pico	110210	205	9	ukarvota	Alveolato	Dinoflagellata	Dinonhyceae	Unclassified	Unclassified	Unclassified	Unclassified
25 Pico	110219	2//	10	ukor yotd	Alugalate	Disoflagellata	Disophyceae	Cumpadipialac	Cumpadiplasaga	Curadialum	Guradialum halustisum
25 PICO	92313	269	10 E	ukaryota	Aiveolata	ononagellata	Dinophyceae	GymnodinialeS	Gynnodiniaceae	Gyrodinium	Gyrodinium_neiveticum
30 Pico	87273	288	11 E	ukaryota	Hacrobia	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadales_X	Teleaulax	releaulax_gracilis
43 Pico	82190	281	12 E	Eukaryota	Hacrobia	Picozoa	Picozoa_X	Picozoa_XX	Picozoa_XXX	Picozoa_XXXX	Picozoa_XXXX_sp.
11 Pico	79986	289	13 E	Eukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Gymnodiniaceae	Gyrodinium	Gyrodinium_spirale
38 Pico	72639	266	14 E	Eukarvota	Alveolata	Dinoflagellata	Syndiniales	Dino-Group-I	Dino-Group-I-Clade-1	Dino-Group-I-Clade-1 X	Dino-Group-I-Clade-1 X sp.
32 Pico	64853	282	15 0	ukarvota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Gymnodiniaceae	Gymnodinium	Gymnodinium sp
40 Di	62021	202	16	ukanuct-	Alveolata	Dinoflagolleta	Sundiniales	Dino-Group I	Dino-Groun-L Clarks 1	Dino-Group I Clade 1 Y	Dipo-Group-I Clade 1 V
49 PICO	62024	250	10 6	ukaryota	Alveolata	Dadial	a seather	Character and the	Chause and the st	A seath sector	A seath seath
26 Pico	55277	176	17 E	ukaryota	Knizaria	Kadiolaria	Acantharea	Chaunacanthida	Chaunacanthida_X	Acanthometron	Acanthometron_sp.
16 Pico	51758	219	18 E	Eukaryota	Hacrobia	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadales_X	Teleaulax	Teleaulax_acuta
90 Pico	48449	194	19 E	Eukaryota	Alveolata	Dinoflagellata	Syndiniales	Dino-Group-I	Dino-Group-I-Clade-1	Dino-Group-I-Clade-1_X	Dino-Group-I-Clade-1_X_sp.
99 Pico	43871	103	20 E	ukaryota	Alveolata	Dinoflagellata	Syndiniales	Dino-Group-II	Dino-Group-II-Clade-10-and-11	Dino-Group-II-Clade-10-and-11 X	Dino-Group-II-Clade-10-and-11 X st
127 Pico	41545	133	21 0	ukarvota	Stramenoniles	Ochrophyta	Bacillarionhyta	Bacillariophyta X	Polar-centric-Medionbyceae	Unclassified	Unclassified
107 0	41045	100	22	ukanut yota	Alveolata	Dipoflagollata	Sundinialos	Dino-Group II	Dino-Group-II-Clade 20	Dino-Group II Clada 20 Y	Dino-Group-II Clade 30 Y
107 Pico	40999	227	22 E	ukaryota	Aiveolata	Dinonagellata	syndimales	Dino-Group-II	Dino-Group-II-Clade-20	Dino-Group-II-Clade-20_X	bino-Group-II-Clade-20_X_sp.
117 Pico	40438	101 2	23 E	ukaryota	Aiveolata	Dinoflagellata	Syndiniales	Dino-Group-II	Dino-Group-II-Clade-7	Dino-Group-II-Clade-7_X	Dino-Group-II-Clade-7_X_sp.
148 Pico	40165	284	24 E	ukaryota	Alveolata	Dinoflagellata	Dinophyceae	Unclassified	Unclassified	Unclassified	Unclassified
136 Pico	40094	33 3	25 E	Eukaryota	Alveolata	Dinoflagellata	Syndiniales	Dino-Group-II	Dino-Group-II-Clade-10-and-11	Dino-Group-II-Clade-10-and-11_X	Dino-Group-II-Clade-10-and-11_X_sp
18 Pico	38449	271	26 E	ukaryota	Alveolata	Dinoflagellata	Dinophyceae	Gymnodiniales	Unclassified	Unclassified	Unclassified
100 Pico	38292	282	27 -	Eukarvota	Stramenoniles	Sagenista	MAST-7	MAST-7B	MAST-7B X	MAST-7B XX	MAST-7B XX sn
147 Pico	37970	202 -	28	ukarvota	Alveolata	Ciliophora	Spirotrichea	Strombidiida	Strombidiidae M	Unclassified	Unclassified
04 Plas	37670	245	20 5	ukor yotd	Alugalate	Ciliophora	Spirotrichea	Strombidiida	Tenteniidae A	Labora	Unclassified
94 PICO	37457	167 1	29 E	ukaryota	Aiveolata	Chiophora	spirotricnea	Suombidiida	Tontofildae_A	Labuea	onciassified
59 Pico	37031	264	30 E	ukaryota	Hacrobia	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadales_X	Unclassified	Unclassified
106 Pico	35748	255	31 E	Eukaryota	Alveolata	Ciliophora	Spirotrichea	Strombidiida_G	Strombidiida_G_X	Strombidiida_G_XX	Strombidiida_G_XX_sp.
98 Pico	34796	154	32 E	Eukaryota	Hacrobia	Picozoa	Picozoa_X	Picozoa_XX	Picozoa_XXX	Unclassified	Unclassified
48 Pico	34594	278	33 F	Eukaryota	Alveolata	Dinoflagellata	Dinophyceae	Unclassified	Unclassified	Unclassified	Unclassified
55 Pico	34525	243	34 0	ukarvota	Archaeplastida	Chlorophyta	Mamiellophyceae	Mamiellales	Bathycoccaceae	Ostreococcus	Ostreococcus tauri
8 Dico	24402	245	25	ukar you	Stramoronile	Ochronhuto	Bacillariophyteae	Bacillarionhyte V	Polar-contric-Medionhusean	Minidiscus	Minidiscus comicus
6 PICO	34483	244	33 E	ukaryota	Alugality	Dinofic II	Disophus	Lacianophyta_X	Linelogsified	Unclassified	Linelassified
113 Pico	34479	239	56 E	ukaryota	Aiveolata	Dinoflagellata	Dinophyceae	Unclassified	Unclassified	Unclassified	Unclassified
83 Pico	33143	133	37 E	ukaryota	Stramenopiles	Pseudofungi	MAST-1	MAST-1A	MAST-1A_X	MAST-1A_XX	MAST-1A_XX_sp.
66 Pico	32826	227	38 E	Eukaryota	Archaeplastida	Chlorophyta	Prasino-Clade-V	Pseudoscourfieldiales	Pycnococcaceae	Pycnococcaceae_X	Pycnococcaceae_X_sp.
	22611	123	39 F	Lukarvota	Stramenopiles	Opalozoa	MAST-12	Unclassified	Unclassified	Unclassified	Unclassified
60 Pico	52011			unuiyotu							

Supplementary Table 3: Name, ranks, number of OTUs, and number of OTUs with successfull trait annotation along the subsets of 5000 OTUs of the rank abundance curves of micro, nano, and picoplankton. Fraction of the

		rank		# of OTUs	# of non-	
		abundance		annotated	annotated	% annotated
Size Fraction	Subset	curve	# of OTUs	with traits	OTUs	OTUs
Micro	Abundant	0-38	38	17	21	44 74
Micro	2500	0-5000	5000	2222	2667	46,66
Micro	5000	2500 7500	5000	2333	2007	40,00
Micro	7500	5000-10000	5000	2240	2734	44,92
Miero	10000	7500 12500	5000	2172	2020	45,44
IVIICFO	10000	/500-12500	5000	2139	2861	42,78
Micro	12500	10000-15000	5000	2153	2847	43,06
Micro	15000	12500-17500	5000	2122	2878	42,44
Micro	17500	15000-20000	5000	2210	2790	44,20
Micro	20000	17500-22500	5000	2230	2770	44,60
Micro	22500	20000-25000	5000	2095	2905	41,90
Micro	25000	22500-27500	5000	2124	2876	42,48
Micro	27500	25000-30000	5000	2174	2826	43,48
Micro	30000	27500-32500	5000	2158	2842	43,16
Micro	32500	30000-35000	5000	2113	2887	42,26
Micro	35000	32500-37500	5000	2204	2796	44,08
Micro	37500	35000-40000	5000	2242	2758	44,84
Micro	40000	37500-42500	5000	2189	2811	43.78
Micro	42500	40000-44 813	4813	2098	2715	43 59
Micro	42300	400000 44 013 A2 313-AA 813	2500	1080	1420	43,35
Nano	Abundant	0_22	32	12	20	37.50
Nano	2500	0-52	52	2217	20	37,50
Nano	2500	0-5000	5000	2517	2065	40,54
Nano	5000	2500-7500	5000	2169	2831	43,38
Nano	7500	5000-10000	5000	2076	2924	41,52
Nano	10000	7500-12500	5000	1995	3005	39,90
Nano	12500	10000-15000	5000	2031	2969	40,62
Nano	15000	12500-17500	5000	2054	2946	41,08
Nano	17500	15000-20000	5000	2013	2987	40,26
Nano	20000	17500-22500	5000	2021	2979	40,42
Nano	22500	20000-25000	5000	2110	2890	42,20
Nano	25000	22500-27500	5000	2139	2861	42,78
Nano	27500	25000-30000	5000	2160	2840	43,20
Nano	30000	27500-32500	5000	2103	2897	42.06
Nano	32500	30000-35000	5000	1980	3020	39.60
Nano	35000	32500-37500	5000	1964	3036	39.28
Nano	37500	35000-40000	5000	2175	2825	43 50
Nano	40000	27500 42500	5000	2175	2825	43,50
Nano	40000	40000 45000	5000	2255	2707	44,00
Nano	42500	40000-45000	5000	2042	2958	40,84
Nano	45000	42500-47500	5000	2088	2912	41,76
Nano	47500	45000-50000	5000	2282	2/18	45,64
Nano	50000	47500-52500	5000	2451	2549	49,02
Nano	52500	50000-55000	5000	2372	2628	47,44
Nano	55000	52500-57500	5000	2236	2764	44,72
Nano	57500	55000-60000	5000	2264	2736	45,28
Nano	60000	57500-62500	5000	2270	2730	45,40
Nano	62500	60000-65000	5000	2469	2531	49,38
Nano	65000	62500-67500	5000	2584	2416	51,68
Nano	67500	65000-70000	5000	2517	2483	50,34
Nano	70000	67500-71380	3880	1965	1915	50,64
Nano	71380	68880-71380	2500	1264	1236	50,56
Pico AB	Abundant	0-40	40	20	20	44,74
_ Pico_2500	2500	0-5000	5000	2656	2344	46.66
Pico 5000	5000	2500-7500	5000	2599	2401	44 92
Pico 7500	7500	5000-10000	5000	2555	2401	13 11
Pico_10000	10000	7500-12500	5000	25/0	2424	43,44
Pice_10000	12500	10000 15000	5000	2545	2451	42,78
PICO_12500	12500	10000-15000	5000	2515	2465	45,06
PICO_15000	15000	12500-17500	5000	2493	2507	42,44
Pico_17500	17500	15000-20000	5000	2538	2462	44,20
Pico_20000	20000	17500-22500	5000	2633	2367	44,60
Pico_22500	22500	20000-25000	5000	2531	2469	41,90
Pico_25000	25000	22500-27500	5000	2475	2525	42,48
Pico_27500	27500	25000-30000	5000	2539	2461	43,48
Pico_30000	30000	27500-32500	5000	2418	2582	43,16
Pico_32500	32500	30000-35000	5000	2342	2658	42,26
Pico_35000	35000	32500-37500	5000	2417	2583	44,08
Pico 37500	37500	35000-40000	5000	2438	2562	44.84
Pico 40000	40000	37500-42500	5000	2400	2600	43 78
Pico 42500	42500	40000-45000	5000	2308	2600	13,70
Rico /E000	45000	42500 47500	5000	2308	2052	43,35
Rico_43000	43000	42000-47500	5000	2221	2779	45,20
Pice_50000	47500	45000-50000	5000	1020	2/23	43,20
PICO_50000	50000	47500-51568	4068	1929	2139	43,20
PICO 52500	51568	49068-51568	2500	1198	1302	43.20