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Abstract :   
 
Plastic litter has been widely documented in our oceans, leading to growing worldwide concerns regarding 
its potential impact on the marine environment. A large proportion of this plastic accumulates at the bottom 
of the ocean, resulting in a need to monitor and quantify seafloor litter. Seafloor litter monitoring is mostly 
performed using benthic beam trawls, which have several limitations and environmental implications. New 
innovative ways to document and address seafloor litter are therefore necessary and requested by the 
United Nations Sustainable Development Goal 14 (SDG 14.1.1b), the Oslo Paris Convention (OSPAR) 
and the International Council for the Exploration of the Sea (ICES). This systematic review gives an 
overview of the state-of-the-art of 14 current underwater technologies that are eligible for future in situ 
detection of plastic litter on the seafloor based on 101 publications. A set of objectives and a Technology 
Readiness Level (TRL) scale were used to benchmark the technologies and revealed that the most 
suitable system is often very scenario-specific and, therefore, demands investments in more than one 
specific group of technologies. A decision tool was established to determine the most suitable technique 
for a range of different situations. This review indicates that most of these technologies are currently at 
low-middle TRLs, requiring several more development, testing and commercialization steps before they 
can be applied effectively in marine field conditions. However, these technologies, alone or in 
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combination, have the potential to contribute to the establishment of more robust global environmental 
indicators and monitoring programs for plastic pollution. 
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Abbreviations:  
AI Artificial Intelligence  

ALDFG Abandoned, Lost or Discarded Fishing Gear 

AMAP Arctic Monitoring and Assessment 

Programme 

AUV Autonomous underwater vehicle 

BTS Beam Trawl Survey 

CNN Conventional Neural Network 

EEZ Exclusive Economic Zone 

FLS Forward-Looking Sonar 

FTIR Fourier-Transform Infrared Spectroscopy 

GESAMP  Joint Group of Experts on the Scientific 

Aspects of Marine Environmental Protection 

GPR Ground Penetrating Radar 

HDPE High Density Polyethyleen 

HI Hyperspectral Imaging 

IBTS Internation Bottom Trawl Survey 

ICES International Council for the Exploration of 

the Sea 

ICES WGML International Council for the Exploration of 

the Sea Working Group on Marine Litter 

ILVO Flanders Research Institute for Agriculture, 

Fisheries and Food 

LDPE Low Density Polyethyleen 

LIDAR Light Detection and Ranging of Laser 

Imaging Detection and Ranging 

MBSS Multibeam Sonar System 

MSFD European Union Marine Strategy Framework 

Directive 

NIR Near-Infrared Spectroscopy 

NIVA Norwegian Institute for Water Research 

NOAA US National Oceanic and Atmospheric 

Administration 

OSPAR Oslo Paris Convention 

PA Polyamide 

PAME Protection of the Arctic Marine Environment 

PBMA Polybutyl methacrylate 

PC Polycarbonate 

PET Polyethylene Terephthalate 

PRISMA Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses 

PP Polypropyleen 

PPG Photoplethysmograms 

PS Polystyrene 

PTFE Polytetrafluoroethylene 

PUR Polyurethane 

PVC Polyvinylchloride 

QA/QC Quality Assurance/Quality Control 

ROV Remotely Operated Vehicle 

SAS Synthetic Aperature Sonar 

SDG Sustainable Development Goals 

SSS Side Scan Sonar 

SVM Support Vector Machine 

TRL Technology Readiness Level 

UN United Nations 

USV Unmanned Surface Vehicle 

VIS Visible Spectroscopy 

VLIZ Flanders Marine Institute 

WoS Web of Science 

1. Introduction 

In recent decades, the increasing levels of 

plastic in the World’s oceans has drawn 

significant public attention and raised concerns 

about the impacts this might be having on the 

marine environment, marine organisms and 

human health (e.g. [1,2]). This has resulted in 

marine litter, and especially plastic litter, being 

high on the political agenda [3–5]. Litter 

assessments are currently performed within the 

framework of both monitoring programs and 

fundamental scientific research. An increasing 

amount of knowledge on the behavior of plastic 

in marine environments, the settling velocities, 

the sinking behavior and the role of external 

factors such as biofouling provide clear insights 

into how plastic litter is transported to the 

seafloor (e.g. [6–10]). Several efforts have been 

made to characterize seafloor litter and assess its 

spatiotemporal dynamics (e.g. [11–13]). To do 

so, a large suite of technologies and approaches 

has been applied ranging from in situ sampling 

to remote observations. Imagery, for example, 

has been used in several studies to quantify 

seafloor litter [14]. There is a need to monitor 

seafloor litter and its impacts, to locate 

accumulation zones (hotspots), and, to define 

strategies for supporting long-term evaluation 

of plastic accumulation (e.g. fishing grounds) 

[15]. Effect assessment of seafloor plastic litter is 

necessary to understand which species are most 

exposed, impacted and sensitive [16,17]. For 

example, cross mapping the distribution of litter 

and benthic species, especially commercial fish, 

supports a good evaluation of the exposure and 

risk of ingestion [18]. A 2021 global analysis of 

litter data observations showed that the 

proportion of plastic in total litter increased 

progressively from 49% on riverbeds to 64% on 

                  



nearshore bottoms (<100 m depth, <100 km from 

shoreline) and 77% on deep seafloors (>100 m 

depth, >100 km from shoreline) [19]. This trend 

is mainly documented along canyons, which act 

as deep conduits of litter. The diffuse vertical 

input from floating loads and sea-based sources 

is also suggested as a major cause of deep-sea 

littering [19]. A number of studies have 

identified the shelf and deep-sea environments 

as long-term net sinks for plastic litter of all 

sizes, including microplastic [20,21].  

The monitoring of litter in marine 

environments is a fundamental part of the wider 

state of environmental reporting, and a key 

component of ecological risk assessments, which 

are ideally based on realistic exposure 

conditions [22–24]. Marine litter is a 

transboundary problem and international 

cooperation and coordination are crucial to 

monitor and reduce marine pollution. On a 

global level, marine litter is included under the 

UN Sustainable Development Goal 14 ‘Life 

Below Water’ (14.1.1b Plastic debris density) and 

Challenge 1 of the UN Decade of Ocean Science 

for Sustainable Development ‘Understand and 

beat marine pollution’. Since the 2010s, 

frameworks such as the International Council 

for the Exploration of the Sea (ICES), the 

Regional Seas Conventions (e.g. Oslo Paris 

Convention; OSPAR) and the European Union 

Marine Strategy Framework Directive (MSFD) 

have been quantifying and monitoring seafloor 

litter using beam trawl hauls, revealing the first 

insights into the prevalence distribution 

patterns, transport routes and accumulation 

zones of plastic litter [24–27]. Benthic trawl 

surveys are a practical way to monitor seafloor 

litter because they are already coordinated by 

ICES for fish stock assessments [28]. These 

surveys cover a large proportion of the 

European marine regions [26,28], attempt to 

standardize methods [26–28] and, in practice, 

appear to sample sufficient litter for analysis 

[25]. 

Unfortunately, bottom trawling is a 

destructive sampling technique that has been 

subject to discussion and criticism for many 

years. In line with the Biodiversity Strategy 

2030, the European Commission has the 

intention of implementing restrictions to limit 

bottom trawling in EU waters, supporting the 

transition to more selective and less damaging 

fishing techniques. It has subsequently put 

forward a legislative proposal to phase out 

bottom trawling by 2030 [23]. In addition, a 

catch-based assessment of seafloor litter comes 

with a number of other drawbacks [26]. The 

trawls are limited to locations relevant for the 

fish stock surveys on which they piggyback, 

rather than focusing specifically on areas that 

might be particularly relevant for seafloor litter 

monitoring [26]. Hence, mostly shallow waters 

are examined by benthic trawling [26,28]. In 

addition, trawling is not permitted in regions 

such as marine protected areas, which may be 

important to monitor. As litter items are 

collected after a tow or trawl track is completed, 

there is also no precise information on the 

location of each litter item. Seafloor litter 

monitoring using bottom trawls is not 

applicable in all marine environments, for 

example, deep areas with complex topography 

(rocky substrates, canyons, coral reefs, etc.) 

cannot be included [14,29,30]. However, Pham et 

al. [31] showed that bottom trawling, in rare 

cases, can be used to document litter down to a 

depth of 3,000 m. Trawling surveys will miss 

small items due to the mesh size of the net [32]. 

Different litter types have different 

catchabilities, which is also affected by the size 

of the catch and sediment type [33,34]. The most 

important drawback, however, is the variation 

in catchability of different nets, which creates an 

uncertainty when comparing areas [24,26]. Some 

trawls appear to capture <5% of seafloor litter 

items by number, meaning that actual litter 

numbers could be substantially higher than 

what is caught in nets [35]. In light of all these 

drawbacks, scientists have been seeking new 

and innovative ways to detect and quantify 

plastic litter present on the seafloor and in the 

lower layer of the water column [14,29,36,37]. 

These approaches include elements of 

autonomous detection (in situ detection without 

human interference), which can enable swift 

observations of marine litter, allowing the quick 

analysis of evolutionary patterns of litter 

                  



distribution, as well as better policy alignment 

[37]. 

With the increased interest and desire to 

efficiently and effectively sample and monitor 

seafloor litter, it is necessary to compare the 

different available approaches to allow 

researchers and regulators to identify the most 

suitable techniques for use in research or 

monitoring. One important decision making tool 

for selecting the approach is the use of a 

Technological Readiness Level (TRL) scale to 

group technologies and approaches into basic 

research, applied research, development and 

implementation. A TRL scale for application in 

litter and plastic pollution monitoring was 

recently put forward by Aliani et al. [38]. The 

TRL scale enables systematic validation and 

global harmonization of plastic pollution 

monitoring methods by ranking them from 1-9 

(Figure A.1, Appendix A) [38].    

Currently, there is no off-the-shelf in situ 

detection technique that is operational (TRL 7-9) 

for systematic seafloor monitoring of plastic 

litter in diverse marine environments that 

provides sufficient details to meet the required 

objectives for exposure, effects, and risks 

assessment of seafloor plastic litter. Therefore, 

this study evaluates which existing technologies 

are eligible for future in situ meso- and 

macroplastic litter (>5 mm) detection on the 

seafloor and the hyperbenthic area (<1 m above 

seafloor). Two design processes of detection 

systems are assessed: (i) methods from other 

sectors (e.g. food industry) that have already 

proven themselves to be useful for plastic 

detection and that have been published as a 

possible technique in an underwater setting and 

(ii) established underwater technologies for new 

applications such as plastic litter detection.   

Additionally, the current state of the 

different technologies is benchmarked against 

the envisaged final product to determine the 

main steps toward innovation. Therefore, a set 

of objectives to describe the final product were 

introduced and a TRL was defined for each 

technique in the context of plastic litter detection 

based on the suggested scale by Aliani et al. [38]. 

As detection methods are region-specific in 

terms of applicability, a decision tool to define 

the most suitable method for different scenarios 

is demonstrated. It is anticipated that the 

compilation of information in this study, in 

combination with the proposed decision 

framework would be helpful in identifying the 

optimal monitoring system design worldwide 

for seafloor litter [39]. While a TRL scale has 

many advantages, there is an additional need for 

a comparability assessment between the 

different technologies to ensure that the 

resulting monitoring data is fit for purpose and 

sufficiently comparable across studies utilizing 

different analysis approaches. 

The motivation for this study is rooted in 

the need for innovation in monitoring and 

observation activities for seafloor litter, which 

was raised by the ICES Working Group on 

Marine Litter (ICES WGML) [26] and explicitly 

mentioned in the OSPAR Quality Status Report 

[24]. The latter is endorsed by 15 Governments 

and the EU, and is considered the overarching 

environmental assessment for the Northeast 

Atlantic, supported by the marine research 

landscape. Furthermore, a clear gap in the 

available literature and current knowledge has 

been identified for sustainably and accurately 

monitoring plastic seafloor litter at an 

international level.  

The objective of this systematic review is to 

contribute to the current knowledge regarding 

in situ detection methodologies for plastic 

seafloor litter by providing an overview of the 

state-of-the-art underwater technologies based 

on a comprehensive literature study. This 

systematic review is a unique first step towards 

a supported monitoring program for plastic 

seafloor litter and combines for the first time 

literature on existing detection techniques from 

different research disciplines and sectors with 

the newly developed TRL scale for plastic 

pollution monitoring methods of Aliani et al. 

[38]. 

2. Materials and Methods 

An overview of technologies eligible for 

underwater detection of plastic on the seafloor 

was generated by a systematic literature study 

(Figure 1). This comprehensive search was 

performed following the Preferred Reporting 

Items for Systematic Reviews and Meta-

Analyses (PRISMA) 2020 statement [40]. 

                  



Scientific peer-reviewed publications were 

collected by multiple Web of Science (WoS) 

searches on November 9, 2022. This electronic 

platform was screened for the presence of 

‘underwater detection’ or ‘underwater 

observation’ in combination with ‘plastic’, 

‘debris’ or ‘litter’ in all searchable fields of a 

publication. A primary selection of the resulting 

list of publications was made based on the 

abstract, and a secondary selection was 

performed based on the content. Publications 

without any reference to underwater 

applications or object detection were excluded. 

Only publications describing technologies and 

approaches that have the ability to perform in 

underwater conditions were included. 

Furthermore, a quality assurance and quality 

control (QA/QC) procedure was conducted by 

comparing the reference list to the 

EUROqCHARM systematic review for 

macrolitter/seafloor [41]. 

Existing techniques that only consider 

floating litter (e.g. remote sensing) were not 

included. In addition, this review focuses on 

plastic objects or particles >5 mm, actively 

excluding micro- and nanoplastics that need 

alternative methods and separate monitoring 

programs. Following the recommendations of 

GESAMP experts [42], we use the size 

definitions of microplastic (<5 mm), mesoplastic 

(5 mm - 2.5 cm), macroplastic (2.5 cm - 1 m) and 

megaplastic (>1 m). This set of inclusion criteria 

is clear and unambiguous, eliminating the risk 

of bias. The resulting publications generated a 

list of described technologies with the potential 

for seafloor plastic litter detection. A second 

screening for publications in WoS was 

performed with the resulting technologies in 

combination with ‘plastic detection’, ‘debris 

detection’, ‘litter detection’ or ‘underwater 

detection’, and ‘plastic observation’, ‘debris 

observation’, ‘litter observation’ or ‘underwater 

observation’. For completeness, other 

publications of the respective authors were 

reviewed to collect more information on the 

different technologies. In total, information 

about 14 different technologies was gathered 

from 101 scientific publications.  

 Each technology was characterized based 

on ten characteristics which gave a structure to 

an underlying dataset. These characteristics 

include; frequency/wavelength, detected 

materials, compatible platform, method 

resolution, detection size range, spatial 

coverage, processing algorithms, projects and 

publications (Table B.1, Appendix B). The 

established dataset forms a knowledge base to 

identify the different gaps between the current 

state of each technology's development 

process/level and the envisaged final product.   

 For each technique, a different approach is 

required to reach an optimal technology level 

for in situ seafloor plastic litter detection given 

that these techniques have their roots in other 

scientific disciplines. For example, 2D imaging 

sonar can generate high-quality forward-looking 

sonar imagery, regardless of carrier speed. This 

allows for seamless follow-on actions like visual 

identification, sampling or recovery. However, 

the narrow field of view means that the number 

Figure 1. Illustration of the process implemented to determine the state-of-the-art of detection technologies and to 

create a decision tool. 

                  



of transects needed to cover an area equivalent 

to that of a side looking sonar can be substantial 

and therefore time-consuming [36]. Depending 

on the expected outcome, there will likely be a 

trade-off between the spatial coverage and the 

minimum detected object size. Side looking 

sonar systems, such as side scan sonar (SSS) and 

synthetic aperture sonar (SAS), can cover vast 

areas, but need a stable platform with precise 

navigation and a constant, relatively low, speed 

(<5 knots) to generate the highest resolution. 

Furthermore, there are often several trade-offs 

within the same class of detection techniques. 

For example, a Sound Metrics ARIS sonar (2D 

imaging sonar) has a very good resolution but a 

narrow field of view (40°), while the Teledyne 

Blueview has a wider field of view (130°) but a 

lower resolution [36].   

To benchmark the different techniques, 

four objectives (each with their own criteria, 

section 3.1), underpinned by the expert 

judgment of the ICES WGML, were set up that 

matched the expectations of the desired 

technology for seafloor plastic litter detection: 

1. Identification and differentiation of plastic 

litter  

2. Spatial coverage of detection techniques 

3. Detection size range of detection 

techniques 

4. Artificial intelligence for plastic detection 

 The implementation of the objectives by 

the different techniques was subsequently 

examined based on the established knowledge 

base, and, in the absence of literature-based 

information, assessed by expert judgment. This 

allowed determination and comparison of the 

different state-of-the-art detection techniques. A 

color code was allocated for each technique in 

combination with a specific platform (e.g. 

remotely operated vehicle [ROV], unmanned 

surface vehicle [USV], autonomous underwater 

vehicle [AUV], ship, etc.) to represent the 

implementation of the objective. This was also 

conducted for the technique in general without 

it being linked to a specific platform. The same 

color code was used for all objectives with green 

indicating a complete implementation of the 

objective, orange representing a strong 

implementation of the objective and red 

indicating that only a small part of an objective 

is covered.  

In addition to the objectives, the plastic 

monitoring TRL scale published by Aliani et al. 

[38] was used to assess each detection technique. 

The TRL indicates in which phase a technology 

is situated in the framework of plastic 

monitoring.  The exact TRLs are listed below 

and illustrated in Figure A.1 of Appendix A 

[38]:  

Basic research (TRL 1-3) 

1. Basic principles presented 

2. Concept and application formulation 

3. Proof of concept / Feasibility 

Applied research (TRL 4-5) 

4. Method validation in the laboratory / 

Experimental pilot 

5. Method validation in relevant environment 

/ Demonstration pilot 

Development (TRL 6-7) 

6. Demonstration in relevant environment / 

Record(s) of successful monitoring 

7. Operational in environment / Widely 

applied in field studies 

Implementation (TRL 8-9) 

8. Method complete and qualified / Records 

of successful monitoring 

9. Standard protocol enforced and applied / 

Widely used for monitoring operations 

Lastly, a decision tool was established to 

determine the most suitable technique for a 

range of different situations. The decision tool is 

a scheme based on three questions, and their 

possible answers, which correspond with the 

first three objectives of this review paper.  

1. What differentiation level of plastic litter is 

needed? (Objective 1) 

a. Material level 

b. Polymer level 

2. What area should be covered? (Objective 2) 

a. <1 km² 

b. >1 km² 

3. What plastic object sizes do you want to 

detect? (Objective 3) 

a. Microplastics 

b. Mesoplastics 

c. Macroplastics 

d. Widest possible size range 

                  



For each combination of answers the 

suitable techniques were verified based on the 

established dataset. The implementation of the 

objectives was then used as a step-by-step 

process to exclude unsuitable techniques. The 

remaining techniques were subsequently placed 

in the respective boxes of the scheme to provide 

the different possibilities. In several scenarios 

multiple techniques can be put forward. 

However, the decision tool does not convey 

preferences. Depending on the region or 

situation, a different detection technique may be 

identified as most favorable. To enhance the use 

of the tool, three example scenarios (i.e. 

Southern North Sea region, the Azores and 

Central Arctic Ocean) are used as demonstration 

regions, with each being completed by experts 

from Flanders Research Institute for Agriculture, 

Fisheries and Food (ILVO), University of the 

Azores (OKEANOS) and Norwegian Institute 

for Water Research (NIVA), respectively.   

3. Results 

Several acoustic and electromagnetic 

techniques may be eligible for plastic detection 

in the marine environment (Figure 2). These 

techniques can be divided into two different 

approaches: (i) existing marine monitoring 

equipment (e.g. sonar systems) that might need 

some modifications to meet the requirements for 

plastic detection, and (ii) less elaborated 

techniques that have a documented capacity to 

differentiate plastic under laboratory conditions, 

but might need adjustments to be deployable in 

the marine environment (e.g. spectral imaging 

techniques). In both cases, the key characteristics 

of these techniques, from the perspective of 

usability for this study, were collated and listed 

in Table B.1 of Appendix B. 

3.1. Objectives and criteria toward innovation 

Establishing a robust and accurate 

technique for plastic litter detection on the 

seafloor is a step-by-step process that must meet 

several requirements. To work toward this 

innovation, several approaches are possible, 

with each having their own advantages and 

limitations. An overview of the intended 

objectives, based on the application 

requirements and assessment criteria, as well as 

Figure 2. Conceptual overview of the different technologies that are suitable or have potential to detect plastic on the 

seafloor. 

                  



their implementation through the current 

detection techniques is therefore provided. The 

objectives represent crucial aspects of a 

monitoring method and are therefore stepping-

stones toward innovation. 

3.1.1. Objective 1. Identification and 

differentiation of plastic litter in the marine 

environment 

 Criteria 1.1. Differentiation between object 

and environment 

To be eligible for seafloor detection, a 

technique or a combination of techniques needs 

to be capable of differentiating plastic items (e.g. 

tires, plastic bottles, fishing nets, etc.) from 

natural features present in the environment (e.g. 

rocks, sediment, fish, etc.). Sonar systems 

generate an image based on the reflection of 

sound waves. These images show different 

shapes along the seafloor that can be identified 

as objects and classified by processing 

algorithms [43,44]. Spectral imaging systems 

collect a wide spectrum of reflected light to 

obtain both imaging and spectroscopic data for 

their surroundings. Given that these 

spectroscopic data directly correspond to the 

material type of an object, a more precise 

classification is possible (e.g. [45–47]). Capacitive 

proximity sensors use a different method than 

the ones above. This type of sensor detects a 

target based on the permittivity of each material 

and is widely used in the food industry [48].  

 Criteria 1.2. Differentiation between plastic 

and other litter objects 

In marine litter monitoring, the 

differentiation of plastic objects from other 

materials (e.g. glass or metal objects) is required 

(Figure 3). This material classification can be 

directly for the generated outcome (e.g. 

hyperspectral imaging, [45,47]) or indirectly by 

processing the generated image with artificial 

intelligence (AI) (e.g. sonar images, [43,44]). 

Generating data that are directly linked to the 

chemical composition of an object may enable a 

more accurate classification. Techniques where 

the outcome needs additional processing by AI 

may miss certain objects or even count/include 

incorrect objects (e.g. biota or rocks), which will 

result in a lower success rate. Furthermore, 

algorithms that classify objects based on their 

shape may not consider fragmented objects that 

lack the characteristic features associated with 

Figure 3. Material differentiation capacity for each seafloor detection technique. (Green: positive differentiation, Blue: 

differentiation only based on the shape of target, Orange: not tested, Red: no differentiation) 

                  



pristine consumer products. Additional 

challenges, such as biofouling, partial burial and 

accumulation, may also influence the success 

rate of detection systems [49].  

 Criteria 1.3. Differentiation between 

synthetic polymer types 

Some spectral imaging technologies can 

identify individual synthetic polymer types (i.e. 

PET, PVC, PP, etc.) (Figure 3) [45–47,50]. Until 

now, testing of these methods has only been 

performed under laboratory conditions 

[45,47,50]. Furthermore, these detailed 

classification levels are not yet mandatory, 

which has implications for monitoring and 

reporting obligations [27,51].  

3.1.2. Objective 2. Spatial coverage 

When reflecting over future monitoring 

and research needs, it is important to consider 

the spatial coverage of detection systems (Figure 

4), where the extent of spatial coverage is subject 

to a combination of the method’s display 

resolution and the distance to the target [43]. 

The display resolution defines the dimensions of 

a pixel in an obtained image and therefore the 

precision of an individual technique. Techniques 

that can operate further away from a target (e.g. 

sonar systems, [29]), will generally cover larger 

areas than short-range technologies (e.g. 

hyperspectral imaging, [45,47]). Furthermore, 

the method’s display resolution will commonly 

be higher for systems operating close to the 

target. The synthetic aperture sonar (SAS), 

however, represents an exception, as it combines 

a high spatial coverage due to its ability to 

operate further from the target with a high 

resolution by virtue of a strong processing 

capacity [29,52–55].  

An additional factor that affects the spatial 

coverage of a sensor is the platform it operates 

from. This platform can be ROVs, USVs, AUVs, 

ships, towed systems, etc. However, not all 

sensors can be integrated in every platform 

(Figure 5), resulting in various coverage ranges 

for different combinations of detection 

techniques and platforms. Finally, the coverage 

area also depends on the costs of operation, the 

monitoring budget, and the logistics of a specific 

deployment. 

3.1.3. Objective 3. Detection size range 

Figure 4. Detection size range and spatial coverage (in km²/h) by seafloor detection technique. Blue bars show the detection range 

reported in literature to date. Orange bars show the possible extension of size range based on expert judgement of the co-authors. 

                  



The detection size range of a technique is a 

decisive objective in selecting the right system 

for monitoring plastic litter. Unlike the display 

resolution, the detection size range describes the 

minimum and maximum size of an object that 

can be detected and identified. The detection 

size range is, therefore, commonly larger than 

the display resolution. Depending on the size 

range of plastic items targeted in an individual 

study or monitoring campaign, a particular 

technique or a combination of techniques may 

be required for detection. In Figure 4, the 

reported sizes of the detected objects of each 

reviewed study (Table B.1, Appendix B) are 

plotted separately for each detection system 

(blue bars). In addition, the theoretical extension 

of the detection size range was added (orange 

bars) based on literature findings and expert 

judgment. 

For each technique, different object sizes 

can be detected with the correct adjustment of 

the sensor [29], acknowledging that the entire 

size range of plastic objects may not always be 

detected with one specific adjustment. This also 

means that the additional theoretical range 

(Figure 4, orange bars) may require a certain 

adjustment or modification. It is important to 

note that the size frequency distribution 

approach proposed by Kooi and Koelmans [56] 

is not yet clarified for seafloor plastics. Based on 

such distributions, one could focus on a 

specific/defined size range, and then extrapolate 

towards larger or smaller plastic objects to 

provide an estimate of the entire size 

distribution. However, this requires an existing 

understanding of the average frequency with 

which plastic objects from specific size classes 

occur in the environment.    

As for spatial coverage, the method’s 

display resolution is an important factor for the 

detection size range of a technique. The higher 

the resolution of the sensor, the more detailed 

the developed images will be and the easier 

(small) objects can be detected or even 

identified. However, a higher resolution 

typically implies an increase in the time required 

Figure 5. Cost of purchase and compatibility of detection techniques with marine platforms based on literature data 

and expert judgement. (€: <10.000 euro, €€: 10.000-100.000 euro, €€€: >100.000 euro; and shallow waters: <200 m, deep 

waters: >200 m). 

                  



for data collection and analysis, which increases 

the overall cost of the operation. Furthermore, 

the distance to the target and the visibility in the 

water column also have an influence on the 

detection size range. 

3.1.4. Objective 4. Artificial intelligence for 

plastic detection 

Innovation in the field of seafloor plastic 

detection is often driven by the need for more 

labor- and cost-efficient methodologies. 

Therefore, investments in autonomous in situ 

detection techniques and even autonomous 

platforms are essential [37]. The use of smart 

devices may enable immediate and remote 

identification of plastics [57], allowing fast state-

of-the-art assessments and swift action against 

plastic accumulation on the seafloor. Automatic 

object recognition and/or material identification 

by the system is therefore desirable. Besides 

generating an image or data outcome by using a 

sensor, the detection systems need to process 

and analyze the data. In general, this can be 

done by various machine learning algorithms 

(i.e. support vector machine (SVM), 

conventional neural network (CNN), etc.) and 

several studies have already tested the 

feasibility of these algorithms for seafloor plastic 

detection (Table B.2, Appendix B). For example, 

Valdenegro [43] concluded that Deep Neural 

Networks are a sufficiently thorough technique 

to survey and detect marine litter on the bottom 

of water bodies from Forward-Looking Sonar 

(FLS) images. Aleem et al. [44] even achieved a 

success rate of 96% with their proposed deep 

learning algorithm for FLS images. Furthermore, 

such algorithms have also been demonstrated to 

be applicable for images from a towed camera, 

showing similar success rates (e.g. [58,59]). 

However, there remains a degree of uncertainty 

about whether these algorithms are sufficiently 

capable of detecting fragmented objects. 

Fragments of 'known' objects (e.g. bottles, tires 

etc.) that retain sufficient characteristics of the 

original object can be more readily detected, but 

this reduces as the fragments become smaller 

and/or contain fewer diagnostic characteristics. 

3.2. Compatible platforms for detection 

techniques 

In situ identification and quantification of 

marine plastics requires the sensor array or 

instrument to operate under marine conditions 

[42], often in combination with a dedicated 

platform (e.g. USV, AUV, ROV, ships, and 

towed systems). A first overview on existing 

methods, specifically to locate derelict pot items, 

was completed as part of a dedicated workshop 

in 2009 organized by the US National Oceanic 

and Atmospheric Administration (NOAA) [60].    

Subject to the scale, region and budget of a 

monitoring or research activity, a certain 

platform may be favored, but not always 

compatible with the intended detection 

technique. Based on the analyzed studies in this 

review and the expert judgement of the co-

authors, Figure 5 provides an overview of the 

platforms that can be used for each detection 

technique. Depending on the distance needed 

between the system and the target – and 

therefore the water depth of the sampling site – 

a sensor can operate from a ROV or AUV for 

short-range detection systems (i.e. 2D imaging 

sonars, hyperspectral imaging systems), and 

from a ship, USV, AUV or towed system for 

long-range systems (i.e. multibeam sonar system 

(MBSS), SSS, SAS). In shallow waters (<200 m), it 

might even be possible to use surface vessels for 

short-range sensors, i.e. 2D imaging sonar on a 

USV [57]. In deep waters (>200 m), a ROV, AUV 

or towed system is required to map the seafloor 

in sufficient detail [61]. Consequently, there are 

fewer detection possibilities in deep waters as 

not all techniques are suited for these platforms 

(Figure 5).   

In addition, some platforms (i.e. AUV and 

USV) provide a certain level of autonomy and 

can therefore reduce the labor-intensity of the 

sampling process. Furthermore, the cost of the 

different platforms is of importance. In its 

guidance, the EU MSFD Technical Group on 

Marine Litter analyzed the costs of monitoring 

the different compartments of the environment 

through diving, trawling and ROVs [22]. Finally, 

the use of multiple, complementary monitoring 

systems in a synergistic approach implemented 

at sufficient spatial and temporal scales could 

contribute to a better understanding of the scale 

of the problem. 

                  



3.3. Cost of purchase 

Besides the intrinsic objectives and 

requirements, financial factors can also influence 

the choice of a particular detection technique. 

Both operating and non-operating expenses (e.g. 

maintenance) should be considered when an 

overall cost is estimated [62]. Given the 

complexity of a cost-effectiveness analysis and 

the scope of this review, however, only the cost 

of purchasing a specific detection technique is 

reviewed. To increase the interpretability of the 

deployment possibilities of the techniques, three 

categories for cost of purchase were determined 

and added to Figure 5; i.e. low (€, <10.000 euro), 

medium (€€, 10.000 - 100.000 euro) and high 

(€€€, >100.000 euro) cost. 

3.4 State-of-the-art detection techniques 

Examining the current state of each 

detection technique for responding to the 

different objectives allows for benchmarking 

and defining the required innovation pathways. 

Each technique can fulfil these objectives 

differently, showing its strengths and 

weaknesses, as well as its suitability for plastic 

monitoring in a marine environment (Figure 6). 

Figure 6 uses a specific color for each objective, 

with green indicating a complete 

implementation of the objective, orange 

representing an almost complete realization of 

the objective and red indicating that only a small 

part of an objective is covered. As a result, 

whenever a technique is awarded 'green' for a 

certain objective, it will be applicable in diverse 

cases (e.g. differentiation at the polymer level 

and material level, capable of covering both 

small and large areas, or detecting both micro- 

and macroplastics). In contrast to monitoring 

data produced by trawling, these digital analysis 

techniques will allow a revision of data if any 

improvements in software processing tools for 

data analysis are developed in the future. 

4. Discussion 

4.1. Potential detection techniques for the future 

monitoring of plastic seafloor litter 

4.1.1. Sonar systems 

Acoustic sonar systems are typically 

capable of differentiating litter objects from the 

general natural environment, but cannot classify 

objects based on their material type (Objective 1, 

Figure 3). However, studies have shown that the 

use of AI (Objective 4, Table B.2, Appendix B) 

offers the possibility to classify certain litter 

objects based on their shape [29,43,44,63–67]. 

Nonetheless, this indirect classification does not 

consider fragmented litter objects. Hence, there 

is a high probability that a large proportion of 

litter objects would be ignored or misclassified 

using this technique. In addition, trying to 

decrease the number of missed targets will 

increase the false alarm rate. To minimize this 

effect, considerable training datasets would be 

needed to improve the accuracy and reliability 

of the AI for litter detection based on acoustic 

sonar systems.  

The actual detection size range of acoustic 

techniques is relatively large compared to other 

methods (Objective 3, Figure 4), ranging from a 

lower limit of 1-2 centimeters for 2D imaging 

sonars and SAS, to an upper limit of several 

meters. To reach these lower limits, however, 

ideal circumstances are required. In the case of a 

2D imaging sonar, this requires the use of a 

high-resolution model (e.g. Blueprint Oculus, 

Teledyne Blueview or Sound Metrics ARIS), a 

short distance to the target (0.1 - 1 m), and a 

down angle of 15° [36,68]. For a SAS system, a 

stable platform (towed system or AUV), precise 

micro-navigation, a relatively low speed (<5 

knots) and a long transducer are required to 

reach the lower limit. However, micro- and 

mesoplastics are untraceable with sonar 

systems. In addition, the maximum distance to 

the target, and therefore the spatial coverage 

range, decreases when the detection of smaller 

objects is desired [43]. Nonetheless, these 

methods are highly suited to the identification of 

larger objects and cover larger areas (Objective 

2, Figure 4) compared to electromagnetic 

techniques, thus allowing large-scale monitoring 

activities. The 2D imaging sonars achieved the 

largest detection size range (objects greater than 

1 cm) of the sonar systems, while the SAS 

demonstrated the highest spatial coverage with 

2.25 km²/h. Given that SAS also has a large 

detection size range (objects greater than 2 cm), 

it makes it the most promising sonar system for 

seafloor plastic detection (Figure 4) [29,52,55].   

                  



Sonar systems are easily compatible with 

different platforms (Figure 5), providing a wide 

range of possibilities for in situ detection. Given 

their high TRL, sonar systems are easily 

deployable in several scenarios. Based on the 

available resources and the dispersed 

importance of the different objectives in a given 

scenario (Figures 6 and 7), different sonar 

systems may be  

                  



  

Figure 6. The implementation of objectives and Technology Readiness Level (TRL) of the different detection 

techniques based on literature and expert judgement, with the objectives being 1) Identification and differentiation of 

plastic litter in a marine environment, 2) Spatial coverage of detection techniques, 3) Detection size range of detection 

techniques, and 4) Artificial intelligence for plastic detection; with green indicating a complete implementation of the 

objective, orange representing an almost complete realization of the objective and red indicating that only a small 
part of an objective is covered. Definitions of each TRL level are presented in Figure A.1 of Appendix A [38]. 

                  



eligible for plastic monitoring on the seafloor. 

Currently, SAS has been demonstrated to be the 

most promising technique for monitoring plastic 

seafloor litter, followed by side scan sonars, 2D 

imaging sonars and single beam sonars. For 

mapping marine plastic litter in sufficient detail 

in deep areas with a rocky, rough, or steep 

seabed, a 2D imaging sonar mounted on a ROV 

may be preferable. 

4.1.2. Spectral imaging systems 

Hyperspectral and X-ray imaging 

techniques can differentiate and identify objects 

on a synthetic polymer level, but currently lack 

development for in situ applications underwater 

(Objective 1, Figure 3). While, Huang et al. [47] 

have shown the potential of underwater 

hyperspectral imaging for in situ detection of 

small plastic particles, further research must 

determine the suitability of these imaging 

techniques in marine environments. Pakhomova 

et al. [69] demonstrated the possibility of using a 

miniaturized handheld near-infrared 

spectrometer (MicroNIR) for on-site 

identification of different plastic polymers. 

Nonetheless, when analyzing plastic items from 

the seafloor a preliminary extraction step from 

the sample matrix is still required owing to the 

presence of biofouling on the surface of the 

plastic object that will interfere with the 

analysis. Furthermore, the short distance 

required between the system and the target (20-

30 cm) means that the spatial coverage is low 

compared to other detection methods (Objective 

2, Figure 4) [47]. Therefore, these systems are 

only applicable with platforms that can come 

within less than 0.5 m of the seafloor (i.e. ROVs). 

Hyperspectral imaging techniques have a high 

detection size range (Objective 3, Figure 4) but 

are mainly focused on the smaller objects (1 mm 

– 15 cm). In contrast, the broad detection size 

range of ground penetrating radar (GPR), which 

has already been tested in the marine 

environment [70], is more suited to the 

identification of larger-sized objects (7 – 100 cm). 

However, the differentiation of GPR is less 

accurate than hyperspectral imaging techniques 

(Figure 3). Finally, portable Raman and FTIR 

Figure 7. Decision tool: suitable detection techniques for seafloor litter assessments in different scenarios. Green border: 

classification of items possible based on Artificial Intelligence (Objective 4), blue border: material or polymer level, red border: 

combination not possible, dashed border: not applicable in turbid waters. 

                  



spectroscopy instruments have been shown to 

meet the objectives at a comparable level to the 

hyperspectral imaging techniques, but are less 

suitable for in situ monitoring because water 

absorbs IR and measurements require the 

separation and clean-up of microplastics from 

the matrix prior to analysis [46]. Nonetheless, Iri 

et al. [71] have reported the first steps in the 

development of a portable Raman sensor 

capable of detecting microplastics in a water-

filled quartz cuvette. Moreover, a recent study 

developed an in situ underwater Raman system 

compatible with a ROV that could be used for 

the detection of seafloor objects [72].  

Based on their characteristics, hyperspectral 

imaging techniques are complementary to sonar 

systems (Figures 4 and 6). Hence, the most 

complete approach to monitor the seafloor may 

be the combination of a sonar system (i.e. SAS or 

2D imaging sonars) and hyperspectral imaging. 

For example, a 2D imaging sonar deployed on a 

ROV can scavenge the seafloor, and 

subsequently, hyperspectral imaging can be 

conducted to gain more detail once an object is 

detected to gain more detail. Alternatively, an 

area can first be screened by a SAS-equipped 

AUV, allowing an area of interest to be selected 

based on the outcome and then subsequently 

screened using hyperspectral imaging. 

4.1.3 Capacitance systems 

Capacitive proximity sensors are widely 

used in the food processing industry to detect 

dielectric materials like liquids, glass or plastics 

[73]. Although this sensor is applicable to 

underwater conditions, little is known about the 

possibilities of these sensors in terms of 

underwater plastic detection [74,75]. This review 

indicates that capacitive sensors can classify 

objects based on their material type, if they are 

larger than 2 cm (Figure 6). Given the short 

distance required between the sensor and the 

object, however, capacitance systems would 

only be able to document smaller marine areas 

when operated from a ROV. Further research is 

recommended to determine the exact 

boundaries of such systems and their potential 

future applications. Similarly, examining the 

possibilities of other detection techniques from 

terrestrial food or waste treatment industries 

may create new opportunities for the 

monitoring of plastic seafloor litter.  

4.1.4. Optical sensing systems 

Conventional camera systems are widely 

used as a detection method in the framework of 

plastic monitoring (e.g. [12,14,58,76–78]). This 

optical sensing system is affordable, easy to 

deploy and usable in rough terrains and remote 

areas when installed on a ROV, AUV or towed 

system. However, this system is highly 

dependent on water turbidity [78], only being 

usable in clear waters. To date, image analysis is 

predominantly conducted manually, but more 

recent automation of image annotation using 

machine learning algorithms has proved 

successful for classifying objects (Objectives 1 

and 4, Figure 3 and Table B.2, Appendix B) and 

is therefore capable of differentiating some 

plastic objects from other objects. In addition, 

camera systems can detect objects starting from 

just a couple of centimeters and, when deployed 

on a USV, AUV or towed mechanism, can cover 

a relatively large area of up to 0.1125 km²/h 

(Objectives 2 and 3, Figure 4) [58]. In the LIFE 

DEBAG project, for example, a seafloor area of 

83 km² was covered with a towed underwater 

camera [13]. It is important to note that visual 

detection can provide additional information 

about the local environmental and biological 

setting. In this sense, optical systems can 

provide valuable supporting information that 

can be used to help determine the impact of 

marine litter on biota [79]. Recently, underwater 

polarization camera systems have been put 

forward to maximize object detection [80,81]. 

Polarization differences allow better distinction 

between objects and enhance image quality in 

turbid waters [81]. This image restoration 

technique can therefore be relevant in some 

cases as an additional step between imaging and 

image processing.   

Other optical sensing techniques rely on 

laser light and photoplethysmograms (PPG) to 

detect underwater objects [37,82–87]. Both 

technologies can classify objects based on their 

material and hence differentiate plastic objects 

from non-plastic objects (Objective 1, Figure 3). 

In addition, the detection size range is large (2 

mm to multiple meters) compared to other 

                  



detection methods (Objective 3, Figure 4). 

However, additional scientific evidence is 

needed to confirm the complete range in both 

cases. Given the short distance required between 

these optics and the target, the spatial coverage 

of these systems is small (Objective 2, Figure 6). 

Nonetheless, these systems demonstrate great 

potential for further examination considering 

their low-cost (i.e. PPG sensor [87]) and 

efficiency (i.e. laser system [86]).   

4.2 Decision tool and scenarios 

To integrate all information gathered on the 

detection technologies and to increase the 

applicability of this data, a decision tool has 

been created (Figure 7). This decision tool 

enables easier identification of the most 

appropriate detection techniques for a certain 

region or scenario. To clarify its methodology, 

three different seafloor litter assessment 

scenarios are demonstrated: (i) Southern North 

Sea, (ii) Arctic area, and (iii) the Azores. The 

decision tool is based on the findings from the 

state-of-the-art (Figure 6).  

Scenario 1: The Southern North Sea is 

typified by shallow (<40 m) and turbid waters, 

with currents dominated by semi-diurnal 

(double) tides. The seabed relief is characterized 

by a complex system of gullies and sandbanks. 

Currently, seafloor litter in the North Sea is 

intensively monitored by registering marine 

litter collected as bycatch in the net during 

scientific fisheries surveys, especially the 

International Bottom Trawl Survey (IBTS) and 

the Beam Trawl Survey (BTS) coordinated by 

ICES. Given the drawbacks associated with this 

way of collecting meso- and macrolitter (>2.5 

cm), underwater technologies might provide a 

promising alternative. In this scenario, litter 

registration should optimally follow the 

categorization as described in the ICES Times 

protocol [27] and enable identification of the 

material type of the litter objects. A trawl track 

covers on average 1.47 ha with 5 to 10 tows 

being conducted on an average sampling day. 

The covered surface area during a monitoring 

campaign day is therefore between 15 and 30 ha. 

As a full monitoring campaign requires several 

days, techniques with a large spatial coverage 

are considered necessary. Based on this 

information, the decision tool recommends the 

use of SAS for this seafloor litter assessment. 

This system is compatible with an AUV or can 

be towed behind a surface vehicle. If the 

available budget does not allow for the purchase 

of an expensive SAS system (Figure 5), a SSS can 

be considered a good alternative, with the small 

trade-off that only objects greater than 5 cm will 

be detected (Figure 4). A camera system is not 

applicable because of the high level of turbidity 

in this area, and a MBSS is as expensive as a SAS 

(Figure 5), but less suitable for plastic detection 

(Figure 6).  

Scenario 2: The Azores is a group of 

volcanic islands emerging from the mid-Atlantic 

ridge. The Azorean Exclusive Economic Zone 

(EEZ) comprises an area of approximately 1 

million km2 with an average depth of about 3000 

m. The seafloor topography is very irregular 

with narrow island shelves and steep slopes 

made of hard substrates, as well as other 

features such as seamounts and banks. The 

seafloor communities within the Azores EEZ are 

rich in biodiversity and consist of complex deep-

sea habitats which include hydrothermal vents, 

coral gardens and sponge grounds. In this 

scenario, the aim is to develop a monitoring 

program of seafloor litter on selected marine 

litter hotspots (<1 km²) along the island shelves 

and on offshore seamounts at a depth of 50-800 

m. Given the seafloor topography, macroplastic 

monitoring activities (>10 cm) can only be 

performed with a ROV, AUV or a towed system. 

To perform this litter assessment, the decision 

tool indicates that most detection techniques 

would be suitable. Based on Figure 6, the most 

developed technologies are the camera, 2D 

imaging sonar, SAS, SSS and GPR. When 

operating on rough terrain, a camera or 2D 

imaging sonar operating from a ROV will be 

most suitable, while monitoring areas with a 

flatter seabed will be faster with a towed camera 

or sonar system.  

Scenario 3: The Central Arctic Ocean 

ecoregion encompasses the area of the ‚Central 

Arctic and Canadian High Arctic–North 

Greenland‛ according to the Large Marine 

Ecosystems [88,89]. This is mostly a high seas 

area, remote from landmasses. The Arctic region 

                  



has a large depth range, consisting of two 

principle deep basins (Eurasian Basin and 

Amerasian Basin, between 3800 and 4500 m 

deep), divided by the Lomonosov Ridge (1300 m 

deep which rises 3000 m above the seafloor), as 

well as slopes at 500 m, and shallower shelf 

areas which boarder the Beaufort/Chukchi and 

East Siberian/Laptev seas. Reports from both 

AMAP (Arctic Monitoring and Assessment 

Programme) and PAME (Protection of the Arctic 

Marine Environment) called for work to address 

the transport, pathways, fate and effect of litter 

and plastics [90,91]. AMAP recommends that 

methods should be refined for future source and 

surveillance monitoring as sampling and 

measurement development is needed. 

Furthermore, the remoteness and climate of the 

Arctic poses challenges for establishing 

monitoring programs [92]. As suggested by 

PAME [91], this type of monitoring should be 

employed in regions where abandoned, lost or 

discarded fishing gear (ALDFG) that is >10 cm 

may be concentrated (>1 km²). Based on this, the 

decision tool recommends the use of a camera or 

a sonar system (SAS, SSS or MBSS) for a seafloor 

litter assessment targeting ALDFG (>10 cm). 

Given the depth range and surface area in the 

selected region, an SAS or SSS would be the 

most advantageous choice. As the monitoring 

area is large and deep, a towed system or an 

AUV would be the most convenient platforms. 

5. Conclusions 

The current review has identified 14 

technologies that are potentially suitable for in 

situ plastic detection in marine environments. 

However, most of these technologies are 

currently at low-middle TRLs, requiring several 

more development, testing and 

commercialization steps before they can be 

applied effectively in marine field conditions 

and achieve a level of identification and 

quantification that is comparable to the existing 

seafloor litter monitoring programs. Although 

each technique has advantages and 

disadvantages when applied for detecting 

plastic litter on the seafloor, all provide a level of 

information that can be relevant for 

environmental status assessments and for 

guiding management actions to tackle plastic 

pollution. Several objectives were defined in this 

study to determine the TRL of each technology 

and subsequently which would represent the 

most suitable for different scenarios or regions.  

For technologies targeting micro- and 

mesoplastics, further research is urgently 

needed. In general, sonar systems (e.g. 2D 

imaging sonars) and optical sensing systems 

(e.g. camera) have the highest TRL for in situ 

meso- and macroplastic detection. SAS has been 

shown to be the most promising for seafloor 

plastic detection given its differentiation 

possibilities, along with the broad detection size 

range and spatial coverage. Spectral imaging 

and capacitance systems look promising at the 

proof-of-concept level, but currently lack 

validation in an operational environment.   

Nonetheless, there is an urgent need to 

move away from current seafloor litter 

monitoring approaches based on trawls linked 

to fish stock assessments. New, less invasive, 

and environmentally damaging methods must 

form the basis of this shift. This review indicates 

that the most suitable system is often very 

scenario-specific and, therefore, demands 

investment in more than one specific group of 

technologies. Given that current environmental 

monitoring programs do not focus on polymer 

specific plastics, several technologies (e.g. 

spectral imaging techniques) may be of less 

interest as a stand-alone technique. To enable 

the comparison of data generated by these 

different technologies as they develop further, 

there is a need for harmonization of the 

categories of seafloor litter items and units. 

These technologies, alone or in combination, 

have the potential to contribute to the 

establishment of more robust global 

environmental indicators and monitoring 

programs for plastic pollution. The monitoring, 

research and regulatory communities need to 

view such technologies as the future for marine 

litter monitoring and already start to develop a 

road map for their harmonization, validation, 

approval and inclusion in official monitoring 

programs. 
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Appendix A 

 

Figure A.1: Technology Readiness Level (TRL) for evaluation of plastic analysis procedures for use in monitoring 
[38].  

                  



Appendix B 

Table B.1: A subset of the collected data during this systematic review.   

  Technique  

Detected 

material 

types 

Method 

resolution 

Detection 

size 

range 

Spatial 

coverage 

Processing 

algorithms 

Number of 

publications 
Literature 

A
C

O
U

S
T

IC
 

SONAR  

Multibeam 

sonar system 

(MBSS)  

Large pieces 

of macro 

litter (tires, 

metal plates) 

>1 cm >2 m 

0.097 - 

0.728 

km²/h 
 

4 [29,36,93,94] 

2D imaging 

sonar  

Metal (cans, 

hooks, pipes, 

etc.), plastic 

(bottles, 

pipes, etc.), 

rubber (tires), 

glass (bottles) 

and 

cardboard 

(drink 

cartons) 

0.23 - 10 

cm 
>1 cm 

0.073 

km²/h 

Faster-RCNN, VGG-

16 and ResNet-50, 

CNN-Softmax, 

CNN-SVM, 

RBoxNet, YOLOv2, 

RCNN, RRPN, MRF-

Net, CenterNet-dla, 

YOLOv3, RFBNet, 

SSD300, MAFR-TM, 

MS-1000 

20 
[29,36,43,44,57,63–

68,95–103] 

Side scan 

sonar (SSS)  

Large pieces 

of macro 

litter 

>3 cm >5 cm 
0.125 

km²/h 

Radial Basis 

Function Neural 

Network (RBFNN), 

Spatial variability 

analysis (SVA), CSS, 

MRF, kernel 

classifier, SVM, 

CNN, unnamed 

algorithm 

14 
[29,55,57,68,104–

113] 

Synthetic 

aperture 

sonar (SAS)  

Plastics 

(pipes, cones, 

wedges), 

steel, rocks, 

macro litter 

>1 cm >2 cm 

1.428 - 

2.25 

km²/h 

SURF, NSEM, CNN, 

unnamed algorithm 
11 

[29,52–

55,57,64,95,113–

115] 

Single beam 

sonar system 

(CHIRP 

modulated)  

Plastic 

(Bottles, 

cups, 

wrapper, 

containers), 

rubber, metal 

(cans) 

>1 cm >8 cm 
 

K-Means clustering 

algorithm 
2 [116,117] 

 

  

                  



 

E
L

E
C

T
R

O
M

A
G

N
E

T
IC

 

SPECTRAL IMAGING 

VIS 

Hyperspectral 

imaging  

Plastics (PS , 

PET, PA, 

PBMA, PE, 

PP), metal, 

rubber, 

fabric, rock, 

glass 

>0.2 mm 1 - 5 mm 
 

SVM (e.g.  K-PCA), 

NN, LS-SVM, PLS-

DA, Spectral angle 

mapper (SAM), ML 

7 
[45,50,69,118–

121] 

NIR 

Hyperspectral 

imaging  

Plastics (PE, 

PS, PP, PET, 

PVC, PA, 

PC, PUR), 

metals, 

rubber, 

fabric, rock, 

glass 

>0.2 mm 1 - 15 cm 
 

SVM (e.g. k-PCA), 

NN, Partial least 

squares-

discriminant 

analysis (PLS-

DA),  Mahalanobis 

distance (MD), 

SAM, Maximum 

likelihood (ML) 

7 
[45,50,69,118–

121] 

Raman & 

FTIR 

spectroscopy  

Plastics 

(HDPE, 

LDPE, PP, 

PS, PET) 

>1 mm 
1 mm - 

2.5 cm   
4 [46,71,72,122] 

X-ray 

imaging  

Plastics 

(PVC, PTFE, 

PET,PC, 

HDPE, 

LDPE),  

metals 

(ferrous and 

non-ferrous,  

stainless 

steel,  

aluminium), 

ceramic, 

glass, stone 

>1 mm >1 mm 
  

3 [123–125] 

Ground 

penetrating 

radar (GPR)  

Plastic, 

glass, 

aluminium 

>10 cm 
10 - 100 

cm   
2 [70,126] 

CAPACITANCE 

Capacitance 

proximity 

sensor  

Plastics, 

paper 
>1 mm >2 cm 

  
3 [48,74,75] 

 

  Technique  

Detected 

material 

types 

Method 

resolution 

Detection 

size 

range 

Spatial 

coverage 

Processing 

algorithms 

Number of 

publications 
Literature 

                  



  Technique  

Detected 

material 

types 

Method 

resolution 

Detection 

size 

range 

Spatial 

coverage 

Processing 

algorithms 

Number of 

publications 
Literature 

E
L

E
C

T
R

O
M

A
G

N
E

T
IC

 

SPECTRAL IMAGING 

Camera  

Plastics 

(bottles, bags, 

cups, etc.), 

tires, fabric 

(nets), metal 

(cans, etc.) 

 
> +- 10 cm 

0.001 - 

0.1125 

km²/h 

CNN (Mask R-CNN, 

YOLOv2, Tiny-

YOLO, Faster R-

CNN, SSD, CNN, 

ResNet50-YOLOv3, 

YOLOv4, 

InceptionResNetV2), 

SURF, Iterative 

Closest Point (ICP), 

GLCM, DWT, SVM, 

LR, KNN, RF, NB 

29 
[13,36,58,59,76–

78,80,81,127–147] 

Laser 

detection 

(and LIDAR)  

Plastic (PET, 

LDPE), 

metals (steel), 

rubber, wood 

 
>0.25 mm 

  
9 

[36,82–85,148–

151] 

PPG sensor  

Plastic (PET, 

HDPE, PVC, 

LDPE, PP, 

PS) 

>2 mm 
2 mm - 4 

cm  

KNN, Random 

forest 
2 [37,87] 

 

  

                  



Table B.2. Existing processing algorithms for macroplastic detection by underwater technologies. 

    Technique Processing algorithms Literature 

A
C

O
U

S
T

IC
  

SONAR  

Multibeam sonar system 

(MBSS)  
  

 

2D imaging sonar  

Conventional neural networks (CNN) 

e.g. Fast R-CNN, Faster R-CNN, YOLO, YOLOv2, RBoxNet, 

RRPN, Mask-RRPN, FireNet-BN, SSD, CNN-Softmax, CNN-

SVM, etc. 

[43,44,57,64,65,67,95,97–

102] 

Multilayer perceptrons (MLP) 

e.g. combinations of FC10, FC256, FC512, FC1024 
[43,65] 

Support vector machines (SVM) [43,95,100,101] 

Multiple receptive field network (MRF-Net) [66] 

Multiple-aspect fixed-range template matching (MAFR-TM) [63] 

Depth-first search (DFS) [103] 

Markov Random Field (MRF) [103] 

Otsu algorithm [103] 

C-means algorithm [103] 

Side scan sonar (SSS)  

Radial basis function neural network (RBFNN) [111] 

Spatial variability analysis (SVA) [105] 

Co-operating statistical snake model (CSS) [110] 

Markov random field model (MRF) [110] 

Unnamed detection algorithm [55,113] 

Kernel ridge regression classifier [106] 

Support vector machines (SVM) [108] 

Conventional neural networks (CNN) [107] 

Synthetic aperture sonar 

(SAS)  

Speed up robust feature algorithm (SURF) [54] 

Unnamed detection algorithm [55,113] 

Normalized shadow-echo matching (NSEM) [53] 

Conventional neural networks (CNN) [114,115] 

Single beam sonar system 

(CHIRP modulated)  
K-Means clustering algorithm [116,117] 

 

  

                  



 Technique Processing algorithms Literature 

E
L

E
C

T
R

O
M

A
G

N
E

T
IC

 

SPECTRAL IMAGING  

VIS 

Hyperspectral 

imaging  

Support vector machines (SVM)  

e.g. k-PCA 
[47,120,121,152] 

Neural networks (NN) [47,121,153] 

Least squares-support vector machine (LS-SVM) [47] 

Partial least squares-discriminant analysis (PLS-DA) [47,118] 

Spectral angle mapper (SAM) [121,154] 

Gaussian process or maximum likelihood (ML) [121,155] 

NIR 

Hyperspectral 

imaging  

Support vector machines (SVM)  

e.g. k-PCA 
[45,120,121,152] 

Neural networks (NN) [121,153] 

Partial least squares-discriminant analysis (PLS-DA) [118] 

Mahalanobis distance (MD) [45] 

Spectral angle mapper (SAM) [121] 

Gaussian process or maximum likelihood (ML) [45,121,155] 

Raman & FTIR 

spectroscopy  
  

 

X-ray imaging    
 

Ground 

penetrating radar 

(GPR)  

  
 

CAPACITANCE 

Capacitance 

proximity sensor  
  

 

OPTICAL SENSING 

Camera  

Conventional neural networks (CNN) 

e.g. Faster R-CNN, Mask R-CNN, SDD, YOLO, YOLOv2, 

YOLOv3, YOLOv4, ResNet50-YOLOv3, Tiny-YOLO, VGG, 

ResNet, InceptionResNetV2, Shuffle-Xception, MobileNet, 

LeNet, DenseNet, InceptionV3, ConvNet, etc. 

[58,59,127–

129,131,132,134,135,137,140,143–

147] 

Gray level co-occurrence matrix (GLCM) [136] 

Discrete wavelet transform (DWT) [136] 

Support vector machine (SVM) [59] 

Logistic regression (LR) [59] 

K-nearest neighbour (KNN) [59] 

Random forest (RF) [59] 

Naïve bayes (NB) [59] 

Speed up robust feature algorithm (SURF) [138] 

Iterative Closest Point (ICP) [138] 

Laser detection 

(and LIDAR)    

PPG sensor  
K-nearest neighbor (KNN) [37,87] 

Random forest (RF) [37,87] 
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