
1  

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive 
publisher-authenticated version is available on the publisher Web site.  

 
 
5th International Conference on Bio-engineering for Smart 
Technologies (BioSMART), Paris, France 
Pages 1-4, June 2023, 
Electronic ISBN:979-8-3503-3849-2 
Electronic ISSN: 2831-4352  
https://doi.org/10.1109/BioSMART58455.2023.10162057 
https://archimer.ifremer.fr/doc/00848/96007/ 

Archimer 
https://archimer.ifremer.fr 

Meiofauna Images Generation Using StyleGAN2: A Case 
Study of Copepoda 

Martinel Anthonin 1, *, Benzinou Abdesslam 1, Nasreddine Kamal 1, Foulon Valentin 1,  
Borremans Catherine 2, Zeppilli Daniela 2 

 
1 ENIB, UMR CNRS 6285 LabSTICC, Brest, France  
2 Ifremer, Plouzané, France 

* Corresponding author : Anthonin Martinel, email address : martinel@enib.fr  
 

Abstract :   
 
In this work, we propose two StyleGAN2 hierarchical transfer learning approaches in order to generate 
images of animals belonging to the Copepoda group. Copepods are one of the most represented groups 
of the aquatic environment, yet only few publicly available images are available. These animals, like other 
groups of meiofauna, are formidable bio-indicators of environmental changes or pollution of an habitat. 
The used Copepoda dataset is composed of animals belonging to four orders namely Calanoida, 
Cyclopoida, Harpacticoida and Siphonostomatoida. Our approaches consists in first training with the 
available data of all the orders or with the most represented order images before training again with the 
images of the specimens we wish to synthesise. We evaluate the results using the FID and KID metrics. 
The synthetic images are promising, showing typical morphological features of Copepods, and could be 
used by future taxonomists. Generated images could represent a new research object for the creation of 
meiofauna classifiers, models that require a large number of images for training. 
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I. INTRODUCTION

Molly F. Mare first defined the word “Meio Benthos” in 
1942 to describe an assemblage of benthic metazoans 
distinguishable from macrobenthos by their small size (the 
word meio coming from the ancient Greek µειoυ meaning
“smaller”). The size scale, ranging from 20µm to about 
1mm, is defined experimentally, following the standard size 
of sieves used by biologists to sort marine sediments and 
specimens. The words meiobenthos and meiofauna are used 
in ambiguous ways in the literature, in this article we also
use them synonymously. Zeppilli et al. [1] have shown that
meiofauna species play a key role in the benthic food web, 
both as producers and consumers. Meiofauna species react
more quickly than macrofauna to the different forms of 
stress to which they are exposed, making them excellent bio-
indicators of ecological changes [2], pollution of an envi-
ronment [3] or even global warming [1]: trawling, industrial 
and agricultural dumping, plastic pollution, heavy metal and
hydrocarbon pollution, nuclear waste discharge, munitions 
waste, marine mineral exploitation, ocean acidification and
deoxygenation, etc. Moreover, some species survive in ex-
treme environments and therefore have considerable economic
potential, for example in the fields of agriculture, chemical
synthesis, detergents and pharmaceuticals [4]. With 11,290
accepted marine species [5], the Copepoda group is the second

Fig. 1: Examples of Copepoda images. From left to right, the
animal belongs to the order: Calanoida, Cyclopoida, Harpacti-
coida and Siphonostomatoida, respectively.

most abundant in the meiofauna. It is also one of the most
important group in planktonic life in this range size. Copepods
includes benthic and pelagic animals, their size varies between
250µm and 3cm. Like the other groups of the meiofauna, the
number of unknown species is very large and the estimation
varies widely: the lowest estimate, between 30,125 and 50,125
species, is given in 2012 by Appeltans et al. [6], Humes et
al. [7] in 1994 estimated this number at 75,000, and finally,
Seifried et al. [8] gave a much higher estimate in 2003 of
450,000 species of copepods still unknown. Figure 1 shows
some examples of copepods images.

However, the taxonomic identification of the meiofauna
is difficult. This work relies on the use of taxonomic keys
and involves the expertise of taxonomists specializing in the
species studied, requiring several weeks of work for a sample
of a few hundred individuals. This tedious work is made more
difficult by the lack of manpower, making the development
of artificial intelligence tools a major challenge for the study
of the meiofauna. This development is hindered by the lack
of data. Motivated by recent improvements in high-definition
Generative Adversarial Networks (GANs) trained with small
datasets, we investigate in this work the use of artificial
neural networks for the generation of synthetic copepods
data. First introduced in 2014, GANs [9] have demonstrated
to be remarkable tools in various areas of data generation,
such as image generation, image-to-image or text-to-image
translation, data augmentation, denoising, etc. GANs consist
of two competing artificial neural networks. The first, called
a generator, creates false data that must deceive the second,
called a discriminator. The latter is trained to distinguish real
data from the generated data. Following the first proposed



architecture, many new models have emerged, increasing the
quality and resolution of the generated images. Recently, two
GANs have greatly improved the quality of synthetic images;
BigGANs [10] and StyleGANs [11] are capable of generating
high resolution images, typically of 512x512 pixels or even
1024x1024 pixels. The main disadvantage of BigGANs is
the large size of its network requiring a very large number
of images for training. Recent enhancements of the second
version of the StyleGAN, namely StyleGAN2 [12], in the case
of limited dataset led us to choose this network as a base
for our work. For its training, we propose two hierarchical
approaches.

The model, its enhancements and the proposed methods are
explained in further details in Section II. The training data and
the evaluation metrics are described in Sections III and IV,
respectively. Finally, we discuss the results of our proposed
methods in Section V.

II. PROPOSED METHOD

Introduced in 2014, DCGAN [13] is one of the most popular
convolutional architecture, this network is less costly in term of
calculation and less complex to train than the other presented
networks. The particularity of StyleGAN is the introduction
of style vectors: instead of feeding a gaussian noise vector
directly to the generator, a dense network called mapping
network transforms it first into an intermediate latent space
vector. The resulting latent vector is then transformed via
affine transformations into a style vector A. The latter is
then fed into each block of the generator. Over the last two
years, various improvements have made StyleGAN capable
of generating high-definition images while having a limited
number of images in the dataset. Firstly, a second version of
StyleGAN, StyleGAN2, improves on its predecessor, enhanc-
ing its performances and avoiding the appearance of artefacts.
StyleGAN2 generator blocks are described in the Figure 2,
the style vector A is the output of the mapping network, in
our case a two-Layer Perceptron. Stochastic variations in the
image are provided by the parallel injection of a noise vector
B. The modulation scales the input features weights by the
style:

w
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where w and w′ are the original and modulated weights, k
and l are the spatial indices, j is the output feature map indice
and si is the style corresponding to the i input feature map.
Following this operation, the output activations have a standard
deviation of:
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The authors of StyleGAN2 perform a demodulation operation:
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where ϵ is a small constant that prevents numerical issues.

Fig. 2: Description of the StyleGAN2 first generator blocks
[12]. The following blocks build up until the size of the output
image is reached.

Finally, we propose to use ADA (Adaptive Discriminator
Augmentation) [14] and LeCam regularization [15] (given as
(4)).

RLC = E
x∼τ

[∥D(x)− αF ∥2] + E
z∼pz

[∥D(G(z)− αR∥2] (4)

where τ is the training image set, pz is the prior distribution,
G and D are the generator and the discriminator, respectively,
and finally, αF and αR are two exponential moving averages.
The two methods demonstrated to stabilize the training in the
case of limited datasets, our experiments on the Calanoida
dataset will corroborate with those results.

We define two training protocols to obtain synthetic im-
ages generation models according to the desired taxonomic
rank. Our first proposed method aims to benefit from the
knowledge acquired on another specimen than the one studied.
It consists in training first the network using a dataset of
another specimen of the same taxonomic rank and then on the
dataset of the animal under study. This way, the images of the
animal to be synthesised are not used initially, and therefore
the common characteristics of the specimen of the same
taxonomic rank are learned, then the images of the animal
are used to specify the characteristics of the animal. This
method is referred to as “Sideways approach”. We propose a
second approach, allowing the network to memorize common
features of specimens of a higher taxonomic rank, and finally
fine tune the model to the desired lower taxonomic rank. This
hierarchical manner is referred to as “Downward approach”.

III. TRAINING DATA

The data used this study are from the BOLD (The Barcode
of Life Data System) dataset [16]. The images were sorted
to keep only the examples of a size greater than 256 x 256
pixels and representing the whole animal. The images were
then resized to 256 x 256 pixels. The images shown in Figure 1
come from this dataset. Copepods are identified by their
taxonomic order. The dataset is composed of 1969 Copepoda



including 902 Calanoida, 766 Cyclopoida, 150 Harpacticoida
and 151 Siphonostomatoida.

IV. EVALUATION METRICS

To assess the quality of the generated images, we use the
FID (Fréchet Inception Distance) [17] and the KID (Kernel
Inception Distance) [18]. The FID measures the difference
between the statistical distributions of the features, generated
using a pre-trained Inception model, of the synthetic and real
images. In particular, in the case of FID-50k, the features of
the real dataset are compared using the Fréchet distance to
the features of 50,000 generated images. However, Keras et
al. [14] have shown that the FID is not an ideal metric in the
case of limited datasets. In this case the KID, an unbiased
measure, is more suitable to account for the quality of the
generated images. The KID is calculated with the Maximum
Mean Discrepancy (MMD) of the features, generated in the
same way as the FID, of the generated and real images. Better
quality generated images show lower FID and KID values.

V. RESULTS AND DISCUSSION

In order to validate our hypotheses regarding the advantages
of the StyleGAN2 (and its enhancements), we also trained
and evaluated a DCGAN model with the same Calanoida
dataset. We report the quantitative results of the DCGAN
and StyleGAN2 models in the Table I, respectively. DCGAN
struggles to generate images realistic enough to be identified
as real ones: we only find in the generated images the global
shape of the animal but without any details. StyleGAN2,
however, reaches better results. Having validated the choice
of the StyleGAN2 over the DCGAN, we experiment the
ADA and LeCam regularization that both improve StyleGAN2
performances (Table I).

TABLE I: Quantitative results of the different models trained
with the Calanoida dataset.

Model Fid50k ↓
DCGAN [13] 239.240

StyleGAN2 [12] 137.426
StyleGAN2 + ADA [14] 44.774

StyleGAN2 + ADA + RLC [15] 39.341

In Table II, we report the quality metrics (FID and KID) of
the three analysed training methods: from scratch, sideways
and downward Approaches. Unsurprisingly, the more data we
have, the better the quality of the images generated; thus
the models trained on the Calanoida dataset show the best
results. We observe for each specimen that downward transfer
learning from the copepods allows the model to generate
improved quality data. Transfer learning significantly enhance
the results of orders with fewer samples. This hierarchical
transfer learning approach, by first training to the more general
taxonomic rank (here copepods) and then fine tuning the model
to the more specific taxonomic rank, appears to be the most
effective method. It is interesting to note the differences in
image quality perception of the two metrics used; we note

for example that when the models trained on Cyclopoida and
Harpacticoida have respectively close KIDs, their respective
FIDs are far apart. This difference is, according to us, due
to the differences in size and diversity of the two datasets.
Indeed the Harpacticoida dataset is much smaller (150 images)
than the Cyclopoida one (766 images) and collects much
less diversified images (posture, size of individuals, type of
microscope used). Of course, these performance measures do
not necessarily quantify the full spectrum of characteristics
of each specimen. Their ability to account for differences
between orders is yet to be established, especially when these
orders have very similar characteristics requiring the judgment
of a taxonomic expert. For instance, we cannot know if the
images generated are animals that could be identified to the
order level, or chimeras. We already showed our images to
taxonomists that recognized copepods in the synthetic images
but the assessment of taxonomic experts on the quality of the
images, on lower taxonomic level, seems necessary.

Some examples of images generated by our models (trained
on the full set of copepods images and then fine tuned with the
images at the desired taxonomic order) are shown in Figure 3.

Fig. 3: Copepoda images generated using the downward ap-
proach. First, second, third and fourth rows are Calanoida, Cy-
clopoida, Harpacticoida and Siphonostomatoida, respectively.

In Figure 4, we give other generated examples with more
visible details. They show some complex features such as
rulers (used as size references by taxonomists), light reflections
(Figure 4d) or even eggs (Figure 4a). The diversity of the
generated images (posture of the animal, type of background,
eggs present in the image, etc), depends of course on the
quality of the starting dataset. Orders with fewer samples may
be less representative of the range of existing families. Finally,
some images present errors like “phantom” legs or two rulers.
The numbers on these rulers remain difficult to read, notably
because of the definition of the images.



TABLE II: Comparison of the performances of the training methods used (from scratch, sideways and downward). For each
order we train with its dataset, a model without transfer learning with the weights initialized randomly, a model pre-trained
with the Calanoida data and a model pre-trained with the Copepoda data (aggregated dataset).

From Scratch Sideways Approach Downward Approach
Order Fid50k ↓ Kid50k ↓ (×102) Fid50k ↓ Kid50k ↓ (×102) Fid50k ↓ Kid50k ↓ (×102)

Calanoida 39.341 1.204 X X 36.529 0.931
Cyclopoida 60.401 2.327 50.504 1.545 47.017 1.215

Harpacticoida 119.298 2.323 114.288 2.070 108.533 1.503
Siphonostomatoida 111.865 1.611 107.610 1.549 96.995 0.990

(a) Calanoida (b) Cyclopoida (c) Harpacticoida (d) Siphonostomatoida

Fig. 4: Examples of synthetic Copepoda images generated using the downward approach.

VI. CONCLUSION AND FUTURE WORK

We propose two hierarchical transfer learning methods
towards the generation of synthetic images of Copepods using
a StyleGAN2 network. This approach can be used on other
specimens of the meiofauna in order to generate synthetic
data for specimens where few data are available. We achieve
very promising results, generating animal images that were
identified as copepods by taxonomists. This synthetic data
could be a new tool to train future taxonomists or could be
used to train classifier networks. However, it is still difficult to
assess the quality of these images in a very precise way with
the metrics available in the literature. A proper experiment
with taxonomists is ongoing to validate the relevance of our
methods for lower taxonomic levels. Further improvements are
to be explored, such as adding high-level information at the
beginning of the network.
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