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Abstract. Motivated by the concept of “location uncertainty", initially introduced in Mémin (2014), a scheme is sought to

perturb the “location" of a state variable at every forecast time step. Further considering Brenier’s theorem Brenier (1991),

asserting that the difference of two positive density fields on the same domain can be represented by a transportation map,

perturbations are demonstrated to consistently define a SPDE from the original PDE. It ensues that certain quantities, up to the

user, are conserved at every time step. Remarkably, derivations following both the SALT Holm (2015) and LU Mémin (2014);5

Resseguier et al. (2016) settings, can be recovered from this perturbation scheme. Still, it opens broader applicability since it

does not explicitly rely on Lagrangian mechanics or Newton’s laws of force. For illustration, a stochastic version of the thermal

shallow water equation is presented.

Copyright statement. TEXT

1 Introduction10

Data assimilation is meant to extract information from measurements to improve the state estimate. Kalman-filter-based and

particle-filter-based methods are now commonly used for academical studies and operational forecasts. For both methods,

the estimate of state variable and the uncertainty quantification of the state estimate are repeated at each data assimilation

cycle. In the classical Kalman filter, this uncertainty is represented by a covariance matrix. In Monte-Carlo-based methods (i.e.

the ensemble Kalman filters and particle filters, etc.), it is represented by the spread of the ensemble members or particles.15

The uncertainty of the state estimate is further part of the input for the next data assimilation cycle. Frequently observed,

the uncertainty can be underestimated in nonlinear numerical experiments when there is no model noise Schlee et al. (1966);

Harlim and Majda (2010); Franzke et al. (2015). As a consequence, the state estimate in the subsequent time steps may

not be efficiently adjusted by the physical measurements: the system is over-confident about its current state estimate. This

phenomenon is usually referred to as filter divergence, possibly associated to the “curse of dimensionality".20
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To address the latter issue, "covariance localization" has been developed for both Kalman-filter-based methods and particle

filters Houtekamer and Mitchell (2001); Poterjoy (2016). To further mitigate filter divergence, a practical strategy is to inflate

the uncertainty estimate at each forecast time step or each data assimilation cycle Anderson (2007); Tibshirani and Knight

(1999); Li et al. (2009); Kotsuki et al. (2017); Ying and Zhang (2015); Miyoshi (2011); Raanes et al. (2019); Zhen and Harlim

(2015). For geophysical applications, the uncertainty is then often inflated by rescaling the ensemble covariance in order to25

match bias and variance. A natural alternative is the addition of noises in the dynamical equations.

In the context of ensemble/particle-based methods, the uncertainty is usually inflated by artificially perturbing each ensemble

member/particle. We refers the reader to Resseguier et al. (2021) for a review on the subject. It is then a natural question to ask:

is there a mathematical principle to guide this uncertainty inflation? In the fluid dynamics community, random forcings are not

introduced for inflation, but to mimic the intermittent back-scattering of energy from small scales toward large scales. Among30

those approaches, we may mention the stochastic Lagrangian models Pope (1994) and the Eulerian Gaussian backscatterings

of EDQNM Orszag (1970); Leith (1971). Additive noise models, like the linear inverse models Penland and Sardeshmukh

(1995), have then also been proposed for filtering purposes, and thoroughly reviewed by Tandeo et al. (2020). Most methods

mainly focus on comparing the estimated uncertainty and the statistics of the innovation process, but ignore other mathemat-

ical/physical aspects (for instance, the conservation laws, etc.). Other empirical approaches, referred to as SPPT Buizza et al.35

(1999) and SKEBS Berner et al. (2009), introduce multiplicative noises, with success in operational weather and climate fore-

cast centers Franzke et al. (2015). Still many drawbacks have been reported, above all violations of conservation laws Reynolds

et al. (2016); Leutbechner et al. (2016). Recently, the operational ocean circulation model NEMO has also been randomized

(e.g. Leroux et al., 2022), but again, without conservative considerations.

Several authors proposed schemes specifically to enforce energy conservation or at least a given energy budget (e.g. Sapsis40

and Majda, 2013; Gugole and Franzke, 219; Resseguier et al., 2021). To better constrain non-Gaussian schemes, many authors

rely on physics and possibly on time-scale separation. Introduced by Hasselmann (1976), it is generally associated with the

rigorous theories of averaging and homogenization. Majda et al. (1999) decomposed the state variable into slowly-varying

modes xj and fast-varying modes yj . The authors demonstrated that the interaction term between xj and yj , in the equation

for xj , can be modeled as a stochastic process solely in terms of xj’s, as the ratio of the time scales of xj and yj tends to45

0. Nevertheless, homogenization methods, like Majda et al. (1999), may also lead to violation of energy conservation, even

though some workarounds exist Gottwald and Melbourne (2013); Jain et al. (2014).

In Brzeźniak et al. (1991), later modified in Mikulevicius and Rozovskii (2004); Flandoli (2011) and Mémin (2014);

Resseguier et al. (2016, 2021), preservation of kinetic energy is specifically emphasized. The true velocity of an incompressible

flow is decomposed into a regular component and a turbulent one, and the latter modeled by a stochastic noise. Mikulevicius50

and Rozovskii (2004) and Mémin (2014) further derived stochastic Navier-Stokes equations. For these two approaches, the

large-scale advecting velocity differs, induced by different regularisation of the Newton’ second law. Following an other path,

considering the Hamilton’s principle with a stochastic advection constraint on Lagrangian fluid trajectories, Holm (2015) also

proposed a consistent stochastic setting, i.e stochastic advection by Lie transport (SALT). In particular, this derivation preserves
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Kelvin’s circulation. Similarities and differences between these different stochastic frameworks are discussed in Resseguier55

et al. (2020).

From another perspective, the classical optimal transport theory suggests that the difference of two smooth positive density

fields (ρ1 and ρ2) on a bounded domain Ω can be described by a transportation map: T : Ω→ Ω. More specifically, there exists

a diffeomorphism T of Ω to transform ρ1 to ρ2 under the diffeomorphism T with a minimal cost. Broadly speaking, T can

be interpreted as how much ρ2 differs from ρ1, and T operates as a location correction. Indeed, starting from the same initial60

condition ρ(t), suppose that ρ1 = ρmodel(t+∆t) is the model forecast and ρ2 = ρ(t+∆t) is the true forecast. The additional

uncertainty of ρ1 due to model error can then be represented by a random T . It further suggests that the inflation of uncertainty

can be achieved by casting a random T on each ensemble member/particle.

Motivated by such an optimal transport perspective and the concept of “location uncertainty", proposed in Mémin (2014), a

new strategy can thus seek to design a well constrained “location perturbation" of the state variable. Specifically, the idea of65

covariance inflation can be informally generalized to physical fields that are not always positive, i.e. physical fields other than

the density field. Mathematically, a density field ρ is naturally associated to a differential n-form θρ, where n= dimΩ. The

statement “ρ1 transforms to ρ2 under the diffeomorphism T " is equivalent to the mathematical relation θρ1
= T ∗θρ2

, where

T ∗, acting on all differential forms, is the pull-back operator induced by T , or equivalently, θρ2
= (T−1)∗θρ1

. Therefore, a

random T (or equivalently, T−1) could induce a perturbation of any differential k−form.70

To implement a physically-constrained perturbation scheme, the state variable S under consideration must then be associated

to some differential form θ, i.e. construct a 1-1 correspondence between snapshots of S and snapshots of θ. Note, this can be

generalized to other types of tensor fields. It will be demonstrated (section 5) that it is indeed sometimes helpful to choose θ

to be a contravariant tensor field other than differential forms. Yet, it must be stressed that associating the state variable S to a

differential form θ is a key important step.75

Correspondingly, at each forecast time step, the covariance inflation should follow 4 steps:

– Step 1, find θ(t) based on S(t).

– Step 2, construct a random diffeomorphism T : Ω→ Ω.

– Step 3, replace θ(t) with T ∗θ(t) and calculate S(t) based on the new value of θ(t).

– Step 4, calculate the forecast S(t+∆t) based on the new value of S(t).80

Associating S to different θ shall then be constrained by different conservation laws for the perturbation scheme. More

precisely, certain physical quantities are conserved in step 3, no matter how T is constructed or realized in step 2. We emphasize

that the conservation law of the perturbation scheme merely depends on the choice of θ, but is independent of the dynamics

of the original deterministic system. A resulting SPDE will conserve a given quantity only if both the perturbation scheme

and the original deterministic system conserve that quantity. We also remark that this scheme can not conserve all the physical85

quantities at the same time unless additional constraints upon the parameters are imposed. Hence the users must choose by

themselves which physical quantity to conserve.
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In sum, this manuscript provides with the perspective that the displacement vector field of physical state fields should

be determined by the tensor fields associated to the physical fields. The advantage of this perspective is that certain physical

quantities can be conserved while applying a displacement vector field to transfer the original physical field. A direct application90

of this perspective is the physically constrained covariance inflation scheme proposed in this manuscript. When the tensor

fields are positive n−forms on a bounded domain that have the same total mass, Brenier’s theorem shows that the ‘optimal’

displacement vector field exists and is unique, for a given cost function. In this case, the optimality of displacement vector field

is well-defined. In other cases, the issue of ‘optimality’ together with the existence and uniqueness of ‘optimal’ displacement

vector field need to be carefully explored. We reserve this to the future study.95

This paper is organized as follows. Section 2 is a brief introduction of optimal transport theory. In section 3 we present the

perturbation scheme in detail, including the motivation, the specific techniques in derivation, and several examples. In section

4, the resulting perturbation scheme is then compared with the stochastic advection by Lie transport (SALT) equations Holm

(2015) and the location uncertainty (LU) equations Mémin (2014). For properly chosen θ and Tt, it is demonstrated that both

SALT and LU settings are recovered within the proposed framework. To illustrate our purpose, a stochastic version of the100

thermal shallow water equation is then derived in section 5. Final conclusion and discussion are given in section 6.

Convention of notation:

– The letter i only refer to the i−th independent Brownian motion. The letters p,q,j,k refer to the components if p,q,j,k

are upper indices.

– Einstein’s convention on summation (applies to all indices except i, j): if indice p show in both upper and lower indices,105

then the summation over p automatically applies.

– Summation over i, j,p automatically applies in all equations. For instance, ei refers to
∑
i

ei, and yj refers to
∑
j

yj

2 Monge’s formulation of optimal transport problem and Brenier’s answer

Hereafter we briefly summarize some necessary concepts and results in optimal transport theory. Let Ω be a bounded domain

in a n−dimensional Euclidean space.110

Definition 2.0.1 (Monge’s optimal transport problem). Given cost function c(x,y)≥ 0 and probability measures µ,ν ∈ P(Ω),

minimize M(T ) =

∫
Ω

c(x,T (x))dµ(x) (1)

over µ measurable maps T : Ω→ Ω subject to ν = T#µ.

Here the probability measures µ and ν are interpreted as mass distributions with total mass equal to 1. The map T is called a

transport plan which moves the mass dµ(x) at location x to location T (x), with the cost c(x,T (x)) per unit of mass. Therefore115

the quantity M(T ) is the total cost of the transport plan T . The constraint ν = T#µ is interpreted as that T transports the mass
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distribution µ to the mass distribution ν. In the case that T is a diffeomorphism and that both ν and µ have smooth densities,

i.e. assume that dν(x) = f(x)dnx and dµ(x) = g(x)dnx for some smooth functions f,g on Ω,

ν = T#µ⇐⇒ g(x) = f(T (x))|JT (x)|, (2)

where JT (x) refers to the Jacobian matrix of T at x. If we associate ν and µ to differential n−forms θν = fdx1 ∧ ·· · ∧ dxn120

and θµ = gdx1 ∧ ·· · ∧ dxn, then

ν = T#µ⇐⇒ θµ = T ∗θν . (3)

Brenier Brenier (1991) proved the existence and uniqueness of the solution to the Monge’s optimal transport problem for

c(x,y) = |x− y|2. To better illustrate how optimal transport theory motivates us, we consider the following simplified version

of Brenier’s theorem.125

Theorem 2.1 (Brenier, simplified version). Let µ and ν be measures with bounded smooth density on a bounded domain

Ω⊂ Rn. Let c(x,y) = |x− y|2. Then there is a convex function ϕ : Ω→ R, such that (∇ϕ)#µ= ν. And ∇ϕ : x→ x+∇ϕ
∣∣
x

,

defined µ−almost everywhere, is the unique solution to the Monge’s optimal transport problem.

The convexity of ϕ implies that the map ∇ϕ is one-to-one. Broadly speaking, Brenier’s theorem implies that the difference

of two density fields can be represented by a transportation map T .130

3 The Perturbation Scheme

Consider a compressible flow on a bounded domain Ω. Let ρ denote the density field. Let ρmodel(t+∆t) and ρtrue(t+∆t) be

the model forecast and the true forecast starting from the same density field at time t. If we assume that the model forecast and

the truth have the same total mass, Brenier’s theorem says that there exists a diffeomorphism T : Ω→ Ω so that

ρtrue(x,t+∆t) = ρmodel(T (x), t+∆t)JT (x). (4)135

Note that the transportation T hereinafter is equivalent to the mapping T−1 used in the introduction. Eq.(4) can further be

written in terms of differential form. Let θρ = ρdx1 ∧ ...∧ dxn, then Eq.(4) is equivalent to

T ∗θmodel
ρ (t+∆t) = θtrue

ρ (t+∆t). (5)

For general differential forms θ, it is unclear whether a diffeomorphism T always exists that satisfies Eq.(5). However, Eq.(5)

provides us with a tool for covariance inflation by constructing a random T at every infinitesimal time step. At each time step140

we construct a small perturbation T :

Tt(x) = x+ a(t,x)∆t+ ei(t,x)∆ηi(t), (6)

where a(t,x),ei(t,x) ∈ Rn, ∆ηi(t)∼N (0,∆t) is a random number. Essentially, Tt(x)−x can be interpreted as a “location

error" caused by the model error. In Eq.(6), a(t,x)∆t refers to a systematic location error, and ei∆ηi refers to a random location

5



error. Stated in the introduction, the state variable S must first be associated to a differential form θ. Then at every time step, Tt145

induces a perturbation of θ(t) by θ(t)→ T ∗
t θ(t). It hence induces a perturbation of the state variable S(t). A forecast is then

performed based on the perturbed state. Consequently, this perturbation scheme derives a SPDE from the original PDE.

This procedure can also be generalized to other types of tensor fields. We refer to Chern et al. (1999) for a rigorous definition

of the tensor fields and the wedge algebra. For instance, we may choose θ = ρ ∂
∂x1 ∧ ·· ·∧ ∂

∂xn , where { ∂
∂xi }i≤n forms a global

basis of the tangent field. Then Tt induces a perturbation of θ by θ(t)→ Tt∗θ, where Tt∗ is the push-forward operator induced150

by Tt. In section 5, such a generalization is found useful in the example of thermal shallow water equation.

Remark 1. When θ is a mixture of covariant and contravariant tensor fields, the perturbation scheme is slightly more com-

plicated. Assume that Tt : Ω1→ Ω2 is a diffeomorphism, and θ = v⊗ω where v and ω are contravariant or covariant tensor

fields respectively on Ω2. Then T ∗
t ω is a covariant tensor field on Ω1. However, Tt can not directly induce a contravariant

tensor field on Ω1. In order to get a tensor field on Ω1, we consider T−1
t : Ω2→ Ω1, and apply the push-forward operator on155

v. In sum, we may define the perturbation to be

θ(t)→
(
(T−1

t )∗v
)
⊗
(
T ∗
t ω

)
. (7)

Appendix A derives the expression of T−1
t directly from the expression of Tt.

3.1 Calculation of T ∗
t θ (or Tt∗θ)

A rigorous mathematical definition and calculation of Tt and T ∗
t should be given in terms of stochastic flows of diffeomor-160

phisms and its Lie derivatives. A brief discussion of the relationship between T ∗
t and the Lie derivative is given in section

4.1. We further refer to Leon (2021) for detailed definition of the Lie derivative. Yet, to rapidly assess T ∗
t θ (or Tt∗θ), a Taylor

expansion and usage of Ito’s lemma can be used.

Given coordinates (x1, ...,xn), when θ is a differential k−form, it can be written as

θ =
∑

i1<...<ik

f i1,...,ikdxi1 ∧ ·· · ∧ dxik . (8)165

Then

T ∗
t θ =

∑
i1<...<ik

f i1,...,ik(Tt(x))T
∗
t (dx

i1 ∧ ·· · ∧ dxik). (9)

Given in appendix B, Taylor expansion and Ito lemma are applied to expand T ∗
t θ, leading to compactly write

T ∗
t θ = θ+M(θ)∆t+Ni(θ)∆ηi, (10)

for some differential k−formsM(θ) and Ni(θ). Hereafter, several examples of T ∗
t θ are presented.170

The full derivation of these examples are skipped. We further express all the terms in coordinates. For instance, we replace

⟨∇f,a⟩with aj∂xjf , where, by convention of notation, aj∂xjf =
∑

j a
j ∂f
∂xj . Similarly, e⊤i Hfei is replaced with epi e

q
i∂xp∂xqf .
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Remark 2. When θ = f ∂
∂xi1
∧ ·· · ∧ ∂

∂xik
is a contravariant tensor field,

Tt∗θ = f(T−1
t (x))Tt∗(

∂

∂xi1
∧ ·· · ∧ ∂

∂xik
). (11)

The formula for T−1
t is derived in appendix A. Then the expression of f(T−1

t (x)), Tt∗
∂

∂xi1
∧·· ·∧ ∂

∂xik
and Tt∗θ can be derived175

step by step in a similar way as in appendix B.

Example 3.1.1. When θ = f is a function (differential 0−form),

(T ∗
t θ) =f +

(
aj∂xjf + 1

2e
p
i e

q
i∂xp∂xqf

)
∆t+ epi ∂xpf∆ηi (12)

Example 3.1.2. When θ = dx1 ∧ dx2 ∧ ·· · ∧ dxn,

T ∗
t θ =

{
1+

(
∂xpap + 1

2Ji

)
∆t+ ∂xpepi∆ηi

}
θ, (13)180

where Ji = ∂xpepi ∂xqeqi − ∂xpeqi∂xqepi .

Example 3.1.3. When θ = fdx1 ∧ ·· · ∧ dxn,

T ∗
t θ =

{
f +

(
(∂xpap + 1

2Ji)f +(ap + epi ∂xqeqi )∂xpf + 1
2e

p
i e

q
i∂xp∂xqf

)
∆t

+(∂xpepi f + epi ∂xpf)∆ηi

}
dx1 ∧ ·· · ∧ dxn (14)

Example 3.1.4. When θ = f jdxj (note that by the convention of notation, f jdxj =
∑n

j=1 f
jdxj),185

T ∗
t θ =

{
f j +(ap∂xpf j + 1

2e
p
i e

q
i∂xp∂xqf j + ∂xjapfp + ∂xjepi e

q
i∂xqfp)∆t

+(epi ∂xpf j + ∂xjepi f
p)∆ηi

}
dxj (15)

Example 3.1.5. When θ = f ∂
∂x1 ∧ ·· · ∧ ∂

∂xn ,

Tt∗θ =
{
f +

(
(∂xpap + 1

2Ji)f +(−(ap + epi ∂xqeqi )+ ∂xqepi e
q
i )∂xpf + 1

2e
p
i e

q
i∂xp∂xqf

)
∆t

+(∂xpepi f − epi ∂xpf)∆ηi

} ∂

∂x1
∧ ·· · ∧ ∂

∂xn
(16)190

3.2 Derivation of the Stochastic PDE

Suppose S is the full state variable of the dynamical system:

∂S

∂t
= g(S). (17)

Let f be a component or a collection of components of S. We then associate f to a differential form θ in the perturbation

scheme, i.e. there is an invertible mapF that maps the space of f to the space of θ, such thatF(f) = θ. Suppose the propagation195

equation for f is

df = gf (S)dt. (18)
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This implies a propagation equation for θ:

dθ = gθ(S)dt. (19)

The discrete-time perturbed forecast at each time step consists of the following two steps:200 θ̃(t+∆t) = θ(t)+ gθ(S(t))∆t

θ(t+∆t) = T ∗
t θ̃(t+∆t)

(20)

(21)

with T ∗
t θ̃(t+∆t) = θ̃(t+∆t)+M(θ̃(t+∆t))∆t+Ni(θ̃(t+∆t))∆ηi+o(∆t) for some differential formsM(θ̃) andNi(θ̃).

The physical PDE (20) being deterministic, ∥θ̃(t+∆t)− θ(t)∥ scales in O(∆t). Indeed, there is no noise term to induce

a scaling in O(
√
∆t). Therefore, it can be assumed that there exists C > 0 so that ∥M(θ̃(t+∆t))−M(θ(t))∥<C∆t and

∥Ni(θ̃(t+∆t))−Ni(θ(t))∥<C∆t, for ∆t small enough. Then205

T ∗
t θ̃(t+∆t) =θ̃(t+∆t)+

(
M(θ(t))+O(∆t)

)
∆t+

(
Ni(θ(t))+O(∆t)

)
∆ηi + o(∆t)

=θ̃(t+∆t)+M(θ(t))∆t+Ni(θ(t))∆ηi + o(∆t) (22)

Therefore,

θ(t+∆t) = θ(t)+ gθ(S(t))∆t+M(θ(t))∆t+Ni(θ(t))∆ηi + o(∆t). (23)

This suggests the following stochastic propagation equation for θ:210

dθ = gθ(S)dt+M(θ)dt+Ni(θ)dηi. (24)

Since there is a 1-1 correspondence between θ and f , Eq.(19) also suggests a stochastic propagation equation for f , which can

be written as

df = gf (S)dt+Mf (f)dt+N f
i (f)dηi. (25)

We denote the additional terms in Eq.(25) by215

dsf :=Mf (f)dt+N f
i (f)dηi. (26)

Then Eq.(25) can be written as:

df = gf (S)dt+ dsf. (27)

Remark 3 (dsf is not directly related to the original dynamics). dsf is completely determined by T ∗
t θ, but is not directly

related to the original dynamics Eq.(18). Therefore, once the expression of T in Eq.(6) and the choice of θ is determined,220

the perturbation term dsf is prescribed. However, the choice of θ is up to the user, and may then be related to the original

dynamics.
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Remark 4. In particular, there is no noise in the the original dynamics Eq.(18) which could be correlated with the noise of the

resulting stochastic scheme (21). That is why the Itō lemma directly applies in the Taylor development (B4) of f , and then in

the equation (22), leading to (23) and the final SPDE. Indeed, unlike the Itō-Wentzell formula Kunita (1997) – a cornerstone of225

the LU scheme – there is no additional cross-correlation term between T ∗
t and θ̃(t+∆t). The final SPDE (24) makes clear the

link between the solution θ and the Brownian motions ηi. But, at a given time step t, since (18) has no noise term, θ̃(t+∆t)

is correlated with the t′ 7→ ηi(t
′) for t′ < t only, and is independent of the new Brownian increment ∆ηi(t) generating Tt.

Therefore, there is no cross-correlation term between T ∗
t and θ̃(t+∆t).

Example 3.2.1. When θ = f , example 3.1.1,230

T ∗
t θ− θ =

(
ap∂xpf + 1

2e
p
i e

q
i∂xp∂xqf

)
∆t+ epi ∂xpf∆ηi (28)

This implies that

dsf =
(
ap∂xpf + 1

2e
p
i e

q
i∂xp∂xqf

)
dt+ epi ∂xpfdηi (29)

To physically interpret this equation, we rewrite:

dsf

dt
+V p∂xpf = ∂xp

(
( 12e

p
i e

q
i )∂xqf

)
(30)235

where

V p =−ap + 1
2∂xq (epi e

q
i )− epi

dηi
dt

(31)

Terms of advection and diffusion are recognized. The matrix 1
2eie

T
i is symmetric non-negative and represents a diffusion ma-

trix. The p-th component of the advecting velocity V p is composed of the drift −ap, a correction 1
2∂xq (epi e

q
i ), and a stochastic

advecting velocity −epi
dηi

dt .240

If the original deterministic PDE (18) is an advection diffusion equation, with advecting velocity u and diffusion coefficient

coefficient D, the final SPDE to simulate (Eq. (25)) is now a stochastic advection-diffusion equation, with advecting velocity

u+V and diffusion matrix DId +
1
2eie

T
i :

df

dt
+(up +V p)∂xpf = ∂xp

(
(Dδpq +

1
2e

p
i e

q
i )∂xqf

)
(32)

This type of SPDE appears in the LU framework, detailed in section 4.2.1.245

Example 3.2.2. When θ = fdx1 ∧ ·· · ∧ dxn, example 3.1.3,

T ∗
t θ− θ =

{(
(∂xpap + 1

2Ji)f +(ap + epi ∂xqeqi )∂xpf + 1
2e

p
i e

q
i∂xp∂xqf

)
∆t

+(∂xpepi f + epi ∂xpf)∆ηi

}
dx1 ∧ ·· · ∧ dxn (33)
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This implies that

dsf =
(
(∂xpap + 1

2Ji)f +(ap + epi ∂xqeqi )∂xpf + 1
2e

p
i e

q
i∂xp∂xqf

)
dt250

+(∂xpepi f + epi ∂xpf)dηi (34)

Rewritten, it leads to:

dsf

dt
+ ∂xp

(
Ṽ pf

)
= ∂xp

(
( 12e

p
i e

q
i )∂xqf

)
(35)

where

Ṽ p = V p− (epi ∂xqeqi ) =−a
p + 1

2 (∂xqepi e
q
i − epi ∂xqeqi )− epi

dηi
dt

(36)255

Again a advection-diffusion equation is recognized, but of different nature. Indeed, as expected for a n-form, the PDE is similar

to a density conservation equation. Moreover, the advecting drift is slightly different to take into account the cross-correlations

between f(Tt(x)) and T ∗
t (dx

1 ∧ ·· · ∧ dxn).

Recall, in fluid dynamics, the Reynolds transport theorem provide an integral conservation equation for the transport of

any conserved quantity within a fluid, connected to its corresponding differential equation. The Reynolds transport theorem is260

central to the LU setting. The present example thus already outlines a closed link between the proposed perturbation approach

and the LU formulation. Accordingly, the SPDE (35) naturally appears in the LU framework, as detailed in section 4.2.2.

Example 3.2.3. When θ = f jdxj , example 3.1.4,

T ∗
t θ− θ =

{
(ap∂xpf j + 1

2e
p
i e

q
i∂xp∂xqf j + ∂xjapfp + ∂xjepi e

q
i∂xqfp)∆t

+(epi ∂xpf j + ∂xjepi f
p)∆ηi

}
dxj (37)265

For each j, the coefficients of dxj in T ∗
t θ− θ and those in θ can be compared, to lead to

dsf
j =(ap∂xpf j + 1

2e
p
i e

q
i∂xp∂xqf j + ∂xjapfp + ∂xjepi e

q
i∂xqfp)dt

+(epi ∂xpf j + ∂xjepi f
p)dηi (38)

Regrouping the terms for physical interpretation, it writes:

dsf
j

dt
+V p∂xpf j + ∂xj

(
−ap− epi

dηi
dt

)
fp− ∂xjepi e

q
i∂xqfp = ∂xp

(
( 12e

p
i e

q
i )∂xqf j

)
(39)270

Two additional terms complete the advection-diffusion term. The first one, ∂xj

(
−ap− epi

dηi

dt

)
fp, is reminiscent to the addi-

tional terms appearing in SALT momentum equations Holm (2015); Resseguier et al. (2020). The second term,−∂xjepi e
q
i∂xqfp,

comes from cross-correlation in Itō notation.
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Example 3.2.4. When θ = f ∂
∂x1 ∧ ·· · ∧ ∂

∂xn , example 3.1.5,

Tt∗θ− θ =
{(

(∂xpap + 1
2Ji)f +(−(ap + epi ∂xqeqi )+ ∂xqepi e

q
i )∂xpf + 1

2e
p
i e

q
i∂xp∂xqf

)
∆t275

+(∂xpepi f − epi ∂xpf)∆ηi

} ∂

∂x1
∧ ·· · ∧ ∂

∂xn
(40)

This implies

dsf =
(
(∂xpap + 1

2Ji)f +(−(ap + epi ∂xqeqi )+ ∂xqepi e
q
i )∂xpf + 1

2e
p
i e

q
i∂xp∂xqf

)
dt

+(∂xpepi f − epi ∂xpf)dηi (41)

It can then be verified that:280

dsf

dt
+ ∂xp Ṽ pf − ˜̃V p∂xpf = ∂xp

(
( 12e

p
i e

q
i )∂xqf

)
(42)

where

˜̃V p = Ṽ p− (epi ∂xqeqi ) = V p− 2(epi ∂xqeqi ) (43)

It is recognized the diffusion term, ∂xp

(
( 12e

p
i e

q
i )∂xqf

)
, the divergence term, ∂xp Ṽ pf , comparable to the density equation, and

the advection term, − ˜̃V p∂xpf . However, the velocity fields appearing in the divergent and advecting terms do not coincide.285

Indeed, they are even opposite for divergence-free noise (∂xqeqi = 0). This type of equation may appear uncommon but will be

shown useful when applied to randomized thermal shallow water equations.

3.3 Conservation laws related to dsf

A major advantage of the proposed perturbation scheme is to possibly prescribe θ to ensure that certain quantities are conserved.

Define the discrete time version of dsf as:290

∆sf =Mf (f)∆t+N f
i (f)∆ηi. (44)

In general, conservation laws can be derived from the following two identities about the pull-back operator:

(T ∗
t θ1)∧ (T ∗

t θ2) =T ∗
t (θ1 ∧ θ2) (45)

dT ∗
t θ =Ttdθ, (46)

where d refers to the differential operator acting on differential forms. Hereafter, we present how to derive the conservation295

laws for two particular examples.

Example 3.3.1. Suppose θ1 = fdx1 ∧ ·· · ∧ dxn and define

θ̂1 =T ∗
t θ1 (47)

f̂ =f +∆sf. (48)
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Then θ̂1 = f̂dx1 ∧ ·· · ∧ dxn. Therefore300 ∫
Ω

f̂dx1 . . .dxn =

∫
Ω

θ̂1 =

∫
Ω

T ∗
t θ1 =

∫
Tt(Ω)

θ1 =

∫
Ω

θ1

=

∫
Ω

fdx1 . . .dxn. (49)

Eq.(49) implies that the total integral of f is not changed by the perturbation scheme. Next suppose that θ2 = g is a function.

Similarly we define

θ̂2 =T ∗
t θ2 (50)305

ĝ =g+∆sg. (51)

Applying Eq.(45),∫
Ω

f̂ ĝdx1 . . .dxn =

∫
Ω

θ̂1 ∧ θ̂2 =
∫
Ω

T ∗
t (θ1 ∧ θ2) =

∫
Tt(Ω)

θ1 ∧ θ2

=

∫
Ω

θ1 ∧ θ2 =
∫
Ω

fgdx1 . . . .dxn (52)

The total integral of fg is thus also conserved by the perturbation scheme. Similarly for any integer m≥ 0, fgm is conserved310

by the perturbation scheme.

Example 3.3.2. Suppose n= 2 and θ = udx+vdy, where u= (u,v) is the velocity field. The vorticity ω = ∂xv−∂yu corre-

sponds to the differential 2-form dθ:

dθ = ωdx1 ∧ dx2. (53)

Define θ̂ := T ∗
t θ = ûdx1 + v̂dx2 and ω̂ = ∂xv̂− ∂yû. Then dθ̂ = ω̂dx1 ∧ dx2, and315 ∫

Ω

ω̂dx1dx2 =

∫
Ω

dθ̂ =

∫
ω

dT ∗
t θ =

∫
Ω

T ∗
t dθ =

∫
Tt(Ω)

dθ

=

∫
Ω

ωdx1dx2. (54)

Therefore the vorticity is conserved by the perturbation scheme.

Example 3.3.3. Suppose n= 3 and θ = udx+vdy+wdz, where u= (u,v,w) is the velocity field. The vorticity ω = (∂yw−
∂zv,∂zu− ∂xw,∂xv− ∂yu) corresponds to the differential 2-form dθ:320

dθ = (∂yw− ∂zv)dy ∧ dz+(∂xv− ∂yu)dz ∧ dx+(∂xv− ∂yu)dx∧ dy. (55)
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The helicity Θ= u(∂yw− ∂zv)+ v(∂xv− ∂yu)+w(∂xv− ∂yu) corresponds to the differential 3-form:

dθ∧ θ =
(
u(∂yw− ∂zv)+ v(∂xv− ∂yu)+w(∂xv− ∂yu)

)
dx∧ dy ∧ dz. (56)

Similarly, we define Θ̂ by dθ̂∧ θ̂ = Θ̂dx∧ dy ∧ dz. Then∫
Ω

Θ̂dxdydz =

∫
Ω

dθ̂∧ θ̂ =
∫
Ω

(dT ∗
t θ)∧ (T ∗

t θ)325

=

∫
Ω

(T ∗
t dθ)∧ (T ∗

t θ) =

∫
Ω

T ∗
t (dθ∧ θ) =

∫
Tt(Ω)

dθ∧ θ =
∫
Ω

Θdxdydz. (57)

Hence, in this case, the total amount of helicity is conserved.

Example 3.3.4. Suppose that θ1 = fdx1∧·· ·∧dxn and that θ2 = g ∂
∂x1 ∧·· ·∧ ∂

∂xn . There exists a pairing ⟨,⟩ for the differential

n−forms and the contravariant n−vectors, i.e. ⟨θ1,θ2⟩= fg is a function on Ω. Define

θ̂1 =T ∗
t θ1 = f̂dx1 ∧ ·· · ∧ dxn (58)330

θ̂2 =(T−1
t )∗θ2 = ĝ

∂

∂x1
∧ ·· · ∧ ∂

∂xn
(59)

Then we have

f̂ ĝ(T−1
t (x)) = ⟨θ̂1, θ̂2⟩

∣∣
T−1
t (x)

= ⟨θ1,θ2⟩
∣∣∣
x
= fg(x), (60)

and that∫
Ω

f̂2ĝdx1 . . .dxn =

∫
Ω

⟨θ̂1, θ̂2⟩θ1 =
∫
Ω

⟨θ1,θ2⟩θ1 =
∫
Ω

f2gdx1 . . .dxn (61)335

Remark 5 (The conservation law of the perturbation scheme is independent of the conservation law of the original dynamical

system). The derivation of Eqs.(49) (52), (54), (57), and (61) is based on the generic properties of the pull-back and push-

forward operator of tensor fields. Since the choice of θ is not directly determined by the dynamical system, the conservation

law of the perturbation scheme is independent of the original dynamical system. Recall that the perturbed forecast consists of

two steps: Eq.(20) and (21). The conservation law of the perturbation scheme implies that certain quantities are conserved340

in the second step. On the other hand, the original dynamical system Eq.(20) might enjoy some other conservation law. If a

quantity is conserved by both the original dynamical system and the perturbation scheme, then this quantity must be conserved

by the final stochastic PDE. If a quantity is conserved by only one of Eqs.(20) and (21), then it can not be concluded that this

quantity is conserved by the final SPDE.

4 Comparison with other perturbation schemes345

In this section, we demonstrate that both the stochastic advection by Lie transport (SALT) equation Holm (2015) and the loca-

tion uncertainty (LU) equation Mémin (2014); Resseguier et al. (2016, 2020) can be recovered using the proposed perturbation

scheme and properly choosing θ and the parameters a,ei.
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4.1 Comparison with SALT equation

The original SALT equation Holm (2015) is derived based on a stochastically constrained variational principle δS = 0, for350

which S(u,q) =
∫
ℓ(u,q)dt

dq+£dxtq = 0.
(62)

where ℓ(u,q) is the Lagrangian of the system, £ is the Lie derivative, and xt(x) is defined by (using our notation)

xt(x) = x0(x)+

t∫
0

u(x,s)ds−
t∫

0

ei(x) ◦ dηi(s), (63)

in which u is the velocity vector field, and the ◦ means that the integral is defined in the Stratonovich sense, instead of355

in the Ito sense. Hence, dxt = u(x,t)dt− ei ◦ dηi refers to an infinitesimal stochastic tangent field on the domain. Broadly

speaking, we can express dxt = Tt(x)−x+udt. Note the difference between Ito’s notation and Stratonovich’s notation, i.e.

ei ◦ dηi ̸= eidηi. Our expression of Tt essentially follows Ito’s notation, and Tt(x) ̸= x− ei∆ηi in this subsection. Instead, it

becomes Tt(x) = x+ 1
2e

p
i ∂xp

ei∆t− ei∆ηi.

In the second equation of Eq.(62), q is assumed to be a quantity advected by the flow. q can correspond to any differential360

form that is not uniquely determined by the velocity (since the SALT equation for the velocity is usually determined by the

first equation of Eq.(62)). In Holm (2015), the Lie derivative £dxtq is calculated using Cartan’s formula:

£dxtq = d(idxtq)+ idxtdq. (64)

Essentially, the Lie derivative £dxtq corresponds to T ∗
t q− q+ fq(S)dt, if we assume that the deterministic forecast of q is

simply the advection of q by u. More generally, £dxt−udtq = T ∗
t q− q. Therefore, the SALT equation for q is the same as our365

equation for q. We remark that the Cartan’s formula can not be directly applied to calculate the Lie derivative if the expression

of dxt is in Ito’s notation.

The SALT equation regarding the velocity u comes from the first equation of Eq.(62). For most cases, the velocity u is

associated with the momentum, a differential 1−form m= ujdxj = u1dx1 + ...+undxn. In the examples discussed in Holm

(2015), it is observed that, when the Lagrangian includes the kinetic energy, the stochastic noises contribute a term £dxtθ, where370

θ is a differential 1−form related to the momentum 1−form. For instance, θ =m in the example of “Stratonovich stochastic

Euler-Poincaré flow" in Holm (2015), and θ =m+Rjdxj in the example of “Stochastic Euler-Boussinesq equations of a

rotating stratified incompressible fluid" in Holm (2015). Already pointed out, the operator £dxt
is closely related to T ∗

t , and

the momentum equation in SALT can be derived using our proposed scheme by properly choosing θ.

Holm (2015) requires that q to be a differential form since Cartan’s formula is only useful for differential forms q. This375

restriction can be relaxed by employing the original definition of Lie derivative with respect to a deterministic/stochastic flow

of diffeomorphism discussed in Leon (2021), so that £dxtq can be generalized to the case where q is a mixed tensor field. This

corresponds to our Eq.(7).
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Compared with Holm (2015); Leon (2021), the proposed perturbation approach seems more flexible and does not have to

rely on the Lagrangian mechanics. In particular, the velocity field can be associated to other tensor fields than the momentum380

1-form. The perturbation, not directly related to the physics, can then be applied to any PDE. Moreover, our approach provides

a new interpretation of £dxt−udt in terms of the optimal transportation associated with the infinitesimal forecast error at each

time step. This interpretation certainly suggests practical numerical methods to infer a,ei. Given a long sequence of reanalysis

data or simulated high-resolution data, the one-step forecast can be evaluated using the low resolution model, with the high

resolution state at each time step being the initial condition. Tt is then estimated at each time step by comparing the low385

resolution forecast and the high resolution forecast. Finally, a and ei could be learnt from these samples of Tt.

4.2 Comparison with the LU equation

Mentioned above, the Reynolds transport theorem is central to the LU setting, and we already outlines a closed link between

the proposed perturbation approach and the LU formulation. This link – related to differential n−forms – will be precised later

in this subsection. But, before this, we focus on another key ingredient of LU: the stochastic material derivative of functions390

(differntial 0−forms).

4.2.1 0-forms in the LU framework

Dropping the forcing terms, LU equation for compressible and incompressible flow writes Resseguier et al. (2016).

∂tf +w⋆ · ∇f =∇ · ( 12a∇f)−σḂ · ∇f (65)

w⋆ =w− 1
2 (∇ ·a)

⊤ +σ(∇ ·σ)⊤, (66)395

where f can be any quantity that is assumed to be transported by the flow, i.e. Df/Dt= 0 where D/Dt is the Itō material

derivative. For instance, f could be the velocity (dropping forces in the SPDE), the temperature, or the buoyancy. Compared to

SALT notations, −eidηi is denoted σdB = σ•idBi. We refer to (Resseguier et al., 2020, Appendix A) for the complete table

of SALT-LU notations correspondences. Derived in (Resseguier, 2017, Appendix 10.1) and (Resseguier et al., 2021, 6.1.3), we

can rewrite it as400

∂tf +wS · ∇f = 1
2 (σ•i · ∇)(σ•i · ∇f)− (σḂ) · ∇f, (67)

=− (σ ◦ Ḃ) · ∇f, (68)

wS =w+wc
S (69)

wc
S =− 1

2 (∇ ·a)
⊤ + 1

2σ(∇ ·σ)
⊤, (70)

=− 1
2 (σ•i · ∇)σ•i, , (71)405

where σ ◦ Ḃ is the Stratonovich noise of the SPDE, w and wS (denoted u in the SALT framework) are respectively the Itō

drift and the Stratonovich drift of the fluid flow. Separating the terms of the SPDE related to the deterministic dynamics from
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the term associated to the stochastic scheme, it comes

dLUf = gf (S)dt+ dLU
s f, (72)

where410

gf (S) =−w · ∇f (73)

dLU
s f =−wc

S · ∇fdt+ 1
2 (σ•i · ∇)(σ•i · ∇f)dt− (σdB) · ∇f (74)

Terms in Eqs.(65) and (66) translate to our notation in the following way:

−wc
S · ∇fdt= 1

2e
q
i∂xq

epi ∂xp
f

1
2 (σ•i · ∇)(σ•i · ∇f) = 1

2e
p
i ∂xp

(eqi∂xq
f)415

= 1
2 (e

p
i ∂xp

eqi∂xq
f + epi e

q
i∂xp

∂xq
f)

−σdB · ∇f =epi ∂xp
fdηi

Hence

dLU
s f =(eqi∂xq

epi ∂xp
f + 1

2e
p
i e

q
i∂xp

∂xq
f)dt+ epi ∂xp

fdηi (75)

Direct calculation yields that Eq.(75) coincides with Eq.(29) when420

Tt(x) = x+ eqi∂xq
ei∆t+ ei∆ηi = x−wc

S∆t+(−wc
S∆t−σ∆B). (76)

The LU equation can thus be derived by choosing θ = f and Tt by Eq.(76). At the first glance, it seems not straightforward

to make such a choice. Nevertheless, it can be recognized that the term (−wc
S∆t−σ∆B) = ( 12e

q
i∂xqei∆t+ ei∆ηi) is the

Itō noise plus its Itō-to-Stratonovich correction. Hence, it corresponds to the Stratonovich noise ei ◦dηi of the flow associated

to Tt. The additional drift −wc
S∆t is different in nature. It is related to the advection correction wc

S · ∇f in the LU setting.425

Indeed, in the LU framework, the Itō drift, w, is seen as the resolved large-scale velocity. That is why, in this framework,

the deterministic dynamics (74) involves the Itō drift, w. This is also the reason why, under the LU derivation, the advected

velocity is assumed to be given by the Itō drift, w. It differs from the Stratonovich drift wS =w+wc
S , used as advected

velocity in SALT approach or in Mikulevicius and Rozovskii (2004) (where the Stratonovich drift is denoted u). Interested

readers are referred to (Resseguier et al., 2020, Appendix A) for a discussion on these assumptions. Note however that in all430

these approaches, the advecting velocity is always the Stratonovich drift. This can be seen e.g., in the Stratonovich form of LU

equations (68).

To also understand (76), the inverse flow can be considered. According to appendix A,

T−1
t (x) = x− ei∆ηi = x+σ∆B. (77)

Considering Tt to represent how much the model forecast differs from the true forecast at every time step, T−1
t can be under-435

stood to represent how much the true forecast differs from the model forecast at each time step. Therefore, the LU equation can

be derived using the proposed perturbation scheme, choosing θ = f and assuming that the true forecast differs from the model

forecast by a displacement prescribed by Eq.(77).
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4.2.2 n-forms in the LU framework

The LU physical justification relies on a stochastic interpretation of fundamental conservation laws, typically conservation of440

extensive properties (i.e. integrals of functions over a spatial volume) like momentum, mass, matter and energy Resseguier

et al. (2016). These extensive properties can be expressed by integrals of differential n−forms. For instance, the mass and the

momentum are integrals of the differential n−forms ρdx1∧·· ·∧dxn and ρwdx1∧·· ·∧dxn, respectively. In the LU framework,

a stochastic version of the Reynolds transport theorem (Resseguier et al., 2016, Eq. (28)) is used to deal with these differential

n−forms θ = fdx1 ∧ ·· · ∧ dxn. Assuming an integral conservation d
dt

∫
V (t)

f = 0 on a spatial domain V (t) transported by the445

flow, that theorem leads to the following SPDE:

Df

Dt
+∇ · (w⋆ +σḂ)f =

d

dt

〈 t∫
0

Dtf,

t∫
0

∇ ·σḂ

〉
= (∇ ·σ•i)(∇ ·σ•i)

T f (78)

where D/Dt denotes the Itō material derivative. Here again, forcing terms are dropped for the sake of readability. This SPDE

can be rewritten using the expression of that material derivative (Eq. (9) and (10) of Resseguier et al. (2016)):

∂tf +∇ · (wSf) =
1
2∇ · (a∇f)+

1
2∇ · (σ•i(∇ ·σ•i)

T f)−∇ · (σḂf) (79)450

= 1
2∇ · (σ•i(∇ · (σ•if))

T )−∇ · (σḂf) (80)

=−∇ · (σ ◦ Ḃf) (81)

The original deterministic equation and stochastic perturbation correspond to

gf (S) =−∇ · (wf) (82)

dLU
s f =(−∇ · (wc

Sf)+
1
2∇ · (a∇f)+

1
2∇ · (σ•i(∇ ·σ•i)

T f))dt−∇ · (σdBf) (83)455

=∇ · ((( 12∇ ·a)
T dt−σdB)f)+∇ · ( 12a∇f)dt (84)

Identifying a= σ•iσ
T
•i = eie

T
i and σḂ =−eidηi, Eq. (35) corresponds to example 3.2.2 about n−forms, with

Ṽ =−ap + 1
2 (∂xqepi e

q
i − epi ∂xqeqi )− epi

dηi
dt

=−( 12∇ ·a)
T +σḂ (85)

i.e.

ap = ∂xq (epi e
q
i )− (epi ∂xqeqi ) = eqi∂xqepi . (86)460

Again the remapping is obtained

Tt(x) = x+ eqi∂xq
ei∆t+ ei∆ηi = x−wc

S∆t+(−wc
S∆t−σ∆B), (87)

previously derived for differential 0−form in LU framework (Eq. (76)). Therefore, the proposed approach also generalizes the

LU framework for n− forms, and its capacity – given by the Reynolds transport theorem – to deal with extensive properties.
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Remark 6. For incompressible flows, LU equation further imposes that465 ∇ ·σ = 0

∇ ·∇ ·a= 0
(88)

Translating it into our notation, it reads as ∂xp
epi = 0 for each i

∂xp
∂xq

(epi e
q
i ) = 0

Applying the result in example 3.1.2, straightforward calculation gives Eq.(88) to be equivalent to that T ∗
t θ = θ for θ =

dx1 ∧ ·· · ∧ dxn. Such a result was expected since constraints Eq. (88) are obtained from the LU density conservation.470

5 A stochastic version of thermal shallow water equation

In this section, the proposed approach is applied to derive a stochastic version of thermal shallow water equation. Another

stochastic version of thermal shallow water equation can be found in Holm and Luesink (2021). The thermal shallow water

equation is derived in Warneford and Dellar (2013):

∂h

∂t
+∇ · (hū) = 0, (89)475

∂Θ

∂t
+(ū · ∇)Θ =−κ(hΘ−h0Θ0), (90)

∂ū

∂t
+(ū · ∇)ū+ fẑ× ū=−∇(hΘ)+

1

2
h∇Θ (91)

This model can be used to describe a two-layer system under equivalent barotropic approximation. The upper layer is active

but with a spatio-temporal varying density ρ(x,t), while the lower layer is quiescent with a fixed constant density ρ0. The

state variable h represents the height of the active layer, and Θ= g(ρ0− ρ)/ρ0 is the density contrast. ū is the averaged480

horizontal velocity of the active layer at each column. Note that ρ < ρ0 (hence Θ> 0) in the scenario of equivalent barotropic

approximation Warneford and Dellar (2013).

Stated in Warneford and Dellar (2013), the following physical quantities are conserved up to the forcing:

Total energy: E =

∫
Ω

1

2
(h|ū|2 +h2Θ)d2x (92)

Total mass:M=

∫
Ω

hd2x (93)485

Total momentum: M=

∫
Ω

hūd2x (94)

The objective is thus to choose proper tensor fields θū,θh, and θΘ for the state variables ū,h, and Θ, respectively, so that E,M,

and M are conserved by the perturbation scheme. Again, it must be emphasized that the conservation law of the perturbation

scheme does not directly imply that the same quantities are conserved by the final SPDE.
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The domain is 2-dimensional. To conserve mass, the only choice for θh is θh = hdx1∧dx2, which is a differential 2−form.490

It plays the role of density. In order to conserve the momentum, we need the momentum to be a differential 2-form as well.

Hence we must choose θū to be a function (differential 0-form). Therefore, the only choice for θū is θū = ū. This choice of

θū and θh implies that h|ū|2 also corresponds to a 2-form |ū|2θh. Hence the kinetic energy is automatically conserved by the

perturbation scheme. This means that if we want E to be conserved, we must select θΘ so that h2Θ corresponds to a differential

2−form. Note that θh is already a 2-form. We must thus select θΘ so that hΘ corresponds to a function. The only choice for495

θΘ is the contravariant tensor θΘ =Θ ∂
∂x1 ∧ ∂

∂x2 . In this case, hΘ corresponds to the differential 0−form ⟨θh,θΘ⟩= hΘ, where

⟨,⟩ in this section is the natural pairing of covariant n−tensor fields and contravariant n−tensor fields.

In sum, we have chosen the following tensor fields:

θh =hdx1 ∧ dx2 (95)

θūj =ūj (for j = 1,2) (96)500

θΘ =Θ
∂

∂x1
∧ ∂

∂x2
. (97)

For

Tt(x) = x+ a∆t+ ei∆ηi, (98)

we have

T−1
t (x) = x+(−a+ epi ∂xpei)∆t− ei∆ηi. (99)505

Then T ∗
t θh, T ∗

t θū, and (T−1
t )∗θΘ can be calculated following examples 3.1.3, 3.1.1, and 3.1.5. This further implies dsh,dsū,

and dsΘ, as shown in examples 3.2.2, 3.2.1, and 3.2.4. Note that T−1
t instead of Tt is applied to θΘ as shown in Eq.(7). Finally,

we end up with the following SPDE:

dh=−∇(hū)dt+
(
h(∂xp

ap +
1

2
Ji)+ ap∂xp

h+
1

2
epi e

q
i∂xp

∂xq
h+ ∂xp

hepi ∂xq
eqi

)
dt

+(h∂xp
epi + ∂xp

hepi )dηi (100)510

dΘ={−(ū · ∇)Θ−κ(hΘ−h0Θ0)}dt

+
(
Θ(−∂xpa

p + ∂xp(∂xqeie
q
i )

p +
1

2
Ji)+ ∂xpΘap +

1

2
epi e

q
i∂xp∂xqΘ− ∂xpΘepi ∂xqe

q
i

)
dt

− (Θ∂xpe
p
i − ∂xpΘepi )dηi (101)

dūj =−{(ū · ∇)ū− fẑ× ū−∇(hΘ)+
1

2
h∇Θ}jdt

+
(
∂xp

ūjap +
1

2
epi e

q
i∂xp

∂xq
ūj
)
dt+ ∂xp

ūjepi dηi, (102)515

where Ji = ∂xpe
p
i ∂xqe

q
i − ∂xqe

p
i ∂xpe

q
i . And the total mass, total momentum and the total energy shall all be conserved by

the perturbation scheme.
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6 Conclusions

The starting point of this work is to question “how to consistently perturb the location of the state variable?", motivated by

Brenier’s theorem Brenier (1991) which suggests that the difference of two density fields can be represented by a transport520

map T . Noting that optimal transportation has a clean representation in terms of differential n−forms, we proposed to perturb

the “location" of the state variable S, at every forecast time step, by perturbing the corresponding differential k−forms θ by

θ← T ∗
t θ, where Tt is a random diffeomorphism which deviates from the identity map infinitesimally.

Under this framework, we end up with a stochastic PDE of the state variable S in the form

dS = f(S)dt+ dsS, (103)525

where f(S)dt is the incremental of S given by the original deterministic system. The term dsS is the additional stochastic

incremental of S caused by the perturbation scheme.

In this paper, we generalize this scheme to mixed type of tensor fields θ. A key point is indeed to link the state variable

S with some tensor field θ. The choice of θ can then correspond to the conservation laws of certain quantities. We describe

in detail how to calculate T ∗
t and Tt∗, and present results for several examples corresponding to different choices of θ. We530

also discussed about the conservation laws for these examples. We emphasize that Brenier’s theorem merely serves as the

motivation but not the theoretical foundation of the proposed scheme, since the ‘optimality’ of the displacement vector field

need to be rigorously defined for general tensor fields θ that are not positive differential n−forms.

Interestingly, similarities and differences can be studied between the proposed perturbation scheme and the existing stochas-

tic physical SALT and LU settings Holm (2015); Mémin (2014); Resseguier et al. (2016). In particular, both SALT and LU535

equations can be recovered using a prescribed definition of the random diffeomorphism Tt used by the perturbation scheme.

For illustration, a stochastic version of the thermal shallow water equation is presented. Compared with SALT and LU settings

Holm (2015); Mémin (2014); Resseguier et al. (2016), the proposed perturbation scheme does not directly rely on the physics.

Hence it is more flexible and can be applied to any PDE. Yet, the proposed derivation also provides interesting means to in-

terpret the operator £dxt−udt, appearing in the SALT equation. In terms of the optimal transportation, this term represents the540

infinitesimal forecast error at every forecast time step.

In order to apply the proposed perturbation scheme to any specific model, the parameters a and ei must be determined

specifically. Hence it is necessary to learn these parameters from existing data, experimental runs, or additional physical

considerations Resseguier et al. (2020, 2021). We anticipate this framework naturally provides a new perspective on how to

learn these parameters. Likely, this task will invoke the need of numerical algorithms to estimate the optimal transportation545

map for general differential k−forms or even mixed type of tensor fields. This will be subjects of future investigations.
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Appendix A: Calculation of T−1
t

Suppose that

Tt(x) = x+ a∆t+ ei∆ηi. (A1)

We assume that T−1
t has the following form of expression:550

T−1
t (x) = x+ z∆t+ bi∆ηi. (A2)

Our goal is to find z and bi. Then we have

x=Tt(T
−1
t (x)) = Tt(x+ z∆t+ bi∆ηi)

=x+ z∆t+ bi∆ηi + a
∣∣∣
x+z∆t+bi∆ηi

∆t+ ei

∣∣∣
x+z∆t+bi∆ηi

∆ηi (A3)

Similar to the derivation in section (3.1), we apply Taylor expansion and Ito’s lemma, and drop the terms of higher-order555

infinitesimal:

a
∣∣∣
x+a∆t+bi∆ηi

∆t=a
∣∣∣
x
∆t+ o(∆t)

ei

∣∣∣
x+z∆t+bi∆ηi

∆ηi =ei
∣∣
x
∆ηi + eipb

p
i

∣∣∣
x
∆t+ o(∆t). (A4)

Therefore

x= Tt(T
−1
t (x)) = x+(z+ a+ eipb

p
i )∆t+(bi + ei)∆ηi + o(∆t). (A5)560

This implies that

bi + ei = 0 (A6)

z+ a+ eipb
p
i = 0 (A7)

Therefore

bi =− ei (A8)565

z =− a+ eipe
p
i , (A9)

or equivalently,

T−1
t (x) = x+(−a+ eipe

p
i )∆t− ei∆ηi (A10)

Appendix B: Derivation of T ∗
t θ

Given coordinates (x1, ...,xn), when θ is a differential k−form, it can be written as570

θ =
∑

i1<...<ik

f i1,...,ikdxi1 ∧ ·· · ∧ dxik . (B1)
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Since T ∗
t is linear, we may assume that

θ = fdxi1 ∧ ·· · ∧ dxik (B2)

for some 1≤ i1 < · · ·< ik ≤ n. Let Tt(x) = (T 1
t (x), ...,T

n
t (x)), then

(T ∗
t θ)(x) = f(Tt(x))dT

i1
t ∧ ·· · ∧ dT

ik
t . (B3)575

We calculate f(Tt(x)) and dT i1
t ∧·· ·∧dT

ik
t separately. We denote ∆x= Tt(x)−x= a∆t+ei∆ηi, and Hf the Hessian matrix

of f . At a given time t, f is assumed independent from the noises ∆ηi(t). Then

f(Tt(x)) =f(x+∆x) = f(x)+ ⟨∇f,∆x⟩+ 1

2
(∆x)⊤Hf∆x+ o((∆x)2) (B4)

=f(x)+ ⟨∇f,a∆t+ ei∆ηi⟩+
1

2
e⊤i Hfei(∆ηi)

2 (B5)

+O((∆t)2)+O(∆t∆ηi)+ o((∆t)2)+ o((∆ηi)
2)+ o(∆t∆ηi) (B6)580

According to Ito’s lemma dηdη = dt, and we can replace (∆ηi)
2 with ∆t. Hence

f(Tt(x)) =f(x)+ ⟨∇f,a⟩∆t+ ⟨∇f,ei⟩∆ηi +
1

2
e⊤i Hfei∆t+ o(∆t) (B7)

=f(x)+
(
⟨∇f,a⟩+ 1

2
eiHfei

)
∆t+ ⟨∇f,ei⟩∆ηi + o(∆t). (B8)

Next,

T ∗
t (dx

i1 ∧ ·· · ∧ dxik) = dT i1
t ∧ ·· · ∧ dT

ik
t585

=(dxi1 + dai1∆t+ dei1i ∆ηi)∧ ·· · ∧ (dxik + daik∆t+ deiki ∆ηi). (B9)

Note that daij and de
ij
i refer to the spatial differentiation. Again, we apply the “discrete version" of Ito’s rule (∆ηi)

2 =∆t,

and collect all the terms of order O(∆t) and O(∆ηi):

T ∗
t (dx

i1 ∧ ·· · ∧ dxik) =dxi1 ∧ ·· · ∧ dxik +
( k∑
s=1

dxi1 ∧ ·· · ∧ dais ∧ ·· · ∧ dxik
)
∆t

+
( k∑
s=1

dxi1 ∧ ·· · ∧ deisi ∧ ·· · ∧ dx
ik
)
∆ηi590

+
(∑
s<r

dxi1 ∧ ·· · ∧ deisi ∧ ·· · ∧ de
ir
i ∧ ·· · ∧ dx

ik
)
∆t

+ o(∆t) (B10)
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According to the chain rule, dais = ∂xjaisdxj , deisi = ∂xjeisi dxj . Note that ∂xjeisi refers to the is-th component of ∂xjei,

where ∂xjei =
∂ei
∂xj and ei(x) ∈ Rn is the i−th basis vector field of Tt. Hence

T ∗
t (dx

i1 ∧ ·· · ∧ dxik)595

=dxi1 ∧ ·· · ∧ dxik +
( k∑
s=1

∂xjaisdxi1 ∧ ·· · ∧ dxj ∧ ·· · ∧ dxik
)
∆t

+
( k∑
s=1

∂xjeisi dxi1 ∧ ·· · ∧ dxj ∧ ·· · ∧ dxik
)
∆ηi

+
(∑
s<r

∂xjeisi ∂xleiri dxi1 ∧ ·· · ∧ dxj ∧ ·· · ∧ dxl ∧ ·· · ∧ dxik
)
∆t

+ o(∆t) (B11)

Combining Eqs.(B8) and (B11), with application of Ito’s lemma, all terms of order o(∆t) are then removed, to obtain600

T ∗
t θ =f(Tt(x))T

∗
t (dx

i1 ∧ ·· · ∧ dxik)

=θ+
{(
⟨∇f,a⟩+ 1

2
e⊤i Hfei

)
dxi1 ∧ ·· · ∧ dxin

+

k∑
s=1

f∂xjaisdxi1 ∧ . . .dxj ∧ ·· · ∧ dxik

+
(∑
s<r

f∂xjeisi ∂xleiri dxi1 ∧ ·· · ∧ dxj ∧ ·· · ∧ dxl ∧ ·· · ∧ dxik
)

+
( k∑
s=1

⟨∇f,ei⟩∂xjeisi dxi1 ∧ ·· · ∧ dxj ∧ ·· · ∧ dxik
)}

∆t605

+
{
⟨∇f,ei⟩dxi1 ∧ ·· · ∧ dxik +

k∑
s=1

f∂xjeisi dxi1 ∧ ·· · ∧ dxj ∧ ·· · ∧ dxik
}
∆ηi

+ o(∆t). (B12)

To simplify Eq.(B12), wedge algebra is applied and the high-order infinitesimal o(∆t) is ignored. Accordingly, T ∗
t θ is more

compactly written as

T ∗
t θ = θ+M(θ)∆t+Ni(θ)∆ηi, (B13)610

for some differential k−formsM(θ) and Ni(θ).
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