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Abstract :   
 
Port areas are subjected to multiple anthropic pressures that directly impact residing marine communities 
and deprive them of most of their essential ecological functions. Several global projects aim to rehabilitate 
certain ecosystem functions in port areas, such as a fish nursery function, by installing artificial fish 
nurseries (AFN). In theory, AFNs increase fish biodiversity and juvenile fish abundance in port areas, but 
studies on this subject remain scarce. Thus, the present study aimed to examine whether the use of such 
AFNs could restore part of the nursery function of natural habitats by increasing fish and juvenile 
abundance, and by decreasing predation intensity compared to bare docks. Two years of monitoring on 
AFNs showed they hosted 2.1 times more fish than on control docks and up to 2.4 more fish juveniles. 
Fish community structures were influenced by both treatment (AFN and Control) and year of monitoring. 
In general, AFNs hosted a greater taxonomic diversity of fish than controls. The predation intensity around 
these structures was significantly lower in the AFNs than in controls. Part of the definition of a fish nursery 
was thus verified, indicating that AFNs might be an effective restoration tool. However, we also noted that 
total fish abundance and Young of the Year (YOY) abundance decreased in controls, possibly due to a 
concentration effect. Further detailed monitoring is necessary to distinguish between these effects. 
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1. Introduction 19 

The maritime coastline is a densely populated area. Indeed, 11 of the world’s 15 largest cities, 20 

half of the cities of more than 100 000 inhabitants, and 40% of the world’s population are 21 

located within 100km from the seashore (Barragán and de Andrés, 2015; Nazeer et al., 2020; 22 

Petrişor et al., 2020). This densification coupled with the intensification of international trade 23 

has led to a multiplication of infrastructures and the creation of large-scale port areas (Bugnot 24 

et al., 2021; Ducruet and Lee, 2006). This artificialization of the coastline (Fan et al., 2017; 25 

Ovejero Campos et al., 2022) in addition to other anthropogenic pressures (Ben Attia et al., 26 

2021) has direct consequences that transform coastal marine habitat characteristics (Airoldi 27 

and Beck, 2007; Mooser et al., 2021; Poursanidis et al., 2018; Williams et al., 2022). The 28 

prevailing consensus suggests that artificialization is generally associated with a decrease in 29 

structural complexity (Bishop et al., 2022; Thrush et al., 2008). However, it is important to 30 

acknowledge that this may not always hold true, as it can depend on the specific material and 31 

configuration employed in an artificial habitat (Grasselli and Airoldi, 2021). It has been 32 

demonstrated that the reduction in complexity in marine environments, leads to a decline in 33 

the populations and survival rates of organisms (Brokovich et al., 2006; Fischer et al., 2007). 34 

This is linked with a reduction in ecological functions and services (Airoldi and Beck, 2007; 35 

Vozzo et al., 2021). 36 

This reduction of complexity hampers one essential function of coastal habitats: their role as 37 

nurseries for juvenile fish (Courrat et al., 2009; Whitfield and Pattrick, 2015). To be considered 38 

a nursery, a juvenile fish habitat needs to meet four criteria: (i) it hosts high densities of 39 

juveniles, (ii) it provides local food for high juvenile fish growth, (iii) it decreases mortality due 40 

to predation, (iv) juveniles settling there actively participate in the renewal of adult populations 41 

(Beck et al., 2001). Fish species dependent on coastal nursery areas during their juvenile stage 42 

represent 66% of the total landing of the fishery industry and one third of the species surveyed 43 

by the ICES (Le Pape et al., 2020; Mora et al., 2008; Seitz et al., 2014). During the life cycle 44 

of nursery-dependent fishes, pelagic eggs and larval stages recruit as juveniles to shallow 45 

coastal and estuarine nurseries and then move on to adjacent deeper areas as adults (Beck 46 

et al., 2001). The survival of juvenile fish after benthic settlement in nurseries is mainly density 47 

dependent, and is affected by different biotic and abiotic factors such as food availability and 48 

predator abundance (Beck et al., 2001; Belharet et al., 2020; Cheminée et al., 2011; Ford et 49 

al., 2016; Ford and Swearer, 2013; Planes et al., 1998; Stewart and Jones, 2001). The surface 50 

area of nurseries is therefore essential for the maintenance of these populations (Le Pape and 51 

Bonhommeau, 2015). However, the loss of nursery habitats due to urbanization has led to the 52 

over-mortality of juveniles, allowing only very limited success for recruitment to adult 53 

populations (Bouchoucha et al., 2016; Cheminée et al., 2017; Harmelin-Vivien et al., 1995). 54 



This impairs the renewal of adult nursery-dependent fish populations (Limiting Recruitment 55 

Hypothesis; Doherty, 1991). 56 

Ecological rehabilitation operations have been considered to counteract the loss of ecosystem 57 

function due to urbanization. The principle of rehabilitation operations in port areas is broadly 58 

invariant and is based on eco-engineering (Airoldi et al., 2021; Dafforn et al., 2015; Strain et 59 

al., 2018). Flat, steep and smooth urban structures are considered inadequate for providing 60 

habitats for marine biodiversity, so artificial modules are added to them to increase their 61 

structural complexity (Bishop et al., 2022; Bradford et al., 2020). This approach is used to 62 

ensure marine benthic diversity (Bishop et al., 2022; Strain et al., 2020) as well as to restore 63 

the fish nursery function of urban habitats (Astruch et al., 2017; Bouchoucha et al., 2016; 64 

Lapinski et al., 2017; Patranella et al., 2017; Ushiama et al., 2019).  65 

Previous studies have shown the ability of artificial fish nurseries (AFN) installed on port 66 

structures, docks or pontoons, to host important densities of juvenile fish (Bouchoucha et al., 67 

2016; Mercader et al., 2017). However, studies focusing on multiple species and with robust 68 

designs remain rare (Firth et al., 2020). In particular, many studies focusing on juvenile fishes 69 

have been limited to measuring the abundance of individuals observed on AFNs (Astruch et 70 

al., 2017; Bouchoucha et al., 2016; Mercader et al., 2017; Patranella et al., 2017), neglecting 71 

to consider the crucial aspect of predation, which is one of the fundamental functions of fish 72 

nurseries (Beck et al., 2001).  73 

The present study aimed to document the effect of AFNs installed on docks to increase their 74 

structural complexity. We tested the hypothesis of whether the addition of these AFNs 75 

increases the abundance and species diversity of fish and fish juveniles compared to bare 76 

docks, and whether they provide shelter from predation by reducing predation intensity. To do 77 

so, we monitored fish population, particularly juveniles, during a two-year campaign, on docks 78 

equipped with AFNs and on bare docks in a Mediterranean port. We also estimated pelagic 79 

predation intensity in the same areas. Our study is aimed at improving knowledge of the 80 

benefits of using AFNs for rehabilitating the nursery function in ports.  81 

 82 

2. Material and Methods 83 

2.1. Study site 84 

The study was carried out on the docks of the industrial port of La Seyne-sur-Mer near Toulon 85 

(43.105960°N; 5.884599°E; Fig. 1). The Toulon Bay encompasses 9.8 km2 of artificial habitats 86 

(military port, commercial port and 6 marinas), isolated from the open Mediterranean Sea by a 87 

1.2 km long breakwater. The city’s industrial and military history make it one of the most 88 

polluted marine areas in Europe in terms of metallic trace elements (e.g. Cu, Pb, Hg) and 89 



persistent organic pollutants (PAH, PCB; Pougnet et al., 2014; Tessier et al., 2011; Wafo et 90 

al., 2016). Since 2019, several AFNs have been installed in certain ports of Toulon bay in the 91 

framework of an experimental assay to rehabilitate part of the fish nursery function lost in these 92 

areas (Bouchoucha et al., 2018a, 2018b, 2016; Gauff et al., 2023). Our monitoring focused on 93 

such structures, installed in June 2020 at La Seyne-sur-Mer. The docks studied were about 94 

300 m long, up to 6 m deep, and designed to accommodate part of the French oceanographic 95 

fleet. Three 50 m² areas separated by at least 50 m (sites, Figure 1) were equipped with 2 x 5 m 96 

long strands covered with 30 cm long flexible polypropylene fiber rods. These AFNs are 97 

designed to mimic seagrass meadows (Figure 2). On each site, the sub-sets are arranged one 98 

under another at 50 cm intervals between 20 cm and 5.20 m depth (Figure 2 and 3). Fish 99 

diversity and abundance were assessed at least twice a month for a period of 24 months from 100 

June 2020 to May 2022. For each replicate site, fish abundance was recorded on an AFN as 101 

well as on a control area consisting of a 10 x 5 m (50 m²) vertical surface of bare dock. The 102 

distance between the AFN and the control was at least 20 m.  103 

 104 

 105 

Figure 1: Map of the study site (La Seyne-sur-Mer, Toulon Bay, French Mediterranean). The 106 
position of the artificial fish nurseries studied (Blue; R) and control dock (Red; C) is indicated. 107 



 108 

2.2. Fish abundance and diversity monitoring 109 

Abundances for all fish species were estimated by underwater visual census using slow-110 

swimming underwater transects (Cheminée et al., 2017; Harmelin-Vivien et al., 1995). Due to 111 

generally poor visibility conditions, the survey area was covered in three passes at three 112 

different depths (0 to 2 m, 2 to 4 m, 4 to 6 m), starting from the top of the AFN or dock. Each 113 

transect (replicate) corresponds to the sum of abundance of fish species observed during these 114 

three passes. The space between the AFN and the pier was also investigated. During the 115 

monitoring, all the individuals identified to the lowest possible taxonomic level (species) were 116 

counted and their sizes were estimated (total length, TL ± 5 mm) by the same diver. In order 117 

to distinguish between juvenile and adult individuals of each species, the Young of the Year 118 

(YOY) were identified a posteriori based on the size of the individuals compared to 119 

demographic data from Félix-Hackradt et al. (2013). In the absence of data on the YOY size 120 

of certain species, the size of the YOYs was considered to be 1/3 of the average observation 121 

size of adults, collected from FishBase (Froese and Pauly, 2022). The survey was carried out 122 

between 10:00 and 16:00 h, and poor visibility conditions were consistently avoided. 123 

Figure 2: Picture of A.: Artificial fish nursery installed on the docks and B. control dock (photo 
credit, Ifremer O. Dugornay). 



124 
Figure 3: Illustration of the A) Treatments (Control & Artificial Fish Nurseries) and B) Protocols 125 
of experiments (Underwater visual census and Squidpop assay). 126 

2.3. Identification of potential predators and predation intensity 127 

To evaluate predation intensity among sites equipped with AFNs and control areas, a Squidpop 128 

feeding assay was used to directly measure predation intensity. The Squidpop assay was 129 

developed to measure fish predation intensity in different environments and consists of 130 

standardized squid baits attached to fiberglass stakes (Duffy et al., 2015). This assay has been 131 

used in various environments, including artificial habitats (Duffy et al., 2015; Gauff et al., 2022; 132 

Kough and Belak, 2022; Rodemann and Brandl, 2017). The choice of squid as bait is 133 

associated with its mechanical qualities (Gauff et al., 2022). Here, we used a modified version 134 

of the Squidpop protocol: for each of the three replication sites, 11 baits positioned 1 m apart 135 

were suspended on a rope between the surface and one meter deep for 24h, close to the AFN 136 

areas and at the control areas (Figure 3). This was repeated thrice (6th and 20th June, 7th July 137 

2022), resulting in a total of 9 replicates for each treatment (AFN & Control). To provide higher 138 

resolution on bait consumption dynamics, the remaining baits were counted 1 h, 3 h, 6 h and 139 

24 h after deployment, making it possible to carry out survival analysis (Gauff et al., 2022, 140 

2018). The survival rate is considered to provide a proxy of predation intensity (Gauff et al., 141 

2022).  142 

2.4. Statistical analysis  143 

All statistical analysis were performed using ‘R’ (version 4.2.2; R Core Team, 2022).  144 

2.4.1. Fish abundance analysis 145 

Mean density and associated standard error were expressed in individuals per 100 m2. We 146 

tested the influence of the treatment (fixed, two levels: AFN and Control), the year of monitoring 147 



(fixed, two levels: Year 1 and Year 2), and their interaction on the observed density of fish and 148 

YOYs. Site (three levels: Site 1, Site 2, Site 3) was considered as a random factor. The density 149 

data did not follow a normal distribution. We thus fitted a generalized linear model following a 150 

negative binomial distribution (glmer.nb) from the ‘Ime4’ R package (version 1.1-31; Bolker, 151 

2022). The Goodness Of Fit (GOF) of the model was checked using the ‘plotresid’ function 152 

from the ‘RVAidememoire’ package (version 0.9-81-2; Hervé, 2022) which allowed us to 153 

graphically verify the model's residuals and then test dispersion using the ‘dispersion_glmer’ 154 

function from the ‘blmeco’ package (version 1.4; Korner-Nievergelt, 2019). When the 155 

interaction term was significant in the generalized model, we performed a post hoc comparison 156 

of density means using a ‘Tukey contrast’ multiple comparison test using the ‘glht’ function 157 

from the ‘multcomp’ package (version 1.4-20; Hothorn, 2022). During the multiple comparisons 158 

tests, the p-values were adjusted by the Benjamini and Hochberg (BH) correction (Benjamini 159 

and Hochberg, 1995). 160 

2.4.2. Community analysis 161 

The effect of treatment (fixed, two levels: AFN and Control), year of monitoring (fixed, two 162 

levels: Year 1 and Year 2) and their interaction on species richness was assessed with a 163 

generalized linear model with negative binomial distribution (Bolker, 2022). Subsequent 164 

analysis followed the workflow described for fish abundances (see §2.4.1.). Community 165 

structure analyses were conducted using Bray-Curtis dissimilarity matrices, obtained with the 166 

’vegdist‘ function from the ‘vegan’ package (version 2.6-4; Oksanen, 2022). The specific 167 

communities during monitoring were visualized by plotting a Non-metric Multidimensional 168 

Scaling (NMDS) created using the 'metaMDS' function from the 'vegan' package (version 2.6-169 

4; Oksanen, 2022). A PERMANOVA (104 permutations; Anderson, 2001) was performed to 170 

test the influence of the treatment, the year of monitoring, and their interaction on the observed 171 

community of all fish and YOYs. The permutation structure was nested within sites. Post hoc 172 

comparison was performed with a pairwise PERMANOVA (104 permutations) from the 173 

‘pairwiseAdonis’ package (version 0.4; Martinez Arbizu, 2020). The p-values were adjusted by 174 

a Benjamini and Hochberg correction (Benjamini and Hochberg, 1995). 175 

To assess whether certain species were representative of one treatment, we carried out a 176 

multipattern analysis (104 permutations) from the ‘indicspecies’ package (version 1.7.12; De 177 

Cáceres, 2022). The test was set up to perform comparisons within the two main factors 178 

(treatment and year) and their four interaction terms.  179 

2.4.3. Predation intensity analysis 180 

The Squidpop assays were analyzed via survival analysis (Pyke and Thompson, 1986) using 181 

the ‘survival’ package (version 3.4-0, Therneau, 2023). The time at which the absence of an 182 



individual bait was recorded was considered its survival time (Gauff et al., 2018). Kaplan-Meier 183 

curves of bait survival were computed for each treatment (George et al., 2014; Rich et al., 184 

2010). Survival rates in different treatments were compared with a nested Cox model from the 185 

‘NestedCohort’ package (version 1.1-3; A Katki, 2013) in order to test whether treatments 186 

differed in predation intensity (Pyke and Thompson, 1986; Rich et al., 2010). In this model 187 

individual baits were nested within site and date.  188 

3. Results 189 

During the first year, 52 surveys were carried out on AFNs and 51 on controls. Due to 190 

unexpected adverse environmental conditions (e.g., occasional days with poor underwater 191 

visibility) or logistic constraints (e.g., the presence of oceanographic vessels at dock, COVID 192 

lockdowns, etc.), the sampling effort was lower during the second year, with 29 censuses 193 

carried out on AFNs and 28 on controls. However, this did not prevent accurate investigation 194 

of AFNs, as all of the three sites were fully surveyed at least twice per month over the whole 195 

duration of the study.  196 

3.1. Fish abundance monitoring 197 

Over the surveyed time period a total of 3062 fish of 43 species were identified. The majority 198 

of the individuals (70%) were found in the AFNs, together with higher species richness (42 199 

species on AFN compared to 29 on control; Table 1). Treatment significantly interacted with 200 

the Year of study for both models (GLMER.nb, z.value = -3.61, p < 0.001 and z.value = -2.73, 201 

p = 0.006; Tab. 2). During the first year of monitoring, fish density on AFNs (42.6 ± 4.4 ind.100 202 

m-2; all life stages combined) was significantly higher than on controls (28.2 ± 5.2 ind.100 m-2; 203 

GLHT, z.value = -2.365, p = 0.018; Fig. 4, Tab. 2). This trend continued in the second year 204 

with a significantly higher fish density on AFNs (70.6 ± 8.4 ind.100 m-2) than on control (17 ± 3 205 

ind.100 m-2; GLHT, z.value = -6.227, p < 0.001; Tab. 2). Concerning YOYs, 817 individuals 206 

were recorded, of which 72% were on AFNs. No significant difference in density was found for 207 

YOYs (GLHT, z.value = -1.811, p = 0.098) between AFNs (16 ± 2.8 ind.100 m-2) and controls 208 

(9.3 ± 3 ind.100 m-2) in the first year (Figure 3). However, in the second year higher densities 209 

were observed on AFNs (17.3 ± 5.8 ind.100 m-2) compared to control (2.4 ± 1.2 ind.100 m-2; 210 

GLHT, z.value = -4.515, p < 0.001; Tab. 2). A slight overall increase of fish densities but not 211 

YOY densities could be noted between the two years surveyed (main effect; GLMER.nb, 212 

z.value = 2.682, p = 0.008). Total fish densities on AFN increased between Year 1 and Year 2 213 

(GLHT, z.value = 2.674, p = 0.011). On the contrary, total fish densities on controls decreased 214 

between Year 1 and Year 2. Concerning YOYs, their density on AFNs did not differ between 215 

the two years (GLHT, z.value = 0.22, p = 0.82; Tab. 2). This is not the case for control, where 216 



a significant decrease in the density of YOYs between Year 1 and Year 2 could be noted 217 

(GLHT, z.value = -3.39, p < 0.002; Fig. 4, Tab. 2). 218 

    Year.1 Year.2 

Total (YOY) 

  AFN Control AFN Control 

Family Species 
Tot. 

(YOY) 
Tot. 

(YOY) 
Tot. (YOY) 

Tot. 
(YOY) 

Atherinidae Atherina sp. 73 (0)  33 (33)  106 (33) 
Blenniidae Microlipophrys canevae  3 (0)  22 (0) 25 (0) 

 Parablennius gattorugine  2 (0)   2 (0) 

 

Parablennius 
sanguinolentus 

1 (0)    1 (0) 

 Salaria pavo 1 (0)  1 (0) 1 (0) 3 (0) 
Carangidae Trachurus mediterraneus 68 (68) 30 (30)   98 (98) 

 Trachurus sp.  50 (50)   50 (50) 
Gobiidae Aphia minuta  94 (0)   94 (0) 

 Gobius cobitis  3 (0) 1 (0) 3 (0) 7 (0) 

 Gobius cruentatus 44 (1) 16 (0) 16 (0) 18 (0) 94 (1) 

 Gobius geniporus 19 (2) 27 (2) 6 (0) 13 (0) 65 (4) 

 Gobius niger 11 (4) 13 (0) 13 (1) 6 (1) 43 (6) 

 Gobius paganellus  5 (0) 1 (0) 2 (0) 8 (0) 

 Gobius xanthocephalus 7 (0) 29 (0) 38 (8) 31 (0) 105 (8) 

 Pomatoschistus quagga   1 (0)  1 (0) 

 Pseudaphya ferreri   2 (0) 10 (0) 12 (0) 
Labridae Labrus merula 5 (1)  8 (1)  13 (2) 

 Symphodus cinereus 48 (2) 39 (0) 24 (0) 9 (0) 120 (2) 

 Symphodus mediterraneus 1 (0)  1 (0)  2 (0) 

 Symphodus melanocercus   1 (0)  1 (0) 

 Symphodus melops 2 (0)    2 (0) 

 Symphodus ocellatus 5 (0)  9 (1) 2 (0) 16 (1) 

 Symphodus roissali 3 (0) 7 (0) 6 (2)  16 (2) 

 Symphodus rostratus 6 (0) 1 (0)   7 (0) 

 Symphodus tinca 156 (16) 83 (23) 100 (2) 14 (0) 353 (41) 
Moronidae Dicentrarchus labrax 3 (0)  9 (3)  12 (3) 
Mugilidae Mugil cephalus   2 (0)  2 (0) 

 Mullus barbatus 13 (10) 1 (1) 2 (0)  16 (11) 

 Mullus surmuletus 57 (28) 30 (29) 20 (11) 5 (3) 112 (71) 
Scorpaenidae Scorpaena scrofa 1 (0)    1 (0) 

 Scorpanena porcus 1 (0)    1 (0) 
Serranidae Serranus scriba 2 (0)    2 (0) 
Sparidae Diplodus annularis 79 (32) 18 (7) 106 (58) 6 (2) 209 (99) 

 Diplodus puntazzo 22 (18) 4 (1) 7 (6) 2 (0) 35 (25) 

 Diplodus sargus 215 (60) 61 (25) 349 (21) 9 (0) 634 (106) 

 Diplodus vulgaris 101 (45) 63 (30) 86 (17) 35 (8) 285 (100) 

 Pagellus sp.   4 (4) 8 (0) 12 (4) 

 Sarpa salpa 125 (86) 84 (0) 149 (48) 11 (0) 369 (134) 

 Sparus aurata 2 (0)  2 (0)  4 (0) 

 Spicara sp. 2 (2)   13 (13) 15 (15) 

 Spondyliosoma cantharus 1 (1)    1 (1) 
Tripterygiidae Tripterygion delaisi 17 (0) 21 (0) 20 (0) 17 (0) 75 (0) 

 Tripterygion tripteronotum 15 (0) 11 (0) 6 (0) 1 (0) 33 (0) 

Total 1106 (376) 695 (198) 1023 (216) 238 (27) 3062 (817) 
number of species (YOY) 32 (16) 24 (10) 29 (15) 22 (5) 43 (23) 

Table 1: Assessment of fish abundance for the two years of monitoring of the artificial fish 219 
nurseries (AFN) and the control docks. Numbers expressed in total abundance with YOY 220 
(Young of The Year) in parenthesis. Note that absolute values of Year 1 and Year 2 are not 221 
comparable due to unequal sample sizes (52 and 29 respectively). 222 

 223 

Test: GLMer (Number ~ Year*Treatment)    
Estimate std.err Z val Pr(>|z|)  

All stages 
     

  
(Intercept) 3.043 0.116 26.13 < 0.001 *** 



 
Year 0.521 0.194 2.682 0.007 **  
Treatment -0.397 0.169 -2.353 0.018 *  
Year:Treatment -1.027 0.284 -3.615 < 0.001 *** 

Random effect  Variance std.dev    
 Site < 0.001 < 0.001    

YOYs 
     

  
(Intercept) 2.079 0.205 10.17 < 0.001 ***  
Year 0.077 0.347 0.222 0.824   
Treatment -0.54 0.299 -1.811 0.070    
Year:Treatment -1.454 0.534 -2.723 0.006 ** 

Random effect  Variance std.dev    
 Site < 0.001  < 0.001    

Test: GLHT (Number~Year_Treatment)  
  Estimate std.err Z val Pr(>|z|)  

All stages       
 Year1_Control – Year1 AFN -0.398 0.168 -2.365 0.018 * 
 Year2_Control – Year2 AFN -1.423 0.229 -6.227 < 0.001 *** 
 Year2_AFN – Year1 AFN 0.519 0.194 2.674 0.011 * 
 Year2_Control – Year1 Control -0.506 0.207 -2.442 0.018 * 
 Year2_AFN – Year1 Control 0.917 0.197 4.649 < 0.001 *** 
 Year2_Control – Year1 AFN -0.904 0.204 -4.430 < 0.001 *** 

YOYs       
 Year1_Control – Year1 AFN -0.542 0.299 -1.811 0.098   
 Year2_Control – Year2 AFN -1.996 0.442 -4.515 < 0.001  
 Year2_AFN – Year1 AFN 0.077 0.347 0.222 0.824  
 Year2_Control – Year1 Control -1.377 0.406 -3.390 0.001 *** 
 Year2_AFN – Year1 Control 0.619 0.355 1.744 0.098  
 Year2_Control – Year1 AFN -1.919 0.399 -4.813 < 0.001 *** 

Test: GLHT (Number~Year)  
  Estimate std.err Z val Pr(>|z|)  

All stages       
 Year1 – Year2 0.510 0.194 2.674 0.008 ** 

YOYs       
 Year1 – Year2 0.077 0.347 0.222 0.824  

Table 2: Results of the GLMer model and GLHT post-hoc evaluating the effect of treatment 224 
and year of survey on All fish and Young Of the Year abundances. 225 

 226 

Figure 4: Mean A.: fish densities and B.: Young Of the Year (YOY) densities (± standard error) 227 
on artificial fish nurseries (AFN) and the control docks (Control) during the two years of 228 
monitoring. (*  p < 0.05, **  p < 0,01, ***  p < 0.001). 229 

 230 



3.2. Community analysis 231 

Treatment significantly influenced species richness with higher values on the AFN for all fish 232 

(13.6 ± 0.6 species.100 m-2 on AFN vs 8.2 ± 0.6 species on control; GLMER.nb, z.value = -233 

4.622, p < 0.001, Tab. 3) and YOYs (4.6 ± 0.4 species.100 m-2 on AFN vs 2.0 ± 0.4 species 234 

on control; GLMER.nb, z.value = -4.159, p < 0.001, Tab. 3).  235 

Table 3: Results of the GLMer model testing for the effect of Year and treatment on species 236 
richness for all fish and Young Of the Year (YOY). 237 

Treatment (AFN, Control) and year of monitoring (Year 1, Year 2) significantly influenced fish 238 

community structure for all stages (PERMANOVA, R2 = 0.104, p < 0.001 and R2 = 0.026, p = 239 

0.002) and for YOYs (PERMANOVA, R2 = 0.028, p = 0.004 and R2 = 0.038, p < 0.001) (Fig. 5 240 

and Tab. 4). The interaction between these two factors had a significant influence on 241 

community structure for all stages (PERMANOVA, R2 = 0.023, p < 0.001, Tab. 4) but not for 242 

YOYs (PERMANOVA, R2 = 0.013, p = 0.22). The pairwise PERMANOVA revealed that all 243 

possible interactions of treatment and year of monitoring were significantly different from each 244 

other (pairwise PERMANOVA; R2 > 0.03, p < 0.01, Tab. 4) for all life stages. 245 

 246 

Test: PERMANOVA (Dist.matrix ~ Treatment * Year)    
Df Sum of Sqs R2 F Pr(>F) 

 
 

All stages 
       

  
Treatment 1 4.747 0.105 18.75 0.001 ***   
Year 1 1.196 0.027 4.723 0.001 ***   
Treatment:Year 1 1.026 0.023 4.051 0.001 ***   
Residual 152 38.48 0.847 

   
  

Total 155 45.45 1.000 
   

 

YOYs          
Treatment 1 0.711 0.028 2.924 0.004 **   
Year 1 0.954 0.038 3.923 0.002 **   
Treatment:Year 1 0.319 0.013 1.311 0.219 

 
  

Residual 96 23.35 0.922 
   

  
Total 99 25.34 1.000 

   
 

Post-Hoc test: Pairwise-PERMANOVA    
Df Sum of Sqs R2 F-Model Pr(>F) p.adjust  

All stages 
   

 
   

  
Year1_Control – Year1 AFN 1 2.015 0.071 7.528 < 0.001  < 0.001 *** 

Test: GLMer (Species Richness ~ Year*Treatment)    
Estimate std.err Z val Pr(>|z|)  

All stages 
     

  
(Intercept) 1.865 0.074 25.32 < 0.001 ***  
Year 0.144 0.093 1.559 0.117   
Treatment -0.421 0.091 -4.622 < 0.001 *** 

 
Year:Treatment -0.265 0.154 -1.716 0.0861  

Random effect  Variance std.dev    
 Site 0.006  0.081    

YOYs 
     

  
(Intercept) 0.916 0.01 9.179 < 0.001 ***  
Year -0.243 0.183 -1.329 0.184   
Treatment -0.742 0.178 -4.159 < 0.001 ***  
Year:Treatment -0.582 0.377 -1.543 0.123  

Random effect  Variance std.dev    
 Site < 0.001 < 0.001    



 
Year2_Control – Year2 AFN 1 3.758 0.239 16.62 < 0.001 < 0.001 ***  
Year2_AFN – Year1 AFN 1 1.382 0.072 6.239 < 0.001 < 0.001 ***  
Year2_Control – Year1 Control 1 0.839 0.039 2.910 0.007 0.007 **  
Year2_AFN – Year1 Control 1 3.265 0.144 12.57 < 0.001 < 0.001 ***  
Year2_Control – Year1 AFN 1 3.166 0.143 12.83 < 0.001 < 0.001 *** 

Table 4: PERMANOVA and associated post-hoc Pairwise PERMANOVA outputs testing the 247 
fish community across each treatment and year 248 

 249 

 250 

 251 

Indicator species analysis revealed 5 species to be associated with the AFN as well as YOYs 252 

of the species Diplodus annularis (Multipattern analysis, stat > 0.54, p < 0.026; Fig. 6). No 253 

species was identified as being associated with the control. YOYs of the species Diplodus 254 

sargus were associated with the first year of monitoring, and two species were associated with 255 

the second year of monitoring (Multipattern analysis, stat > 0.51, p < 0.049; Fig. 6). At least 256 

one species or YOY species was associated with each interaction term (Fig. 6).  257 

Figure 5: Non-metric Multidimensional Scaling (NMDS) of the fish community structure for 
each treatment and year for A) All stages and B) Young of the Year (YOY). 



  258 

Figure 6: Venn diagram of the indicator species (multipattern analysis) for each year and 259 
treatment. The association statistic (Stat) and p-value are given for each indicator species. 260 
YOYs are in brackets and in bold. 261 

3.3. Estimation of the predation rate 262 

Loss of squid baits to predators varied among treatments and predation intensity was 263 

significantly higher on controls compared to AFNs (Nested Cox, Hazard-ratio = 64.7%; Z = 4.1, 264 

p < 0.001; Figure 7). Nearly all the squidpops deployed on controls were consumed within 3 h, 265 

whereas almost 40% of them remained on the AFNs. By 6 h, however, most baits had been 266 

consumed in both treatments.  267 

 268 



  269 

4. Discussion  270 

Ecological restoration is aimed at assisting the recovery of a degraded or damaged ecosystem 271 

(Clewell and Aronson, 2013). Where degradation cannot be reversed, rehabilitation to the 272 

highest practicable ecological functionality and increasing similarity to the reference ecosystem 273 

are often favored (McDonald et al., 2016). Considering ports are irreversibly degraded coastal 274 

ecosystems, eco-engineering approaches like artificial habitat units may help to improve the 275 

ecological performance and can be part of ecological rehabilitation projects (Komyakova et al., 276 

2019). Various solutions have been proposed all around the world to improve their ecological 277 

status by attempting to increase benthic biodiversity (Bishop et al., 2022; Firth et al., 2014; 278 

Strain et al., 2020; Vozzo et al., 2021) and rehabilitate their fish nursery function (Astruch et 279 

al., 2017; Bouchoucha et al., 2016; Mercader et al., 2017; Patranella et al., 2017; Strain et al., 280 

2018). However, up to now these potential solutions have remained at a very experimental 281 

scale and research on their success remains scarce or is often driven by economic and/or 282 

regulatory factors (Firth et al., 2020). Here, we aimed to improve knowledge of the potential 283 

benefits of Artificial Fish Nurseries (AFN) on fish abundance in marine urban habitats, by 284 

monitoring AFNs installed in a large port in the northwestern Mediterranean Sea for two years. 285 

While our study still lacks in terms of optimal experimental design, duration or scale it may still 286 

contribute to better understand the function such AFNs may provide. In accordance with our 287 

initial hypotheses, AFNs had higher densities of fish over the whole study duration. However, 288 

Figure 7: Kaplan-Meier survival curves of bait as proxy of predator activity. Lower-case 
letters indicate significant differences between sites (Nested Cox; Hazard-ratio = 64.7%, Z 
= 4.1, p < 0.001). 



densities of Young of the Year (YOYs) were higher on the AFN only during the second study 289 

year compared to bare docks. AFN hosted a greater diversity of fish overall. Community 290 

structure varied over treatments and years. Predation intensity was lower on AFNs. 291 

The carried-out monitoring showed that fish densities were more than two times higher on 292 

AFNs than on bare docks for all life stages combined as well as for YOYs. This higher density 293 

was significant for both study years for all life stages and for YOYs in the second year of the 294 

study. It should be noted that this difference between the two treatments is significant whereas 295 

fish abundance and biodiversity may be underestimated on AFNs. The AFNs were colonized 296 

by benthic fouling communities, which may increasingly hinder a reliable count of local fish 297 

populations, which was not the case on control. However, great care was taken to avoid this 298 

bias and other ecological processes may also explain these observations. Therefore, it seems 299 

that the addition of structural complexity by the AFNs led to an increase in fish density. This is 300 

consistent with previous results obtained with other types of AFNs, which have already 301 

demonstrated their ability to increase fish abundance and to partly participate in the 302 

rehabilitation of the nursery function in ports (Bouchoucha et al., 2016; Mercader et al., 2017; 303 

Patranella et al., 2017). A study carried out in the same region showed a two-fold increase of 304 

YOYs on AFNs compared to areas without AFNs (Bouchoucha et al., 2016). This order of 305 

magnitude is strikingly similar to those observed in our study. This may indicate that AFNs 306 

might be an effective tool for increasing fish and YOY abundances in marine urban habitats, 307 

potentially by rehabilitating part of the nursery function lost during urbanization. 308 

Here, the overall densities of YOY abundances slightly decreased between Year 1 and Year 2 309 

due to a significant decrease in YOY abundance on control. Inter-annual variability in fish 310 

settlement and juvenile assemblages has already been shown in natural areas (Anderson, 311 

1988; Beraud et al., 2018; Félix-Hackradt et al., 2013; Hogan et al., 2012) as well as in port 312 

areas (Bouchoucha et al., 2016). The variation of propagule production is generally the 313 

determining process for these differences (Di Franco et al., 2012; Faillettaz et al., 2020; Planes 314 

et al., 1998) and is highly dependent on the physico-chemical characteristics of the local water 315 

column (O’Connor et al., 2007; Ottmann et al., 2018; Tanner et al., 2017). They can also be 316 

explained by the match/mismatch hypothesis (Cushing, 1990), where a time lag between the 317 

larval phase of the fish and the presence of their planktonic food may be a cause of increased 318 

mortality (Di Franco et al., 2015; Hidalgo et al., 2009). This discrepancy between the control 319 

group, which experienced a significant decrease in YOY abundance between both years, and 320 

the AFN treatment, where YOY abundance remained constant, cannot be fully explained by 321 

interannual variation alone. The observation might be attributed to stochasticity, as even in 322 

natural habitats, the abundance of juveniles within nurseries does not consistently remain 323 

constant. In fact, previous studies have documented interannual variability in the distribution 324 



of post-larvae within nursery sites, both on a large and small scale (Victor, 1986). More 325 

troubling, however is the possibility that AFNs could act as concentrators for YOYs and do not 326 

effectively increase the population (Bohnsack and Sutherland, 1985; Grossman et al., 1997). 327 

While our experimental design does not allow to precisely show it, a concentrator effect for 328 

YOY would imply that those that would have been present on the control docks have settled 329 

preferentially on the AFNs, gradually increasing in these areas while decreasing in others, with 330 

potentially no net benefit in terms of population size. This could potentially be what can be 331 

observed when considering all fish sizes, as their abundance significantly increased on the 332 

AFNs, while it decreased on controls between the two years of monitoring. This reflection on 333 

fish attraction versus fish production of AFNs is a recurrent question when trying to assess the 334 

efficiency of AFNs (Bouchoucha et al., 2016; Mercader et al., 2017) and more generally that 335 

of artificial reefs (Cresson et al., 2019; Grossman et al., 1997; Pickering and Whitmarsh, 1997). 336 

It is obviously impossible to draw definitive conclusions from these observations alone and it 337 

is important to note that attraction versus fish production characteristics of artificial fish habitats 338 

are not mutually exclusive (Pickering and Whitmarsh, 1997; Roa-Ureta et al., 2019; Smith et 339 

al., 2015). Future studies should focus their designs on this question as it seems crucial for the 340 

overall fish population benefits of these eco-engineering strategies. 341 

The structure of the communities and the species observed on the AFN were similar to the 342 

observations made in other port areas (Clynick, 2006; Mercader et al., 2017). However, 343 

surveys carried out in natural areas close to Toulon Bay, such as the Iles des Embiez and Cap 344 

Sicié (Couvray, 2020) and in the Port Cros National Park (Astruch et al., 2018; Francour, 1997) 345 

show greater taxonomic diversity and pelagic fish (excluding Blenniidae, Gobiidae and 346 

Tripterygiidae) compared to our study (> 47 species as opposed to 28). The addition of AFNs 347 

on port structures seems to increase species richness by adding complexity to the environment 348 

(Santos and Monteiro, 1997) and seems to have a fish community more similar to those 349 

observed in natural environments (Paxton et al., 2020). We indeed noted a higher fish diversity 350 

on AFNs than on control docks, however we did not monitor natural environments, which does 351 

not allow making a direct comparison in terms of community structure. Nonetheless, 352 

community structure was significantly different between AFNs and control docks and between 353 

the two years of monitoring for all fish and for YOYs. This result is also expressed in the 354 

changes observed in indicator species associated with the two main effects (Treatment, Year). 355 

This observation may be the result of the substrate differences between the two treatments. 356 

The substrate is an element likely to influence the structure of the communities at a site. In the 357 

natural environment, different fish and YOY communities can be observed depending on the 358 

nature of the bottom (Cheminée et al., 2021; Di Lorenzo et al., 2016; Luckhurst and Luckhurst, 359 

1978). This observation has also been made for different artificial substrates (Cheminée et al., 360 



2021; Mercader et al., 2017). Particularly noteworthy here: juveniles of the species Diplodus 361 

annularis were found as an indicator species for the AFN substrate compared to the control 362 

substrate. The greater presence of this species on AFNs than on docks in port areas has 363 

already been noted in previous studies (Bouchoucha et al., 2016; Mercader et al., 2017), which 364 

implies that for this species in particular the AFN seem to be a suitable habitat. We also 365 

observed significant changes in community structure between Year 1 and 2 for all stages and 366 

YOYs. The interannual difference between communities can be explained by the variability of 367 

abiotic factors, which are known to strongly influence the establishment of fish communities 368 

(Ajemian et al., 2015). The fact that the densities of YOYs did not differ between the two 369 

treatments during Year 1 and became significantly different during Year 2 may be indicative of 370 

a maturation of the AFNs in their function as fish nurseries (Becker et al., 2018; Charbonnel et 371 

al., 2002; Cresson et al., 2019). The residence time of AFNs in the environment allows fish 372 

communities to develop, leading to a temporal increase in the specific diversity of such 373 

structures (Cresson et al., 2019). It is still too early to conclude on this observation, but further 374 

monitoring would allow verifying this result. 375 

The Squidpop assay showed less predation on the AFNs than on bare docks with a 64.7% risk 376 

decrease on AFNs, and this despite higher abundance and diversity of potential prey items 377 

(juveniles). The imitation of seagrass beds by the AFNs provides hiding places used by fleeing 378 

prey (Thiriet et al., 2022), allowing for greater survival success. Habitat complexity has been 379 

demonstrated to diminish the impact of predation on prey fish on numerous occasions (Almany, 380 

2004; Heck Jr. and Orth, 2006; Jones et al., 2021). However, as our squid baits were unable 381 

to actively flee, the higher survival observed here may indicate that predators might avoid AFNs 382 

due to lower predation success. Predators that have lower foraging success in complex 383 

habitats (Gotceitas and Colgan, 1989; Warfe and Barmuta, 2004) might avoid such areas in 384 

order to optimise foraging (Eklöv and Diehl, 1994; Sims et al., 2008). This might indicate that 385 

the increase of 3D complexity through AFNs reduces predation intensity and might thus 386 

increase juvenile fish survival. Unfortunately, here the predators causing the attacks on squid 387 

baits could not be precisely identified. However, past studies indicate that Sparidae might be 388 

the most prolific predators in marine urban habitats (Gauff et al., 2022; Oricchio et al., 2016; 389 

Rodemann and Brandl, 2017). This may mean that one of the essential functions of a nursery 390 

(Beck et al., 2001) was potentially partially rehabilitated in our study. However, one should 391 

note that the habitat features that optimize the probability of survival of fish juveniles depend 392 

on the species considered (Mercader et al., 2019). Moreover, over time AFNs are colonized 393 

by different benthic species (Gauff et al., 2023). It is possible that the presence of these 394 

organisms provides an abundant food source for generalist predatory fish, which could result 395 

in a decrease in the predation rate on AFNs. The presence of this fauna on the AFNs can be 396 



beneficial as it is a source of food for potential predators as well as juvenile fish (Saulnier et 397 

al., 2020; Tableau et al., 2019). However, this colonization can also be associated with 398 

negative side effects like providing refuges for introduced species (Gauff et al., 2023).  399 

Our study demonstrated the potential benefits of installing AFNs in view to rehabilitating the 400 

fish nursery function in port areas. We have shown that AFN structures host a higher 401 

abundance of fish, including YOYs, than bare docks, with increased fish biodiversity and lower 402 

predation intensity. Although we are unable here to precisely identify the processes 403 

responsible for these observations, AFNs seem to partly fulfil the definition of a nursery by 404 

sheltering a greater abundance of juvenile fish and protecting them against predation (Beck et 405 

al., 2001; Dahlgren et al., 2006). Although our results concern only a specific port area and 406 

one type of AFNs and, unfortunately, lack the initial state before the rehabilitation action, they 407 

agree with an increasing number of studies showing similar results (Astruch et al., 2017; 408 

Bouchoucha et al., 2016; Lapinski et al., 2017; Mercader et al., 2017; Patranella et al., 2017). 409 

However, although this approach appears promising, there are still many uncertainties 410 

regarding the functionality and efficiency of such structures and further studies should be 411 

carried out. The hypothesis of the complete rehabilitation of the nursery function in port areas 412 

by AFNs can only be confirmed once the effective connectivity between juvenile fish present 413 

on AFNs and adult populations has been demonstrated and quantified. Furthermore, it remains 414 

essential that the potential benefits of ecological rehabilitation methods are weighed against 415 

the potential problems they might cause (Firth et al., 2020; Gauff et al., 2023; Schaefer et al., 416 

2023), as they may also provide ecological disservices such as being a refuge for non-417 

indigenous species (Gauff et al., 2023). In addition, the ropes making up the AFNs in this study 418 

are composed of polypropylene. Plastic pollution presents a global environmental challenge 419 

(Li et al., 2021; Moore, 2008; Welden, 2020). As nations worldwide strive to minimize plastic 420 

waste in marine environment (Horejs, 2020; Jia et al., 2019), it can be contradictory to advocate 421 

for the use of plastic structures in habitat restoration initiatives. These materials are generally 422 

used for their very high mechanical resistance but in the marine systems, they have the 423 

potential to fragment into smaller plastic particles known as microplastics and nanoplastics 424 

(Andrady and Zhu, 2021; Sipe et al., 2022) causing both impacts on marine organisms and 425 

human health issues (Cho et al., 2019; Rezania et al., 2018). Additionally, they can release 426 

plasticizers (such as di-(2-ethyl hexyl) phthalate) into the surrounding environment (Gunaalan 427 

et al., 2020). These impacts alone should be sufficient evidence to abandon their use in 428 

restoration programs. Moreover, plastic structures are also typically at risk of invasion by non-429 

native species for several reasons, including open niche opportunities. Rather than enhancing 430 

habitat quality for native species, plastic habitat structures can favor colonization and 431 

establishment of non-native species (Glasby et al., 2007; Pinochet et al., 2020). It is therefore 432 



important to ensure that the benefits of AFN are not outweighed by greater negative effects. 433 

Whatever the case, public policies should include the management and protection of natural 434 

fish nurseries before considering ecological engineering as a solution. 435 
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