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Abstract : 

Artificial Reefs (ARs) are commonly cited as a tool used for increasing fishery production and reinstating 
ecosystem functionalities. The assessment of AR deployment is mostly based on analysis of the evolution 
of fish communities. Recently, studies have focused on trophic modelling to understand the functioning 
of such ecosystems in a more holistic approach. Trophic models are able to address this concern by 
describing the interaction between species at different trophic levels and based on the quantification of 
energy and matter flows through ecosystems. These models allow the application of numerical methods 
- also called Ecological Network Analysis (ENA) - to characterize emergent properties of the ecosystem. 
Usually, ENA indices are proposed as indicators of ecosystem health as they are sensitive to different 
impacts on marine ecosystems. In the present study, the Ecopath software is used to build an ecosystem 
model composed of 23 compartments, from detritus and phytoplankton to mammals, to describe the 
situation “before” and “after” the deployment of ARs in the south of the Bay of Biscay along the Landes 
coast. In addition, ENA indices are calculated for two periods, “before” and “after” the deployment of 
artificial reefs, to compare network functioning and the overall properties of the structural trophic network. 
Our results show little structural change in the ecosystem, with a rearrangement of the trophic levels and 
a simultaneous increase in biomass and system maturity. These preliminary results evidently need to be
confronted with other environmental factors such as, for instance, substrate composition, proximity to 
natural reefs and larval supply... Nonetheless, we consider that the maturity index could be used as a new 
indicator to assess the evolution of ARs with specific management objectives.
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1 Introduction 

Artificial Reefs (ARs) are human made voluntarily submerged structures created “to mimic certain

functions of a natural reef such as protecting, regenerating, concentrating, and/or enhancing populations

of marine resources” (FAO, 2015). Despite some controversial debates about the effects of production

and concentration (Osenberg et al., 2002; Pickering et Whitmarsh, 1997), ARs are commonly considered 

to be relevant tools for increasing fisheries production and supporting commercial or recreational fishing

activities, if they are properly managed (Seaman et al., 2000; Santos et Monteiro, 1997). Therefore, they 

are used worldwide with fish production being the main objective (Lacroix et al., 2002; Jensen, 2002;

Baine, 2001). Recently and to an increasing extent, ARs are also deployed to rehabilitate marine

ecosystems (coral, rocky or algae substrata) and their functionalities (e.g. nursery, feeding or

reproductive), or to mitigate the effects of anthropogenic impacts (Seaman, 2019; Patranella, et al., 2017; 

Pioch et al., 2011). Although the general objectives of AR projects are frequently defined in terms of

production, protection or recreational activities, there is a lack of information on the precise objectives 

with specific indicators (Becker et al., 2018, Claudet et al., 2006). Thus, suitable criteria and quantitative

indicators need to be developed to assess the attainment of AR objectives (Hammond et al., 2020). 

Despite the worldwide deployment of ARs and the increasing research on their design, performance and

management, knowledge of their efficiency remains largely insufficient regarding the production and

protection aspects (Lee at al., 2018; Lima et al., 2020). As their main goal is to enhance fish biomass,

studies have focused predominantly on the variation of certain ecological components such as fish

assemblages, abundance and species richness (Véron et al., 2008; Folpp et al., 2011; Neves dos Santos

and Zalmon, 2015; Becker et al., 2018). Moreover, ARs create new hard substrates to be colonized by

sessile fauna and consequently provide new food resources that are non-pre-existent on soft bottoms 

(Baine, 2001). The feeding relations have been recently explored to demonstrate the real contribution to

fish production as a function of the attraction effect of ARs using stable isotopic ratios to characterize

the trophic network (Cresson et al., 2019). These results open new perspectives using trophic analysis

as a tool to understand the overall functioning of AR systems from the primary producers to the top

predators, while providing original new metrics to improve the effectiveness assessment of ARs. 

Trophic analyses were firstly developed to evaluate ecosystem-based management of fisheries

(Polovina, 1984; Christensen and Pauly, 1992; Gascuel, 2019). For this purpose, models using the

Ecopath with Ecosim software (EwE) have been intensively used and developed over the last three

decades (Colléter et al., 2015; Drouineau et al., 2006; Chouvelon, 2011; Moullec, 2015; Guénette and

Gascuel, 2012; Halouani, 2016). These joint trophic approach have been recently applied to coastal and 

marine systems to assess changes in their functioning in response to environmental perturbations such

as Offshore Wind Farm (OWF), marine aggregates exploitation, harbour construction and dumping of 

dredged materials (Raoux et al., 2017; Pezy et al., 2017) as well as specific regulations for Marine 

Protected Areas (MPA) (Prato, 2016; Valls et al., 2012; Wallmo and Kosaka, 2017; Fulton et al., 2015).

These studies based on Ecological Network Analysis (ENA) provide metrics that could be used to define
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the state of marine ecosystems and assess the effectiveness of conservative management tools. Hence,

this approach has led to the development of indicators for stakeholders and decision makers, allowing

them to build up and enrich Ecosystem Based Management (Safi et al., 2019: Fath et al., 2019). Applied

to ARs, this would be an innovative approach to assess positive or negative changes in ecosystems

associated with the deployment of ARs.  

Other engineering infrastructures can act as ARs, such as shipwrecks, oil platforms or Offshore Wind-

Farms (OWF). These artificial structures also induce an increase of fish biomass, species diversity and

provide shelter against predators. Several surveys on fish and macro-invertebrates indicate that these

structures also give rise to reef effects (Glarou et al., 2020; Ajamian et al., 2015; Picken et al., 2000).

Therefore, this innovative approach, which consists of comparing the state of an ecosystem before and

after a few years of AR deployment by using trophic modelling, could provide an effective overview of

the ecological effects of ARs and other artificial structures on the marine ecosystem (Conner et al., 2016;

Raoux et al., 2017). 

The present study tries to apply the trophic framework approach to validate that ARs can contribute to

enhancing an ecosystem. In this study, we build Ecopath ecosystem models, composed of 23

compartments, ranging from detritus and phytoplankton to marine mammals, to describe the situation

“before” and “after” the deployment of ARs in the southern part of the Bay of Biscay along the Landes

coast. These ARs were deployed by an association named “Atlantique Landes Récifs” with the aim of

creating a protected area for growing fishes after observing a decrease of catches along the coast (ALR,

1998). For this purpose, all marine activities are prohibited on the site and three types of AR have been

deployed to offer refuges, habitats and food supply for demersal and pelagic fishes. The hypothesis

tested in this study is that ARs modify the structure and functioning of the trophic network. Moreover,

our study focuses on the identification of emergent properties that evolve with the deployment of ARs

and proposes the use of ecological indicators to monitor the progress of AR projects in reaching their

objectives. 

 

2 Materials and methods  

2.1 Study area 

In France, ARs were deployed since 1968 throughout more than fifty sites, firstly in the aim to develop

or protect fisheries resources and, since a decade, to restore marine ecosystems (Salaün et al., 2022b).

The study area is located in the south of the Bay of Biscay, a large gulf on the French Atlantic coast

characterized by a continental shelf that decreases in width from the North (150 km) to the South (12

km) (Borja et al., 2019). The south of the continental shelf is incised by the Capbreton Canyon whose

head is situated only 250 m off the Landes coast (Mazières et al., 2015). The study area is exposed to

strong swell that transports around 1,000 m3 per year of sediment to the south (Abadie et al., 2006). 

pring upwelling occurs in the area (Planque et al., 2004) and the sediment habitat correspond to fine

and with wave influence (Borja et al., 2019) associated with Nephtys cirrosa benthic communities 
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(after Monbet, 1972). Boreal and subtropical fish species are distributed across this rich ecosystem 

(Authier et al., 2018) and top predators such as marine mammals and seabirds are attracted (Planque et

al., 2004; Sanchez and Santurtun, 2013). 

 

: Location of the Capbreton Artificial Reef study site and photographs of the three artificial reefs modules forming a triangle 
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ARs have been implemented off Capbreton to create hard bottom habitats for fisheries production 

(Salaün et al., 2022); this location was chosen for many reasons, including the proximity of Capbreton

harbour and the coastline (2.2 km offshore on a sandy bottom at 20 m depth), the gentle slope of the 

ontinental shelf (<0.8 %) and the supply of organic matter from the Hossegor marine lake and the 

Adour plume (Biosub, 1999; Mazière et al., 2015) (Figure 1). Three types of ARs were deployed by the

association “Atlantique Landes Récifs”, with clusters of concrete Bonna® pipes being emplaced in 1999 

at three sites of around 200 m² each. The “Typi” modules were deployed in 2010 with a 11 m² footprint 

and the “Babel” modules in 2015 with a 5 m² footprint (Figure 1). Rapidly, two ARs sites with Bonna

pipes were buried. The study focused on the three remaining ARs sites that forms a triangle covering an

area of 900 m², with one peak corresponding to site n°2 with clusters of concrete pipes, and the other

two peaks corresponding to the sites with Typi and Babel modules. Also, the total ARs surface footprint 

covered 102 m², the total surface colonized represented 3 656 m² and the volume formed were 830 m3. 

 

2.2 Trophic network modelling framework 

 

In this study, we use the Ecopath with Ecosim (EwE) approach and software (Polovina, 1984;

Christensen and Pauly, 1992) to model the trophic network before and after the placement of three ARs

in the Capbreton Artificial Reef study site. Thus, the two Ecopath models called BAR (Before AR 

eployment) and AARs (After AR deployment) based on data collected on the three artificial reefs of

he Capbreton study site were created. To ensure statistical robustness a minimum of five years’ data 

or each model were addressed. Therefore, the BAR model covered the period from 1997 to 2002 and

he AAR model covered for ten years from 2010 to 2020. Despite the overlapping of the BAR period

nd the first AR deployment occurring in 1999, the data considered to represent this period were

arefully selected to minimize the possibility that ARs deployment had an influence on it. 

copath modelling is based on functional groups that constitute the trophic network units. A functional 

roup could include several species or individual ones that have similar habitat and ecological

haracteristics (growth rates, diets, predators, consumption). Whereas detritus group is essential, the

umber of groups are not limited (Heymans et al., 2016). The Ecopath model requires inputs for each

functional group that are information on the biomass, the diet composition and other ecological

parameter such as the Production-Biomass ratio, the Consumption-Biomass ratio and the Ecotrophic 

Efficiency. The inputs are based on the individual species information (Step 1 in Figure 2) that are

weighted by their relative biomass to calculate a single functional group parameter (Step 2 in Figure 2).

Then, the models are analysed and compared using ecological index (Step 3 in Figure 2). However, the 

index is related to the model structural parameters, such as the number of groups, that could make 

comparisons between models difficult to interpret (Pinnegar et al., 2005). 

To make the static Ecopath models more comparable, we chose to fix the number and the type of the

functional groups, but the species including in these groups could be different over models. Thus, we 
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selected 23 functional groups based on heightened species interest referenced in our study site (e.g.,

commercial species, cultural value species, reef species) that range from detritus and phytoplankton to

top predators such as marine mammals or diving seabirds. Whereas ecological parameters are relatively

easy to estimate with literature values, the biomass is more space related. We chose to focus our

sampling strategy on the local biomass data acquisition considering our allocated time and funds. 

Figure 2: Trophic network modelling framework apply to model before and after the ARs deployment in Capbreton 

 

 

2.3 Biomass sampling strategy 

 

The biomass data intended to represent the stable state of relationships in the ecosystem before and after

ARs deployment and overview their ecological effect. The biomass sampling strategy were made to this

end: (1) on-site collection of fish and benthic invertebrates of soft bottom and hard substrate was

privileged, as they are the faunal communities the most impacted by ARs deployment (Fabi et al., 2006); 

(2) the biomass data for the other fauna groups were taken from the literature (details given on Table 1); 

(3) the same biomass data were used for meiofauna, zooplankton, phytoplankton and bacteria groups

before and after ARs deployment because ARs deployment was assumed to have no effect on their

biomass and production (Miller and Falace, 2000) and (4) the same biomass data were used for marine

mammals and birds groups due to the low surface-area of ARs (in m²) compared to their predation areas

(in km²), ARs were assumed to have little influence on the biomass of these top predators (Castège and 
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Milon, 2018). As a result, other external factors that could influence the parameter fluctuation such as

temperature growth were limited and top-down and bottom repercussion due to ARs deployment were

strengthened.  

 

The biomass sampling was carried out using multi-tool surveys: 

• Soft bottom benthic fauna sampling (Before and After AR deployment); 

• Hard bottom benthic fauna sampling (on Artificial Reef); 

• Underwater visual census of fishes, macro-decapods and cephalopods (only After AR 

deployment). 

he annual average representation of exchanges in the ecosystem was made with available data covering 

 minimum of five years as possible (Table 1). To be able to compare data from various numbers of

amples and different method, all data were express into mean annual biomass by square meter

mplemented on the surface triangle (900 m²). 
Table 1: The periods and locations of the data collected for the functional groups included in the two models (BAR: Before 
Artificial Reef and AR: After Artificial Reef) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 BAR AAR 

Periods and location 
for biomass data 

Periods and location 
for biomass data 

Plunge and pursuit divers’ 
seabirds 

1999-2004 (Bay of Biscay surveys) 
 

Surface feeders seabirds 
Marine mammals 
Benthopelagic cephalopod 1997-2002 (South of 

Bay of Biscay 
surveys) 

2010-2020 (this 
study coupled with 
older ARs surveys) 

Benthic cephalopod 

Gadidae 
Fish piscivorous 
Fish, benthos feeders 
Labridae 
Sparidae 
Fish flatfish 
Fish planctivorous 
Macro-decapods 
Predators 2000 (Capbreton 

survey) 
2019-2020 (this 

study) Scavengers /omnivorous 
Filters feeders 
Surface Deposit Feeders 
Sub surface Deposit Feeders 
Meiofauna 1981 (Galicia survey) 
Zooplankton 1999-2006 (Bay of Biscay surveys) 
Bacteria 1994-2002 (Bay of Biscay surveys) 
Phytoplankton 1999-2000 (Bay of Biscay surveys) 
Détritus 1994-2002 (Bay of Biscay surveys) 
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2.3.1 Soft bottom benthic fauna sampling 

Hand box-corer samplers and a grab of 0.02 m² were used to sample the soft bottom benthic fauna.  

he corer used is 25 cm long and has a diameter of 16 cm, with a cap to limit loss of material. The 

pening of the grab is 20 cm long and 10 cm wide. 

he first soft bottom benthic fauna sample campaign was conducted by scuba-divers in May 2000, just 

fter the first deployment of ARs, on 12 stations located along the four cardinal directions at distances 

f 1 m, 5 m and 10 m from the AR site (Ferrou, 2000; Figure 3). Two replicates of 0.02 m² each were

sampled with the hand box-corer at each station. A grab was operated for the furthest stations at 30 m 

from site n°2 for one sample (Ferrou, 2000). To be able to use these data in the BAR model, we selected

only those stations furthest from the AR placement site (5m, 10m and 30 m). This allows us to avoid 

considering the recent influence of ARs on the soft bottom benthic community mainly concentrated 

around the AR footprints (Créocéan, 2008). Therefore, the total sampling effort used for the BAR model 

corresponds to a coverage of around 0.4 m². 

he second soft bottom benthic fauna sample campaign was conducted by scuba-divers in September 

2019 and 2020 on 12 stations located along each cardinal direction 20 m from the three ARs (Figure 3). 

Between three to six replicates of 0.02 m² were collected at each station with the hand-box corer. The 

total sampling effort was around 0.9 m² and the collected samples were used for the After Artificial

Reefs model (AAR). 

To ensure comparison, the data collected for BAR and AAR model were expressed into mean annual

biomass by square meter implemented on the surface triangle (900 m²) using the method described

below.  

The sediment collected was sieved through a 0.1-mm mesh. All samples were preserved in 10 % 

formaldehyde solution before being sorted. The species were counted under a binocular microscope and

identified at the lowest taxonomic level needed to classify them into functional groups. The biomass of

species collected for the BAR model was calculated based on the abundance of the benthic species

present and their individual weight referenced by Pezy (2017). The species collected for the AAR model

were placed in a drying oven at 60°C for the duration needed to ensure drying of the sample (around

48h to 96h). Then, the samples were weighed to determine dry weight (DW) before being put into

another oven for 5 hours at 500°C. The ash-free dry weight (AFDW) was obtained by subtracting ash

weight from DW. For benthic invertebrates, the biomass was converted from AFDW to carbon content

using a conversion factor of 0.518 (Brey, 2001). Then the biomass was reported on the studied triangle

site (900 m²). 
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2.3.2 Hard bottom benthic fauna sampling 
The Scraping method is commonly used to analyse benthic fauna communities on hard substrates (FAO, 

2015) and was applied in this study to ARs. The difficulty of this technique is to be able to collect all

organisms, especially those of small size, when there is underwater current (FAO, 2015). 

Samples of benthos were collected in summer 2019 and winter 2020. Six scrape samples at different AR

positions (inside, below, North, East, West and South) were collected by divers on each AR module 

type, using a quadrat sampler of 20 x 20cm for 2019 and 30 x 30cm for 2020, a putty knife and a net

bag (<1 mm mesh size). A total area of 0.553 m² was sampled in summer 2019 and 0.819 m² in winter

2020, thus providing mean annual biomass for the After Artificial Reefs model (AAR). 

All samples were preserved in 10 % formaldehyde solution before being sorted. The species were

counted under a binocular microscope and identified at the lowest taxonomic level needed to classify

them into functional groups. The mean annual biomass was then obtained using the AFDW determined

from the sampled surface for each species extending to the entire ARs colonisable surface (3 656 m²)

and was converting to carbon content using a conversion factor of 0.518 (Brey, 2001). To ensure a

comparable data on two dimensional, the biomass obtained was then reported on the total ARs surface

footprint (102 m²) and then on the studied triangle site (900 m²). 

 

2.3.3 Fishes, macro-decapods and cephalopods underwater visual census 
 

Underwater visual census (UVC) is commonly used as a non-destructive survey method for assessing

fish assemblages (Kulbicki and Sarramégna. 1999). This method was adapted to ARs using both

stationary point and belt transect counts to record fast moving species and then benthic and cryptic

species (Cresson et al., 2018; Lowry et al., 2011, Charbonnel et al., 1997; Labrosse et al., 2011). The

ure 3: Number of soft bottom benthic fauna sampling in 2000 (A) and 2019-2020 (B) 
10 
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survey covered the surface of ARs footprints. UVC campaigns were conducted when possible each year

between May to September on each ARs. For the AAR model, we selected 120 counts carried out during 

he last ten years: 58 on the concrete pipes at site n°2 (2010, 2011, 2012, 2013, 2015, 2016, 2018 and

019), along with 49 on the Typi (2010, 2011, 2012, 2013, 2015, 2016, 2018, 2019 and 2020) and 13

n the Babel module types (2015, 2016, 2018, 2019 and 2020). This selection that covers several years

allows a better representation of the mean annual biomass of fishes, macro-decapods and cephalopods. 

The data was derived from underwater visual census observations of scientific divers and trained

volunteer divers following the recommendations of Harmelin-Vivien et al. (1985). Abundances of 

populations were counted individually up to 10 individuals, whereas larger populations were estimated 

using abundance classes reviewed in the literature (11–30; 31–50; 51–200; 201–500; 500-1000; >1000

individuals). The total length of fish was evaluated in cm. The wet weight was then obtained using the

length-weight relationship W = a x TLb, where W is the wet weight in grams, TL is the average total

length of the size class in cm, while a and b are species-specific constants obtained from the data 

available in Fishbase (Froese and Pauly, 2019) and selected in the vicinity of the study area. As the

survey covered only the surface of ARs footprints, the average biomass was calculated for each species

(fish, cephalopods and decapods) using the footprint of ARs. Conversion factors of 0.192 and 0.402

were used to convert cephalopod wet weights into dry weights and then into carbon contents,

respectively, while 0.35 was used for fishes and 0.518 for decapods (Brey et al., 2010; Brey, 2001). To

maintain the proportion between the surface covered by ARs and the triangle studied surface, the mean

annual biomass obtained was then reported on the studied triangle site (900 m²) with no extrapolation. 

 

2.3.4 Collected data from literature 
 

According to the literature, two trophic networks on the continental shelf of the Bay of Biscay have 

already been established by Lassalle et al. (2011) and Moullec et al. (2017). Data were extracted from 

these models by preferentially selecting coastal data in the vicinity of the study area.  

or the BAR model, the biomasses of fishes, macro-decapods and cephalopods were estimated from 

ottom-trawl surveys carried out by IFREMER since 1997 in the Bay of Biscay in the context of the 

VHOE cruises for the West Europe fisheries evaluation (Evaluation Halieutique Ouest de l'Europe; 

Devreker and Lefebvre, 2018; Mahé and Poulard, 2005). Only the southeast coastal surveys were

selected. In order to ensure a better statistical overview, the period selected for representing the state

before ARs were extending to 2002. The distance from the trawl surveys selected after the first ARs

deployment in 1999 and the study sites (around 65 km) allowed to consider the fish macro-decapods 

and cephalopods biomass were not influenced by the 1999 ARs deployment. The data captured from 

hese thirteen selected trawl transects during the period 1997-2002 were averaged with respect to the 

urvey surface-area over the five years selected (1997, 1998, 1999, 2001 and 2002). Conversion factors 
11 
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of 0.192 and 0.402 were used to convert cephalopod wet weights into dry weights and then into carbon

contents, respectively, with 0.35 used for fishes and 0.518 for decapods (Brey et al., 2010; Brey, 2001). 

The collection of data for top predators is derived from aerial strip-transect surveys, named ROMER 

and ATLANCET, conducted from 2001 to 2004 in the Bay of Biscay (Certain et al., 2008). Annual 

average abundances were converted into biomass using weight referenced by species for sea birds and

marine mammals (Spitz et al.,2018; Anonymous, 2008; ICES, 2000; Hunt et al., 2005). Conversion 

actors of 0.3 and 0.4 were used to convert wet weights into dry weights and then into carbon contents, 

espectively, for sea birds (Lassalle et al., 2011) and a coefficient of 10% is used to convert directly wet

eights into carbon contents for marine mammals (Bradford-Grieve et al., 2003). 

eiofauna data were selected from a site located in Galicia, Spain, where benthic habitat characteristics

re closely similar to the Capbreton site (Tenore et al., 1984). The biomasses of the benthic

acrobenthic invertebrates were converted from AFDW to carbon content using a conversion factor of 

.518 (Brey, 2001). 

ooplankton data were taken from BIOMAN campaigns conducted in the Bay of Biscay from 1999 to

006 (Irigorien et al., 2008). The phytoplankton data used were acquired in the south of the Bay of

iscay as far as the 100 m isobath (zone known as “Gironde Interne”) for the period 1999-2000 (Lampert 

t al., 2001). Then, the data were normalized to the depth of the study (20 m) and the chlorophyll-a were 

onverted into carbon content using a factor 40 (Chardy and Dauvin,1992). The bacteria and detritus 

iomass were derived from the Ecopath model of the Bay of Biscay built by Lassalle (2011). 

.4  Trophic network modelling  

.4.1 Ecopath equation-based modeling 

copath is a mass-balance single-solution model that uses linear equations to estimate flows between a

umber of functional groups established a priori (Christensen and Walters, 2004). The parameterization

f an Ecopath model is based on satisfying two equations. The first equation (Eq. 1) describes the

roduction of each compartment in the system as a function of the consumption to biomass ratio (Q/B) 

f its predators (j), the fishing mortality (Yi, gC·m−2), the net migration (Ei; emigration – immigration, 

ear−1), the biomass accumulation (BAi, year−1) and its natural mortality (1—EEi). The Ecotrophic 

Efficiency (EE) is the fraction of total production consumed in the system (by fishing activities or by 

predators). Its value can never exceed unity. (1-EEi) represents the fraction of mortality not explained

by the model, such as mortality due to old age or diseases. 

 𝐵𝐵 �𝑃𝑃
𝐵𝐵
�
𝑖𝑖

= ∑ 𝐵𝐵𝑗𝑗𝑗𝑗 �𝑄𝑄
𝐵𝐵
�
𝑗𝑗
𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 + 𝑌𝑌𝑖𝑖 + 𝐸𝐸𝑖𝑖 + 𝐵𝐵𝐵𝐵𝑖𝑖 + 𝐵𝐵𝑖𝑖 �

𝑃𝑃
𝐵𝐵
�
𝑖𝑖

(1 − 𝐸𝐸𝐸𝐸𝑖𝑖)  (Eq. 1) 

The second equation (Eq. 2) ensures energy balance, calculating consumption of the ith group (Q) as the 

sum of its production, respiration (R), and excretion (U) 
12 
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𝑄𝑄𝑖𝑖 = 𝑃𝑃𝑖𝑖 + 𝑅𝑅𝑖𝑖 + 𝑈𝑈𝑖𝑖  (Eq. 2) 

2.4.2 Ecopath model parametrisation  

he two models developed in this study are composed of 23 functional groups or compartments ranging

rom seabirds and mammals to detritus. Seabirds are divided into two groups, according to their feeding

strategies. The "plunge and pursuit divers" group is mainly composed of gannets and the "surface 

feeders" are mainly composed of gulls and kittiwakes. Marine mammals (Delphinus delphis, Stenella

coeruleoalba and Tursiops truncatus) are placed together in one group. Cephalopods are divided into 

two groups: the benthopelagic group mainly composed of Loligo vulgaris and the benthic group mainly 

composed of Sepia officinalis. The model also comprises seven groups of fish (Gadidae, piscivorous, 

enthos feeders, Labridae, Sparidae, flatfish and planktivorous). Gadidae, Labridae and Sparidae are not 

ggregated with the other compartments to allow a detailed analysis of the potential impact of the reef

ffect on these three groups which also include commercial species. Benthic invertebrates are divided 

nto six groups (macro-decapods, predators, scavengers/omnivores, filter feeders, surface deposit

eeders and subsurface selective feeders). Finally, the model also comprises one group of zooplankton, 

ne group of bacteria, one group of phytoplankton and one group of detritus. 

he source data used for obtaining the model parameters (Biomass, P/B, Q/B, diet and conversion factor) 

re listed in Supplementary material (Table 1). The dietary preferences for multi-species groups are 

eighted by the relative biomass contribution of each species (Supplementary material, Tables 2 and 

3). Besides, considering the study site as an open system, the diet import was added in proportion of

time spent outside the system (Christensen and Walters, 2004). 

The two models comparison aimed to reveal what modification on the structure and functioning of the

trophic network ARs modify. The differences in the fishing activity between BAR and AAR model (all

activities were restricted) conduct to add a MPA effect on the system. Therefore, to highlight mostly

ARs effect, the fishing mortality in the BAR model represented by Y was not considered. 

 

2.4.3 Balancing the Ecopath model 
 

To equalize the mass balances, the input data to the models had to be manually and slightly calibrated. 

The balancing approach was top-down, starting modifications from top predators down to the lowest

trophic levels. Balancing was performed taking into account the quality of the diet data source. Due to 

a lack of data, the biomass of planctivorous fish and flatfish were left to be estimated by the model after

setting their Ecotrophic Efficiency at 0.95 (Christensen and Walters, 2004). In the same way, the 

biomass of macro-decapods and benthic invertebrate filter feeders were also estimated by Ecopath using

an EE of 0.95. The consistency of the model was checked with the Ecopath PREBAL tool (Link, 2010).

 

13 
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2.5 Analysis of the ecosystem organization and maturity 
 

Ecological network analysis (ENA) was performed to reveal the emergent properties of the trophic 

network using the plug-in included in EwE software (Christensen and Walters, 2004). Thus, for both 

models, we made use of the Total System Throughput (T..), which corresponds to the sum of all flows 

occurring in the system (Latham, 2006), and the System Omnivory Index (SOI), which provides a 

measure of the trophic specialization of predators in terms of trophic levels and an indicator of the

structure and complexity of a trophic network (Libralato, 2008). We also calculated the Finn’s Cycling

Index (FCI), which represents the fraction of the flows in the system generated by recycling (Finn, 1980)

and the Ascendency, which is a measure of the growth and the flow coherence of the system, integrating

its size and organization (Ulanowicz and Abarca-Arenas, 1997; González et al., 2016; Nogues et al., 

2021). In addition, the maturity status of the ecosystems (Odum, 1969) was also assessed using the

following ratios: the total primary production/total respiration (PPt/R), the total primary production/total

biomass (PPt/B) and the total biomass/total system throughput (B/T..) (Christensen et al., 2005). 

The trophic level (TL) of each functional group (i) was calculated as the weighted average of the trophic

levels of its prey (j), according to the following equation:  

𝑇𝑇𝑇𝑇𝑗𝑗 = 1 + �𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗𝑇𝑇𝑇𝑇𝑗𝑗

𝑁𝑁

𝑖𝑖=1

 

  where DCji is the fraction of prey i in the diet of predator j. 

It is noteworthy that the EwE software is a single solution model and statistical comparisons between

models are not possible (Christensen and Walters, 2004). 

3 Results 

3.1 Functional group biomass profiles and trophic levels  

 

Results show that, before the deployment of the ARs, Phytoplankton is the dominant functional group

in the biomass, representing approximately 28 % of the total living biomass of the system (Table 2). The

other major groups of the system are benthic invertebrates, scavengers/omnivores and bacteria, making

up approximately 17 % and 8 % of the total living biomass, respectively (Table 2). 

After the deployment of the artificial reef, the phytoplankton remains the dominant functional group of

the total living biomass of the system, followed by the benthic invertebrate filter feeders (mostly

composed of the barnacles Balanus spp.) and the predators of benthic invertebrates (mostly composed

of the gastropod Natica), representing approximately 22 %, 19 % and 10 % of the total living biomass,

respectively (Table 2). Results show that the total living biomass is higher after deployment of the

artificial reefs. In fact, the total living biomass increases by approximately 28 % after deployment of the

three artificial reefs on the Capbreton site. This increase of biomass is mostly due to the macro-decapods
14 
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and benthic invertebrate filter feeders, whose biomass increases by a factor of approximately 5 and 4, 

respectively, after the installation of the ARs. From another perspective, the Labridae and benthos feeder

fish are the functional groups that experienced the greatest proportional increases (increase by a factor

of 10 and 7 respectively). 

Three notable changes in the species composition of functional group occurred with the ARs deployment

and modified consequently the Q/B data input. The fish piscivorous functional group biomass was

dominated by 93% of Trachurus trachurus (Linnaeus, 1758) in the BAR model while in the AAR it was

dominated by 72% of Conger conger (Linnaeus, 1758). The fish benthos feeder’s functional biomass

group was mainly represented by 47% of Trachinus draco, (Linnaeus, 1758), 24% of Chelon ramada

(Risso, 1827) and 16% of Mullus surmuletus (Linnaeus, 1758) while with ARs the functional group

biomass was composed by 90% of Umbrina canariensis (Valenciennes, 1843). The biomass of Sparidae

functional group evolved from 67% of Boops boops (Linnaeus, 1758), to 27% of Diplodus sargus

(Linnaeus, 1758), 29% Diplodus vulgaris (Geoffroy Saint Hilaire, 1817) and 37% Spondyliosoma

cantharus (Linnaeus, 1758). 
Table 2 : Biomass values (gC.m-2, Trophic Levels, production over biomass (P/B) ratios, consumption over biomass (Q/B) 
ratios, in the two Ecopath models (“before” (BAR) and “after” (AAR) the construction of the artificial reef). Major changes 
were highlighted in bold and dominant living functional group were indicated by *. 

Biomass Trophic Level P/B Q/B EE 

Functional groups 

BAR 

model  

AAR 

model 

BAR 

model  

AAR 

model 

BAR 

model  

AAR 

model 

BAR 

model  

AAR 

model 

BAR 

model  

A

m

e and pursuit diver’s seabirds 0.0001 0.0001 4.06 4.11 0.09 0.09 70.4 70.4 0 

ce feeders seabirds 0.0001 0.0001 3.93 3.94 0.09 0.09 74.94 74.94 0 

e mammals 0.0018 0.0018 4.85 4.83 0.08 0.08 42.5 42.5 0 

opelagic cephalopods 0.0096 0.0037 4.31 4.17 2.71 2.71 14.54 14.54 0.86 

ic cephalopods 0.0240 0.0371 4.10 4.06 3.5 3.5 15 15 0.68 

ae 0.0487 0.0409 4.03 4.00 0.75 0.75 5.1 5.1 0.86 

piscivorous 0.1758 0.3065 3.98 4.20 0.6 0.55 5.9 4.1 0.90 

benthos feeders 0.0246 0.1705 3.78 3.43 0.93 1.17 7.71 3.96 0.94 

dae 3,9 x 10-6 4x 10-5 3.51 3.31 1.3 1.3 10.38 10.38 0.92 

dae 0.0263 0.0089 3.56 3.62 0.55 1.38 2.45 6.05 0.93 

flatfish 0.0208 0.0672 3.53 3.36 0.78 0.88 3.01 3.28 0.95 

planktivorous 0.2231 0.2670 3.15 3.15 1.09 1.092 7.73 7.73 0.95 

o-Decapods 0.0322 0.1543 3.13 3.12 1.18 1.01 5.9 5.05 0.95 

ic invertebrates, Predators 0.2920 0.6161* 3.16 3.22 2.35 2.1 11.75 10.5 0.96 

ic invertebrates, Scv/O 0.8228* 0.2827 3.14 3.20 0.55 0.66 2.75 3.3 0.95 

ic invertebrates, Filter feeders 0.3073 1.2196* 2.28 2.32 2.46 2.8 9.84 11.2 0.95 

ic invertebrates, sDF 0.2690 0.3366 2.44 2.36 2.8 3.11 14 15.55 0.94 

ic invertebrates, ssDF 0.2883 0.4126 2.22 2.22 3.12 2.6 15.6 13 0.92 

fauna 0.2642 0.2642 2.29 2.21 15 15 60 60 0.86 

lankton 0.3600 0.3600 2.15 2.15 11 11 52.38 52.38 0.96 

ria 0.3940* 0.3940 2.02 2.02 115 125 230 250 0.26 

plancton 1.3800* 1.3800* 1 1 61.2 61.2 
 

  0.44 
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tus 2.8467 2.8467 1 1         0.47 

 

In both models (BAR and AAR), the trophic levels (TL) of the functional groups range from 1 for 

primary producers and detritus to a maximum of 4.8 for marine mammals that could be considered as

top predators in this area (Table 3; Figure 4). As mentioned below, TL 1 is composed of two groups

(primary producers and detritus, as imposed by the model structure) and represents approximatively 54

% and 46 % of the total biomass in the BAR and AAR models, respectively. TL 2 is composed of six

functional groups (bacteria, zooplankton, benthic invertebrate subsurface and surface deposit feeders

and filter feeders) making up approximately 23 % and 29 % of the total biomass in the BAR and AAR

models, respectively. TL 3 incorporates the major part of the fish functional group (such as flatfish,

benthos feeders, planktivorous and Sparidae) and is composed of nine functional groups. It represents

16 and 18 % of the total biomass in the BAR and AAR model, respectively. Finally, TL 4 is composed

of five functional groups in the BAR model and six functional groups in the AAR model. TL 4

corresponds to top predators and represents only 8 and 7% of the total biomass in the BAR and AAR

models, respectively. Thus, TL2 is the trophic level contributing most to the total living biomass in both

models. 

Figure 4: Trophic levels of the 23 groups in the AAR models 
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Table 3: Percentage of the biomass for each Trophic Level in the two models Ecopath models: “before” (BAR) and “after” 
(AAR) the construction of the artificial reef. 

 

 

 

 

 

 

3.2 Ecological Network Analysis and time-evolution of ecosystems 

 

The results obtained from Ecological Network Analysis (ENA) show that the activity of the ecosystems

studied here, as indicated by the Total System Throughput and Ascendency, is relatively lower than

other estuarine French models as well as other coastal models (Table 4). The System Omnivory Index

shows that, in both models, the trophic networks have a complex “web-like” structure before and after

AR deployment (Libralato, 2008). Finn’s Cycling Index obtained for both models points towards a

medium recycling system and the PPt/R ratio suggests that the systems are immature. Any comparison

between the ENAs of different models should be performed with caution because some indicators are

specific to the topology of the model, such as the number of functional groups and the distribution of

species (Heymans et al., 2016). Table 4 presents the ENA of similar ecosystems characteristics, i.e.

coastal and sandy sediment in order to place the results in context. 
Table 4: Comparison of indices of network analysis for various French estuary ecosystems reef deployment put in context 
with other Ecopath models. N (number of functional group), Total System Throughput (T.., gC.m-2. Year-1 ); Ascendency (A, 
flowbits); System Omnivory Index (SOI, %), Finn Cycle Index (%), Biomass total (excluding detritus) (Bt, gC.m-2. Year-1), Total 
primary production/total respiration (PPt/R), Total biomass/total throughput (B/T..) and T otal primary production/total 
biomass (PPt/B) 

stem  

BAR 

Landes 

Coast 

AAR 

Landes 

Coast 

Seine estuary 

(France) 

St Michel 

bay 

(France) 

Loire 

estuary 

(France) 

Gironde 

estuary 

(France) 

Galicia 

coast 

(Spain) 

Lithua

coa

ence This study This study 
Selleslagh et 

al., 2012 

Selleslagh 

et al., 2012 

Selleslagh 

et al., 2012 

Selleslagh 

et al., 2012 

Paradell et 

al., 2020 

Tomcz

al., 2

 23 23 15 19 19 18 23 

.. 379 413 3603.22 376.00 635.35 744.30 / 

 401 465 3944.3 451.6 647.0 939.5 1239 

I 0.36 0.302 0.11 0.06 0.12 0.12 0.205 

I 13 13 16.10 0.64 0.19 3.99 19.4 

t 5 6.33 22.30 7.20 4.14 2.12 / 

Trophic Levels BAR AAR 

>TL 4 8 % 7 % 

TL 3 16 % 18 % 

TL 2 23 % 29 % 

TL 1 54 % 46 % 
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/R 1.5 1,2 1.37 6.10 139.59 1.05 1.758 

.. 0.013 0.015 0.01 0.02 0.01 0.003 0.017 

/B 17.01 13.35 38.26 24.60 76.26 21.52 18.34 1

 

4 Discussion 

4.1 Structural comparison with natural reef 

 

ARs have been mainly deployed to mimic the ecological functionalities of natural reefs and/or sustain 

rtisanal fisheries (Pioch, 2008, Salaün et al., 2022a). Over the past decade, studies of ARs have been 

ocused on demonstrating their real contribution to the production of commercial fishes in the context

f fish assemblage analysis; their similitude to natural reef assemblages has been defined as a goal to

each (Simon et al., 2013; Perieira et al., 2016; Streich et al.; 2018, Wu et al., 2019). The results of this 

tudy showed that fish assemblages of ARs are dominated by piscivorous, planktivorous and benthos 

eeder fish (representing 86 % of the total biomass). This range of results is similar to other studies 

onducted in the Mediterranean Sea (Cresson et al., 2017; Koeck et al., 2014; Leitao et al., 2013) but 

lso in the Yellow sea, South-West Atlantic and the Pacific (Wu et al., 2019; Hackradt et al., 2011; 

mith et al., 2016; Hylkema et al., 2020). However, despite the similarity with other fish assemblages

n ARs system, it seems weak to use this indicator to assess the efficiency of ARs. 

irstly, in this study, the comparison with natural reef were not possible because the study site is 

urrounded by soft-bottom and the first natural reef is 20km away and represents a rocky shore

cosystem (Castège et al., 2016). 

econdly, there is no consensus among the scientific community about using fish assemblages to 

ndicate whether ARs are successful in acting as natural reefs. Some studies highlight the performance 

f ARs in providing the same assemblage as a natural reef over a short period of time (Wu et al., 2019). 

owever, other studies conclude that equivalence cannot be achieved on a long time scale (100 years) 

Simon et al., 2013). Besides, this criterion of performance seems to be influenced by other parameters 

uch as the size of the ecosystem, as well as the localisation, substrate features and roughness of the 

abitat (Lopez de Oliveira, 2016). But remarkably, it seems that the distance between ARs and natural 

eefs does not impact the fish assemblage of ARs. (Simon et al., 2013). 

herefore, to provide robust indicators, scientific studies highlight the need to use functional approaches

to provide indicators to assess the effects of ARs on communities (Cresson et al., 2014). In this way, 

trophic network studies, isotopic analysis and modelling approaches provide functional description of

ARs system based on biomass evolution and this criterion could be used to assess the ARs productivity 

to support fisheries (Roa-Ureta, et al., 2019; Cresson et al, 2019; Smith et al., 2016; Mavraki et al.,

2021). 
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4.2 Functional evolvement using biomass indicators 

 

The deployment of three types of ARs along the Landes coast offered new hard substrates for sessile

fauna, notably invertebrate filter feeders, thus promoting their development within the ecosystem

(Raoux, 2017; Cresson, 2013). The benthic community of the BAR system is mainly composed of 

benthic detritivorous species (41 %) with a small proportion of filter-feeder organisms (16 %). The fish

assemblage is dominated by planktivorous and piscivorous fish. With the deployment of ARs, the total

iomass of the system is increased by 14 %. Filter feeders become the predominant benthic taxa in the 

system (62 %). This result needs to be qualified by the fact that the biomasses of filter feeders is 

alculated by the model.  

he presence of filter feeders and grazer communities on ARs is considered essential to transfer the 

nergy from the water column to the macro-invertebrates and fish communities (Bortone et al., 2000).

heir dominance in the benthic community has been demonstrated by various studies on artificial 

tructures (Cresson, 2013; Boaventura et al., 2006; Wetzel et al., 2014). The dominance of filter feeder 

pecies such as barnacles and mussels has been described as an initial condition for the colonization of 

artificial structures before the establishment of a more heterogeneous community (Boaventura et al., 

006; Wetzel et al., 2014, Cresson, 2013, Monteiro and Santos, 2000). A similar benthic composition

as expected for the ARs on the Capbreton site. 

e find a major difference in the composition of the benthic community compared to other artificial 

tructures such as offshore wind farms (OWF). On OWF foundations located in the Baltic Sea, the 

iomass of blue mussels is totally predominant and accounts for more than 97 % of the total biomass of 

he benthic fauna (Maar et al., 2009). The enhanced concentration of blue mussels observed on a pillar 

ear the surface is about 7 to 18 times higher than on scour protection (Maar et al., 2009). A very

different composition is found on the studied ARs along the Landes coast, where the mussel biomass is 

very low and represents less than 1 % of the invertebrate filter feeders. This major difference could be

explained by the distinct difference in size between the two structures and the different environmental

context (Degraer et al., 2020). While OWFs make use of monopiles placed on a soft bottom habitat and 

which reach up to the sea-surface, ARs do not reach the surface and have little influence on the water

column (in this study, ARs have a height of around 2.6 m). Besides, the Baltic Sea bottom is covered by

extensive blue mussel beds, whereas, along the Landes coast, the nearest mussel beds are located at

distances of 3 km and then 20 km from the Capbreton Artificial Reef study site (Figure 1). Therefore,

the larval flow of mussels is reduced. Compared to OWFs, the small effect on filter feeder biomass is 

due to the light colonization of this species (blue mussel) from the water column (Degraer et al., 2020).

Instead of blue mussels, another trophic competitor has colonized the Capbreton ARs: barnacles account 

for around 52 % of benthic community on ARs. Despite of the presence of barnacle, in comparison with 

other similar ARs, the filter feeder biomass still is lower by a factor of 10 (Wetzel et al., 2014). 
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The benthic fauna represents the primary prey of reef fishes. As the benthic fauna increases, it is

expected that fishes will come to feed on the ARs and thus contribute to increase in production around

ARs (Fabi et al., 2006). However, we need to analyse gut contents to confirm this hypothesis. Indeed,

some species such as planktivorous fish, do not feed on the ARs benthic fauna, but can nevertheless be 

attracted onto ARs by the zooplankton exposure due to the ocean (Cresson et al., 2019).  A similar study

conducted in Hong Kong simulated the reef effect after the implantation of ARs (Pitcher et al., 2002).

With ARs covering 3 % of the Marine Protected Areas of Hong Kong, the fish biomass is estimated to

have increased by 30 % corresponding to 247 t (Xu et al., 2019). In the current study, ARs represent 11 

% of the studied area that could be taken as equivalent to an MPA because of the restricted access

established over the entire area. The fish biomass has increased by 67 %, but this represents only 460

kg. Based on the biomass evolution between BAR and AAR system, the increase of benthic fauna and

fish community could be interpreted as a success of ARs biomass production. Nevertheless, ARs are

known to have attraction function, and their contribution to biomass production may be local (Cresson

et al., 2019). Exploring the bottom trawl survey data carried out by IFREMER in the Bay of Biscay in 

2016, using a proximal trait to the study site (7km), and compare it to the BAR data (from the same

FREMER survey but in 1999-2002), the results showed little biomass variation that could be an increase 

r decrease depending on the species (e.g. Trachinus Draco: -3%). This comparison, using only one data 

campaign, supports the local trends in ARs contribution. 

The comparison with other ARs systems could give a scale of effectiveness but need to integrate local

characteristics.  Several factors could influence the biomass production of fish and epifauna: reef shape,

size, volume, relief, roughness, substrate composition, kelp density, invertebrate density, reef age,

proximity to natural reefs and larval supply (Granneman et al., 2015, Moschella et al., 2005; Baine,

2001; Abelson et al., 2002). The complexity of a module is a function of its shape, roughness, porosity

and the size of cavities that it contains (Riera, 2020). An indicator was used to classify modules in

function of their objective and the fauna characteristics. Two of the three ARs deployed in the present

study can be characterized as follows (following Bouchard, 2018):  

1) The Bonna pipe module is described as a “box” structure with a large hole on the top and a small hole

at the side. The surface specific deployed seems sufficient for settled benthic fauna and to provide wide

shelter for demersal fishes.  

2) The Typi module is a « cage » type structure that is not suitable for demersal fishes because of the

lack of shelters. The size and the volume of these modules deployed in the studied area (102 m² and 830

m3) may be too small to sufficiently enhance biodiversity and biomass (Hackradt et al., 2011).

Environmental criteria also influence the efficiency of ARs. In fact, the diversity of fauna communities

depends on the larval flow and is affected by ocean dynamics and the connectivity with other hard

substrates (Svane and Petersen 2001; Koeck et al. 2011, De Bie et al. 2012). As already highlighted, the 

studied sector is 20 km away from a natural rocky habitat. But the shipwrecks and harbour channels 

near the studied area act as transitory hard substrates which could ensure the connectivity between these 
20 
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features (Pastor, 2008). The site is not only subject to local upwelling carrying primary producers but

also intensive storms that damage reefs by smoothing (Hylkema et al., 2020). All these local factors

make it difficult to compare the productivity based on the biomass indicator between different ARs at 

various localities (Baine, 2001). 

 

4.3 Ecological Network Analysis provide new indicators to assess ARs effectiveness 

 

The changes in ecosystems over time can only be described when ecosystem topologies remain similar. 

he Before/After analysis used in our study has the advantage of providing two similar ecosystem 

opologies for the Ecological Network Analysis (ENA). ENA provides indicators that enable us to link 

he ecosystem structure and its functionalities (Ulanowicz, 1986). Then, these evolving trends can be 

ompared to other types of ecosystems. In our study, the trends in Total ecosystem activity and 

scendency (A) between the two periods show an increase of approximately 9 and 16 %, respectively 

Table 5). These rising rates are similar to those simulated in the English Channel for a system before 

and after OWF deployment (Raoux et al., 2017). Conversely, the System Omnivory Index (SOI)

decreases between the two periods, and this trend was also observed in Laizhou Bay following AR 

deployment (Table 4). Finally, the results also highlight that Finn’s Cycling Index remains mostly stable 

between the two periods. 

Results concerning the other ecosystem attributes show that the ratios PPt/R, PPt/B and the B/T.. vary 

between the two systems, but this is not the case for the simulation of ARs deployment in Bohai Bay

(Table 5). In fact, the PPt/R ratio decreases between the BAR model and the AAR model by

approximately 20 %. This trend is also observed in Laizhou Bay as well as in the English Channel, but

is the opposite of the change occurring in the ecosystem of the Yellow sea with OWF deployment (Table

5). A similar pattern is observed for the PPt/B ratio, which shows a decrease of approximately 22 %

between the BAR model and the AAR model (Table 5). By contrast, the B/T.. increases between the

BAR model and the AAR model by approximately 15 %, in accordance with the change in the ecosystem

of the English Channel (Table 4).  

The maturity of a system can be assessed using several indices. The PPt/R index is the ratio between the

energy used for biomass production (total primary production) and the energy used for maintaining

stability of the system (total respiration) (Christensen et al., 2005). When the system is growing,

generally in a “young system”, production exceeds the respiration and the PPt/R index is higher than

unity. On the contrary, when the system is mature, the system tends to balance the use of energy related

to both production and consumption (Odum, 1969). The B/T.. ratio is an index that increases with the

maturity of the system. Regarding these indicators used by Odum (1969), there is a good correlation

between the decrease in PPt/R, PPt/B, net community production and the increase of B/T (Table 5). 

Since there are identical input data of primary producers in both models, the PPt/R and PPt/B metrics

inevitably decrease, because the primary production stays the same whereas biomass increases. The
21 
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B/T.. ratio, which is not directly related to primary production, could better be used in this study to

describe the change in maturity of the system. Thus, the B/T.. ratio shows an increase in system maturity

with the deployment of ARs. Mature and young systems have been described by Odum (1969) as

extreme opposites of an ecosystem. While young systems are characterized by production in terms of

growing and abundance, mature systems yield indicators, such as B/T... but also A and SOI index, that 

reflect the stability of a complex web-like system. The increase of system maturity showed by B/T.. is 

confirmed by the Ascendancy increase (Ulanowicz, 1997) and the SOI index trend that indicates

evolution to a more complex system (Libralato, 2008).  Thus, in our case, the deployment of ARs 

changes the structure of the ecosystem towards a more complex system and its functionality towards a

more stable system.  

However, the study is based on observation of the last two years of the benthic community and ten years

of fish assemblages. By averaging ten years of surveys, we can smooth out the inter-annual variations

in biomass. While communities associated with ARs could rapidly become a stable system (Scarcella et 

al., 2015), the ARs of Capbreton could have been a production system during the initial period before

becoming more mature. Compared to other trophic modelling simulations on ARs (Guan et al., 2016;

Xu et al., 2019) or other artificial structures such as OWFs, (Raoux et al., 2017), the increase of maturity

seems to be a criteria of reef effect based on the B/T.., PPt/R or PPt/B metrics (Table 5). In addition,

Wang et al, (2019) used the System Omnivory Index to measure the increase of maturity with OWF

deployment in the Yellow Sea. This index describes the complexity of the system and also provides the

characteristics of a mature stage (trophic food chains represented as a web-like system). 
22 
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Others model parameters also help us understand the functioning of AR systems. Ascendency represents

the level of the system activity and its organization (Ulanowicz, 1986). The increase of Ascendency also

indicates a higher activity in the system, which is characteristic of a maturity stage (Ulanowicz, 1997). 

Regarding the modelling of Wang et al., (2019) and Raoux et al., (2017), this parameter increases

respectively after eight and thirty years of OWF deployment. This result should be qualified by the

unchanged value of the FCI (percentage of all flow in the system) before and after AR deployment (Finn,

1980). Thus, the low boosting of activity corroborates the local effect of ARs on the Capbreton site,

without any strong modification in the system structure and functioning. 

 

The indicators suggested to detect changes in ecosystems in this study are based on studies conducted 

to highlight the relevant ENA indicators (Safi et al., 2019; Fath et al., 2019). By analysing the ecosystem

functioning and structure, ENA provides holistic indicators to assess the impact of human activities and 

environmental management measures such as ARs deployment. In fact, the ecological effects expected

rom the deployment of ARs were listed by Claudet and Pelletier (2004), but no details were given about

he quantified objectives to be attained. As a result, only indicators showing the trend of the system

owards the general objectives could be used by managers to monitor the performance of ARs. Coupled 

efore/after analysis with trophic modelling approach allows indicators that reveal structural and

unctional changes in the ecosystem with ARs deployment and could be used by managers to assess the 

ffectiveness of ARs. 

he growth in the use of the trophic modelling approach reflects the emerging need for indicators for 

managers (Heymans et al., 2016; Pezy et al., 2017; Raoux et al., 2017; Guan et al., 2016; Wang et al. 

019; Xu et al., 2019; Prato et al. 2016; Valls et al. 2012; Hermosillo-Núñez et al., 2018). The current 

tudy is embedded in this approach, with the aim of highlighting the effect of AR deployment on 

cosystems. 

.4 Limitations of the trophic modelling approach 

rophic modelling is based on large amounts of biological data for each functional group chosen. 

esides, diet is a key parameter in the trophic modelling approach. In this study, the BAR model is 

largely inspired by the data selected from coastal areas of the southern part of the Bay of Biscay (Lassalle

et al., 2011) and information on diet is drawn from the literature. In this study, the models were based

on available data as proximate to the study as possible that lead to differences in the sampling efficiency

(such as between bottom trawl data and scuba diver surveys) and the period covered up. As a 

consequence, our trophic models should be considered as a first approach to providing an overview of

the evolution of AR systems. Artificial reefs are known to attract a high abundance of fish, which could

potentially increase the local production. Thus, there is a need to investigate the feeding ecology and
24 
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trophic diet of fish that occur abundantly on artificial reefs by analysing stable isotopes and stomach 

contents to examine the short- and long-term trophic diet composition (Bentorcha et al., 2017). 

The difficulty and cost of such extensive data collection could be an obstacle when applying the trophic

approach to coastal management. Prato et al. (2014) suggested carrying out a prior survey of the most 

important and less documented functional groups. In this how, we chose to focus on benthic

invertebrates and fish biomass surveys and fixed the upper and lower trophic groups biomasses.

Consequently, the direct biomass trends of these groups could not be analysed. However, they still were 

integrated in the trophic modelling as a part of the system, and the flows tendencies were investigated. 

inally, ENA is clearly dependent on the model structure and comparisons between trophic models 

ould be hazardous (Prato 2016; Fath et al., 2019; Christensen et al., 2005). Equivalent models need to

be favoured to assess the effect or evolution of coastal management tools within the ecosystem, i.e. 

models based on the same number of functional groups and the same composition of these groups.  

  

5 Conclusion 
 

The ARs assessment still remains a challenge for marine managers who are required to monitor the

objectives of maintaining or enhancing fisheries production, with the aim of readjusting human pressures

on the ecosystems (Salaün et al., 2022a). At the same time, trophic modelling has been developed over

many decades and applied to monitor various marine ecosystems around the world. This approach has

been used to understand the effect of fisheries on the entire ecosystem. Recently, it was extended to 

other research domains such as the management of MPAs (Hermosillo-Núñez et al., 2018) and the

simulation of the effect of OWFs on the ecosystem (Raoux et al., 2017; Pezy et al., 2017). Our study

represents a new investigation of the use of trophic modelling, based on a comparison of the system

before and after the deployment of ARs. 

Like OWFs, ARs are mostly deployed on soft bottom habitats. So, they create hard substrates that

become colonized by various communities. With the deployment of ARs, the total biomass of the system

increases and the dominant fauna changes from detritivores to invertebrate filter feeders. However, the 

reef effect is restricted to its vicinity and the low increase in biomass should rather be linked to the

environmental context of the studied area (a sandy coast with low connectivity with hard substrates). In 

this case, the deployment of ARs has little influence on the ecosystem structure and biomass production. 

By using ENA metrics on AR systems, it is possible to highlight the trophic modifications linked to the

introduction of hard substrates on soft habitats. Our study highlights a positive effect with an increase

in system maturity through ARs deployment; this finding has emerged by using ENA indicators, such

as B/T.., PPt/R, PPt/B and SOI. In accordance with other studies, this related change in maturity seems

to be a criterion reflecting the effect of artificial structures. Thus, our results demonstrate the interest of

using a large set of ENA indicators to characterize different trophic functioning attributes. This is
25 
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essential for an effective overview of the induced changes. By the end, ENA provides indicators that

could be used by managers to monitor the temporal colonization and evolution of ARs, and assess 

performances objectives, to appreciate the pertinence of their deployment. 
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