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Abstract: This paper studies the error that occurs when measuring surface currents with a current
meter mounted on a buoy or a mooring line whose horizontal and vertical motions respond to the
presence of waves. The error is defined with respect to an Eulerian reference measurement where
the sensor does not move. First, we present the subject with a theoretical analysis in the case of a
monochromatic wave. That idealized model allows us to study particular sensor or mooring line
motions. Second, a realistic numerical model is implemented to reconstruct the current field with a
high resolution near the surface. Wave orbital velocities are generated with a random phase model.
An Ekman-type current, uniform in the horizontal but with a vertical shear, is also incorporated. The
results indicate that the error in the current measurement is highly dependent on the sensor motion
induced by waves. The error magnitude is proportional to the wave momentum or Stokes drift and
depends on the wave development state and the wind-generated current’s magnitude. The error
obtained in the current measurement is analyzed by considering that the buoy only responds to low-
frequency waves up to a maximum frequency. That maximum frequency is referenced concerning
the peak frequency of the third moment of the spectrum (i.e., the Stokes drift spectrum). It allows
us to classify the current time average into three ranges with respect to the maximum frequency:
(1) Eulerian average, (2) wave-following average, and (3) intermediate case of undulating average
where results cannot be generalized. The measurement error is most important in the region above
the wave troughs. However, the error is also considerable in the region confined below the wave
troughs and down to the Stokes drift e-folding depth. The error is particularly relevant in conditions
of developed and energetic waves (Hs > 3 m), where the surface Stokes drift can reach values above
0.1 m/s. It should be noted that measurement error can exceed the value of the Stokes drift at the
sensor depth for certain mooring line motions. Those results should help better interpret in situ
near-surface current measurements obtained from various devices.

Keywords: near-surface vertical shear; stokes drift; Ekman current; Eulerian current; Quasi-Eulerian
current; wave bias

1. Introduction

Observations of ocean surface characteristics are required to understand the dynamical
processes occurring within the marine boundary layer, including surface velocities and
waves, essential to transferring properties between the ocean and the atmosphere. In situ
measurements have been carried out to meet these needs with different types of buoys [1,2]
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equipped with appropriate sensors to study the characteristics of the ocean surface layer.
However, velocity measurements made by current meters installed on buoys are commonly
analyzed in a fixed framework without considering the wave-induced motion of the
buoys [3,4]. In the case of velocity measurements, the presence of waves induces an intense
vertical shear very close to the surface, which, together with the displacement of the sensor,
introduces errors that must be rigorously analyzed [3].

Pollard (1973) [5] analytically identified that when a current meter moves vertically and
perfectly follows the sea surface elevation, this movement induces an error in the average
time velocity proportional to half of the Stokes drift. He called that error the wave–bias
in the current measurement due to the presence of swell. Collar et al. (1983) [6] validated
the previous results with laboratory data and analyzed that bias in the measurement when
current meters are mounted on buoys of finite dimension. Santala and Terray (1992) [7]
proposed a technique to perform unbiased measurements of the vertical current shear using
a wave-following current meter. They conducted the study using a numerical model and
field observations, where they identified the need to measure the current meter position.
While they investigated the extreme cases of buoy motions—both a fixed and a wave-
following buoy—error analysis has not been carried out for intermediate cases, where the
buoy motion responds only to specific wave scales.

The scientific community has studied the correction of current velocities measured
with a sensor whose movement has responded to the presence of waves for a few decades.
Nonetheless, this research has been limited for many years by the need for sensors with
good accuracy and high sampling frequency close to the surface. In the last decade,
the subject has regained interest with the emergence of autonomous underwater vehicles
and the development of new technologies. Amador et al. (2017) [8] identified that the
current measurement by autonomous vehicles is affected, among other factors, by the
movement of these vehicles, the presence of waves, and mean currents. On the other
hand, there is a growing need to validate and compare current measurements obtained
at the surface, close to the surface, and at the subsurface by different techniques. Those
techniques include remote measurements from an airplane or satellite-mounted radars [9],
X-band radars [10,11], and comparisons with measurements obtained by ADCPs moored
and mounted on buoys [4].

In this paper, we study numerically the current measurement error when a current
meter is mounted on a buoy whose horizontal and vertical displacements are induced by the
presence of waves. Section 2 has been separated into subsections to overview the problem
comprehensively. First, an overview of the framework used to describe measurements
made from moving buoys is presented. Next, the analytical development of measurements
obtained by a current meter whose displacements perfectly follow the sea surface in the
presence of wave orbital velocity (wave orbital bias) or an average current with a vertical
shear profile (average current bias) is shown. Additionally, the implementation of a model
that reproduces the velocity field with a high resolution in the vertical (in the first meters of
the surface) from a wave spectrum is described. This allows us to study the measurement
of currents by a mobile buoy in realistic conditions. Section 3 analyzes the currents of
various sea states from an Eulerian and undulating framework. Section 4 identifies the
error in the measurement of surface currents considering various ranges of buoy motion.

2. Materials and Methods
2.1. Eulerian, Quasi-Eulerian, and Undulating Mean Current

In general, one distinguishes two ways to measure fluid velocities, the Eulerian and the
Lagrangian descriptions (e.g., [12]). Measurements made under the Eulerian description
are taken at fixed locations, whereas in the Lagrangian description, the velocity is measured
by following a particular volume of fluid.

When velocities are measured close to the free surface in the presence of waves
(Figure 1a), the analysis is complicated by two important aspects. (1) Current meters used
to make the measurements are commonly deployed on buoys, which move due to waves.



J. Mar. Sci. Eng. 2023, 11, 1534 3 of 23

Hence, the measurements cannot be considered Eulerian, nor can they be considered
Lagrangian. (2) Waves produce orbital velocities uw(x, t) = (uw, vw, ww) which do not
necessarily average out in time and will therefore give a contribution to the measurements.
The magnitude of these orbital velocities is proportional to the wave slope ak (where a is
the wave amplitude and k the wave number).

More specifically, in the Eulerian description, the mean velocity profile (Eulerian-
mean) is confined to −h < z ≤ η (where h is the ocean bottom and η is the instantaneous
free surface), whereas in the Lagrangian description, the mean velocity profile (Lagrangian-
mean) is restricted to −h < z ≤ 0 (where 0 is the mean sea level, see Figure 1).

〈U〉 〈U〉

Mw

ω
η(x, t)

uw(x, t)

U U

z = − λ
2

z = 0

z = − λ
2 z = − λ

2

Eulerian description Lagrangian descriptionTime evolution

t

U(x,t)

z = 0 z = 0

(a) (b) (c)

Mw

Figure 1. Schematic representation of the (a) field of orbital velocities uw(x, t) and permanent current
U(x, t) in the presence of waves η(x, t), and their respective time averages Mw and 〈U〉 under a
(b) Eulerian and (c) Lagrangian description. The vertical axis in each figure is indicated up to a depth
z = −λ/2 (with λ the wavelength).

Let us focus first on wave orbital velocities. The mean of the wave orbital velocities
corresponds to the wave momentum Mw (or wave mass transport or Stokes transport),
which has a different representation depending on the framework or description that is
considered (Figure 1b,c). When an Eulerian mean is applied, the wave momentum Mw

occurs between the crests and troughs of the waves and is zero below these (Figure 1b). Mw

is distributed vertically following a parabolic profile (also shown in Figure 2). The physical
reason is the absence and presence of water during the wave passing. Therefore, surface-
current measurements are commonly analyzed only below the wave troughs. When a
Lagrangian mean is performed, the wave momentum is distributed vertically, with the
highest values at the surface z = 0, as shown in Figure 1c.

Figure 2. Schematic representation of the Eulerian mean (black) and an undulating mean (red)
considering only vertical displacements (the wave-following mean). The Stokes drift is also shown
(blue). Here, the wave is considered monochromatic.

Let us now consider the presence of a permanent current (both steady and horizontally
homogeneous) with a vertical shear of the type U = (u(z), v = 0, w = 0). The Eulerian and
Lagrangian averages will be equivalent if there are no waves. However, in the presence of
waves, the average of the measurement of the permanent current with a vertical shear will
be modified due to the disturbance of the free surface η.
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If surface velocities are measured from a platform that remains fixed in space, the time
average of these velocities will correspond to the Eulerian mean. However, if waves induce
horizontal and vertical displacements, a portion of the wave momentum will be captured.
The time average of these measurements corresponds neither to an Eulerian mean nor to a
Lagrangian mean. Therefore, it will be referred to generally as an undulating mean. One
particular case of the undulating mean is the wave-following mean.

Regardless of the averaging employed, it is helpful to express surface current measure-
ments in an Eulerian framework to implement and validate numerical models. The gen-
eralized Lagrangian mean (GLM) concept was proposed by [12] to represent Lagrangian
measurements in Eulerian numerical models. The GLM involves calculating the temporal
average of a volume of fluid that is perturbed regarding the reference position in such a
way that it yields

uL(x, t) = u(x + δx, t). (1)

According to Ardhuin et al. (2008) [13], the generalized Lagrangian average can be
expressed as a quasi-Eulerian mean component modified by the presence of waves plus
the wave pseudo-momentum (p), which corresponds to the Stokes drift Us, resulting in the
following expression,

uL(z) = uQE(z) + Us(z). (2)

In the particular case in which the superficial velocities are measured following the
trajectory of the particles of the fluid described by the linear wave theory, the average of
these velocities will correspond to the Stokes drift.

Different average profiles of the horizontal component of the orbital velocity of waves
are shown in Figure 2 to illustrate the averages introduced in this section. The black line
corresponds to the Eulerian mean, the red line shows the average velocity field when
a sensor moves vertically following the elevation of the free surface, and the blue line
corresponds to the sensor moving horizontally and vertically following the trajectory of
the orbital velocities, which is equivalent to the Stokes drift.

2.2. Theoretical Wave-Bias in Monochromatic Case

A horizontal current in the ocean u(x, z, t) is considered, where the presence of waves
modifies the upper boundary. For the sake of simplicity, we only consider one horizon-
tal dimension x, ignoring the y dimension whose contribution shall be added similarly.
The measurement obtained by a current meter can be expressed as u(X(t), Z(t), t) with
X(t), Z(t) the sensor position, and the mean current field will depend on the measurement
framework, as well as the horizontal and vertical current distribution. In the general case,
X(t) = x0 + δx(t) and Z(t) = z0 + δz(t). For an Eulerian measurement, the position
is fixed in space, X = x0 and Z = z0. In the specific case of a wave-following buoy,
δx(t) = −a sin(kx − ωt) exp kz0 and δz(t) = a cos(kx − ωt) exp kz0, where a is the wave
amplitude, k the wave number and ω the angular frequency. As will be obtained below,
in such case, a wave bias appears in the temporal average of the velocity [5].

The analytical development for calculating the wave bias is well-described in the
literature. For a single vertical dimension z, it can be calculated by supposing a small
perturbation δz concerning the mean sensor position z0 and using a Taylor series expansion
of the wave orbital velocities. From linear wave theory, it is known that the horizontal
wave orbital velocities are in phase with the wave surface elevation.

In the following section, a general analytical development will be presented for velocity
fields and sensor displacements with unique characteristics, such as being in phase or
quadrature. This general development encompasses different measurement configurations,
including the presence of wave orbital velocities, mean surface current, and different types
of sensor displacements.
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2.2.1. Vertical Displacements

We start by considering only vertical sensor displacements, with no horizontal dis-
placement. In the presence of a vertical displacement δz around a mean position z0,
the disturbance in the measurement of a horizontal velocity field u = u(x, Z(t), t) can be
approximated by a Taylor series expansion as follows:

u(x, Z(t), t) = u(x, z0 + δz, t) =
∞

∑
n=0

δzn

n!
∂n

∂z0
n u(x, z0, t)

= u(x, z0, t) + δzu′(x, z0, t) +
δz2

2
u′′(x, z0, t) + O(δz3)

(3)

where prime values correspond to the partial derivatives of u with respect to z. By applying
a time average to Equation (3), we obtain:

〈u(x, Z(t), t)〉t = 〈u(x, z0, t)〉t + 〈δzu′(x, z0, t)〉t +
〈

δz2

2
u′′(x, z0, t)

〉
t
+ O

(
δz3
)

t
(4)

with the time average defined as

〈〉t =
ω

2π

∫ 2π/ω

0
() dt.

Next, we consider that the velocity field u can be separated into a component that
contains the horizontal and temporal variations and a component that contains the vertical
variation,

u(x, Z(t), t) = F(x, t)G(z) (5)

applying a time average to Equation (5), we obtain

〈u(x, Z(t), t)〉t = 〈F(x, t)G(z0)〉t + 〈δzF(x, t)G′(z0)〉t +
〈

δz2

2
F(x, t)G′′(z0)

〉
t
+ O

(
δz3
)

= G(z0)〈F(x, t)〉t + G′(z0)〈δzF(x, t)〉t + G′′(z0)

〈
δz2

2
F(x, t)

〉
t
+ O

(
δz3
) (6)

From Equation (6), we can consider two particular cases based on whether the compo-
nents containing horizontal and temporal variations are in phase (case A) or not (case B)
with respect to δz.

Case A: Orbital Velocities (Surface Disturbance in Phase with Velocity Field)

If we consider that F(x, t) is proportional to δz and δz corresponds to a periodic
function (i.e., F(x, t) is in phase with δz), such that F(x, t) = αδz, where α is a constant of
proportionality. In the case of wave orbital velocities, α = ω, and have dimensions s−1,
then we obtain

〈u(x, Z(t), t)〉t = G(z0)〈αδz〉t + G′(z0)〈αδz2〉t + G′′(z0)

〈
αδz3

2

〉
t
+ O

(
δz4
)

(7)

Due to the periodicity of δz, the terms in Equation (7) that include (δn
z ) for odd n will

be zero when we perform the time average. Therefore,

〈u(x, Z(t), t)〉t = G′(z0)〈αδz2〉t + O
(

δz4
)

(8)

Keeping the terms to second order, we obtain

〈u(x, Z(t), t)〉t = G′(z0)〈αδz2〉t (9)

If we consider that α does not depend on time and recall that δz is a periodic function
around 0, 〈u(x, Z(t), t)〉t = αG′(z0)Var(δz) (10)
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Case B: Permanent Current with Curvature (Disturbance Not in Phase with the Velocity
Field)

If F(x, t) varies much more slowly than the wave-related variations of the vertical
disturbance δz, then F(x, t) can be considered a permanent velocity field F(x) and the
Equation (6) reduces to

〈u(x, Z(t), t)〉t = F(x)G(z0) + F(x)G′(z0)〈δz〉t + F(x)G′′(z0)

〈
δz2

2

〉
t
+ O

(
δz3
)

(11)

In addition, if δz corresponds to a periodic function of small amplitude around an
average value of 0, we obtain

〈u(x, Z(t), t)〉t = F(x)G(z0) + F(x)G′′(z0)

〈
δz2

2

〉
t
+ O

(
δz3
)

(12)

Considering the second-order approximation, we identify that the temporal average
of a velocity field for the proposed hypotheses depends on whether it is in phase with the
surface disturbance.

〈u(x, Z(t), t)〉t = F(x)G(z0) + F(x)G′′(z0)

〈
δz2

2

〉
t

(13)

〈u(x, Z(t), t)〉t = F(x)G(z0) + F(x)G′′(z0)
Var(δz)

2
(14)

From (10) and (14), it is important to remember that a function’s first and second
derivatives are related to the vertical shear and curvature of the velocity profile, respectively.

2.2.2. Vertical and Horizontal Displacements

We now include horizontal sensor displacement δx in addition to vertical displacement
δz. The multivariable Taylor series expansion is given by the relationship [14]

u(x̂1, · · · , x̂n) = u(x1 + δx1, · · · , xn + δxn) =
∞

∑
j=0

1
j!

[
n

∑
k=1

δxk

δ

δxk

]j

f (x1, · · · , xn) (15)

where δxn = x̂n − xn, and correspond to the different dimensions of a field u. Con-
sidering the velocity, these are given as field measurements by a current meter as u =
u(X(t), Z(t), t), and performing a Taylor expansion around X(t), Z(t) such that (x̂1, x̂2) =
(x, z), and (δx, δz) = (x̂− x0, ẑ− z0), we obtain

u(X(t), Z(t), t) =u(x0 + δx, z0 + δz, t) =
∞

∑
j=0

1
j!

[
δx

∂

∂x0
+ δz

∂

∂z0

]j
u(x0, z0, t)

=u(x0, z0, t) +
[

δx
∂

∂x0
+ δz

∂

∂z0

]
u(x0, z0, t)

+
1
2

[
δx2 ∂2

∂x2
0
+ 2δxδz

∂

∂x0

∂

∂z0
+ δz2 ∂2

∂z2
0

]
u(x0, z0, t) + O(δx3, δz3)

(16)

u(X(t), Z(t), t) = u(x0 + δx, z0 + δz, t) =
∞

∑
j=0

1
j!

[
δx

∂

∂x0
+ δz

∂

∂z0

]j
u(x0, z0, t)

= u(x0, z0, t) +
[

δx
∂

∂x0
+ δz

∂

∂z0

]
u(x0, z0, t)

+
1
2

[
δx2 ∂2

∂x2
0
+ 2δxδz

∂

∂x0

∂

∂z0
+ δz2 ∂2

∂z2
0

]
u(x0, z0, t) + O(δx3, δz3)

(17)
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If we consider u(X(t), Z(t), t) = F(x, t)G(z), and use the notation fx(x) = ∂
∂x f (x), we

can substitute by:

u(X(t), Z(t), t) =F(x0, t)G(z0) + δxFx0(x0, t)G(z0) + δzF(x0, t)Gz0(z0)

+
1
2

[
δx2Fx0x0(x0, t)G(z0) + 2δxδzFx0(x0, t)Gz0(z0) + δz2F(x0, t)Gz0z0(z0)

]
+ O(δx3, δz3).

(18)

Following the same reasoning as in the one-dimensional case of the previous section,
we can now consider two particular hypotheses based on Equation (18).

Case A: Orbital Velocities (Perturbations In-Phase and Quadrature with the Velocities
Field)

We first consider that F(x, t) = α0δz, and δx is in quadrature with δz (phase shift
of π/2), where δz is a function of time and is represented as a wave-like function around
z0. Under these considerations, we have the following relationship of the nth derivatives
of F(x).

∂n

∂xn
0

F(x0, t) =
{

αnδz for n even
βnδx for n odd

therefore

u(X(t), Z(t), t) = α0δzG(z0) + δxβ1δxG(z0) + δzα0δzGz0(z0)

+
1
2

[
δx2α2δzG(z0) + 2δxδzβ1δxGz0(z0) + δz2α0δzGz0z0(z0)

]
+ O(δx3, δz3)

(19)

u(X(t), Z(t), t) = α0δzG(z0) + β1δx2G(z0) + α0δz2Gz0(z0)

+
1
2

[
(α2G(z0) + 2β1Gz0(z0))δx2δz + α0δz3Gz0z0(z0)

]
+ O(δx3, δz3)

(20)

Because (δx, δz) correspond to periodic functions in quadrature, upon taking the time
average of (20), the terms where (δm

x , δn
z , δm

x δn
z ) with odd m, n or an odd combination of

m + n will be zero. Thus, we have

〈u(X(t), Z(t), t)〉t = G(z0)〈β1δx2〉t + Gz0(z0)〈α0δz2〉t + O(δx3, δz3) (21)

Considering only a second-order approximation in δz, and recalling that δz corre-
sponds to a periodic function around 0, we have

〈u(X(t), Z(t), t)〉t = G(z0)〈β1δz2〉t + Gz0(z0)〈α0δz2〉t (22)

〈u(X(t), Z(t), t)〉t = G(z0)Var(β1δx) + Gz0(z0)Var(α0δz) (23)

When the velocity field is considered as the horizontal and vertical components of
the orbital velocities and δx, δz correspond to the trajectory followed by fluid particles,
the expression obtained in (23) corresponds to the Stokes drift described by [13].

Case B: A Permanent Current with Curvature (Perturbations In-Phase or Out-of-Phase
with the Velocity Field)

If δz is in quadrature with δx, and if we consider that the velocity field does not vary
much during the averaging time, we have u(x, z, t)≈u(x, z), and it cannot be expressed as
a function of δx and δz. Then, the Equation (18) reduces to

u(X(t), Z(t)) = F(x0)G(z0) + δxFx0(x0)G(z0) + δzF(x0)Gz0(z0)

+
1
2

[
δx2Fx0x0(x0)G(z0) + 2δxδzFx0(x0)Gz0(z0) + δz2F(x0)Gz0z0(z0)

]
+ O(δx3, δz3).

(24)
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after temporal averaging, we obtain

〈u(X(t), Z(t))〉t = F(x0)G(z0) +
1
2

[
Fx0x0(x0)G(z0)〈δx2〉t2〈δxδz〉tFx0(x0)Gz0(z0) + F(x0)Gz0z0(z0)〈δz2〉t

]
+ O(δx3, δz3),

(25)

and recalling that terms (δn
x , δn

z ) will average to zero for odd n, we obtain

〈u(X(t), Z(t))〉t = F(x0)G(z0) + Fx0x0(x0)G(z0)

〈
δx2

2

〉
t
+ F(x0)Gz0z0(z0)

〈
δz2

2

〉
t
+ O(δx3, δz3). (26)

Up to second order in δz, we can obtain from Equations (21) and (26):

〈u(X(t), Z(t))〉t = F(x0)G(z0) + Fx0x0(x0)G(z0)

〈
δx2

2

〉
t
+ F(x0)Gz0z0(z0)

〈
δz2

2

〉
t
, (27)

recalling that the functions (δx, δz) are periodic around (x0, z0), this means

〈u(X(t), Z(t))〉t = F(x0)G(z0) + Fx0x0(x0)G(z0)
Var(δx)

2
+ F(x0)Gz0z0(z0)

Var(δz)
2

. (28)

Comparing the results obtained in (14) and (28), we identify that, as in the one-
dimensional case, the second-order approximation only incorporates the effect of the
curvature of the vertical velocity profile in the horizontal direction.

2.3. Physical Interpretation: Case A—Wave Orbital Velocities

The above mathematical development can be applied to any velocity field, fulfilling
the different cases’ hypotheses.

We now turn to its application for measuring near-surface current from a moving
buoy. In this section, we focus on the orbital velocities generated by a monochromatic
linear wave,

η = a cos(kx−ωt) (29)

u = ωη exp(kz) = aω cos(kx−ωt) exp(kz). (30)

where u, can be separate as

F(x, t) = aω cos(kx−ωt)
G(z) = exp(kz)

(31)

Different types of sensor displacements (δx, δz) with respect to a reference position
(x0, z0) are considered.

(a) Case A1: Vertical displacement without vertical variation

We first consider that the sensor has no horizontal displacement (δx = 0) and that
periodic vertical displacement around z0 is given by η. It corresponds to a current me-
ter attached to a mooring line which would move vertically following its surface float
(Figure 3a). From (9), we have:

δz = η ⇒ 〈u(x, z(t), t)〉t =
1
2

a2ωk exp(kz0) (32)

The Equation (32) corresponds to the wave-induced bias obtained by [5,6]. As shown
in Figure 3a, the mean current measurement corresponds to half of the Stokes drift at the
surface and then exhibits a less pronounced vertical decay than the Stokes drift, which is
given by

us = a2ωke2kz0 . (33)

(b) Case A2: Vertical and horizontal displacement without vertical variation
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Now, we consider that δz and δx correspond to the trajectories described by surface
fluid particles in the presence of a monochromatic wave. It corresponds to a current meter
attached to a mooring line which would move horizontally and vertically following its
surface float. In agreement with linear wave theory in deep water, the float and thus the
current meter at depth would describe circular trajectories (Figure 3b). From (23), we have

δz = η = a cos(kx−ωt)
δx = −a sin(kx−ωt)

}
⇒ 〈u(x(t), z(t), t)〉t = a2ωkekz0 (34)

Unlike case A1, in the present case, the average velocity measured at the surface will
correspond to the Stokes drift. Its vertical decay is less pronounced than the Stokes drift,
similar to case A1.

(c) Case A3: Vertical and horizontal displacement with exponential vertical variation

Here, we consider that the vertical and horizontal variations in a current meter through-
out the water column follow the orbital trajectories, with an attenuation concerning the
surface as the depth increases, equal to ekz (Figure 3c). This case would correspond to the
measurement obtained by a sensor mounted on a buoy, which would perfectly follow the
wave orbital velocities at its sampling depth. From (23), we have

δz = a cos(kx−ωt) exp(kz)
δx = −a sin(kx−ωt) exp(kz)

}
⇒ 〈u(x(t), z(t), t)〉t = a2ωke2kz0 (35)

Equation (35) agrees with the results of [6]. It indicates that if we consider a set of
current meters moving vertically and horizontally, following circular trajectories set by the
wave orbital velocities, the wave bias corresponds to the Stokes drift (Figure 3c). In the
present case, the Stokes drift is being fully sampled.

(d) Case A4: Vertical and horizontal displacement with different vertical variations

For this case, we consider a wave-following buoy, to which an array of current meters
is attached, free to move horizontally following the orbital trajectories induced by the
presence of waves (δx = −a sin(kx − ωt) exp(kz)), but where the vertical displacement
is constrained by the elevation of the sea surface (δz = η). For this case, we obtain the
following equation by using (23):

δz = a cos(kx−ωt)
δx = −a sin(kx−ωt) exp(kz)

}
⇒ 〈u(x(t), z(t), t)〉t =

1
2

a2ωk[e2kz0 + ekz0 ] (36)

The trajectory of a current meter located at the surface describes a perfect circle.
However, as it moves away from the surface, the circular trajectory becomes an ellipse with
the major axis given by the wave amplitude and the minor axis given by the wave-induced
orbital trajectories in the horizontal (Figure 3d). The mean current measurements recorded
by the current meters will correspond to the Stokes drift at the surface; however, due to
the constraint on the vertical displacement, the amplitude of the horizontal displacement
decreases as the depth increases, and the vertical displacement will prevail. Therefore,
the present case corresponds to a combination of cases A1 and A3.

(e) Case A5: Measurement made on a buoy with horizontal inclination

In order to obtain the measurement that would be obtained by a current meter attached
to a buoy with a particular horizontal inclination, we will consider a variation of case A4.
Similarly to previous cases, δz = η, but δx below the surface is not influenced by the
wave-induced trajectory but is instead restricted to an imposed profile that, for practical
purposes, is represented by a linear function (see Figure 3e). We then have

δz = a cos(kx−ωt)
δx = −a sin(kx−ωt) f (z)

}
⇒ 〈u(x(t), z(t), t)〉t =

1
2

a2ωkekz0 [ f (z) + 1] (37)

The trajectory described by a surface current meter corresponds to a perfect circle
(similar to cases 2–4), while in the vertical direction, the horizontal trajectories decay
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linearly, and a depth of no motion will be present, which depends on the characteristics
of the considered function. The mean velocity field sampled by a surface current meter
will correspond to the wave Stokes drift. Right at a depth of no motion, the mean velocity
recorded by a current meter will be the same as obtained in case A1 (Figure 3e).

The cases presented in this section are summarized in Table 1, with the trajectories of
the current meters δx and δz, and the form of the mean current.

Table 1. Summary of the different case studies. We consider monochromatic waves. For numerical
calculations, we use an illustrative profile f (z) = 1 + (1/nm)z, where nm is the depth of no motion
set to 20 m.

δx δz 〈u〉t

(a) Case A1 0 a cos(k · x−ωt) 1
2 a2ωk exp{kz0}

(b) Case A2 −a sin(k · x−ωt) a cos(k · x−ωt) a2ωk exp{kz0}

(c) Case A3 −a sin(k · x−ωt) exp{kz} a cos(k · x−ωt) exp{kz} a2ωk exp{2kz0}

(d) Case A4 −a sin(k · x−ωt) exp{kz} a cos(k · x−ωt) 1
2 a2ωk[exp{2kz0}+ exp{kz0}]

(e) Case A5 −a sin(k · x−ωt) f (z) a cos(k · x−ωt) 1
2 a2ωk exp{kz0}[1 + f (z0)]

Note that in the monochromatic case studied in this section, a current meter would
never rise above the water level and will always remain inside the water, even though
the mean measuring depth is above the wave trough (shaded region in Figure 3). If we
would consider Eulerian measurements or measurements from buoys of finite dimensions,
the problem of a current meter leaving the water would arise, as will be dealt with later on.

(C-A1) (C-A2) (C-A3) (C-A4) (C-A5)

Figure 3. Cases A1 to A5 refer to different studies applied to a monochromatic wave. The black
line represents the trajectory (in meters) described by a current meter for a given depth and refers
to the left (black) axis. The cyan line with blue circles and the red line with red triangles represent
the analytical and numerical solutions from a numerical model presented in Section 2.5 obtained
by performing a temporal averaging on the velocity field (in m/s) and are referred to the right (red)
axis; these are superimposed because both solutions are equal. The shaded region indicates depths
above the wave trough. In all cases, a wave amplitude of 1.5 m and a period of 10 s are considered in
deep-water conditions.
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2.4. Physical Interpretation: Case B: Permanent Current with Vertical Shear

In the previous results, we analyzed specific cases of a horizontal velocity field of
the type u = u(x, z, t), where only the horizontal component of orbital wave velocities
was considered. This component has the characteristic of being in phase with the surface.
If we consider horizontal and vertical variations of a current meter associated with the
presence of waves, but the velocity field does not have significant horizontal variations or
these are much smaller compared to the displacements associated with orbital velocities
(F(x) << δx), then Equation (28) reduces to Equation (23), and we would obtain the same
result as in case 1b.

In this case, we consider a velocity field that is not in phase with the wave, inde-
pendent of time and coordinates x and y, but with a vertical shear u = u(z). If we make
measurements with a current meter mounted on a buoy that responds to the wave orbital
velocities at the surface, we can obtain from (13):

δz = a cos(kx−ωt)
F(x, t) = 1

G(z) = f (z)

 ⇒
〈u(z(t))〉t = f (z0) + f ′′(z0)

〈
η2

2

〉
t

〈u(z(t))〉t = f (z0) +
1
4 a2 f ′′(z0)

(38)

From Equation (38), we can identify that for this particular case, the difference between
performing an Eulerian or undulating average on the velocity field with a vertical shear
will increase with the current curvature.

2.5. Velocity Field Model

In this section, we wish to evaluate the different wave biases obtained previously in
realistic oceanic conditions. For that purpose, the ocean velocity field is constructed by
considering a model for a specific wind u10 and fetch χ. The velocity field is constructed in
a framework that follows the free surface η(t) at each instant; this allows us to generate a
very fine-resolution mesh near the surface, which is subsequently interpolated to a mesh
referred to as a fixed vertical coordinate. The velocity field contains wave orbital velocities
computed from a general wind wave spectrum plus an Ekman-type permanent current
with vertical shear.

2.5.1. Wind Sea Spectrum

The wave spectrum is calculated in the model following [15] (referred to as DHH from
here on), by considering a constant wind and fetch.

F(ω) =
αg2

ω4ωp
exp

[
−5

4

(ωp

ω

)4
]
· γΓ (39)

where Γ corresponds to
Γ = exp

{
−
(ω−ωp)2

2σ2ω2
p

}
and ωp, α, γ, and σ are the angular peak period of the spectrum, the equilibrium range
parameter, the enhancement factor, and the peak width parameter, respectively.

According to [15], the spectral characteristics are related to the fetch and wind intensity
as follows:

α = 0.006
(

u10
cp

)0.55
; 0.83 < u10

cp
< 5. (40)

σ = 0.08

[
1 + 4(

u10
cp

)3

]
; 0.83 < u10

cp
< 5. (41)

γ =

{
1.7, 0.83 < u10

cp
< 1;

1.7 + 6 log
(

u10
cp

)
, 0.83 < u10

cp
< 1.

(42)
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u10

cp
= 11.6χ̃−0.23. (43)

where χ̃ corresponds to the non-dimensional fetch, given by χ̃ = χg
u2

10
, and the angular

frequency associated with the spectral peak is given by

ωp =
2π

Tp
=

2π

0.54g−0.77u0.54
10 χ0.23

. (44)

To consider realistic wave conditions, experiments were conducted with a wide range
of wind and fetch. Various wave parameters were calculated for each case, including the
wave age cp/u10, the frequency associated with the spectral peak fp, the significant wave
height Hs and the Stokes drift (Figure 4).

0.3
0.4

0.5

0.6

0.7

0.8
0.9
1

1.1

1.2 0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

2 3

3

4

5

6

7

8

9

10

1
1

0
.5

1

1
.5

2

2
.5

3 3.5

4

Figure 4. State diagrams were plotted as a function of wind speed and fetch for the wave age cp/u10

(upper left panel), surface Stokes drift (upper right panel), a period associated with the spectral
peak (lower left panel), and significant wave height (lower right panel).

2.5.2. Orbital Velocity Field: Random Phase Model from a Realistic Wind Sea Spectrum

The free surface elevation corresponding to the generated wave spectrum is obtained
using a random phase model. For each energy band of the DHH spectrum, the amplitude
is calculated, and deep-water conditions are assumed in the wave dispersion relation such
that the total free-surface elevation is

ηtot(x, t) =
N

∑
i=1

ηi =
N

∑
i=1

ai cos(kix−ωit− φi), (45)

where
a( f ) = 4

√
S( f )∆ f (46)

and
ω2 = gk. (47)

The total induced velocity field utot due to the numerically generated irregular waves is
calculated using a modified version of the current model proposed by
Donelan et al. (1992) [16]. The model considers the linear superposition of waves that
propagate freely, such that shorter waves travel on top of longer ones, and together they
determine the total surface elevation. Each incorporated wave satisfies the condition of
infinitesimal slopes, so we can apply the corresponding boundary conditions of linear
wave theory, such that u(z = η) → u(z = 0). The modification of the model is due to



J. Mar. Sci. Eng. 2023, 11, 1534 13 of 23

the assumption that each wave propagates freely over the surface described by the other
waves. Therefore no coupling between short and long waves is considered (there is no
modulation transfer function between short and long waves [17]). In addition, the model
directly solves the orbital velocity field in a framework that follows the surface rather than
solving the system of equations in a system of fixed Eulerian coordinate frameworks as
proposed by [16]. By doing this, the generated mesh can include a finer vertical resolution
close to the surface, thus reducing processing time.

To achieve this, we consider the orbital velocity of a monochromatic wave, whose
domain is given by:

u(x, z, t) =
{

aωekz cos(kx−ωt) z ≤ η
0 z > η

(48)

The total waves generated by the random phase model form ηtot. Subsequently,
upon considering the superposition model, the following is obtained:

utot(x, z, t) =
N

∑
i=1

ωiekidi ηi (49)

where di = z− (ηtot − ηi).
Because each wave satisfies the condition of infinitesimal slopes and it is required to

obtain the contribution of each wave concerning the total field of orbital velocities relative
to ηtot, it is convenient to superimpose the orbital velocities of each wave on a regular grid,
such that z = 0 corresponds to ηtot at the surface; this allows for an increase in vertical
resolution very close to the surface (i.e., z = 0). For this purpose, we define x = x0 + δx(t)
and z = z0 + δz(t), and solve for the following:

u(x0, z0, t) = aωekz cos(kx−ωt) (50)

Finally, to reconstruct the total velocity field utot (49), corresponding to the field in
fixed coordinates, an interpolation is performed in the vertical coordinate of the velocity
field, considering z = z0 + ηtot. To illustrate the velocity field obtained using the proposed
model, Figure 5 presents two representations: one in fixed (upper) and the wave-following
coordinates (lower) of the reconstructed wave orbital velocities. This figure showcases the
first 60 s of a modeled case.

Figure 5. Representation of the orbital velocity field based on the proposed model, considering a
wind speed of 4 m s−1 and a fetch of 32 km. The top and bottom panels correspond to the framework
in fixed coordinates and the one following the waves, respectively.
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2.5.3. Mean Current Field: Realistic Ekman-Type Permanent Current

In addition to the fluctuating wave orbital velocities, an Ekman-type permanent
current is incorporated. It is calculated assuming constant wind and constant waves in
fetch-limited conditions. For vertical mixing, the unstratified model is used, proposed
by [18], where the surface roughness parameter z/0 is parameterized from [19] as z/0 = 1.6 Hs.
This velocity field is kept constant in time for the wave-following framework. Examples of
near-surface currents are shown in Figure 6.

Figure 6. Average of the mean velocities (Ekman-type permanent current) in the wave-following
framework, normalized by the wind speed u10 (m/s) used in the DHH spectrum, expressed in
percent. The color bar corresponds to the fetch (km) used in each case.

By incorporating the Ekman-type permanent current in that way, we ensure that its
vertical profile corresponds to the average in the undulating framework. We will later
consider how this profile is modified when measured in a different reference frame (e.g.,
in a fixed framework).

Although the dynamics of waves can be affected by the presence of a vertically sheared
current [20,21], for simplicity, we consider both velocity fields as independent and therefore
ignore this effect.

2.5.4. Buoy Motion Response to the Wave Field

As discussed above, the time-average velocity measurement from a buoy-mounted
sensor strongly depends on the buoy motion itself. That motion might not perfectly follow
the sea surface motion. The dimensions, buoyancy, size, anchoring, and potential marine
fouling will determine the buoy’s response to the movement induced by a specific range
of waves.

A simple description of the buoy’s motion for a particular sea state can be obtained
by applying a low-pass frequency filter to the DHH spectrum with a determined cutoff
frequency fcut. The trajectory of the buoy’s center of flotation at rest is then reconstructed
using a model with the same random phases, and this is an idealized description where
the buoy perfectly responds to low-frequency waves and has no motion induced by waves
with a frequency higher than fcut.

Different buoy responses can be represented for each spectrum by modifying the
values of fcut. The extreme cases of motion correspond to the frames of reference in fixed
coordinates (a buoy that remains still). They are represented by fcut ∼ 0, and a frame
of reference that perfectly follows the surface (its motion completely responds to the
present wave) and is represented by fcut ∼ fmax, where fmax corresponds to the maximum
frequency used to construct the spectrum. However, many cases that depend on the buoy’s
response to wave motion will be accounted for.

3. Results: Time-Average Velocity Profiles

The velocity fields generated in the previous section are now time-averaged. As men-
tioned, this average can be performed considering different types of sensor motions.
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For analysis purposes, the extreme cases of sensor motion will be referred to by the sub-
scripts E and WF for Eulerian and wave-following averages, respectively. Intermediate
cases, which correspond to the general case of undulating mean, will be referred to by the
subscript fcut, which is the maximum frequency to which the sensor and its mooring line
respond. The time average of the horizontal component of the orbital velocity field will
be called UW . The time average of the Ekman-type permanent current will be called UEk.
In this section, we will focus on describing the error that arises in calculating mean currents
when only the horizontal displacements induced by waves on a buoy or mooring line
are considered.

3.1. Time Average of the Wave Orbital Velocity Field

Let us consider first the average of the wave orbital velocity field, with no Ekman
current. In the case of a monochromatic wave, an Eulerian averaging gives a mass transport
with a parabolic profile, as discussed above. When considering a more complex irregular
sea state, the Stokes transport modifies its parabolic profile since the averaged profile
corresponds to the sum of all waves considered in the random phase model with different
wave numbers. This is illustrated in Figure 7, where the black line represents UW

E . On the
other hand, if we consider a current meter that follows the free surface, we obtain the
wave-following average UW

WF shown as a red line in Figure 7. It corresponds to the average
of individually resolved wave components of the random phase model. That solution
correctly fits the analytical results obtained in case A1 by the Equation (32).

Figure 7. Time-average velocity profiles of a wave orbital velocity field of a mean uniform current
field. Measurements are considered in two extreme sensor configurations, a motionless sensor
(Eulerian mean) and a wave-following sensor. The wind is set to 4 m s−1 and the fetch to 32 km.

If we consider the measurement of a sensor mounted on a buoy or mooring line which
does not perfectly follow the surface, there will be a lack of measurements when the sensor
leaves the water, so the wave pseudo-momentum is not perfectly sampled. The average
profile corresponds to a transition between the wave-following and the Eulerian averages,
as shown in Figure 8. That figure presents the results of the velocity field averaging for
waves generated by a wind of 15 m s−1 and a fetch of 100 km, which corresponds to a
developed wind sea (wave age cp/u10 ∼ 1).

In Figure 8a, the black line corresponds to the Eulerian average of the orbital velocity
field, and the dotted black line corresponds to the wave-following average, i.e., the average
that would be obtained by a sensor mounted on a mooring line, which buoy would move
vertically and perfectly follow the free surface. The colored lines correspond to intermediate
cases, where the sensor only moves with low-frequency waves with f < fcut.
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(a) (b) (c)

Figure 8. Velocity profiles of the time average current fields. (a) Orbital velocity field UW .
(b) Ekman-type permanent current field UEk. (c) Total current UEk + UW . In each plot, the dashed
black line represents the wave-following average, while the black line represents the Eulerian aver-
age. The color range corresponds to intermediate cases, with the sensor motion following the low
frequency ( f < fcut) waves only. The wind is set to 15 m s−1 and the fetch to 100 km.

3.2. Time Average of Ekman Current Field

Let us now consider the Ekman-type permanent current field, considering wave-
induced sensor displacements. We will consider an imaginary case with no wave orbital
velocity presented to focus on Ekman’s current contribution.

In Figure 7, the blue line represents the Eulerian average of the Ekman current, while
the green line corresponds to the wave-following average. The main difference is observed
between crests and troughs, whereas they tend to be similar below the troughs (typically
for z < −Hs); this is because the current profiles do not have a curvature large enough
to generate a second-order effect in the temporal average, as indicated in hypothesis B
in Equation (14). Therefore, below the troughs, the undulating average approximates the
Eulerian average.

By observing Figures 4 and 6, it was identified that in the cases with lower fetch and
higher wind speed, the mean current profile presents more intense velocities near the
surface and has a different curvature. To identify the error that causes a curvature in the
mean current, we will examine two wave regimes, namely the young and developing wave
cases (see Figures 9 and 10, respectively). Regardless of the type of wave that induces
motion on a buoy or mooring line where a current meter is installed, the mean current
measurements in the wave framework exhibit no significant error compared to those
obtained in an Eulerian framework.

Figure 9. Time average profiles of Ekman current for young sea states (fetch of 10 km, wind from left
to right u10 = 5, 10, 15 [m/s]). The Eulerian average is the dashed black line, and the wave-following
average is the dashed red line. The color bar indicates the cutoff frequency in the wave-induced
sensor motion.
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Figure 10. The same as the previous figure but for developed sea states (fetch of 10,000 km).

3.3. Time Average of the Total Current

The total current field corresponding to the sum of UEk and UW was analyzed in order
to identify how the average velocity measured by a sensor attached to a buoy or its mooring
line is modified considering the wave-induced motion. In Figure 8c, the case is shown
where the wind is set to 15 m s−1 and the fetch to 100 km. The red line corresponds to
UW

SF + UEk
SF and allows us to determine how the average of the measurements would be

modified in each case, and the black dashed line represents UEk
E as a reference. The error

obtained below the troughs will depend solely on the mean orbital velocities. When the
wave-induced motion on a buoy or its mooring line, where current meters are attached,
corresponds to waves with frequencies above 1 Hz, the errors obtained in the average
current will be of the same magnitude as the Ekman current.

4. Discussion: Error in the Time Average Velocity Measurement

In the previous section, we identified that the error in surface velocity measurement
depends on the state of wave development and the magnitude of the Ekman current in
comparison to the average orbital velocities. Therefore, a more detailed analysis will be
carried out in this section.

4.1. Error as a Function of the Sea State

In general, there is a direct relationship between the wave momentum and the wave
age, as well as an inverse relationship between the magnitude of the Ekman current and
the wave age (Figure 11). However, other factors must be taken into account since the same
wave age can occur for different ranges of fetch and wind (Figure 4). Therefore, a more
thorough analysis is necessary. As the theoretically obtained results in Section 2.2 indicate,
at the surface, the bias in measuring orbital velocities is proportional to the Stokes drift; this
value was compared with the wave age and the wind and fetch conditions under which
these cases occur (Figure 11).
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Figure 11. Vertical profile of the average wave momentum (left) and Ekman current (center) with
respect to wave age. (Right) State diagram of the ratio between surface Stokes drift and wave age as
a function of wind [m] and fetch [km].

4.2. Error as a Function of the Mooring Line Motion Type

Not only will the characteristics of the mean velocity profile be determined by the
wave-induced motion on a buoy and its mooring, but the magnitude of the error obtained
from the measurements will also be related to the energy and the wave development
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conditions. The magnitude of the Stokes drift is mainly determined by the high-frequency
region of the wave spectrum, which, in turn, is influenced by both fetch and wind conditions
(see Figure 4).

Due to the various variables that define the profile of the Stokes drift and the Ekman
current, it is complex to define a general behavior regarding the characteristics that generate
such velocity fields. In order to account for this variety of variables, we defined a new
characteristic frequency f3p associated with the peak frequency of the third moment of the
spectrum E( f ) f 3. The third moment of the spectrum is proportional to the Stokes drift in
the unidirectional case considered in this work (see Equation (33)). Therefore, f3p represents
the frequency of the waves contributing most to the Stokes drift and is significantly higher
than the peak frequency fp which represents waves contributing most to the significant
wave height Hs.

Figures 12 and 13 show the average velocity profiles obtained for young wave fields
and a fully developed wave field, respectively. As in the previous section, the orbital
velocity field and the Ekman current field are considered separately (top and bottom row,
respectively). The columns show the five different cases of mooring line motion, as de-
scribed in Section 2.3 (vertically and/or horizontally and/or obliquely moving mooring
lines). In each plot, the colors represent the maximum wave frequency fcut to which sensor
motion responds, from Eulerian to wave-following. Note that the frequency fcut has been
normalized by the frequency associated with the spectral peak of the Stokes drift f3p.

(C-A1) (C-A2) (C-A3) (C-A4) (C-A5)

z
[m

/s
]

u [m/s]

Figure 12. Profiles of time averages of wave orbital velocities (top row) and of Ekman current (bottom
row). The columns represent the five different cases of mooring line motions described in Section 2.3.
For each plot, different sensor motions are considered, from Eulerian to wave-following, by varying
the maximum wave frequency fcut to which the sensor motion responds. The right panel shows
the third moment of the frequency spectrum f 3E( f ), and the color bar represents the frequency fcut

normalized by the frequency associated with the spectral peak of the Stokes drift f3p. The wind is set
to 15 m s−1 and the fetch to 5.6 km, which produces a young sea state (wave age cp/u10 = 0.31).
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Figure 13. The same as the previous figure but for fully-developed waves. The wind is set to 9 m s−1

and the fetch to 1000 km, which produces a fully-developed sea state (wave age cp/u10 = 1.22).

Whatever the type of mooring line motion (vertical and/or horizontal and/or oblique
displacements), it is identified that the normalized frequency fcut/ f3p captures the general
behavior of the time average, namely:

fcut/ f3p ≤ 1 Tends towards the Eulerian mean.
1 < fcut/ f3p ≤ 2 Transition region.

2 < fcut/ f3p Tends towards the undulating mean.

Regarding the magnitude of the velocity averages for the case of an Ekman current, it
is identified that the differences are mainly observed in the region confined between ±Hs,
as expected due to the absence of measurements. Therefore, measurements made in
this region will be most affected by the type of sensor motion, but this region cannot
be considered.

In recent years, the precision in measuring surface velocities by different types of
current meters (ADCP, ADV) has increased considerably, with a minimum precision in the
range of 2–5 mm/s [22]. Regarding the velocity field associated with wave orbital velocities,
considering the movement of a current meter presents differences that can be observed
in the measurements. It is impossible to mention a depth at which the error in velocity
measurement is measurable or not measurable in general since this will depend on various
factors, as mentioned in this section.

4.3. Quantification of the Error

As observed in Figures 12 and 13, the time average velocity strongly depends on the
type of mooring line motion response to waves. In the idealized cases that consider a
monochromatic wave, it was mentioned that the Eulerian mean of the orbital velocities is
confined between the crests and troughs of the wave (cases 1 and 3 of Section 2.3). It is im-
portant to mention that the variations in the position of the current meter (cases 2, 4, and 5)
induce an increase in the average velocity. This result is produced because the information
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from surface trajectories affects the measurements throughout the water column. We obtain
the full Stokes drift profile when considering a system that perfectly follows the free surface,
as in case 3.

To quantify the error in the time average velocity measurement, we consider the
relative difference between the Stokes drift and the time average of orbital velocity field
UW

fcut
and define the relative error as

Urel
fcut

(z) =
Uw

fcut
(z)−Us(z)

Us(z)
∗ 100. (51)

For the different types of sensor and mooring motions analyzed in this study, we
should focus on the region below the trough but at a depth where the magnitude of the
Stokes drift is significant. Steer clear of the deeps where the Stokes drift tends to zero,
as this could result in unreliable or invalid data. Therefore, we will consider cases where
the e-folding depth of the Stokes drift Ds is relevant, with

Ds = −
1
2

1
k̄

(52)

where k̄ corresponds to the inverse of a depth scale, in this case, taken as the wave number
associated with the spectral peak. As the wave development increases, measurements
closer to the surface must be discarded.

The relative error Urel
fcut

(z) indicates that the average profile obtained by considering
each range of movement and the maximum frequency of the waves to which a buoy or a
mooring line responds differs by a certain percentage from the Stokes drift at a given depth.
A value of Urel

fcut
= 0 indicates that the measurement being taken corresponds to the Stokes

drift at a given depth, while Urel
fcut
∼ −100 corresponds to a current measurement where

the magnitude is close to zero.
To analyze the relative error to the Stokes drift, we consider the wave ages described

previously (Figures 12 and 13). Figures 14 and 15 show the corresponding errors for
young and fully-developed waves, respectively. In all the cases considered, when we
consider the wave-following average in case A3, we are completely capturing the Stokes
drift. Regardless of the degree of wave development, the type of motion that a buoy or
mooring line has will determine how we capture the Stokes drift for a given depth; however,
the waves’ development determines the value being captured.

(C-A1) (C-A2) (C-A3) (C-A4) (C-A5)

Figure 14. Profiles of measurement error Urel
fcut

(z) relative to the Stokes drift. The columns represent
the five different cases of mooring line motions described in Section 2.3. For each plot, different
sensor motions are considered, from Eulerian to wave-following, by varying the maximum wave
frequency fcut to which the sensor motion responds. The right panel shows the third moment of
the frequency spectrum f 3E( f ), and the color bar represents the frequency fcut normalized by the
frequency associated with the spectral peak of the Stokes drift f3p. The conditions correspond to
those of Figure 12, i.e., for a young sea state.
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(C-A1) (C-A2) (C-A3) (C-A4) (C-A5)

Figure 15. The same as the previous figure, but for the conditions of Figure 13, i.e., for fully-
developed waves.

From Equations (12) and (13), we can identify that when analyzing Urel
fcut

(z) concerning
the Stokes drift e-folding depth, there is a similar distribution of error regardless of the
degree of wave development, and this varies mainly by the type of wave-induced motion
on a buoy or mooring line. As the error will be relevant at depths below the wave troughs
up to the Stokes drift e-folding depth, Urel

fcut
(z) will be relevant in conditions of developed

waves and energetic waves.
Under these conditions, where the surface Stokes drift can reach values above 0.1 m/s,

it should be noted that for certain mooring line motions, the measurement error can exceed
the value of the Stokes drift at the sensor depth.

5. Conclusions

The measurement of near-surface current from a sensor moving with the waves has
been investigated. The sensor motion induces a non-uniform sampling in space and time
of the near-surface current field, which can lead to differences or ‘errors’ once the time
average is performed.

We considered two components of the current field—the wave orbital velocities plus
an Ekman-type permanent current. Different types of sensor motion or mooring line motion
have been considered, including vertical and horizontal motions. The finite size of the
sensor or of the buoy, which could lead to a filtering of the response to the short waves,
has also been considered. Simple cases with monochromatic waves have been investigated
analytically, whereas more realistic cases have been investigated numerically.

It has been identified that the difference between measurements following the waves
perfectly, at a fixed location, and from a buoy that responds to low-frequency waves can be
considerable under certain conditions. This depends on the relationship between the wave
development, the magnitude of velocities near the surface, the vertical decay of its average
profile, as well as the sensor motion.

The mean below wave-troughs of an Ekman-type permanent current measured on
a buoy or mooring line, influenced by wave-induced motions, regardless of the specific
wave motion or response, do not require the consideration of any wave-induced errors.
However, the wave orbital velocities produce an error in the average current that can have
a similar magnitude to the Ekman-type permanent current; this is especially true when a
buoy or mooring line responds to waves with frequencies higher than 1 Hz.

We identify that, linking the wave-induced motions on a buoy or mooring line where
a current meter is installed, with respect to the peak frequency of the third moment of
the spectrum allows us to classify the mean surface current into three ranges: (1) Eulerian
average, (2) wave-following average, and (3) intermediate case of undulating average.

When measurements of surface currents are obtained in the presence of waves, it is
important to analyze the depth of the sensor relative to the Stokes drift e-folding depth. This
analysis will enable us to determine if the error that occurs in the mean current is significant
in relation to the Stokes drift. From this analysis, we can determine the significance of
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errors in mean current about Stokes drift by examining the type of wave-induced motion
on a buoy or mooring line. Those results can aid in interpreting in situ near-surface current
measurements from various devices.
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