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Abstract : 

The southern Ecuadorian forearc system is related to the subduction of the oceanic Farallon/Nazca Plate 
beneath the continental South American Plate since the Late Cretaceous, and currently evolves with the 
dynamic of a tectonic block called North Andean Sliver. To explore the structural architecture and 

processes controlling the Upper Cretaceous-Cenozoic growth of the forearc, we built a ∼143 km-long 
onshore-offshore crustal-scale cross-section in the Santa Elena Peninsula region using seismic reflection 
profiles and well and field data. The structure of the Santa Elena Peninsula forearc system is controlled 
by imbrication of Upper Cretaceous-Palaeocene oceanic basement and Cenozoic sedimentary units, and 
underplating of distal Cenozoic sequences stacked at the trench zone. This led to the progressive 
construction of an accretionary wedge through time. The forearc substratum is mainly formed by the 
Upper Cretaceous-Palaeocene basement developed during the docking of oceanic terranes. It is later 
deformed by NW-trending landward-dipping, normal to strike-slip faults during the Middle Eocene, and 
renewed compression by inversion of inherited faults from the Oligocene onwards. Recent deformation 
consists in N-trending oceanward-dipping normal faults in the frontal slope domain and fault-controlled 
uplift of marine terraces along the coastal area. Therefore, the Upper Cretaceous to present-day structural 
evolution of the Santa Elena Peninsula forearc is controlled by the long-lasting subduction dynamics and 
structural inheritance of the upper plate. 

Highlights 

► We illustrate the structural architecture of the Santa Elena Peninsula forearc system. ► It is dominated
by compression punctuated by zones/episodes of normal to strike-slip faulting. ► Its evolution reflects 
the subduction dynamics and the upper plate structural inheritance.
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Abstract 23 

The southern Ecuadorian forearc system is related to the subduction of the oceanic 24 

Farallon/Nazca Plate beneath the continental South American Plate since the Late Cretaceous, 25 

and currently evolves with the dynamic of a tectonic block called North Andean Sliver. To 26 

explore the structural architecture and processes controlling the Upper Cretaceous-Cenozoic 27 

growth of the forearc, we built a ~143 km-long onshore-offshore crustal-scale cross-section in 28 

the Santa Elena Peninsula region using seismic reflection profiles and well and field data. The 29 

structure of the Santa Elena Peninsula forearc system is controlled by imbrication of Upper 30 

Cretaceous-Palaeocene oceanic basement and Cenozoic sedimentary units, and underplating of 31 

distal Cenozoic sequences stacked at the trench zone. This led to the progressive construction 32 

of an accretionary wedge through time. The forearc substratum is mainly formed by the Upper 33 

Cretaceous-Palaeocene basement developed during the docking of oceanic terranes. It is later 34 

deformed by NW-trending landward-dipping, normal to strike-slip faults during the Middle 35 

Eocene, and renewed compression by inversion of inherited faults from the Oligocene onwards. 36 

Recent deformation consists in N-trending oceanward-dipping normal faults in the frontal slope 37 

domain and fault-controlled uplift of marine terraces along the coastal area. Therefore, the 38 

Upper Cretaceous to present-day structural evolution of the Santa Elena Peninsula forearc is 39 

controlled by the long-lasting subduction dynamics and structural inheritance of the upper plate. 40 

1. Introduction 41 

The structural framework of a forearc result from the vertical stack of structural units 42 

formed by basement rocks, marine sediments and volcanics scrapped off the subducting oceanic 43 

plate (Dickinson and Seely, 1979; Moore et al., 2001; Stern, 2002; Cawood et al., 2009; Noda, 44 

2016). Depending on time duration and the geometric evolution of the subduction zone, a 45 

forearc system may involve one or several fold-thrust belts and depocentres younging 46 

oceanward, emplaced ahead of the inner crustal wedge (orogenic wedge/magmatic arc; 47 
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François et al., 2021). The velocity and direction of the convergence, slab dip and amount of 48 

sediments at the trench significantly influence the accretion or erosion style of the forearc 49 

(Dahlen, 1990; von Huene and Scholl, 1991; Le Pichon et al., 1993; Lallemand et al., 1994; 50 

Collot et al., 2002; Gutscher and Westbrook, 2009; Noda, 2016). Normal faulting often occurs 51 

as a result of gravitational forces expressing a localised and progressive collapse in parallel to 52 

the margin uplift (Vannucchi et al., 2008 and 2012; Wang et al., 2010). Extension is produced 53 

by erosive degradation of the margin (Armijo and Thiele, 1990; Bourgois et al., 1993; von 54 

Huene et al., 1999; Clift and Vannucchi, 2004; Sallarès and Ranero, 2005), frontal erosion due 55 

to seamounts subduction (Dominguez et al., 1998; Vannucchi et al., 2004), or interseismic 56 

loading and coseismic/postseismic strain release during earthquakes (Delouis et al., 1998; 57 

Loveless et al., 2005). Therefore, gravitational forces constantly reshape the forearc 58 

morphology to keep slope stability, especially in sedimentary-overfilling environments where 59 

non-cohesive material likely deposits (Hamblin and Christensen, 1995). This implies a 60 

combination of crustal and surficial processes (i.e. subduction-erosion, structural equilibrium, 61 

sedimentary growth) switching between short and long-term phases, inherent to the progressive 62 

construction of a long-lived forearc system likely recording the subduction evolution (Espurt et 63 

al., 2018). 64 

This study focusses on the Santa Elena Peninsula region located along the South 65 

Ecuadorian forearc zone (Fig. 1). This segment of the margin is marked by a relatively moderate 66 

seismicity mixing thrust, strike-slip and normal focal mechanisms (Beauval et al., 2010, 2013; 67 

Font et al., 2013; Yepez et al., 2016; Vaca et al., 2019), and is usually described as erosional 68 

(Lonsdale, 1978; Sage et al., 2006; Hernández et al., 2020). The development of normal faults 69 

cutting through the upper plate down to the subduction interface are classically interpreted as a 70 

result of basal erosion due to subducting asperities and/or of the oblique convergence (Collot 71 

et al., 2002, 2008a, 2008b and 2011; Calahorrano Bétancourt, 2005; Sage et al., 2006; Bourgois 72 
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et al., 2007; Ratzov et al., 2012). Regional tectonostratigraphy suggests an overall accretion 73 

framework, associated with synchronous normal faulting since the Late Cretaceous across 74 

southern Ecuador and northern Peru (Daly, 1989; Benίtez, 1995; Espurt et al., 2018; Aizprua 75 

et al., 2019; Hernández et al., 2020; Jaillard, 2022). 76 

This paper aims to identify structural mechanisms that controlled the large-scale 77 

evolution of the Santa Elena Peninsula forearc over the Late Cretaceous-Cenozoic period by 78 

highlighting the onshore-offshore links between shallow and deep structures. Despite many 79 

geological integrations of surface and subsurface data (e.g. Benίtez, 1995; Reyes, 2013; Aizprua 80 

et al., 2019; Witt et al., 2019; Hernández et al., 2020; Jaillard, 2022), the onshore-offshore 81 

continuity of tectonic structures and their geometry remain uncertain. This approach is essential 82 

to correlate the morphotectonic expression of the margin with seismic hazards as functions of 83 

successive short- and long-term processes. 84 

2. Structural framework of the Santa Elena Peninsula region 85 

The southern Ecuador deformation is dominated by the subduction of the 86 

Farallon/Nazca plates beneath South America controlling the northeastward tectonic escape of 87 

the North Andean Sliver along the Puná-Pallatanga Fault, a crustal-scale, segmented, dextral 88 

strike-slip fault belonging to the Dolorès-Guayaquil Fault Zone running from the Gulf of 89 

Guayaquil in Ecuador to Venezuela (Fig. 1; Pennington, 1981; Freymueller et al., 1993; Kellog 90 

and Vega, 1995; Trenkamp et al., 2002; White et al., 2003; Nocquet et al., 2014; Villegas-91 

Lanza et al., 2016). Located at the southwesternmost part of the North Andean Sliver, the Santa 92 

Elena Peninsula region belongs to an onshore-offshore Upper Cretaceous-to-Quaternary forearc 93 

system containing the Valdivia Basin to the north, the Guayaquil Basin to the south, and the 94 

Progreso Basin to the east, all three surrounded by a system of cordilleras (Fig. 1b). Between 95 

~75 and 55 Ma, the convergence controlled the amalgamation of ocean-derived terranes, 96 
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outcropping nowadays in the Coastal and Chongόn-Colonche cordilleras and locally in the 97 

Santa Elena Peninsula region (Hey, 1977; Feininger and Bristow 1980; Reynaud et al., 1999; 98 

Audemard and Audemard, 2002; Kerr et al., 2002; Jaillard et al., 2004, 2008 and 2009; 99 

Lonsdale, 2005; van Melle et al., 2008; Vallejo et al., 2009; Reyes and Michaud, 2012; Jaillard, 100 

2022). Compression continued during the Eocene, Oligocene and Miocene with the 101 

development of fold-and-thrust belts and forearc depocentres (Benίtez, 1995; Jaillard et al., 102 

1995, 1997; Aizprua et al., 2019; Witt et al., 2019; Hernández et al., 2020; Alemán et al., 2021). 103 

Altogether, this led to significant clockwise rotation of the Ecuadorian forearc and localised 104 

dextral strike-slip motions along inherited faults (Pennington, 1981; Roperch et al., 1987; 105 

Jaillard et al., 2009; Egbue and Kellogg, 2010; Amόrtegui et al., 2011; Alvarado et al., 2016; 106 

Baize et al., 2020; Siravo et al., 2021). 107 

The modern structural evolution of the Santa Elena Peninsula region is likely controlled 108 

by the roughness of the lower plate but debates exist on the timing and magnitude of regional 109 

tectonic events. In particular, the subduction of the Carnegie Ridge under the southern 110 

Ecuadorian forearc (Fig. 1) started either ~8-15 Ma ago (Daly, 1989; Gutscher et al., 1999; 111 

Schütte et al., 2010), ~3-5 Ma ago (Collot et al., 2008a and 2009; Michaud et al., 2009 and 112 

2018) or ~1-2 Ma ago (Lonsdale and Klitgord, 1978). The ridge corresponds to a ~200 km-113 

wide, 2 km-high, 80°N-trending bathymetric high, composed of 14 to 19 km-thick oceanic crust 114 

originated from the Galapagos Hotspot (Sallarès and Charvis, 2003; Graindorge et al., 2004; 115 

Harpp et al., 2004). Its subduction likely triggered seaward-dipping normal faulting favouring 116 

overpressured fluids migration in the subduction channel (Calahorrano Bétancourt, 2005; Sage 117 

et al., 2006; Proust et al., 2016), coastal uplift up to 200-to-300 m high witnessed by Upper 118 

Pliocene-to-Lower Pleistocene marine terraces (Cantalamessa and Di Celma, 2004; Pedoja et 119 

al., 2006a and 2006b), as well as exhumation of crustal rocks and variations of drainage patterns 120 

in the Coastal Cordillera (Daly, 1989; Benίtez, 1995; Aalto and Miller, 1999; Deniaud et al., 121 
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1999; Witt et al., 2006; Reyes, 2013; Collot et al., 2019; Hernández et al., 2020; Brichau et al., 122 

2021). Finally, the development of the Puná-Pallatanga Fault (Fig. 1b) could also be associated 123 

to the subduction of the ridge (Deniaud et al., 1999; Deniaud, 2000; Witt et al., 2006, Bourgois 124 

et al., 2007; Cobos and Montenegro, 2010; Witt and Bourgois, 2010). 125 

3. Stratigraphy of the onshore domain 126 

The following description provides a synthesis of the onshore stratigraphy of the Santa 127 

Elena Peninsula region based on an extended literature review (Fig. 2). This is required to 128 

support our investigation offshore (Section 4), in order to highlight the extent of regional 129 

episodes and their influence throughout the margin. 130 

3.1. Upper Cretaceous-Palaeocene basement 131 

To the northeast, the Santa Elena Peninsula region is bounded by the Chongón-Colonche 132 

Cordillera (Fig. 1b), a massif composed of Upper Cretaceous arc-derived volcanoclastics and 133 

crystalline rocks of oceanic origin (Goossens and Rose 1973; Jaillard et al. 1995 and 2009; 134 

Reynaud et al., 1999; Mamberti, 2001; Luzieux et al., 2006; van Melle et al., 2008; Seyler et 135 

al., 2021; Jaillard, 2022). The basement also outcrops irregularly across the coastal zone 136 

(Benίtez, 1995; Luzieux et al., 2006; Reyes and Michaud, 2012) and extends offshore (Aizprua 137 

et al., 2019; Hernández et al., 2020). It is composed of highly-deformed Coniacian tholeiitic 138 

basalts and pillow-lavas (Piñon Fm) covered by dacitic breccias (Las Orquideas Fm), Middle 139 

Coniacian-Lower Campanian siliceous limestones and radiolarian mudstones (Calentura Fm), 140 

and Upper Campanian-Maastrichtian flysch and volcanoclastics (Cayo Fm) (Fig. 2). These 141 

formations are overlain by an Upper Maastrichtian-Upper Palaeocene clastic wedge, composed 142 

of distal sandstones, siltstones and cherts (Guayaquil Fm) and highly-deformed tuffaceous and 143 

pelagic black cherts (Santa Elena Fm). Depending of the region of observation, the Guayaquil 144 

Fm is either quartz-free and therefore pre-accretionary in age (Jaillard et al., 2009) or post-145 
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accretionary due to volcanic zircon grains originated from a continental volcanic arc in the 146 

Western Cordillera (Vallejo et al., 2009, 2019). Similarly, the Santa Elena Fm is alternatively 147 

interpreted as an olistostrome (Azad, 1964; Colman, 1970; Bristow and Hoffstetter, 1977) or as 148 

pre-accretionary deposits (Jaillard et al., 1995, 2009; Aizprua et al., 2019). These formations 149 

are unconformably covered by uppermost Palaeocene coarse-grained quartz-rich turbidites 150 

(Azúcar Fm) sourced from the continent (Jaillard et al., 1995; Witt et al., 2019; Jaillard, 2022). 151 

In this study, the Upper Cretaceous-Palaeocene rocks form a basement developed during the 152 

progressive establishment of ocean-derived terranes accreted to the margin and shedding 153 

sediments following the erosion of uplifted terranes. This period of oceanic terrane docking 154 

took place from the Late Campanian until the Late Palaeocene. 155 

3.2. Eocene unit 156 

The regional unconformity U1 (Fig. 2) marks the contact between the Upper 157 

Cretaceous-Palaeocene basement and the Middle Eocene succession (Jaillard, 2022). These are 158 

known as the Ancόn Group, which is composed of basal shales deposited in an unstable marine 159 

environment (Clay Pebble Beds Fm), middle turbidites, siltstones and claystones composing 160 

submarine fans (Socorro Fm), and upper siltstones and sandstones witnessing outer-shelf 161 

conditions (Secca Fm). The Ancόn Group is overlain by a Middle Eocene transgressive-162 

regressive sequence (San Mateo Fm) in the Chongόn-Colonche Cordillera and unconformable, 163 

coarse-grained sandstones, possibly turbiditic in places, alternating with thin shales (Punta 164 

Ancόn Fm; Bristow and Hoffstetter, 1977; Jiménez and Mostajo, 1989; Benίtez, 1995; Jaillard 165 

et al., 1995; Luzieux, 2007; Jaillard, 2022). 166 

3.3. Oligocene unit 167 

The Eocene-Oligocene transition is characterised by the regional unconformity U2 (Fig. 168 

2), contemporaneous with the breakup of the Farallon Plate (Benίtez, 1995; Jaillard et al., 1995; 169 
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Ordoñez et al., 2006; Jaillard, 2022). Oligocene strata correspond to shallow marine 170 

transgressive conglomerates and sandstones (Zapotal Fm; Benίtez et al., 1986). 171 

3.4. Neogene unit 172 

Overlying Miocene sequences accumulated mainly in the Progreso Basin (Fig. 2) in 173 

local depocenters developing along the cordilleras (Bristow and Hoffstetter, 1977; Deniaud, 174 

2000; Reyes and Michaud, 2012; Reyes, 2013; Eguëz et al., 2019). Strata consist in Aquitanian-175 

Lower Burdigalian marine sandstones, siltstones and shales (Dos Bocas Fm), Upper 176 

Burdigalian diatomaceous siltstones and mudstones (Villingota Fm), Langhian-Lower 177 

Serravallian calcareous siltstones and sandstones (Subibaja Fm), Upper Serravalian to 178 

Messinian channelised fine sands intercalated with siltstones and shales (Progreso Fm), 179 

uppermost Messinian to Pliocene sandstones (Puna Fm), and conglomerates, sandstones and 180 

siltstones (Balzar Fm). 181 

3.5. Quaternary unit 182 

Clastic deposition continued during the Pleistocene (Tablazo Fm) in parallel with the 183 

development of marine terraces along the coast (Pedoja et al., 2006a; Reyes, 2013). 184 

Unconformable Holocene strata are characterised by non-consolidated sediments (Llanura Fm) 185 

associated with river systems or alluvial and marine terraces (Pedoja et al., 2006a; Reyes, 2013; 186 

Eguëz et al., 2019). The two formations are unconformably deposited on previous sediments 187 

(unconformity U3) and are contemporaneous with extensional tectonics in the Guayaquil Basin 188 

(Fig. 2; Deniaud, 2000; Witt et al., 2006; Cobos and Montenegro, 2010). 189 

4. Onshore-offshore stratigraphic correlation 190 

The stratigraphic description in Section 3 highlights the sedimentary succession 191 

outcropping in the onshore Santa Elena Peninsula region, and stratigraphic correlation with the 192 

offshore domain is challenging due to sparse drilling information in the offshore domain (Figs 193 
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3 and 4). Based on gamma ray and sonic logs analysis (Serra, 1979 and 1995), we propose a 194 

description of offshore sedimentary sequences of Well B1-NSX1-1X drilled in the Valdivia 195 

Basin (provided by Petroamazonas EP, initially drilled by Belco Petroleum Ecuador Inc in 196 

1988). The stratigraphic content is partially reinterpreted compare to well reports as it takes into 197 

account age reappraisal (Ordoñez et al., 2006) and the most recent geological descriptions along 198 

the coastal area (Reyes and Michaud, 2012; Reyes, 2013; Aizprua et al., 2019; Witt et al., 2019; 199 

Jaillard, 2022). We also use Well B1-MT1-1X (Montañita-1; Aizprua et al., 2019; Hernández 200 

et al., 2020) located on the northern edge of the Valdivia Basin to extend our observations to 201 

the northwest. The main lithostratigraphic surfaces are then seismically controlled (Fig. 5). 202 

Well B1-NSX1-1X bottomed ~70m-thick, siltstones and claystones deposited in a 203 

shallow-to-deep marine environment (Fig. 4), that are similar to onshore Upper Cretaceous 204 

clastics of the Cayo Fm (Benίtez, 1995; Jaillard et al., 1995 and 2009; Luzieux et al., 2006). 205 

This implies that underlying sediments, belonging to the Piñon and Calentura Fms, likely 206 

extend below drilling sites. Thin poorly-dated, 50m-thick Palaeocene-Lower Eocene shallow 207 

marine siltstones are recovered in Well B1-NSX1-1X, which are described as a condensed 208 

sequence equivalent to the Santa Elena or the Azúcar Fms in well reports (Benίtez, 1995; 209 

Jaillard et al., 1995; Keller et al., 1997; Luzieux, 2007; Aizprua et al., 2019). Thus, we correlate 210 

the onshore Upper Cretaceous-Palaeocene basement westward. It is topped by the Middle 211 

Eocene unconformity U1 of varying magnitude across the Santa Elena Peninsula region. 212 

In Well B1-NSX1-1X, 1630m-thick Middle Eocene strata correspond to shallow-marine 213 

siltstones and mudstones and occasional carbonates (Fig. 4). Similar strata (1830m-thick) are 214 

reported in Well B1-MTX1-1X, with notable tuff levels similar to the ones radiometrically 215 

dated at 53.7±1.4 Ma (i.e. Ypresian; Witt et al., 2019), which remains uncorrelated to any 216 

known sedimentary intervals offshore. Well reports attributed a much thicker interval (~2280m) 217 

to the Ancόn Group despite an insufficient biostratigraphic content to determine a more accurate 218 
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age. Here, we consider that these Middle Eocene strata are thinner than previously proposed in 219 

well reports, but are thicker than those measured onshore (~1000m-thick; Reyes, 2013). 220 

Overlying strata consist in poorly-dated Upper Eocene sandy deposits intercalated with 221 

muds and siltstones in Well B1-NSX1-1X (Fig. 4), and extend into similar facies in Well B1-222 

MTX1-1X. Well reports and Jaillard et al. (1995) originally interpreted these as the uppermost 223 

Ancόn Group (turbidites of the Socorro Fm. and shoreface deposits of the Pta Ancon Fm.), 224 

which are consistent with a global regression, but these boundaries remain difficult to correlate 225 

with seismic data through the region. We rather correlate this sequence with conglomerates and 226 

occasional mudstones and siltstones of the Zapotal Fm. Therefore, a Late Eocene age is unlikely 227 

so that we regard this interval as a deeper equivalent of onshore Oligocene unit that may extend 228 

into the lowermost Miocene (Benίtez, 1995; Deniaud, 2000; Luzieux, 2006; Ordoñez et al., 229 

2006; Reyes, 2013). This is consistent with the presence of Oligocene-Miocene sandstones 230 

radiometrically dated at 29.5±0.4 and 23.5±0.6 Ma north of the Valdivia Basin (Witt et al., 231 

2019), in continuation of the Progreso Basin (Alemán et al., 2021). 232 

In Well B1-NSX1-1X, we interpret an ~100m-thick Neogene unit, comparable to the 233 

~400m-thick uppermost sediments of the Progreso Basin (Bristow and Hoffstetter, 1977; 234 

Benίtez, 1995; Deniaud, 2000; Eguëz et al., 2019) and to the ~3000m-thick strata along the 235 

southwestern littoral zone (Reyes, 2013). This suggests that a major part of the Neogene unit 236 

has been eroded or non-deposited in the Valdivia Basin (Hernández et al., 2020). It is 237 

unconformably covered by ~250m-thick Quaternary sediments (unconformity U3) made of 238 

sandstones and siltstones equivalent to the Tablazo Fm and conglomerates to the Llanura Fm. 239 

Even though this sedimentary interval was originally thought to belong exclusively to the Ancόn 240 

Group in well reports, we argue here that the uppermost strata are younger and likely present 241 

significant thickness variations. 242 
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5. Surface and subsurface data 243 

The Santa Elena Peninsula, Valdivia Basin and Progreso Basin zones provide a good 244 

exposure of geological structures (Benίtez, 1995; Jaillard et al., 1995; Reyes and Michaud, 245 

2012; Aizprua et al., 2022). These are dated with sedimentary units as described in the above 246 

(Section 3) using basic seismic correlation (Mitchum et al., 1977; Vail et al., 1977; Badley, 247 

1985). Numerous two-dimensional hydrocarbon seismic reflection profiles provide a good 248 

imaging of the platform (1-to-2km-spaced seismic lines shot in 1986 across the platform by 249 

Belco Petroleum and Western Geophysical, reprocessed by PetroEcuador). They are 250 

supplemented by ~5 km-spaced seismic profiles acquired perpendicularly to the trench by 251 

SCAN Geophysical ASA (processed by SINOPEC) and academic profiles of SISTEUR and 252 

ATACAMES surveys (IFREMER and Instituto Oceanográfico de la Armada del Ecuador). 253 

5.1. Structural mapping 254 

Field, well and seismic profile data are combined with long-wavelength gravity data and 255 

high-resolution aero-gravity data (Hernández et al., 2020) to construct a structural map of the 256 

Valdivia Basin-Santa Elena Peninsula region and northern edge of the Progreso Basin (Fig. 3). 257 

Map analysis is systematically compared to published detailed onshore and offshore studies 258 

(Reyes and Michaud, 2012; Aizprua et al., 2019 and 2022; Hernández et al., 2020). 259 

Our structural map (Fig. 3) shows that the forearc is composed of six structural domains 260 

in the Santa Elena Peninsula region. Landward to seaward, these units are the Chongόn-261 

Colonche Cordillera (+90 to +100 mgal), the triangular-shaped Progreso Basin (+20 to -110 262 

mgal), the ~N-trending Santa Elena High-Valdivia Basin-Monteverde Basin domain (+40 to 263 

+60 mgal), the ~N-trending slope basin (+20 to -60 mgal), the ~N-trending trench basin (-60 264 

mgal) and the subducting oceanic Nazca Plate (0 to +30 mgal). Faults are grouped according to 265 

their orientation. The onshore domain and the platform domain between the Santa Elena 266 

Peninsula and the La Plata Island are characterised by N130°E-trending northeast-dipping 267 
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normal fault systems notably parallel to the Chongόn-Colonche Cordillera and Carrizal normal 268 

fault system of mostly Late Cretaceous-Palaeocene age (Fig. 3). The Progreso depocenter is 269 

bounded southwestward by the N140°-160°E La Cruz Fault system formed of the Oligocene 270 

and Neogene. Our interpretation also confirms the presence of NW-SE normal faults in the 271 

offshore domain delimiting the Valdivia and Monteverde depocentres as proposed by 272 

Hernández et al. (2020). Therefore, all these structures imply a deep structural control, 273 

suggesting that the margin belongs to a wide compressional zone extending across the Santa 274 

Elena Peninsula region, the Progreso Basin and the Guayaquil Basin as recently proposed by 275 

Witt et al. (2019) and Aizprua et al. (2022). Finally, the slope domain is characterised by N-to-276 

N10°E-trending, oceanward-dipping normal faults notably parallel to the trench, implying that 277 

they formed, at least to a certain extent, in relation with subduction processes (Sage et al., 2006). 278 

5.2 Cross-sectional structural architecture and kinematics 279 

The structural architecture of the Santa Elena Peninsula forearc is shown on Figure 5 280 

through an ~143km-long synthetic cross-section (B90-46, part of B90-50, part of E86-183B 281 

and MR08-756) linking the northern edge of the Progreso Basin to the trench (Fig. 3). 282 

Reflectors of the upper plate are calibrated using surface data in the onshore domain (Daly, 283 

1989; Reyes and Michaud, 2012) and offshore Well B1-NSX1-1X (Fig. 4). Our interpretation 284 

highlights the main characteristics of structural domains mentioned in Subsection 5.1. 285 

The Chongόn-Colonche Cordillera corresponds to a major homocline made of Upper 286 

Cretaceous-Palaeocene basement unconformably covered by Neogene strata (Fig. 1). Its 287 

structural interpretation is only constrained by field data. Reyes and Michaud (2012) proposed 288 

that the cordillera is separated from the Progreso Basin and the Santa Elena Peninsula by steep 289 

southwest-dipping normal faults. Instead, Daly (1989) suggested that it overthrusted the 290 

Progreso Basin southwestward during the Neogene. In contrast, we propose here that the 291 
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Chongόn-Colonche Cordillera corresponds to a palaeo-horst system later transported onto a 292 

southwest-verging blind thrust. 293 

The structural interpretation of onshore seismic profiles B90-46 and B90-50 (Annexe 294 

1) together with surface data show that the Progreso Basin corresponds to an asymmetric 295 

syncline of Eocene-to-Miocene strata (Fig. 5). The basin depth (base of the Eocene unit), 296 

approximately constrained at ~2 sTWT (~2.5 km), is consistent with the northwestward 297 

elevation of the basin bottom (Aizprua et al., 2022). The Progreso Basin is bounded by the 298 

Carrizal fault system to the northeast and the La Cruz fault system to the southwest (Fig. 3). 299 

The two faults may correspond to reactivated deep-seated faults inherited from a Middle-Late 300 

Eocene period of extension, as already proposed by Hernández et al. (2020), and consistent 301 

with the Middle-Late Eocene deep marine environment of the Ancόn Group (Fig. 4). During 302 

the Oligocene and Early Miocene (roughly Zapotal Fm), the two faults were reactivated by 303 

inversion tectonics, resulting in the formation of the basin as it is today. In addition to thrusting, 304 

Aizprua et al. (2022) also suggested additional strike-slip deformation, which is not dismissed 305 

in our analysis. However, our interpretation of the Oligo-Miocene period in the Progreso Basin 306 

differs substantially from continuous transtensional opening proposed by Alemán et al. (2021). 307 

Thus, we interpret the Carrizal fault system at depth as a west-verging thrust affecting the Upper 308 

Cretaceous-Palaeocene basement, intermittently reactivated (positively or negatively) during 309 

the Eocene and the Oligo-Miocene (Fig. 5). In comparison, the La Cruz fault system 310 

corresponds to thrusts propagating westward with shortcut trajectories through northeast-311 

dipping normal faults.  312 

West of the Progreso Basin, Middle Eocene rocks lie unconformably on Upper 313 

Cretaceous-Palaeocene basement outcropping immediately to the north (Fig. 5). This zone, 314 

called Santa Elena anticline, corresponds to an ~17km-wide sub-continuous coastal bulge 315 

extending across the Santa Elena Peninsula region and made of tilted Middle-to-Upper Eocene 316 
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strata controlled at depth by imbricate structures in the Upper Cretaceous-Palaeocene basement 317 

related to the La Cruz fault system. 318 

Correlation of seismic profiles E86-183B and MR08-756 with Well B1-NSXI-IX 319 

(Annexes 1 and 2) shows an Upper Cretaceous-Palaeocene basement that extends across the 320 

offshore part of the Santa Elena Peninsula region to the trench zone (Fig. 5). This interpretation 321 

is consistent with outcrops in the La Plata Island and seismic analysis in the Valdivia Basin 322 

region (e.g. Michaud et al., 2012; Egüez et al., 2019; Hernández et al., 2020). The basement of 323 

the Valdivia Basin is covered by ~2.2 km-thick Eocene-to-Quaternary sedimentary units. West 324 

of Well B1-NSXI-IX, these units are deformed by major landward-dipping thrust faults and an 325 

outer pop-up structure testifying of the overall uplift of the margin. The shortening is most 326 

likely contemporaneous with the deposition of Oligocene-Miocene sedimentary units in the 327 

onshore domain. We argue that faults in the Valdivia Basin mark the continuation of the 328 

Carrizal and La Cruz fault systems (Progreso Basin) and show a similar reactivation evolution. 329 

Quaternary marine terraces witness that the coastal zone, including the Santa Elena 330 

anticline, has been recently uplifted (Pedoja et al., 2006a; Cisneros Medina, 2018). At the 331 

westernmost point of the Santa Elena Peninsula, the Punta Salinas (so-called the La 332 

Chocolatera) exhibits 4 levels of staircase marine terraces between ~2 m and >80 m above sea 333 

level (Fig. 6; Pedoja et al., 2006a). The projection of the Punta Salinas onto seismic lines (~11 334 

km north) shows a continuation of the uplift through outer pop-up structures (Figs 3 and 5). 335 

Finally, the western part of the seismic profile MR08-756 (see Annexe 2) shows that 336 

the slope domain is characterised by major oceanward-dipping listric extensional faults (Fig. 337 

5). These faults reach at depth the Upper Cretaceous-Palaeocene basement, coinciding locally 338 

with possible bottom simulating reflectors (BSR) and controlling notable thickness variations 339 

in Eocene and Neogene sequences. At the trench, the development of a small frontal 340 

accretionary prism involves Neogene-Quaternary units (Sage et al., 2006), that we interpret 341 
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beneath the overriding Upper Cretaceous-Palaeocene basement. Its morphology is also likely 342 

controlled by the rough topography of the subducting oceanic Nazca Plate, including major 343 

asperities (high-dipping normal faults and seamounts) and thin oceanic sediments thickening 344 

toward the trench (Fig. 5). 345 

6. Structural evolution of the Santa Elena Peninsula region 346 

The above structural interpretation shows that the Santa Elena Peninsula region recorded 347 

intermittent compressional and extensional deformation since the Late Cretaceous. This formed 348 

a complex forearc controlled by crustal-scale thrusts and normal faults (Figs. 3 and 5). We 349 

specifically discuss the various mechanisms responsible for the formation and kinematics of 350 

faults compare to the dynamics of the Farallon/Nazca Plate subduction and speculate on fault 351 

reactivation processes in the overriding plate over time. 352 

6.1. Late Cretaceous to Early-to-Middle Eocene 353 

The amalgamation of oceanic terranes beneath the North Andean continental margin of 354 

Ecuador took place from the Late Maastrichtian to the Late Palaeocene (Reynaud et al., 1999; 355 

Spikings et al., 2001; Jaillard et al., 2004, 2008 and 2009; Aizprua et al., 2019; Vallejo et al., 356 

2019; Jaillard, 2022). The oceanic terrane accretion occurred in a ~N60°E-directed convergence 357 

at a rate of ~60 mm.yr-1 (Fig. 7; Pardo-Casas and Molnar, 1987; Somoza and Ghidella, 2012). 358 

The resulting fold-thrust belt and the related uplift of the upper plate are coeval of 359 

unconformities and syn-tectonic sediments sourced from the basement (e.g. Azucar Fm). The 360 

oceanic terrane docking evolution is sealed by the Middle Eocene unconformity U1 (Fig. 4), 361 

which is consistent with a regional hiatus during the Early-to-Middle Eocene (Jaillard et al., 362 

1997; Jaillard, 2022). 363 

The northern Andean forearc has accommodated major clockwise rotation rating from 364 

60-70° during the Cretaceous to 20-30° after the Late Miocene (Roperch et al., 1987; Luzieux 365 
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et al., 2006; Siravo et al., 2021). This implies a modification of initial structural trends through 366 

time. We speculate that numerous east-dipping normal and reverse faults in the modern forearc 367 

correspond to former thrusts or strike-slip faults formed during the oceanic terrane docking 368 

event. Thus, the structure of the Chongón-Colonche Cordillera is probably inherited from this 369 

period, with Late Cretaceous thrust faults formed along a presumably NW-SE to WNW-ESE 370 

direction due to the roughly 60°-directed convergence between the Farrallon and the South 371 

America plates (Fig. 7; Pardo-Casa and Molnar, 1987). During the Early Eocene onwards, 372 

accreted terranes recorded at least 20°-clockwise progressive rotation due to the ongoing 373 

compression, that expressed variably across the region depending on the direction of former 374 

thrusts (Luzieux et al., 2006). From our point-of-view, this explains part of the curved 375 

morphology of the present-day Chongόn-Colonche Cordillera, as well as former thrusts in the 376 

Monteverde, Valdivia and Progresso basins before their reactivation from the Middle-to-Late 377 

Eocene (Figs. 3 and 5). Therefore, we consider a large accretionary system growing 378 

progressively westward from the Late Cretaceous to the end of the Early Eocene, which is 379 

consistent with previous regional studies (Jaillard et al., 1997; Jaillard, 2022). 380 

6.2. Middle-to-Late Eocene 381 

During the Middle and Late Eocene, the Progreso, Santa Elena Peninsula and Valdivia 382 

areas encompassed a generalised transgression and subsidence. These were synchronous to 383 

small-scale normal faulting in the Progreso Basin (Jaillard et al., 1997) and, at a wider extent, 384 

to volcanogenic massive sulfide deposits, attributed to the extension of the Macuchi block 385 

(central Ecuador) dated between 41.49±0.37 Ma and 42.13±0.54 Ma (Vallejo et al., 2016). 386 

Altogether, this undersigns large-scale extension across the forearc. In the Santa Elena 387 

Peninsula region, these movements are consistent with the reactivation of Upper Cretaceous-388 

to-Eocene basement thrusts as normal faults during the Middle Eocene (Fig. 5). Middle Eocene 389 

extension is sealed by the Upper Eocene-Oligocene unconformity U2. 390 
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Similar normal faulting and subsidence are recorded in the Middle Eocene of the Talara 391 

depocentre in Peru, suggesting extension through most of the North Andean forearc system 392 

(e.g. Séranne, 1987; Fildani et al., 2008; Espurt et al., 2018). However, extensional forces are 393 

poorly constrained regionally. At the time, the subduction of the Farallon Plate beneath the 394 

South American Plate remains ~N70°E-directed but is coeval to a higher convergence rate of 395 

95 mm.yr-1 compared to the Late Cretaceous-Palaeocene period (Fig. 7; Somoza and Ghidella, 396 

2012). Therefore, crustal normal faulting in the upper plate could result from transtension 397 

controlled by the obliquity of the subduction. It may also be driven by basal erosion at the slab 398 

interface related to the subducting plate morphology and/or the increase of convergence rate, 399 

as observed in other subduction zones (von Huene and Lallemand, 1990; Le Pichon et al., 1993; 400 

Lallemand et al., 1994; von Huene et al., 2004; Sage et al., 2006). Finally, a combined effect 401 

of both the subduction obliquity and variations in convergence rates is also possible. 402 

6.3. Latest Eocene-Oligocene to Neogene 403 

The latest Eocene-Oligocene period begins with a regional unconformity produced by 404 

the erosion of the former platform, followed by contractional deformation and limited 405 

sedimentation across the forearc system, except in the Progreso and Valdivia basins due to fault 406 

reactivation and subsidence (Fig. 5). This coincides with a major motion change of the Farallon 407 

Plate before its rifting into the Cocos and Nazca plates at ~24 Ma (Fig. 7; Hey, 1977; Lonsdale, 408 

1978; Lonsdale and Klitgord, 1978; Tebbens and Cande, 1997; Lonsdale, 2005; Barckhausen 409 

et al., 2008; Seton et al., 2012). To a certain extent, this implies variations in subduction 410 

processes due to the presence of a younger, hotter and low-density oceanic plate. Resulting 411 

plate reorganisation is synchronous with an acceleration of the convergence rate from 95 mm.yr-412 

1 to ~145mm.yr-1 at an angle of ~N80°E (Fig. 7; Pardo-Casas and Molnar, 1987; Somoza and 413 

Ghidella, 2012). The whole margin likely recorded such an acceleration, leading to fault 414 
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reactivation and uplift of the margin. A similar uplift is recognised from North Peru to North 415 

Ecuador (Espurt et al., 2018; Hernández et al., 2020). 416 

Contractional deformation and uplift of the margin continued at the Miocene-Pliocene 417 

transition (Fig. 5). This period is concomitant with the progressive deceleration of the Nazca-418 

South America convergence from 140 mm.yr-1 to ~80 mm.yr-1, while the convergence azimuth 419 

remained ~N80°E-directed (Fig. 7; Pardo-Casas and Molnar, 1987, Daly, 1989; Norabuena et 420 

al., 1999). Such a deceleration could be explained by an increasing load of the continental plate 421 

due to the Andes growth, the appearance of flat slab segments beneath South America or 422 

thermomechanical variations of the Nazca Plate when penetrating into the transition zone and 423 

lower mantle (Yáñez and Cembrano, 2004; Martinod et al., 2010; Quinteros and Sobolev, 424 

2013). 425 

6.4. Quaternary 426 

Quaternary tectonics in Ecuador is associated to the subduction of the Carnegie Ridge 427 

and the northeastward tectonic escape of the North Andean Sliver along the Puná-Pallatanga 428 

Fault (Fig. 1; Lonsdale, 1978; Lonsdale and Klitgord, 1978; Pilger, 1984; Daly, 1989; Gutscher 429 

et al., 1999; Steinmann et al., 1999; Cantalamessa and Di Celma, 2004; Witt et al., 2006; 430 

Bourgeois et al., 2007; Alvarado et al., 2016; Baize et al., 2020). We propose that the 431 

unconformity U3 marking the Neogene-Quaternary transition (Pleistocene; Fig. 2) is related to 432 

this tectonic event. Quaternary compression and extension led to complex faulting and notable 433 

thickness variations across the Santa Elena Peninsula region, such as thin Pleistocene strata in 434 

the Valdivia Basin affected by reactivated thrusts that thicken in the slope domain due to normal 435 

faults (Fig. 5). This leads to the formation of specific morphological features like the modern 436 

frontal wedge at the trench, pop-ups on the platform and uplifted marine terraces along the 437 

coastal zone. 438 
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Quaternary thrusting along the platform domain appears very minor compared to any 439 

previously-described deformation phases (Fig. 5). Although this may be regarded as an 440 

observation bias due to the relatively-modern formation of pop-ups and marine terraces, this 441 

could alternatively reflect that the overall margin is homogeneously uplifting and only minor 442 

fault displacements express local tectonic readjustments. In this case, the modern platform 443 

domain may express the settlement of a single, relatively rigid block that would correspond to 444 

an oceanward-widening backstop system comparable to the pre-Miocene setting centred on the 445 

Chongόn-Colonche Cordillera. This may mark the onset of the modern North Andean Sliver 446 

tectonics, and namely strike-slip motion along the Puná-Pallatanga Fault (Fig. 1). 447 

In the frontal part of the margin, we observe numerous recent normal faults (Fig. 5) that 448 

are classically interpreted by subduction-erosion processes (Collot et al., 2002; Sage et al., 449 

2006). However, these structures show a peculiar 5-to-50km-long extensional length, which 450 

appears much longer than fault systems developing in similar contexts (e.g. 10-15km mega-451 

lenses off Costa Rica and Nicaragua described by Ranero and von Huene (2000), 1-30km 452 

offshore crustal normal faults of the Southwest Hellenic Forearc described by Veliz-Borel et 453 

al. (2022) or <30km-long, possibly discontinuous crustal normal faults along the Alaska to 454 

Aleutian Subduction Zone by Kahrizi et al. (2023)). We also observe that these normal faults 455 

coincide with shallow (~500 m deep) BSR through the trench-slope domain (Fig. 5). 456 

Overpressured fluids likely lubricate the subduction interface beneath the continental slope and, 457 

added to the general Quaternary uplift of the margin, facilitate the formation of upper 458 

gravitational instabilities driven by shallow normal faults in the slope domain. Therefore, this 459 

implies that subduction-erosion processes are only locally encountered at the trench-slope 460 

domain at Present. 461 

Pop-up structures observed along the western boundary of the Valdivia Basin at a depth 462 

of ~120 m below sea level are in agreement with a continuous regional uplift during the 463 
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Quaternary, both along the platform and the coastal zone (Figs. 5 and 6). Pedoja et al. (2006a) 464 

proposed a 0.7-to-1 Ma age for the highest (360±10 m) marine terraces along the Coastal 465 

Cordillera and estimated an uplift rate around 0.3 to 0.5 mm.yr-1 for the past 300 ka in the Manta 466 

Peninsula and La Plata Island. In the Santa Elena Peninsula, Cisneros Medina (2018) calculated 467 

a similar uplift between 0.3-0.4 mm.yr-1 for terraces aging between 111-136 ka and 95-98 ka. 468 

These values are in accordance with Freisleben et al. (2021) who estimated a maximal uplift 469 

rate of 0.79 mm.yr-1 in the Manta Peninsula and a minimal uplift rate of 0.07 mm/yr for <125 470 

ka for marine terraces in the Santa Elena Peninsula. Although the coastal uplift is usually 471 

interpreted as a consequence of the Carnegie Ridge subduction (Cantalamessa and Di Celma, 472 

2004; Pedoja et al., 2006a and 2006b; Freisleben et al., 2021), we also propose that the variation 473 

in vertical motions along the coast is due, at least partially, to deep crustal faults reactivation 474 

(e.g. Valdivia Fault Zone; Figs. 3 and 5). Therefore, marine terraces may not only express the 475 

effect of the forearc uplift in the Quaternary (e.g. Saillard et al., 2017; Freisleben et al., 2021), 476 

the effect of topographic asperities entering the subduction zone (Hsu, 1992; Macharé and 477 

Ortlieb, 1992; Saillard et al., 2011; Hernández et al., 2020; Freisleben et al., 2021), and/or 478 

geometrical variations of the slab leading to subduction erosion and basal underplating (Saillard 479 

et al., 2009). Instead, they may combine all these effects as a result of tectonic readjustments 480 

along reactivated faults. 481 

7. Structural inheritance processes in subduction zones 482 

Our study shows that the deformation of the southern Ecuadorian convergence margin 483 

can be ascribed to compressional, extensional and strike-slip tectonics overlapping in space and 484 

time since the Late Cretaceous (Fig. 5). The resultants are (1) the lateral growth of the forearc 485 

system due to oceanward tectonic collage, (2) the constant reorganisation of structural patterns 486 

due to fault reactivation, (3) the nature of the convergence margin as a function of interlinks 487 

between the upper plate and the subduction evolution, and (4) the influence of the deep forearc 488 
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system on present-day deformation. This implies that crustal faults constantly interact over 489 

time, resulting in successive short- and/or long-spanning tectonic phases leading to the general 490 

growth of the accretionary wedge forming ahead a widening backstop. During this process, 491 

terranes stacked laterally the one another since the Late Cretaceous, and pre-existing crustal 492 

structures drove incipient strike-slip tectonics of the North Andean Sliver. Such structural 493 

inheritance, well-known in rift systems (see Schiffer et al. (2019) and references therein), 494 

remains poorly described in convergence settings due to constant erosion during the orogen 495 

organisation (see François et al. (2021) and references therein). Here, we discuss how such 496 

processes interact spatiotemporally and lead to the peculiar structural framework of the Santa 497 

Elena Peninsula region as part of the Ecuadorian margin. 498 

7.1. The role of structural inheritance on long-lived subduction margin development 499 

Due to the small amount of sediments at the trench, the overall Ecuadorian margin is 500 

classically considered as an erosional margin (Moberly et al., 1982; Collot et al., 2002 and 501 

2008a; Sage et al., 2006). In this model, only limited compressional deformation is observed in 502 

the frontal part of the margin where basins develop aside listric faults rooting on subhorizontal 503 

detachment levels. The resulting wedge morphology is controlled by a subduction channel, 504 

underplating and basal erosion. Many similar features are also observed in the Santa Elena 505 

Peninsula region, but thrusting appears to be the dominant deformation since the Late 506 

Cretaceous (Fig. 5). The long-lived compression likely produced constant folding of the old 507 

accretionary wedge. The top of this old accretionary wedge may correspond to an intra-crustal 508 

detachment controlling surficial normal faulting accommodation, as proposed by Collot et al. 509 

(2008). The resulting forearc growth requires constant tectonic readjustment with reactivation 510 

on the platform and/or destabilisation along the trench. In a certain way, this scenario follows 511 

the classical evolution of an accretionary wedge where the influence of old structures decreases 512 

in parallel of the backstop migration (Daly, 1989, Byrne et al., 1993). Therefore, we propose 513 
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that the accretionary wedge across the Santa Elena Peninsula region is produced in a dominant 514 

compression continuum, but its development self-maintains its dynamics with new fault 515 

formation together with fault rejuvenation. 516 

Modern forearc systems may be classified depending on material transfers between 517 

converging plates and the long-term strain field (Noda, 2016; Noda and Miyakawa, 2017). 518 

Thus, a convergence margin is either accretionary or non-accretionary and the related forearc 519 

experiences compression or extension accordingly. Compressional accretionary-type margins 520 

are characterised by continentward-tilting strata and landward-migration of depocentres. 521 

Extensional accretionary margins develop normal faults due to the outer-wedge collapse. Non-522 

accretionary margins have thin sediments at the trench and large and steady widths. 523 

Compressional-accretionary and extensional non-accretionary conditions are sometimes 524 

observed together in convergence settings like Chile (Polonia et al., 2007; Contreras-Reyes et 525 

al., 2010; Becerra et al., 2013), the Cascadia (Trehu et al., 1994; Gulick et al., 2002; Booth-526 

Rea et al., 2008), Sumatra (Singh et al., 2008, 2013, Shulgin et al., 2013) or the Aleutian (Bruns 527 

et al., 1987; Ryan and Scholl, 1989; von Huene et al., 2012; Ryan et al., 2012). Such 528 

characteristics are usually well-constrained for the modern forearc morphology but remain 529 

difficult to identify on a long timescale. Likewise, the forearc across the Santa Elena Peninsula 530 

region shows mixed characteristics and therefore cannot fulfil one category another. Instead, 531 

we propose that this part of the Ecuadorian margin switches from compressional to 532 

extensional/strike-slip regimes through time due to its long-lived evolution. Therefore, these 533 

transient variations are time dependent and explain the distribution of sedimentary sequences 534 

and the magnitude of bounding unconformities. 535 

These variations also reinforce the hypotheses of large-scale segments along the modern 536 

Ecuadorian margin (Hernández et al., 2020) and small-scale morphotectonic 537 

compartmentalisation (Freisleben et al., 2021). These segments show a varying nature along-538 
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side, such as compressional accretionary in Columbia-Ecuador (Lόpez Ramos, 2009; Mantilla-539 

Pimiento et al., 2009), extensional non-accretionary in mid-Ecuador (Collot et al., 2008a; 540 

Hernández et al., 2020) and compression accretionary in northern Peru (von Huene et al., 1996; 541 

Krabbenhöft et al., 2004; Espurt et al., 2018). These variations may express the buoyancy, the 542 

topography and the convergence direction of the subducting plate (Fig. 7), which, together with 543 

the amount of sediments deposited at the trench, directly control the forearc nature through 544 

long-lived compression. Large-scale subsidence and uplift are caused by the amount of basal 545 

erosion and the collision of asperities at the trench (von Huene and Scholl, 1991). Basal erosion, 546 

is not clearly observed from our seismic database but may occur along the Santa Elena 547 

Peninsula segment (Sage et al., 2006; Collot et al., 2011). Comparatively, enhanced erosion 548 

due to subducting asperities (Collot et al., 2009; Proust et al., 2016) largely influenced the 549 

morphology of the frontal part of the margin through tectonic reorganisation, since at least the 550 

Quaternary (Carnegie ridge subduction). This implies that the accretionary/non-accretionary 551 

character of the margin is also space dependent. 552 

7.2. Implication of polyphase deformation relative to the margin seismic behaviour 553 

Seismologically, the Ecuadorian margin is subdivided into several active segments 554 

based on historical large seismic ruptures and the interseismic coupling pattern on the plate 555 

interface (Nocquet et al., 2014; Chlieh et al., 2014, 2021; Gombert et al., 2018; Vaca et al., 556 

2019). Collot et al. (2008b, 2017) proposed that subducting seamounts and ridges played an 557 

important role in the distribution of such variable seismic patterns along-strike the margin. 558 

The Santa Elena Peninsula is above a low coupled interseismic coupled segment 559 

characterised by a very low level of seismic activity (Fig. 1b; Font et al., 2013). The tectonic 560 

style of the Santa Elena Peninsula is not well established from the regional focal mechanism 561 

data (Dziewonski et al., 1981; Ekström et al., 2012; Vaca et al., 2019). Very few focal 562 

mechanisms in the upper plate allow to characterize its tectonic regime. However, identified 563 
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faulting pattern clearly shows that shortening is a dominant mechanism, at least in the upper 564 

crust (Fig. 5). Our study also suggests that the detachment fault zone is active over the 565 

Quaternary period although it is largely aseismic. This peculiar strain behaviour is probably due 566 

to the presence of lubricating fluids in the sedimentary column testified by bottom simulating 567 

reflectors (Fig. 5), that facilitate the reactivation of old faults trenchward. Therefore, such a 568 

type of aseismic deformation is influenced by the long-lasting structural evolution of the Santa 569 

Elena Peninsula region and is also intrinsically controlled by the tectonostratigraphy of the 570 

forearc. 571 

8. Conclusion 572 

The dynamics of the Santa Elena Peninsula forearc system is intimately linked to the 573 

long-lasting subduction of the Farallon/Nazca plates below South America since the Late 574 

Cretaceous. We show that the forearc sedimentation and regional unconformities are associated 575 

with crustal faults that progressively constructed a compressional margin through reactivation 576 

processes. Compression is intermittently perturbed by extension due to the progressive folding 577 

of an intra-Cenozoic crustal detachment running close to the top of the proposed basement since 578 

the Middle Eocene. This detachment also controls present-day gravitational movements in the 579 

frontal slope domain, that are probably facilitated by the presence of fluids. Finally, marine 580 

terraces show that the coastal deformation is dominated by active uplift related to the global 581 

convergence evolution. 582 

The structural architecture of the Santa Elena Peninsula region suggests that tectonic 583 

reactivation processes play an important role during the long-lasting structural development of 584 

the margin. In particular, the successive compressional phases reflect the increasing stability of 585 

a backstop system that controlled in-sequence growth of an accretionary wedge. In addition, 586 

extension reflects long-term structural readjustments due to accretion and/or subduction, and 587 

middle-term uplift and/or gravitational collapse processes due to volume forces. Thus, we 588 
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suggest that the pre-existing structural architecture of the upper plate is highly sensitive to 589 

varying boundary conditions at various time scales, leading to tectonic pulses taking place in a 590 

deformation continuum. This phenomenon of intermittent compression and extension may 591 

reflect, at least to a certain extent, a long-lasting segmentation of a subduction margin. 592 
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 1101 

 1102 

 1103 

 1104 

Fig. 1: Geodynamics of the western margin of Ecuador. (a) Geodynamic setting of Ecuador in 1105 

the context of the eastern Pacific subduction. Velocity vectors represent the plate motion of the 1106 

Nazca Plate (NAZ) compare to the South America Plate (SAM) (Trenkamp et al., 2002), and 1107 

the relative North Andean Sliver (NAS) and Inca Sliver (INS) motions compare to the Nazca 1108 

Plate and South America Plate (Nocquet et al., 2014). Velocities are in mm/yr. Yellow stars 1109 

show historical megathrust earthquakes along the subduction zone (Nocquet et al., 2016). (b) 1110 

Structural map of the southwestern margin of Ecuador (adapted from Reyes and Michaud, 1111 

2012). The interseismic coupling contouring is adapted from Nocquet et al. (2014). PPF: Puná-1112 

Pallatanga Fault. LCF: La Cruz Fault. CCF : Chogon-Colonche Fault. JIF: Jipijapa Fault. JAF: 1113 

Jama Fault. CAF: Canande Fault. 1114 
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Fig. 2: Simplified stratigraphy and Formation/Group of the Santa Elena Province region. The 1115 

stratigraphic column is principally based on lithological descriptions of Benítez (1995), Jaillard 1116 

et al. (1995, 2009), Reyes and Michaud (2017), Egüez et al. (2017), and Jaillard (2022). 1117 

Regional tectonic episodes principally described onshore are indicated. Major unconformities 1118 

are also indicated. 1119 

Fig. 3: Map of available subsurface data in the study area (see location on Fig. 1b). The base 1120 

map corresponds to long-wavelength free air gravity data and high-resolution aero-gravity data 1121 

(Hernández et al., 2020). The framework of Cenozoic to present-day faults of the Valdivia 1122 

Basin-Santa Elena Peninsula region and northern edge of the Progreso Basin was constrained 1123 

by seismic reflection profiles (thin grey lines). Only faults recognised on more than two 1124 

consecutive seismic lines are indicated. Onshore faults are also derived from Reyes and 1125 

Michaud (2017). Locations of wells B1-NSXI-1X (see interpretation on Fig. 4) and B1-MT1-1126 

1X, as well as the composite onshore-offshore seismic profile across the Santa Elena Peninsula 1127 

forearc (see interpretation on Fig. 5) are shown. 1128 

Fig. 4: Interpreted stratigraphy in Well B1-NSXI-1X (gamma ray (GR) and sonic logs) and 1129 

correlation with field data. Ages are interpreted according to Benίtez (1995), Deniaud (2000), 1130 

Jaillard et al. (1995, 2009), Luzieux et al. (2007), Reyes (2013), Reyes and Michaud (2012), 1131 

Ergüez et al. (2017), and Jaillard (2022). Major unconformities are also indicated. This well is 1132 

used to calibrate the offshore seismic profile MR08-756 (Fig. 5). 1133 

Fig. 5: Seismic interpretation of the Santa Elena Peninsula region. (a) Interpretation of 1134 

composite seismic profile across the Santa Elena Peninsula region, calibrated using surface data 1135 

and Well B1-NSXI-1X. (b) Schematic cross-section based on the seismic interpretation as 1136 

described in the text. Labels of seismic lines are indicated. The location of the profile is shown 1137 
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on Figs. 1 and 3. Seismic profiles without and with interpretation are shown on Annexes 1 and 1138 

2. BSR: Bottom simulating reflector. 1139 

Fig. 6: Marine terraces at Punta Salinas, La Chocolatera, in the westernmost part of the Santa 1140 

Elena Peninsula region. See location on Fig. 3. A sequence of four marine terraces can be seen: 1141 

a sharp shore platform (T1), probably Holocene in age, that stands between the present-day sea 1142 

level and the 18±2 m terrace (T2), the T3 marine terrace at 48±2 m and the T4 terrace whose 1143 

shoreline angle is at more than 80 m (Pedoja et al., 2006a). The T2 and T3 terraces are assigned 1144 

to the MIS 5e (~125 ka) and the MIS 9 or 11 by Pedoja et al. (2006a). 1145 

Fig. 7: Convergence rate (Somoza and Guidella, 2012) and direction along the Farallon/Nazca 1146 

(Pardo-Casas and Molnar, 1987) subduction throughout the Cenozoic. Grey areas indicate the 1147 

uncertainty limits. Major unconformities as defined in the study are indicated on the figure but 1148 

note that their ages are only indicative due to age bias along each surface. See Fig. 2 for color 1149 

references of the simplified stratigraphy. 1150 

Annexes: 1151 

Annexe 1: Onshore seismic lines B90-50 and B90-46 without (a) and with (b) interpretation. 1152 

Annexe 2: Offshore seismic lines MR08-756 and E86-183B without (a) and with (b) 1153 

interpretation. 1154 Jo
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