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Abstract

Marine spatial planning (MSP) is positioning itself as a rational decision-making process
regulating uses of marine spaces and resources in order to reduce tensions between ex-
ploitation and conservation as well as between ocean stakeholders. As global political
agendas identified marine protected areas as a key answer to biodiversity erosion, sys-
tematic reserve site selection became a critical component of MSP. Establishing an ocean
zoning involves the analysis of large quantities of heterogeneous, multi-sources and spa-
tially explicit data. This often leads to problems too complex to be solved by human
intuition only, thus calling for optimisation tools to support the decisions. In that con-
text, our work aims at informing practitioners about stakes, possibilities and limitations
of MSP approach through reserve site selection tools. We first clarify the reserve site se-
lection framework, especially the underlying mathematics - the problem formulation and
the solving method. Then, we highlight potential pitfalls due to input data feeding the
reserve-based planning approach. Finally, and more practically, we show to what extent
parameters used in reserve selection tools shape the reserve outcome. These elements are
explored and illustrated on a real case study, namely the Fernando de Noronha archipelago
in the Brazilian tropical Atlantic. This work provides a brief overview of informational
challenges brought by decision support tools in marine spatial planning negotiations.
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1 Introduction
Marine environments are frequently seen as tomorrow’s territories for «blue growth» (The EU
Blue Economy Report 2019 ; The EU Blue Economy Report 2020 ; WWF Briefing 2018: Prin-
ciples for a Sustainable Blue Economy). Yet these spaces are already being at the heart of
multiple anthropogenic pressures: fishing, aquaculture, shipping routes, seabed exploitation,
recreational activities, renewable energies, etc. Within that context, marine spatial planning
(MSP) is positioning itself as a rational and collective decision-making process regulating uses
of marine spaces and resources in order to reduce tensions between exploitation and conserva-
tion, as well as between ocean stakeholders. According to Ehler and Douvere (2009), "MSP
implies analysing and allocating the spatial and temporal distribution of human activities in
marine areas to achieve ecological, economic, and social objectives that are usually specified
through a public political process". MSP broadly diffused in the last decades to eventually
emerge as the favoured at-sea governance paradigm among management institutions seeking a
sustainable development.

MSP strives to be a rational and evidence-based process (Pınarbaşı et al. 2017). In this frame-
work, rooted in data analysis, decision support tools (DSTs) turned out to be indispensable
for rationally informing the decision-making process. DSTs take the form of spatially explicit
tools, involving interactive software comprising maps, models, communication modules and
additional elements that can help to solve multifaceted problems that are too complex to be
solved by human intuition alone or by conventional approaches. With the help of these tools,
support for decision-making can be undertaken in a more systematic and objective manner
(Pınarbaşı et al. 2017).

The number and types of DSTs have grown continuously. Those that focus on systematic con-
servation planning and reserve site selection, such as Marxan or prioritizR, have particularly
gained in popularity driven by different international agendas. Indeed, conservation institu-
tions identified marine protected areas (MPAs) as an essential part of the solution to ensure
biodiversity resilience. De facto, areas dedicated to conservation are proved to provide biotic
communities global benefits (e.g. Stolton and Dudley 2010) especially for strict reserve (Claudet
et al. 2020; Liu et al. 2017). Thus, the United Nations (UN) target for global ocean protection
was established to 10% of the coastal and marine areas in MPA by 2020, as set forth by Aichi
Target 11 under the Convention on Biological Diversity. The UN Sustainable Development
Goal 14 reaffirms this commitment. Going further, many scientists emphasise that the 10%
target is intended as a first milestone for global ocean protection, rather than an endpoint. In
that respect, International Union for Conservation of Nature (IUCN) members, composed of
governments, non-governmental organisations and agencies, agreed on an ambitious protection
target of 30% for each marine ecoregion by 2030 (“IUCN World Parks Congress 2014 Bulletin”,
“IUCN Congress 2016 Bulletin”), against less than 8% observed today and less than 2% before
20081. More recently, the European Green Deal aims at 30% of MPAs within the European
seas, among which 10% with a strict protection (The European Green Deal, COM(2019) 640
final, Brussels; 11.12.2019,EU Biodiversity Strategy for 2030, Bringing nature into our lives,
COM(2020) 380 finals,Brussels, 20.05.2020 ). Consequently, tools for systematic selection of
reserve sites are needed to delimit the ever-expanding areas devoted to conservation, and to
avoid, as far as possible, ad-hoc and opaque reserve solutions (Pressey 1994; Pressey and Tully
1994). DSTs for reserve design have therefore rapidly become an issue for research and use at
the global level, including for the management of MSP issues.

1https://www.protectedplanet.net/marine
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Although early attempts were based on simple and intuitive ranking approaches (Kirkpatrick
1983; Margules et al. 1988) of areas based on a computed conservation value (Helliwell 1967;
Tubbs and Blackwood 1971; Goldsmith 1975; Wright 1977), reserve site selection is now as-
sessed as an optimisation problem involving an integer programming framework (Cocks and
Baird 1989; Possingham et al. 1993; Possingham et al. 2000; Margules and Pressey 2000; Poss-
ingham et al. 2006). Practically, conservation-based planning tools aim at finding where to
locate areas dedicated to conservation, i.e. nature reserve. This can be intended as a resource
allocation optimisation problem. The purpose is to find the resource layout which minimises
a given objective subject to a set of constraints. Mathematically, it can be modelled as a
deterministic binary programming problem. Besides, recent emergence of efficient exact opti-
misation solvers have made possible to apply methods that used to be considered numerically
unreasonable in the past (Church et al. 1996; Beyer et al. 2016; Schuster et al. 2020).

Conservation planning tools such as Marxan have been widely used as DSTs in MSP processes.
For instance, those tools were mobilised in 40% of the MSP procedures that implemented a
formal analysis tool in (Pınarbaşı et al. 2017) meta-analysis; and they were likely to be handled
by a variety of users (e.g., scientists, NGOs, planners). While this mathematical formalisation
of the reserve site selection problem has provided great advances in solving complex problems
fed with highly heterogeneous data, it also comes with a series of limitations. In particular, Pı-
narbaşı et al. (2017) identified the following: the limited functionalities of each DST, especially
in the later stages of MSP, leading to coupling the use of several DSTs, the limited lifespan of
DSTs due to the lack of updating, the fact that DSTs are mostly used for environmental issues,
the cost of DSTs and last but not least, the fact these DSTs introduced a high technicality in
the reserve site selection process. Here we argue that technical choices required by these DSTs,
too often not made explicit, may introduce pitfalls in MSP discussion tables and convey the
risk of dispossessing part of the stakeholders involved in MSP of their critical expertise on the
solution provided by the algorithms. In that case, the original quest for transparency may turn
out to produce new "black boxes" effects. Given the importance of data at almost every stage
of its implementation, informational questions are at the very core of MSP (Trouillet 2019;
Trouillet 2020). By being likely related to the rationalist and quantitative model (Kidd and
Ellis 2012), MSP participates in the return of evidence-based planning and favour a certain re-
vival of positivism (Faludi and Waterhout 2006). In this logic, DSTs and other tools mobilised
by geodesign (Goodchild 2010) require greater attention. Such an approach is in line with the
critical current on MSP (Flannery et al. 2020), which has been developing in recent years.

Within that context, the purposes of this work are to (1) detail and question the mathematical
functioning of these DSTs to end-users through graphical illustrations of a simple case study,
(2) provide guidelines for the use of optimisation-based reserve site selection tools, (3) draw
global awareness of stakeholders on reserve site selection DST by deciphering the effects data
and parameterisation options may have on the final solutions and thus avoid blind trust in a
decision-making process or misinterpretation. Our case study for scenario simulations takes
place in Fernando de Noronha archipelago in the Brazilian tropical Atlantic.
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2 Material and methods

2.1 Study site

Fernando de Noronha is a small oceanic archipelago in the western tropical Atlantic, made up
of 21 islands, islets and rocks with a total surface area of 26 km2, and constituting a genuine
Brazilian natural and cultural heritage. Its distance from the coasts2 has allowed it to preserve
until today a relatively wild coastline where a great marine biodiversity evolves in clear waters
and constitutes on land a refuge for native fauna and flora. The main island, 10 km long and
3.5 km wide, is the only one inhabited by man. Fernando de Noronha hosts a small-scale fishery
composed of approximately 10 artisanal and recreational vessels. In 2001, the archipelago was
listed as a World Natural Heritage Site by UNESCO. An oasis of marine life in a relatively
barren and open ocean, these islands play a key role in the process of reproduction, dispersion
and colonisation by marine organisms in the entire tropical South Atlantic. The productive
waters of the archipelago provide an important feeding ground for species such as tuna, billfish,
cetaceans, sharks and sea turtles when they migrate to the African coast. These islands also
contain the largest concentration of tropical seabirds in the western Atlantic, and include the
only examples of the Atlantic island forest and oceanic mangrove in the South Atlantic. The
Dolphin Bay is home to an exceptional population of resident dolphins. The Fernando de
Noronha ecosystem is legally protected by a number of federal laws and state regulations,
including a marine national park since 1988. For all these reasons, Fernando de Noronha is
a conservation showcase in Brazil while facing many interests, such as oil industry, tourism
intensification and fisheries, resulting in an open sky laboratory for marine spatial planning.
In the frame of the EU RISE Paddle project, a series of field research surveys were conducted
since 2015, providing the spatially explicit data on fish and fisheries used hereafter.

2.2 Grid

Prior to any work, Fernando de Noronha study area was divided into planning units, i.e. our
conservation resource soon to be allocated. We built a grid made of regular rectangular pixels,
with longitude and latitude respectively in [32.65°W, 32.30°W] and [3.95°S, 3.75°S] ranges. We
chose a 0.01° resolution which results in considering N=36×21=756 planning units. Both our
boundaries and resolution choices were justified to properly capture data feeding our case study
(cf. Section 2.4). This discretisation process allowed us to transform the input geographical lay-
ers into vectors and matrices. This operation was required to fit in the optimisation framework
and thus tackle mathematically the reserve site selection problem. Pixels located in Fernando
de Noronha land and harbour were a priori excluded from potential reserve site candidate (see
transparent grey pixels in Figure 2). In other words, these locked-out planning units were not
authorised to be included in a reserve. Fernando de Noronha harbour is the archipelago nerve
centre, what justified it could not be included in a strict reserve. Regarding the exclusion of
land, the purpose was to avoid a fictive bridge between two non-connected marine areas.

2.3 Optimisation

2.3.1 General framework

Conservation-based planning tools practically aim at finding where to locate areas dedicated
to conservation, i.e. nature reserves, in order to ensure a given level of biodiversity persistence
and eventually ecosystem services provision. As it can be expressed as a resource allocation
problem, the conservation science literature proposed and developed an optimisation framework

2360 km from Natal, 545 km from Recife
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to deal with such problems. The purpose is to find the reserve allocation layout which max-
imises/minimises a given objective subject to a set of constraints. In that context, reserve site
selection tools provide optimisation solving methods suited for binary programming. Indeed, a
reserve is mathematically represented with a vector x ∈ {0, 1}N . The row value xj of the vector
x is 1 if the planning unit j ∈ {1, · · · , N} is included within the reserve, 0 otherwise. Each
planning unit is associated with a socio-economic cost3 and with the amount of each considered
conservation feature. Then, depending on the problem formulation, global conservation targets
or total socio-economic budget are defined from the available ecological and socio-economic
knowledge. Targets represent the least total amount of each conservation feature which must
be included in the final reserve. Budget represents the maximum tolerated socio-economic cost.
Explicit optimisation models are detailed in Section 2.3.2.

2.3.2 Formulation

Considering the reserve site selection question through an optimisation framework resulted from
an encounter between operations research and conservation science. In this fruitful collabora-
tion, various optimisation formulations emerged. The two main generic formulations, namely
the minimum set and maximum coverage formulations, were detailed in Table 1.

Minimum set formulation Maximum coverage formulation

{
min

x∈{0,1}N
cTx+ βxTB(1− x)

s.t. Ax ≥ t
(1)

{
max

x∈{0,1}N
ωTAx

s.t. cTx+ βxTB(1− x) ≤ b
(2)

Table 1 – Minimum set and maximum coverage formulations for conservation resource allocation
optimisation problem. Let M species be distributed among N planning units. Cost c ∈ RN , conservation
feature distribution A ∈ RM×N , common boundary length of planning unit B ∈ RN×N , targets t ∈ RM ,
conservation feature relative weight ω ∈ RM , budget b ∈ R, compactness parameter β ∈ R+, planning unit
status x ∈ {0, 1}N .

In the minimum set problem (cf. Equation (1)), the goal of systematic reserve site selection
tools is to find which collection of planning units achieves a priori defined conservation tar-
gets at a minimum socio-economic cost. Alternatively, the maximum coverage problem (cf.
Equation (2)) purpose is to find which planning unit collection covers the maximum amount of
conservation features within the limits of a predefined socio-economic cost budget. Results of
both approaches were detailed in Section 3.1.1. In both formulations, the compactness param-
eter β in Equation (1) and (2) allowed to include the reserve perimeter xTB(1 − x) as a cost.
The bigger the compactness parameter, the more spatially aggregated the computed reserve.

2.3.3 Solving methods

In an integer programming framework, the solving method choice is essential as it directly in-
fluences the solution output. Two main families exist to solve the same optimisation problem:
metaheuristics and exact solving methods. Metaheuristic solvers, e.g. simulated annealing al-
gorithm used in Marxan, output a user-defined number of suboptimal reserve solutions which
are interpreted as alternative solutions by practitioners in the decision process. Exact methods
give a single optimal solution. Finally, metaheuristics do not face any restriction in the optimi-
sation formulation nature, while exact solvers can only deal with linear problems. In our binary

3assessed from a manager perspective
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programming context, the quadratic element xTB(1−x) in Table 1 can be linearised (Billionnet
2007). Comparison between both solving methods were presented in Section 3.1.2. Practically
speaking, many solutions exist to solve the reserve site selection optimisation problem embed-
ded in various software. In this work, regarding exact integer linear programming algorithms,
we used free and open-source Cbc solver (Forrest et al. 2018) from COIN-OR4 project (Lougee-
Heimer 2003) called through a dedicated code5 developed in Julia language (Bezanson et al.
2012; Bezanson et al. 2015) using JuMP optimisation library (Dunning et al. 2017). The Julia
language allowed us to directly express and customise the optimisation problem according to
a specific need. For a less technical audience, the same solutions can be found thanks to the
newcomer Prioritizr R package (Hanson et al. 2020) based on COIN-OR project free and open
source Symphony solver (Harter et al. 2017; Ralphs et al. 2019). For metaheuristic solvers,
we used the simulated annealing algorithm of Marxan (Ball et al. 2009; Game and Grantham
2008; Ardron et al. 2010).

2.4 Input data

2.4.1 Fish biomass

Recent acoustic surveys around Fernando de Noronha collected in situ data on fish distribution
(Betrand 2019). Acoustic raw data were processed to synthesise the collection of fish echoes
as a nautical area back-scattering strength (Maclennan et al. 2002), i.e. sA, summed over the
water column. Figure 1 displays the sA raw spatial distribution as purple circles along sampling
transects (solid black lines). We used sA as a proxy for fish biomass (Simmonds and MacLennan
2005). We chose to treat fish biomass as categories, assigning each observation to its quartile
prior to the interpolation. A fifth category was added to account for null densities. Interpolating
between sample data allowed producing a continuous 2D-view of fish biomass distribution within
the sampling area. Outside this area, as the reserve site selection optimisation models cannot
deal with absent data (see Section 4.2), we set values to 0, although we did not know the actual
fish distribution there. The interpolation consisted in indicator co-kriging where each indicator
variable was coding for a given category (Bez and Braham 2014; Chiles and Delfiner 2012).
Finally, as acoustic data resolution was finer than our grid, we selected the most frequent class
of sA values within each planning unit as a conservation feature surrogate hereafter. Results of
this process were presented in Panel B in Figure 2.

2.4.2 Habitats

Bathymetric data were collected from GEneral Bathymetric Chart of the Ocean (GEBCO)
online platform6. GEBCO 2014 was preferred over 2020 update because in situ depth mea-
surement from recent surveys (see above) were closer to 2014 than 2020 interpolation. Data
resolution is 30 arcseconds (i.e., 0.0083°) both for latitude and longitude. Such resolution was
consistent with our 0.01° (i.e., 36 arcseconds) grid resolution. Continental shelf and shelf break
can be considered as two separated suitable habitats for benthic and demersal fish, worth pro-
tecting. A GEBCO point was discriminated as continental shelf or shelf break respectively for
depth within [0m, 50m] and [50m, 200m] ranges. Finally, according to the majority of point
states (i.e., continental shelf or shelf break habitat) within each planning unit, the predominant
conservation feature took the value 1 while the other 0. For instance, we assigned a value of
1 for the continental shelf and 0 to the shelf break feature if there were more continental shelf
than shelf break points within the planning unit. Note, in case of equality, we assigned the

4Common Optimization INterface for Operations Research
5https://github.com/AdrienBrunel/reserve-site-selection
6https://download.gebco.net/
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pixel to continental shelf. Results of this process were illustrated in Panel C and D in Figure
2. Note that the continental shelf or shelf break habitat distributions did not overlap in our
gridded data due to the very nature of the data processing described above.

2.4.3 Fishery

Fishery data were composed of 69 GPS tracks from fishermen’s trips collected in situ through
the 5 past years at Fernando de Noronha. Fishery activity in Fernando de Nornoha is performed
daily by 4-10 vessels. Although the sampling did not cover the entire fleet, it is reasonable to
assume we have a significant insight on the fishery activity. An hidden Markov segmentation
model was applied (Tatiana Beltrão Alves Da Costa personal communication) (Joo et al. 2013;
McClintock et al. 2020) to the fishery data in order to classify each trajectory segment into
one behavioural state: fishing or travelling. We thought of the amount of points in the fishing
state as a quantitative proxy representing pressure due to fishing activities. Consequently, in
order to build a socio-economic cost for each planning unit, we counted the number of points
in the fishing state falling within each planning unit and called this quantity FC for «Fishing
Count». The socio-economic cost is intended from a manager perspective. For instance, select-
ing a planning unit with a high fishing points concentration in the reserve would be a cost for
humans despite being a pressure relief for biodiversity. Grid boundaries were chosen to capture
fishermen’s interests in the extreme west of Fernando de Noronha. Results of this process were
illustrated in Panel A in Figure 2.

It is essential to understand that data entering reserve site selection DSTs should ideally provide
detailed and true spatial distribution of every considered biodiversity features (species, habitats,
ecological processes, etc.) and human activities. Practically, we only have access to a measured
surrogate dataset for these spatially explicit layers. For example, the GPS tracks of several
equipped birds could be a relevant proxy representing the spatial distributions of the species.
Similarly, ocean depth can be used as a habitat surrogate. We rarely have direct access to
true spatial distributions of the variables of interest (e.g. number of individuals of a given
species, ecological niche location, allele distribution within a species, detailed fishing catches,
etc.) whether we represent a conservation feature or the cost layer. Consequently, we often
need to derive this piece of information through an indirect although more accessible source of
data, i.e. a measure and estimation of a surrogate data distribution. The conservation feature
or cost distribution are sensitive elements as the whole optimisation process is based upon it. In
order to have a better grasp on input data influence, we focused on how we processed the cost
distribution. Consequently, several cost layers, directly involved in the optimisation objective
expression, were considered resulting in 5 different scenarios described below :

• Cost1 = 1
Simple and constant cost, worth 1 for every planning unit. In first approximation, it is a
common and relevant approach to consider equally every pixel.

• Cost2 = 1+ FC
Raw use of our fishing points count, namely FC except that we added 1 in order to avoid
planning unit worth 0. Indeed, "free" planning units can greatly pollute research space
and solution interpretation.

• Cost3 =1 + ln (1 + FC)
A natural logarithm was applied to 1+FC (we added 1 to force consistency with the
logarithm definition domain). We once again added 1 to the global expression to avoid
"free" planning units, for the exact same reasons detailed above.
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• Cost4 = FC1→10 scale
According to FC value, we projected the cost on a 1 to 10 scale. This process can be
understood as a grade and has the huge benefit to be computed whatever the data feeding
cost representation.

• Cost5 = FC1→100 scale
Idem as above but with a 1 to 100 scale to observe the scale resolution influence.

We assessed the impact of the shape of input data on output results by comparing the maps
of reserve solutions. If we consider two spatial distributions (cost or solution) as independent
random variables X and Y , the statistical correlation coefficient between X and Y appeared as
a reasonable metric for sensitivity. In particular, a correlation coefficient of 1 means maps are
strictly identical. When there is no variability in the studied distribution (for example Cost1
is constant through all planning units), the standard deviation σX is worth 0 and correlation
coefficient is logically not defined. As we compared several scenarios, we had a collection
of correlation coefficients composing cost and solution correlation (symmetric) matrices. In
conclusion, we had a simple quantitative comparison index between gridded maps provided by
the correlation matrices between cost distributions, where the line/column number corresponds
to the considered scenario number. Results of the associated sensitivity analysis were presented
in Section 3.2.

Figure 1 – Raw input data feeding the conservation problem. Bathymetric raw data (GEBCO 2014) is
represented by a light to deep blue colour gradient with appended iso-depth solid thin black lines (50m, 200m,
1000m, 2000m, 3000m, 4000m). Fishermen’s boats GPS points estimated in a fishing state are illustrated with
orange dots. Acoustic raw data is depicted by purple circles whose radius is proportional to

√
sA value along

line boat transects represented with a solid thick black line. Light grey polygon shows the limits of the existing
marine park.
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Figure 2 – Processed geographical layers feeding the conservation problem. (A) Fishery data rep-
resenting fishing pressure is shown with an orange colour gradient indexed on the number of fishing points
recorded in each planning unit. (B) Acoustic data interpreted as a fish biomass surrogate (conservation feature
n◦1) is depicted with a purple colour gradient indexed on interpolated class median value. (C) Continental shelf
habitat surrogate (conservation feature n◦2) is illustrated in light blue indexed on presence of depth between
0m and 50m. (D) Shelf break habitat surrogate (conservation feature n◦3) is coloured in deep blue indexed on
presence of depth between 50m and 200m. Transparent grey pixels are the locked-out planning units.
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3 Results

3.1 Structural elements

3.1.1 Modelling formulation

We performed sensitivity analyses on cost and conservation feature coverage for both maximum
coverage and minimum set formulations. More precisely, the sensitivity analysis was performed
on the cost parameter regarding maximum coverage and conservation feature targets for the
minimum set (we considered equal targets for the three conservation features). Results were
synthesised in Figure 3. First, our approach showed the bijection between the reserve cost and
conservation features protection levels with both formulations. Indeed, at one reserve cost cor-
responded one protection level for each conservation feature. Furthermore, when looking closer
at the maximum coverage results, the curve corresponding to the continental shelf (light blue
circles) was the highest while the one corresponding to the shelf break was the lowest (deep blue
circles). So the continental shelf was the feature participating the most to the global coverage
score while shelf break the least. Thus, the continental shelf habitat was numerically easier to
represent than shelf break in optimal reserve solution. We can explain this as a combination
of two reasons thanks to Figure 2 : planning units including the continental shelf conservation
feature were cheaper than the planning units including the shelf break but also included more
significant amount of fish biomass.

Figure 3 – Reserve cost in arbitrary units versus conservation feature coverage in % for both
minimum set and maximum coverage formulations. The 3 conservation features coverage are shown
in purple (biomass abundance), light blue (continental shelf) and deep blue (shelf break) while associated
formulation is depicted through full circles (maxcov) versus empty squares (minset) on the curve. The scenario
considered here included a cost layer worth 1 + ln(1 + FC), a compactness parameter β = 1. Exact solving is
performed thanks to Cbc solver.

10
This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4060705

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



3.1.2 Solving method

We here illustrated (cf. Figure 4) results provided by reserve site selection DSTs computed
with both solving approaches (see Section 2.3.3). The metaheuristic results were represented
by a green colour gradient representing the Marxan selection frequency. White number within
planning units indicates how many times it was selected among 100 Marxan runs. Planning
units with a red border depict the reserve derived thanks to the exact integer programming al-
gorithm. We first observed a visual difference between the metaheuristic and optimal solutions.
Metaheuristic results spread more in space what makes sense as it explored many suboptimal
solutions and thus more planning units. In particular, low depth isolated pixels in the extreme
west of the study area and eastern pixels were sometimes selected by metaheuristics while they
did not belong to the optimal solution. It can be explained as they had an important fishing
cost as we can see in Figure 2. The aggregated aspect was due to the active compactness
penalty (see Section 3.3.2 for details). Note locked-out pixels were not included in the reserve
solution as expected. Furthermore, we can observe reserve solutions were centered around
the main island which is simply explained by the fact most of the conservation features to be
covered lied there as depicted in Figure 2. Also, in this small size study case, a 5% gap was
derived between optimal and mean metaheuristic solution scores (among the 100 Marxan runs).

Figure 4 – Metaheuristic versus exact integer programming reserve solutions. Minimum set for-
mulation, 3 conservation features each represented with a 50% protection target, considered cost layer worth
1 + ln(1 + FC) and compactness parameter β = 1. Selected planning units within optimal reserve solution
by Marxan (using Simulated Annealing metaheuristic algorithm) are represented with a green colour gradient
according to selection frequency among 100 Marxan runs (white number inside planning unit). Red border
around planning unit indicates selection by integer programming exact (free open-source) solver Cbc.

3.2 Influence of cost expression

Table 2 depicts the link between cost distribution (orange figures) and associated reserve so-
lution (green figures) correlation coefficients. For example, the correlation coefficient between
Cost5 and Cost2 was greater than 0.998 because cost distributions were almost identical. It
could be expected as FC1→100 scale, due to the thin scale choice, well captured FC spatial
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distribution. Conversely, the use of a natural logarithm (Cost3) implied a way smaller cor-
relation coefficient of 0.55 when compared to Cost2. Note dashes in the first line of the cost
correlation matrix corresponded to undefined correlation coefficient because Cost1 involved a
constant distribution and thus a standard deviation of 0. Now, the remaining question is what
were the implication of such cost distribution differences in the computed optimal reserve ? Did
correlated distribution implie a correlated reserve solution ? Did a completely different cost end
in a completely different reserve ? In order to lead our analysis upon the cost expression, we
considered 3 conservation features with each a 50% target and set β = 0. We did not account
for the compactness parameter because a given β > 0 would involve a different quantitative
share of compactness penalty in the objective as cost term ranges greatly change with the way
we compute it (e.g. more than 10 000 with Cost2, less than 10 in a scenario with Cost4). First,
we quantitatively observed a weak but existing correlation between solutions. It can simply be
explained by the fact every scenario shared the exact same conservation feature spatial distri-
butions for feeding the optimisation problem formulation, logically reflected in similar reserve
solutions. Also, despite the logarithm application, the reserve solutions obtained with Cost2
and Cost3 were quite alike (correlation coefficient of 0.93). Table 2 illustrates that similar cost
distribution can end up in a different reserve solution (see Cost3 and Cost5 cost and solution
correlation coefficients) while different costs can lead to a similar reserve solution (see Cost2
Cost3 cost and solution correlation coefficients). Also, in order to study the effect of a data
gap, we simulated a scenario where we removed the biomass abundance data layer and only
kept habitat data (continental shelf and shelf break). Note solutions were computed with β = 0
for relevance purpose as we wanted to observe only the effect of a data gap without any com-
pactness considerations. We obtained a correlation coefficient of 0.75 between scenarios with
and without biomass abundance data. As expected, we observed a notable difference between
reserve solutions as it did not have to cover abundance biomass data anymore. Although, both
scenarios had most input in common what justified why global results were concentrated around
Fernando de Noronha archipelago and showed common selected planning units.

Cost1 Cost2 Cost3 Cost4 Cost5
1 1 + FC 1 + ln(1 + FC) FC1→10 scale FC1→100 scale

Cost Solution Cost Solution Cost Solution Cost Solution Cost Solution
1 1 - 0.40 - 0.41 - 0.47 - 0.47
1 + FC ? 1 0.55 0.93 0.85 0.79 1.00 0.82
1+ln(1+FC) ? ? 1 0.83 0.84 0.58 0.87
FC1→10 scale ? ? ? 1 0.87 0.89
FC1→100 scale ? ? ? ? 1

Table 2 – Cost layer and solution correlation matrices. Correlations coefficient between cost (orange)
and solution (green) spatial distributions from one scenario to another. Correlation coefficient for Cost1 does not
exist (because cost distribution is constant). Star symbols indicate symmetric coefficients. For those simulations,
we fixed a minimum set formulation, 3 conservation features each represented with a 50% protection target and
compactness parameter β = 0.

3.3 Parameters influence

3.3.1 Coverage targets

Figure 3 presents the results of a sensitivity analysis over coverage targets. The targets were
simultaneously and equally increased. Regardless the formulation, we observed a non-linear
and concave progression of coverage with respect to the reserve cost. It thus implied increasing
conservation feature coverage is more and more expensive.
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3.3.2 Compactness parameter

Sensitivity analysis over the compactness parameter β is shown in Figure 5. As we can see, a
smooth decreasing trend appeared when we plotted the reserve perimeter xTB(1−x) versus the
compactness parameters β. It made sense as β was the penalty directly applied to the reserve
outside perimeter within the objective function (see Equation (1)). Therefore, the greater the
penalty, the smaller the perimeter. We can also see the decrease seemed to quickly ease and
eventually reached an equilibrium before decreasing again for way bigger values. However, this
second decrease (for β ≥ 8) is fictive as solutions included pixels at the border (see the reserve
solution of the right panel) of the study area with an artificial 0 boundary value (as no neigh-
bours exist). It is a purely numerical edge effect but this common mistake can be observed in
published research, attesting it is not a well-known pitfall, e.g., (Delavenne et al. 2012; Beyer
et al. 2016; Magris et al. 2021). Again, a sensitivity analysis can easily show when this kind of
odd behaviour of the solution appears. More generally, as soon as β ≥ 0, a planning unit at
the edge of the study area is more likely included in the reserve solution.

Figure 5 – Perimeter (in arbitrary unit) versus compactness parameter. Sensitivity analysis performed
on the compactness parameter β with respect to the reserve solution perimeter. Minimum set formulation, 3
conservation features represented, considered cost layer worth 1 + ln(1 + FC), exact solving thanks to Cbc
solver.
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4 Discussion

4.1 Structural elements

We clarified features structuring reserve site selection procedure especially underlying mathe-
matics. Indeed, an optimisation framework implied technical choices, not always made explicit,
such as the formulation and the optimisation solving method to choose to address the conser-
vation problem. In particular, DSTs with embedded formulations and solvers (e.g. Marxan,
Prioritizr), although comfortable to use, made impossible to customise the problem.

4.1.1 Formulation

Minimum Set vs Maximum Coverage Minimum set formulation betrays a strong economy-
centered vision which could itself be discussed. Indeed, this vision, consensual following Marxan
developments, aimed at minimising impacts on human activities. The main concern was thus
primarily to preserve an human activity. Maximum coverage formulation, more biodiversity-
aimed, can also be studied to better enlighten the problem. Computing solutions from both
formulations clearly allowed to draw a more complete and balanced picture of the problem.
It could also lead to better numerical interpretation. Different formulations shaped different
solutions so both need to be studied in order to efficiently inform and support the decision
making process. In particular, Figure 3 shows the kind of information decision makers could
be interested in and extract. The link between reserve cost and conservation features protec-
tion level with both formulations can help decision makers to understand implication in nature
protection.

Single-objective view Optimisation formalism is inherently single-objective which means
only one human activity can be properly accounted for in the reserve design process in the
minimum set formulation (see Equation 1). Consequently, it can poorly represent several stake-
holders which is a pity in the frame of MSP. We could certainly create a global anthropogenic
index by combining several human activity information although it should be avoided to keep
visible the competition between socio-economic costs. Multiplying single-objective computa-
tion is a better practice to highlight contradictions between stakeholders interests and leave
the final arbitration to decision makers. In this sense, exact optimisation methods are more
adapted as scenario multiplication is advised as described in Section 2.3.3. Similarly, in the
maximum coverage formulation, users had to referee between conservation features weights due
to the single-objective nature. Anyway, subjectivity is part of the conservation-based plan-
ning process which requires transparency in return. Finally, multi-objective optimisation field
could provide better answer elements around the notion of Pareto front which could be ad-
dressed to deepen global understanding. Note it is required to use exact solving methods to
draw a relevant Pareto front. Furthermore, the initial formulation in Equation (1) was already
multi-objective as we included both the reserve cost (represented by cTx) but also the reserve
perimeter length (represented by xTB(1 − x)) within the objective. We did not mention it
explicitly, but there was an invisible competition between these two elements which could lead
to misinterpretations.

4.1.2 Solving method

Although metaheuristic were historically preferred due to Marxan developments, exact solvers
should prevail in the future. In our case study (see Section 3.1.2), the gap between both meth-
ods was acceptable due to the small size of the problem. A further analysis was detailed in
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(Schuster et al. 2020) highlighting bigger performance gaps on a wider, more meaningful ap-
plication both in optimality and time computation. These matters were extensively discussed
in the past (Church et al. 1996; Pressey et al. 1996; Önal 2004; Vanderkam et al. 2007). Then,
the linearisation requirement associated with exact methods was not a problem in reserve site
selection as the linearisation is possible (Billionnet 2007). Finally, the number of solutions pro-
vided by metaheuristics were often seen as an advantage (Ardron et al. 2010) while interpreting
many suboptimal solutions is a challenge by itself. First, this numerical so-called flexibility
is questionable as we do not know how far from optimum solutions are. In addition, a given
stakeholder could easily find among these, a solution suiting its own interests. It could even-
tually leave the final choice to the most influential lobby and be the breeding ground of ocean
grabbing (Queffelec et al. 2021). Unlike metaheuristics, exact solvers provides a single optimal
solution, greatly encouraging the multiplication of scenarios to better enlighten the conservation
question. Yet, if alternative solutions were really needed, it could also be achieved with exact
solvers. A simple procedure could consist in excluding recursively solutions found and thus
derive the optimal solution exhaustive set. We could even introduce a relaxation parameter to
explore suboptimal solutions with an a priori given optimal gap.

4.2 Input data

We highlighted biases due to the input data feeding a conservation-based planning approach.
Indeed, these DSTs are data driven, restricted to a spatially explicit nature, which means
outcome can only reflect geographical layers input quality. Besides, as we cannot access true
spatial distribution, we must use surrogate data. It implies to process data in order to be as close
as possible to an unknown reality and thus express a relevant optimisation problem. However,
as illustrated in Section 2.4, data processing involved many modelling choices. It appeared other
choices could have been made with the same level of relevance but with a potential different
reserve outcome. Such ideas must be clearly stated and understood by practitioners. Below,
we provided a list of elements regarding data feeding DSTs that needed to be questioned by
stakeholders as they can greatly influence reserve design results.

Surrogacy The way we estimate a quantitative index from a surrogate dataset is a sensitive
step with respect to the reserve output as we demonstrated in Section 3.2. Such technical step,
although done honestly, can eventually lead to imbalance between stakeholders involved in the
MSP or towards biodiversity conservation. The way we go from the raw material to a processed
and gridded input data can lead to quite different solutions. For example, arbitrary application
of a logarithm function to smoothen raw data can advantage a given stakeholder without anyone
noticing. To avoid this pitfall, only sensitivity analyses and transparency on the transformations
applied to the raw material can deepen user’s grasp on data processing influence. Few works
dealt with data processing influence (Drira et al. 2019; Visconti et al. 2013; Carvalho et al.
2010; Fiorella et al. 2010). Besides, a measure is at some point guided by reality (biological,
economical, geographical accessibility of the surrogate measure) which implies a natural bias
towards accessible data. For example, megafauna is potentially over-represented while other
smaller species can be underestimated if not voluntarily forgotten due to the lack of surrogate
measure. Only large data collection surveys and data gathering can mitigate this effect. Finally,
we can also argue that the mere fact to whether or not include a given feature in the reserve
design process is a first and essential bias. Considering a given feature obviously implies it will
be accounted for in the procedure but also mean other features will be completely forgotten (by
choice, lack of data or even knowledge). Therefore, considered features inherently imbalance
stakeholders and biodiversity interests. For example, a stakeholder struggling to provide data
will be under-represented and thus potentially harmed through the MSP process. Similarly, a
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species impossible to track is not accounted for in the reserve design and can suffer from the
MSP process.

Data type Data feeding reserve site selection DSTs are necessarily spatially explicit, i.e.
quantitatively located in space, allowing us to associate each planning unit cost and conservation
feature amounts. For example, a conservation feature can be a quantity like a biomass or a
number of items. However, nature of data involved in MSP is not always spatially explicit and
conversion can be difficult if not impossible. Indeed, data can be purely qualitative or at best
semi-qualitative. Consequently, such data cannot be accounted for in reserve site selection tools
and can be removed from the input dataset and potentially weaken a given stakeholder. For
example, deriving a map of the diving activity is hard as quantifying this activity can be at
best done thanks to shade of diving pressure from "low number of visits" to "diving hotspot".
One way to mitigate such weakness in first approximation is to transform the best we could
qualitative data into semi-quantitative one with level of intensity.

Quantity and quality Stakeholders providing great data both in quality and quantity is
likely to be favoured through DSTs as their interests will be well represented and not forgotten
within the site selection procedure and even potentially protected. Such DSTs follow the
"garbage in, garbage out" rule which underlines their strong data dependency. Indeed, solutions
can only be as good as the input data feeding the optimisation model. Once again, only large
data collection surveys of every feature can enhance quality and equity of the reserve design
process.

Uncertainty Data is considered certain in most reserve site selection algorithms as uncer-
tainty is difficult to handle within an optimisation framework. Yet, uncertainty is everywhere
due to measure itself but also inherent to ecological processes. For example, a value of 0 is
algorithmically equivalent to a certain absence while it can practically mean a lack of data
sampling. Accounting for uncertainty in reserve selection procedure is a great deal and sev-
eral approaches help to mitigate this lack (Monte-Carlo approach, robust optimisation, chance
constraints, stochastic optimisation, etc.). (Regan et al. 2009; Reside et al. 2018)

4.3 Parameters influence

Through the illustration provided in our work, we detailed to what extent parameters (conser-
vation feature coverage targets, compactness parameter) choices can widely shape the results
of a reserve site selection procedure. Such statement appears more than logical in a parametric
model, however it is important to establish a quantitative link between parameters and outputs.
Deciphering parameters influence can also avoid imbalances in the MSP process in favour of
more technical users.

Coverage targets If not ecologically guided, coverage targets can be used as tuning param-
eters. Indeed, as demonstrated in Section 3.1.1, these parameters were directly linked with
the reserve cost (cf. Figure 3) and should be manipulated with great care as it could lead to
imbalance in the marine spatial planning process. If any ecological information is available,
a sensitivity analysis on the coverage targets is the minimum that should be realised to best
inform the reserve design process.

Compactness parameter Examples in the published literature showed that an unwanted
edge effect due to the compactness parameter was not particularly highlighted. Formulation
should be modified to avoid such traps (locked-out a fictive pixel linked to every pixel at the
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border for instance, see Appendix A for detailed formulation). Finally, xTB(1−x) compactness
share is historically included in the objective. Yet, another legitimate approach could be to
directly constrain the outside perimeter with a given boundary budget bp leading to the con-
straint xTB(1−x) ≤ bp (e.g. see Equation (2)). Such approach would be more straightforward
and avoid invisible multi-objective competition between compactness and coverage. Besides,
a blind setting of the compactness parameter potentially provides unwanted numerical effects
but can also lead to a change of "regime" in the solution, i.e. a completely different solution
because the compactness demand overcome the original objective. In particular, a given regime
can favour a stakeholder with respect to another so a great care must be observed. Performing
a sensitivity analysis on the compactness parameter is the least we can do to have a better
grasp on its influence (see Section 3.3.2).
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5 Conclusion
Few works had already pointed out some effects from input data initial formats (Carvalho et
al. 2010; Visconti et al. 2013), interpolation transformation (Drira et al. 2019) and weighting
(Fiorella et al. 2010). The example developed in this article builds upon and go further by
systematically clarifying the mathematical functioning of each step of reserve selection DSTs
to end-users through numerical and graphical illustrations. We deciphered the effects data and
parameterisation options may have on the final solutions and showed that DSTs present at least
two points of attention. The first confirmed the tricky issue of input data (bathymetry, fishing,
proxys used, etc.) which significantly influenced the DST results. Similarly, the absence of data
may penalise certain stakes without this always being spelled out. The second concerns the
numerous technical choices made throughout the process by the DSTs users and designers: from
the definition of the grid playing as spatial referential to the processing of the data, including
the "minimum set vs. maximum coverage" choices, etc. Based on our case study, we provide
specific guidelines for mitigating to some extent these technical pitfalls:

• Perform sensitivity analyses on parameters to enhance numerical understanding

• Compute both the minimum set and the maximum coverage formulation to better en-
lighten the conservation problem

• Document with transparency every modelling choice, in particular regarding the construc-
tion of the objective function which implies inherent subjectivity (e.g., how the cost is
built)

More generally, we illustrated that the informational questions are spread over the entire geo-
graphic information chain, from data production to its use for management purposes. In this
sense, this study finally raised fundamental questions about the place and role of the data
producers, the technicians who process it and the decision-makers who use it. As roles become
blurred (Goodchild 2009), it is necessary to try to take into account the needs of the end users
the most upstream in this geographic information chain, either by involving them in each of
the stages, or by making each of these stages and the associated issues more understandable
and accessible by them. Consequently, a better knowledge of the issues at stake throughout
this geographic information chain will foster a better understanding of the various biases noted
in this example, thus allowing to avoid most of the traps, and in fine limits the risk of ocean
grabbing (Queffelec et al. 2021) and favour equitable MSP negotiations.
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6 Appendix

A Compactness parameter correction
In 3.3.2, we mentioned an unwanted edge effect involved by the compactness parameter β. As
a reminder, we observed in our work (cf. Figure 5) but also in other publications that planning
units at the edge of the study area are more likely to be included in the reserve solution. It
was simply explained by the fact they had less common frontiers with surrounding pixels due
to their position at the border so they had artificially a smaller weight in the reserve perimeter
computation. For instance, in a regular grid, a middle planning unit has 4 neighbours while a
pixel at the border has 3 and a corner has only 2. Starting from this observation, we provided
a simple correction : we added one fictive planning unit which shared a boundary with every
planning units located at the edge of the grid (see Figure 6). The length of this boundary de-
pended on what was missing to reach an equal weight for the perimeter computation. Indeed,
a planning unit at the corner missed 2 edges while another pixel at the border only missed 1.
The fictive pixel was locked-out (i.e. never included in the reserve solution) thus leaving the
rest of the optimisation problem undisturbed.

Figure 6 – Principle of the correction involving the addition of a fictive pixel connected to the
external edge of the grid. The newly added fictive pixel is invisible in the original model (necessarily locked-
out), but allows the outer edge of the study area to be taken into account within the computation of the reserve
solution perimeter.

Mathematically speaking, we considered an augmented boundary matrix B∗ now including the
boundary lengths of the fictive pixel and every other planning units. Consequently, B∗ was
composed of the previous matrix B used so far, completed by an additional column and row.
For consistency purpose, the decision variable vector was also augmented with a component
associated with the aforementioned fictive pixel. Since it would never be selected in the reserve,
this component was a priori set to 0). The detailed expression of the augmented matrix
B∗ ∈ R(N+1)×(N+1) and the vector x∗ ∈ R(N+1) are given in (1).

B∗ =


B

b∗1,N+1
...

b∗N,N+1

b∗N+1,1 · · · b∗N+1,N 0

 x∗ =


x∗1
...
x∗N
x∗N+1

 =


x1
...
xN
0

 (1)

The additional coefficients b?i,j of the matrix B∗ were used to indicate how many sides each pixel
i ∈ {1, ..., N} shared with the outer boundary and thus with the fictive pixel. Hence, those
extra coefficients were defined as follows :

23
This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4060705

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



∀i ∈ {1, ..., N},

b∗i,N+1 = b∗N+1,i =


1, if pixel i shares a single side with the outer boundary
2, if pixel i shares 2 sides with the outer boundary (i.e. located at a corner)
0, otherwise

Note the last diagonal coefficient b∗N+1,N+1 was set to 0 (like the other diagonal coefficients of
the matrix B) since the planning units were not connected to themselves. Considering the prior
changes, the reserve perimeter was calculated as follows :

x∗TB∗(1− x∗) =
∑N+1

i=1

∑N+1
j=1 x

∗
i b
∗
i,j(1− x∗j)

=
∑N

i=1

∑N
j=1 xibi,j(1− xj) +

∑N
i=1 xib

∗
i,N+1

= xTB(1− x)+ xTb∗

(2)

Denoting b∗ = (b∗1,N+1, · · · , b∗N,N+1)
T in Equation (2), we can see the new perimeter calculation

was composed of two terms : the known quadratic term xTB(1−x) used previously to calculate
the reserve perimeter but also xT b∗ which represented the contribution of the outer boundary of
the study area to the perimeter computation. Thus, the addition of a fictive pixel only involved
the addition of this new term in the model. The extra row in matrix B∗ appeared unnecessary
in the perimeter calculation since the decision variable xN+1 associated with the fictive pixel
was always set to 0. However, the presence of this row allowed the B∗ to remain a square and
symmetric matrix eventually allowing to write the model in a compact form.

(a) Uncorrected reserve solution (b) Corrected reserve solution

Figure 7 – Reserve solutions obtained with and without the compactness parameter correction.
Minimum set formulation, 3 conservation features each represented with a 50% protection target, considered cost
layer worth 1+ ln(1+FC), compactness parameter β = 10, exact resolution provided by Cbc solver. Left panel
reminds the original solution while the right panel shows the same solution but with correction implemented.

The modifications described above were added to both the minimum set and the maximum
coverage original formulations. We performed some computational experiments with the up-
dated minimum set formulation and compared it with the original one. Results can be found
in Figure 7 which shows side by side the solutions obtained with and without the proposed cor-
rection. It can be seen in Figure 7(b) that the selected reserve did not extend to the edge of the
area like in the original model (Figure 7(a)) and the perimeter was now, as expected, correctly
derived by the model. Moreover, the CPU time required to solve this instance with the new
formulation turned out to be of the same order of magnitude than the original formulation.
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