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Machine learning co v ers a large set of algorithms that can be trained to identify patterns in data. Thanks to the increase in the amount of data 
and computing po w er a v ailable, it has become perv asiv e across scientific disciplines. We first highlight wh y machine learning is needed in 
marine ecology. Then we provide a quick primer on machine learning techniques and vocabulary. We built a database of ∼10 0 0 publications 
that implement such techniques to analyse marine ecology data. For various data types (images, optical spectra, acoustics, omics, geolocations, 
biogeochemical profiles, and satellite imagery), we present a historical perspective on applications that pro v ed influential, can serve as templates 
f or ne w w ork, or represent the div ersity of approaches. T hen, w e illustrate ho w machine learning can be used to better understand ecological 
sy stems, b y combining v arious sources of marine data. T hrough this co v erage of the literature, w e demonstrate an increase in the proportion 
of marine ecology studies that use machine learning, the perv asiv eness of images as a data source, the dominance of machine learning for 
classification-type problems, and a shift to w ards deep learning for all data types. This overview is meant to guide researchers who wish to apply 
machine learning methods to their marine datasets. 
Keywords: acoustics, ecology, image, machine learning, omics, profiles, remote sensing, review. 

W
m

T  

i  

d  

A  

c  

b  

w  

c  

a  

m  

c  

p  

b  

b  

t  

m  

c  

l  

f
 

M  

l  

l  

b  

fi  

r  

w  

l  

t  

o  

r
 

p  

b  

d  

b  

a  

p  

m  

t  

e  

t  

t  

i  

(  

h  

t  

o  

a  

t  

h  

h  

i  

o  

h  

u  

2
 

i  

e  

r  

C  

s  

Figure 1. Deep learning is a subdomain of machine learning, which on its 
own is a subdomain of artificial intelligence, as illustrated. Specific 
methods are mentioned in each subdomain. 
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hat is machine learning and why does 

arine ecology need it? 

he term “machine learning” (ML) has become omnipresent
n both the scientific literature and everyday news. Its first use
ates back to the late 1950s: Regarding a game of checkers,
rthur Samuel, an electrical engineer at IBM, stated that “a
omputer can be programmed so that it will learn to play a
etter game of checkers than can be played by the person who
rote the program”by using so-called “machine-learning pro-

edures” (Samuel, 1959 , p. 219). In its broadest definition,
n ML system improves its performance by extracting infor-
ation from data (Mitchell, 1997 ). In contrast to traditional

omputer programs, which encode a solution designed by the
rogrammer, an ML system can learn to solve a task without
eing provided an explicit recipe. Instead, the task is learned
y providing the system with examples, i.e. data. The ability
o produce a solution to a problem that is not representable
echanistically can be extremely powerful, but it depends cru-

ially on selecting an appropriate representation of the prob-
em (an “objective” function) and on having adequate data
rom which to learn. 

Although often used interchangeably in popular literature,
L is a subdomain of the larger field of artificial intel-

igence (AI), which encompasses knowledge representation,
ogic models, algorithms, and computational methods capa-
le of intelligent behaviour ( Figure 1 ). Within ML, the sub-
eld of deep learning (DL; LeCun et al., 2015 ) has advanced
apidly over the last decade. DL systems use large neural net-
orks ( Table 1 ) to extract relevant features from raw data and

earn from them, instead of requiring explicit engineering of
hose features. These data are often complex (such as images
r sounds) and big (thousands to millions of records). In this
eview, we cover ML, therefore, including DL. 

The success of ML is associated with the increase in com-
utational power over the last 20 years (Mitchell, 1999 ),
ut also with the increasing volume of available data (Jor-
an and Mitchell, 2015 ), which led to the development of a
roader diversity of algorithms, implemented in widely avail-
ble software. Scientists from many disciplines outside of com-
uter science are now actively applying ML methods, and
arine sciences are no exception, as exemplified by a recent

hemed set in this journal (Beyan and Browman, 2020 ). Most
xamples in this themed set actually relate to ecological ques-
ions, within which a central focus is the detection and quan-
ification of the abundance and distribution of living organ-
sms. ML is promising in marine ecology for several reasons.
i) Modern instruments produce large volumes of data (Tan-
ua et al., 2019 ; Guidi et al., 2020 ) that require scaling up
heir processing; the flexibility and adaptability of ML meth-
ds make them a natural choice for such automation. (ii) This
utomation can also help to reduce the biases necessarily in-
roduced by manual processing (e.g. Culverhouse et al., 2003 ),
ence improving reproducibility. (iii) Finally, ML is adept at
andling high degrees of uncertainty (i.e. dealing with noise
n the data) associated with unknown underlying mechanisms
r with non-stationary processes; therefore, they often yield
igh predictive power (Baker et al., 2018 ) and are increasingly
sed to gain an understanding of ecological processes (Lucas,
020 ). 
Within marine sciences, ML has been used more extensively

n some subdomains. Specialized reviews have already cov-
red some applications. For example, Liu and Weisberg (2011)
eviewed the use of Self-Organizing Maps in Oceanography,
ulverhouse et al. (2006) , Benfield et al. (2007) , and Iris-

on et al. (2022) reviewed ML techniques for the taxonomic

mailto:irisson@normalesup.org
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Table 1. Definitions of machine learning algorithms commonly used in marine ecology studies and cited in this re vie w. 

Method Description 

Decision tree (DT) A hierarchy (“tree”) of successive decision criteria based on the input variables, in order to label data 
instances. Popular implementations include the classification and regression trees and C4.5 algorithms. 

Random forest (RF) An ensemble method that combines predictions of multiple decision trees, in which each tree is trained 
on a bootstrap resample of the data. 

Gradient boosted trees, boosted 
regression trees (BRTs) 

An ensemble method that combines decision trees, each working on the residuals of the previous one. 
Gradient boosting in general is a smart way of combining multiple “weak” learners. 

Matrix factorization Method to find a representation of the input data in fewer variables by decomposing the original data 
matrix into two latent matrices of fewer dimensions. 

k-nearest neighbours New data points are labelled according to the average/majority label of its k-nearest neighbours. The 
value of k must be set beforehand. 

Linear discriminant analysis (LDA) A multivariate Gaussian distribution is fitted to the inputs for each class, in which each distribution has 
its own mean but a shared covariance matrix. New data instances are assigned to the distribution with 
the highest conditional probability. 

Support vector machine (SVM) An algorithm that tries to find an optimally separating linear boundary in a large transformed space of 
the input variables. 

Naive Bayes (NB) Classifier that combines Bayes’ theorem with the “naive” assumption that all variables are independent 
from each other; a type of Bayesian network. 

Bayesian network A directed acyclic graph in which each vertex (node) has a probability distribution or a conditional 
distribution, conditional on the value of its parents. 

Gaussian mixture model (GMM) A distribution (i.e. “mixture”) of multiple normal distributions is fitted to the data. Data points are then 
assigned to the closest normal distribution. 

k-means Data instances are clustered into k groups, in which the within-cluster variance is minimized. 
Artificial neural network (ANN) An algorithm that combines layers of nodes or “neurons”. Each neuron receives as input a weighted 

linear combination of the outputs of neurons in the previous layer. Nodes in the first layer represent the 
input variables. Weights are updated incrementally using training data, starting from the last layer. 
Predictions are done by feeding new data through the layers once the weights are set. 

Self-Organizing Map (SOM) An unsupervised artificial neural network, in which nodes in a grid are optimized to match with groups 
of similar data points. 

Convolutional neural network (CNN) A class of methods within deep learning. A convolutional neural network takes an array as input, and 
performs convolutions and reductions (pooling) on it to extract features, which are then fed to an 
artificial neural network. 

Region-based convolutional neural 
network (R-CNN) 

R-CNN is a deep learning architecture designed to recognize, localize (bounding box), and classify 
multiple objects in an image. Mask R-CNN is a variant that is able to recognize, segment, and classify 
individual pixels to multiple objects in an image. 

Deep belief network (DBN) A form of deep learning in which a generative graphical model is composed out of multiple layers of 
latent variables. Layers are connected with each other, but the nodes within a layer are not. 

Long short-term memory (LSTM) A type of recurrent neural networks that falls under deep learning. These types of networks are used to 
predict sequences of data. LSTMs provide feedback connections within the network, while many deep 
learning architectures only provide feedforward connections. 
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classification of plankton images, Reichstein et al. (2019) 
gave an overview of DL for earth sciences—including oceanic 
applications, and Malde et al. (2020) provided a brief re- 
view on recent developments in DL and highlighted both 

opportunities and challenges for its adoption in marine 
sciences. 

For researchers whose expertise is outside of computer sci- 
ences, ensuring a proper application of ML methods and keep- 
ing track of new developments is challenging. The aim of the 
present review is to serve as a resource for marine ecologists 
who want to apply ML to their own data. To that effect,
the section “A quick primer on machine learning” serves as 
a starting point for non-practitioners and introduces relevant 
vocabulary. The section “The setup of the database and its 
tags” describes our survey of the literature and the resulting 
structured database, on which the rest of the review is built.
From it, we identified that ML is used at two stages in eco- 
logical research: (i) to process the raw data collected and ex- 
tract ecologically meaningful datasets from it and then (ii) 
to combine these ecology-ready datasets together, and with 

others, to improve our understanding of ecological systems.
Therefore, the section “Machine learning to extract ecolog- 
ical information from observational data” describes appli- 
cations where ML was used to generate ecological datasets 
from various raw data types: images and video, optical spec- 
ra of single cells, acoustics, omics, geolocation records, and 

cean colour imagery and biogeochemical profiles. The sec- 
ion “Machine learning to improve ecological understanding”
escribes how ML can be used to gain knowledge on the
elationships between species and their environment (sec- 
ion “Predicting species abundance and distribution”), among 
pecies (section “Capturing dynamic ecological relation- 
hips”), and between us, humans, and marine ecosystems (sec- 
ions “Summarizing ecosystems through regionalization” and 

Supporting human decisions on ecosystem management”).
inally, the section “Discussion and perspectives” concludes 
n the commonalities among ML applications, suggests what 
s currently limiting them in ecology, and gives a general out-
ook of the field. 

 quick primer on machine learning 

n this section, we provide a short overview of the different
asks that ML can achieve, the overall process that ML studies
o through in the context of marine ecology, and then present
ifferent ML algorithms and software tools that implement 
hem. Interested readers are invited to consult classic texts to
eepen their understanding, either in an introductory manner 
James et al., 2013 ) or in a more mathematically oriented one
Friedman et al., 2001 ). 
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ML approaches are often divided between supervised and
nsupervised. Supervised systems are given a set of input data
oints and their corresponding output (measurements or la-
els assigned by experts). The output is often called the target
r response variable. In this case, an ML system learns the
apping from the input variables to the output variable (e.g.
redict fish diversity from environmental variables; Smoli ́nski
nd Radtke, 2017 ). Supervised systems can further be divided
nto classification, where the output is categorical and the task
s to assign a class to input data (e.g. classify plankton taxa
rom images; Gorsky et al., 2010 ), and regression, where the
utput is continuous or at least ordered (e.g. predict nutri-
nt concentrations from hydrological variables; Sauzède et al.,
017 ). A supervised task relevant to marine ecology is object
etection: The ML system locates objects of interest in a form
f regression, often of their bounding box (e.g. detect benthic
rganisms in images of the seafloor; Liu and Wang, 2021 ).
inally, sometimes, the target variable is only available for a
ubset of data points, a situation called semi-supervised learn-
ng. 

Unsupervised systems are given input data only and search
or patterns without the availability of a target variable. For
nstance, unsupervised methods can aim to cluster data points
ogether based on a definition of similarity (e.g. define distinct
ioregions based on community compositions; Sonnewald et
l., 2020 ), to define simpler representations for the data while
etaining salient properties, also known as dimensionality re-
uction (e.g. represent correlations between environmental
ariables through the first two dimensions of a principal com-
onent analysis; Zhao and Costello, 2019 ), or to construct a
odel for the distribution of the data (e.g. produce a smooth
ap of the density of active fishing vessels from point records;
roodsma et al., 2018 ). 
Additional steps can be performed before or within an ML

ipeline. An important part of many ML systems is the pre-
rocessing (e.g. feature normalization or smoothing) of input
ariables, in order to make them as relevant as possible. Fea-
ure extraction derives new informative variables from initial,
aw ones (e.g. automated extraction of measurements from
n image; Hu and Davis, 2005 ). Feature selection eliminates
ess relevant variables, either to improve performance or to
ain explainability thanks to a simpler system (e.g. removal
f correlated variables; Thomas et al., 2018 ). Finally, the co-
ariance structure in the input variables can be used to impute
issing values, which are common in field-collected data, or
etect outliers, i.e. values that go beyond the expected range
f covariance (e.g. a dissolved oxygen concentration too high
iven the temperature of the water). 

The general process for tackling an ML task is shown
n Figure 2 , and the successive steps are described in its cap-
ion. Of course, depending on the approach and study case,
ome steps will be modified. For example, target variables are
ot available in the case of unsupervised learning (step 2). In
L, feature extraction is included in the model (step 4). In
any situations, cross-validation is used in lieu of a dedicated

alidation set (step 6): The training set is split into subsets,
he model is trained on all subsets but one, and validated on
his remaining one; this process is repeated until each subset
as been held out once. Comparisons with an external dataset
step 8), although important, are rarely performed due to the
ack of such independent data. Finally, many ML models are
ever deployed (step 9), but serve to describe and understand
 particular dataset. 
Diverse ML algorithms have been developed to solve a large
ariety of tasks. In Table 1 , we provide a brief description of
hose commonly used in marine ecology publications. 

Finally, several open-source software libraries implement
any ML methods under a consistent interface. Thus,
nce one understands the general process (as highlighted
n Figure 2 ), exploring various methods is relatively easy and
rogress can be quick. The better known libraries of relevance
or marine ecology are scikit-learn ( https:// scikit-learn.org/ ;
edregosa et al., 2011 ) and, more recently, TensorFlow
 https://www .tensorflow .org ; Abadi et al., 2016 ) and PyTorch
 https://pytorch.org ; Paszke et al., 2019 ) in Python, the tidy-
odels collection of packages in R ( https://www.tidymodels.
rg/ ; Kuhn and Wickham, 2020 ), Flux ( https:// fluxml.ai/ ) in
ulia, or Weka in Java ( https://www.cs.waikato.ac.nz/ml/
eka/ ). 

he setup of the database and its tags 

s a basis for this paper, we built a database of literature ref-
rences covering the application of ML methods to marine
ata (supplemented by a few additional works, outside of this
cope, but providing context and cited in this review). In its
roadest definition, ML covers a wide array of methods and
ata types. Because many methods have been applied in ma-
ine ecology, it is extremely challenging to make an exhaus-
ive inventory. Therefore, the goal of this database is instead
o showcase the diversity of ML applications to marine data.
o do so, multiple keyword-based searches in various scholar
atabases were performed by the authors, including the key-
ords “machine learning”, “marine”, “ecology”, and varia-

ions thereof. The results were complemented with the per-
onal libraries of the authors, who span a range of specialties.
his (already large) nucleus of papers was further grown us-

ng the references cited within them, starting from the most
ecent and going backwards in time. This procedure was it-
rative (the references of the newly added papers being also
xamined) and the search was stopped after several rounds of
uch tentative additions did not yield any new reference. 

After assembling this large body of potentially relevant lit-
rature, the authors screened the suitability of each paper for
ts inclusion in the database according to the following cri-
eria: (i) the paper is peer-reviewed, (ii) its “Methods” sec-
ion describes the ML approach used, and (iii) it applies it
o a marine dataset. Because some classical statistical tech-
iques can be perceived as ML, we further reduced the scope
o studies that follow the general process of Figure 2 (i.e. in-
lude a validation and/or a test dataset). Then, papers were
rganized through tags, defining the type of data they analyse
“data: ∗” tag), ML tasks achieved (“task: ∗”), the algorithms
sed (“method: ∗”), and other useful characteristics (e.g. avail-
bility of code and/or data; “meta: ∗”). The content of the re-
ulting database, organized according to data type, is summa-
ized in Figure 3 . 

This selection process still yielded over 1000 papers, which
annot all be described in this review. To decide which ones
o cite, we considered the following additional criteria: the
aper (i) has been widely adopted by the research commu-
ity (e.g. is cited very often, defines a method widely applied),
ii) is easily reproducible because its methodology is well-
escribed and/or code and data are publicly available, or (iii)
s representative of a body of work not covered by criteria (i)
r (ii). 

https://scikit-learn.org/
https://www.tensorflow.org
https://pytorch.org
https://www.tidymodels.org/
https://fluxml.ai/
https://www.cs.waikato.ac.nz/ml/weka/
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Figure 2. The general process of (supervised) machine learning. After being collected (1), data need to be labelled (2), which means associating the 
inputs with a number or a name as output ( l = 1, 2, or 3 in the e xample). T he data are then split into training, validation, and test datasets (3) while taking 
its str uct ure into account (e.g . ensure that all labels are represented in each dat aset). Each input in the training set can be summarized into features (4). 
T he (transf ormed) training set is used to train the model (5), b y minimizing a loss function (L) that computes the v alue of one or se v eral perf ormance 
metrics (M). The validation set undergoes the same transformation as the training set, if any, and is then used to evaluate the predictive performance of 
the model, ideally with the same metric(s) (6). Se v eral v ersions of the model can be trained with different h yperparameters (i.e. settings, noted h ∗) of the 
machine learning system, and the one with the best performance on the validation set is retained. At this point, the model is frozen and its final 
performance is assessed on the test set (7). If external information, different from the original data, is available, it should be used to ensure that model 
predictions are reasonable, in addition to achieving a given performance (8). Finally, the model is ready to be deployed and used with newly collected 
data (9). 
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While this database is not exhaustive, the methodical ap- 
proach described above should avoid overt biases and large 
omissions. We therefore consider it representative of the 
diversity of approaches and of the relative volume of re- 
search in various domains. More importantly, we hope its 
use will become continuously maintained and updated by its 
users. To do so, users can browse the library online ( https: 
// www.zotero.org/groups/ 2325748/ wgmlearn/library ) and, if 
they wish to contribute, register to the WGMLEARN Zotero 

group ( https:// www.zotero.org/groups/ 2325748/ wgmlearn/ ), 
indicating what their contribution would be. The library in its 
state at the time of submission is available as Supplementary 
Material (S1). 

Machine learning to extract ecological 
information from observational data 

A first set of extensive and successful applications of ML 

is the processing of raw inputs (images, sounds, sequences,
tc.) into ecologically meaningful data, often in the form 

f tables with samples (locations, times, etc.) as rows and
ariables (taxa densities, biogeochemical quantities, etc.) as 
olumns. 

uantifying marine objects from images and video 

ethods to segment and classify objects of interest from im-
ges or video are not sensitive to whether the object is a
sh, a bird, or a piece of plastic debris. Yet, the processing
f this dominant ( Figure 3 ) type of data has a long history
hat is often siloed within specific communities, sometimes 
ith reason. For example, object segmentation is very differ- 

nt for benthic objects lying over a complex background than
or pelagic ones, imaged over a rather uniform background.
herefore, the literature is presented separately for benthos,
arine macrolitter, nekton, and plankton. The commonalities 

mong the methods used for these data, and others, are high-
ighted in the “Discussion and perspectives” section. 

https://www.zotero.org/groups/2325748/wgmlearn/library
https://www.zotero.org/groups/2325748/wgmlearn/
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Figure 3. Treemap representation of the papers in the database that can 
be categorized according to the type of data they use. The area of each 
rectangle is proportional to the number of papers (written in brackets). 
The broad data types are bold and coloured with a given hue. Sub-types, 
when they exist, are in variations of the same hue. 
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enthos 
nderwater imaging of the benthic environment has grown
onsiderably in the last few decades. We reviewed over 100
apers that used ML to process such data and all were pub-
ished after 2000 (the earliest is Soriano et al., 2001 ). Almost
alf of these focused on habitat mapping (e.g. Porskamp et al.,
018 ) and coral reefs and their inhabitants (e.g. Villon et al.,
018 ), followed by studies focussing on the detection of ben-
hic invertebrates (e.g. Kiranyaz et al., 2010 , 2011 ). The most
sed algorithms included support vector machines (SVMs),
andom forest (RF), convolutional neural networks (CNNs),
-nearest neighbours (kNN), and classification and regression
rees (C AR Ts). Those were used mostly for image/pixel classi-
cation (in more than half of the studies) on their own or with
ther algorithms, as previously pointed out by Lopez-Vazquez
t al. (2020) . More recently, object-based classification has re-
laced pixel-based classification (Zhang et al., 2013 ), espe-
ially using CNNs, which reached much higher performance
Gómez-Ríos et al., 2019 ; Piechaud et al., 2019 ). 

Growth in this field has naturally been accompanied by an
ncrease in the number of images of benthic fauna and habi-
ats. Though ML offers promise towards unlocking the cat-
logue of unused benthic images, many challenges remain.
here are growing concerns regarding the identification of
vailable data for training, the pre-training of deep nets, and
he handling of class imbalance in training datasets. For exam-
le, of the millions of images acquired each year on coral reef
urveys, just 1–2% are labelled (Beijbom et al., 2012 ). Lumini
t al. (2020) compared several CNN architectures and found
hat combinations of several models (i.e. ensembles) were the
ost successful for image classification of coral (and plank-

on) datasets. Fincham et al. (2020) , who classified images
rom across multiple benthic habitats, found an imbalance
n their training data due to the frequency of habitat occur-
ence, which was countered by using data augmentation to
rtificially expand the training by flipping, scaling, and rotat-
ng images. 

The challenge in accessing high-quality training datasets is
ow being addressed through developments such as standard-
zed reference catalogues (Althaus et al., 2015 ; Fisher et al.,
016 ; Howell et al., 2019 ), wide adoption of specialized anno-
ation software such as BIIGLE 2 (Langenkämper et al., 2017 ),
QUIDLE + (Williams and Friedman, 2018 ), and CoralNet
Beijbom et al., 2015 ), and annotated image databases e.g.
athomNet (Boulais et al., 2020 ). In addition, the develop-
ent of user-friendly software such as VIAME and Superan-
otate is making ML more accessible to benthic ecologists.
owever, for researchers to best apply these tools, much re-
ains to be learned regarding model performance under dif-

erent conditions (e.g. depending on the number of classes
sed), on training dataset size, on the use of single models ver-
us ensembles of models, etc. (Durden et al., 2021 ). 

acrolitter 
ach year, tonnes of human-created waste litters the sea sur-

ace, seafloor, and shorelines and poses a major threat to
ceanic ecosystems and coastal communities (NOAA, 2014 ).
xtensive surveys and research are conducted worldwide to
ssess litter distributions and concentrations in coastal ar-
as and the open sea, to identify litter accumulation zones
hrough numerical models, and to design management ac-
ions to promote litter removal and recycling (NOAA, 2016 ;

adricardo et al., 2020 ). To quantify marine litter, video and
hotography-based monitoring is increasingly adopted and
eployed on bottom trawl or nets, autonomous underwater
ehicles, remotely operated vehicles, unmanned aerial systems,
nd drones. However, litter identification is mainly done by
umans, which is time-consuming, costly, and often very sub-
ective, creating the need for automatic approaches (Canals et
l., 2020 ). 

Region-based convolutional neural networks (R-CNNs),
esigned for object detection, have been increasingly applied
o automatically detect and classify beached (Watanabe et al.,
019 ), floating (Lieshout et al., 2020 ), and seafloor (Politikos
t al., 2021 ) macrolitter items. Additionally, traditional CNN
lassifiers have been used to categorize litter types from seg-
ented images (Garcia-Garin et al., 2021 ). Such studies have

enerally shown that the classification and detection perfor-
ance of neural networks is high for floating litter ( > 80%)
ut often lower for underwater and seafloor litter, which can
e attributed to the challenges of underwater imagery (vari-
us camera angles, zoom levels, light shadings, litter buried in
he seabed). Several authors have used open and experimen-
al datasets for their analysis, focusing mainly on the predic-
ive performance of the algorithms. The applicability of ML
or marine macrolitter research has been recently reviewed in
ore detail (Politikos et al., 2023 ). 
Ultimately, DL has the potential to support monitoring of
arine litter by providing automatic, rapid, and scalable so-

utions. Nevertheless, a collection of images and video record-
ngs from real-world environments and more effective algo-
ithms are needed to support litter assessment goals set by
takeholders (Politikos et al., 2023 ). Finally, new imaging tech-
ologies such as infrared detection (Inada et al., 2001 ) or Ra-
an imaging (Gallager, 2019 ), which can identify plastics at

east in a laboratory setting, could be implemented and inte-
rated with ML techniques for improved results. 
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Nekton 

Monitoring of nekton informs decision-making for biodiver- 
sity conservation and sustainable fisheries management. Imag- 
ing surveys constitute a non-invasive complement to con- 
ventional monitoring. However, it yields large datasets and 

ML has come into play to automate and speed up the data 
processing. Nekton monitoring from images is challenging 
due to the diversity of tasks that need to be solved (e.g. species 
classification but also morphometric estimations) and the very 
different conditions in which images are collected (e.g. both 

underwater and on ships). 
In early fish imaging studies, classic ML methods were used 

with data obtained in controlled, experimental setups. For ex- 
ample, in Storbeck and Daan (2001) , the image acquisition 

system consisted of a camera and a laser, which allowed ob- 
taining images but also information on fish volume. They clas- 
sified six species of fish with 95% accuracy using a shallow ar- 
tificial neural network (ANN) based on fish contour features.
In Zion et al. (2007) , three edible fish species were sorted us- 
ing a minimum Mahalanobis distance classifier that combined 

geometric features and object contours as inputs to yield an 

accuracy of > 96%. 
In situ monitoring of nekton is largely focused on fish as 

well, but those studies present additional challenges due to the 
wide variations in observation conditions. Datasets are typi- 
cally collected with underwater cameras (Fisher et al., 2016 ),
but larger organisms, such as marine mammals, are also mon- 
itored via satellite images. Here also, before the development 
of CNNs, global features were used together with background 

modelling to detect and track objects under water. For exam- 
ple, Spampinato et al. (2010) developed a Gaussian mixture 
model (GMM) and moving average algorithm followed by an 

adapting mean-shift algorithm to detect and track fish in in 

situ videos, with an 85% success rate. Hu et al. (2012) reached 

> 97% accuracy in the classification of fish images based on 

texture and colour features, using two kinds of SVMs. Another 
approach to handle the change in appearance of objects under- 
water is to consider the information from a sequence of frames 
in a video rather than from only one frame, as done in Shafait 
et al. (2016) where, for ten species, accuracy ranged from 71 

to 100%. Finally, artificial alterations in images (i.e. data aug- 
mentation) are a common way to improve performance and 

generalization in CNNs. Allken et al. (2019) trained an In- 
ception 3 architecture on 5000 data-augmented images per 
species to reach 94% accuracy on a test set, while the baseline 
model, trained on the 70 original images, reached an accuracy 
between 50 and 71%. Bogucki et al. (2019) used a combina- 
tion of three CNNs to detect and identify North Atlantic right 
whales in aerial and satellite images. The first CNNs located 

the whales in satellite images, the second detected key points 
on the whales’ heads in aerial survey images, and the third 

identified the whales. 
Images of nektonic organisms are also collected outside 

of the water, by camera systems deployed on fishing vessels 
(known as electronic monitoring), which have replaced some 
on-board fishery observers. Deep models have become valu- 
able tools to process the videos collected (Helmond et al.,
2020 ). Specifically, Mask R-CNN was provided pixel-level 
masks and bounding boxes around organisms to automat- 
ically monitor catches on-board fishing vessels (Tseng and 

Kuo, 2020 ). Such masks can be used to automatically mea- 
sure the length of the detected objects. In Garcia et al. (2020) ,
egmentation performance was assessed with the intersection 

ver union (IoU) metric computed between the predicted and 

round truth masks. In this study, 1605 images were used to
rain a Mask R-CNN model, and an average IoU of 0.89
as obtained on 200 independent test images. Notably, in 

ore challenging images where fishes overlapped, the IoU was
ower, as expected. 

lankton 

ecause planktonic organisms are often micrometric to mil- 
imetric, high magnification is needed to image them, which 

mplies a short depth of field and can lead to many out-of-
ocus objects. In addition, in situ , images are dominated by
orphologically diverse detrital particles that are similar in 

ize to living organisms. Finally, the organisms themselves are 
lso incredibly diverse. Therefore, the automatic classification 

f such images is a difficult and interesting ML problem, and
emains a major bottleneck for their exploitation. 

The first attempts at machine-based classification of plank- 
on images derived various features from the images: statis- 
ical moments (which capture size, average lightness, etc.),
ourier transforms of the contour of the object, texture pat-
erns (Tang et al., 1998 ), and, later, grey-level co-occurrence 
atrices (Hu and Davis, 2005 ). Those features were input into
 classifier, often an ANN (Tang et al., 1998 ), an SVM (Hu and
avis, 2005 ), or a combination of both to classify images into
 limited (mostly fewer than ten) number of taxa. 

These approaches matured and the next decade saw the rise
f their application for numerous ecological studies. The most 
nfluential papers of this period are associated with popular in-
truments and software. For instance, Grosjean et al. ( 2004 )
nd Gorsky et al. (2010) , while presenting the ZooScan, high-
ighted that (i) the performance of different classifiers is largely
imilar and therefore mostly determined by the original fea- 
ures, (ii) this performance decreases strongly when the num- 
er of taxa to classify increases, and (iii) with 8 taxa, predictive
ower saturates beyond 300 example images per taxon in the
raining set. Sosik and Olson (2007) presented the Imaging 
lowCytoBot and described in detail the reasoning and pro- 
ess to derive features particularly relevant for phytoplankton,
rom the original images. Despite the large number of papers,
pplications of those techniques at broad spatial and temporal 
cales are still rare (but see Irigoien et al., 2009 ). 

The next evolution in this research was the increasing use
f CNNs, particularly since 2015, owing to a plankton im-
ge classification competition run on Kaggle.com (Robinson 

t al., 2017 ; Figure 4 ). However, the thoroughness of papers
sing this technique is inconsistent and many are published 

n conference proceedings that are difficult to access. By con-
rast, Ellen et al. (2019) provide an extensive overview of the
etup of a CNN from scratch, including the choice of its pa-
ameters, the inclusion of classic image features and other ex-
ernal information into the CNN’s classifier, and compare the 
NN’s performance with the more classical approaches de- 

cribed above. 
CNNs will likely be increasingly relied upon in the fu-

ure. Their implementation within dedicated plankton imag- 
ng software such as EcoTaxa (Picheral et al., 2017 ) or the
FCB dashboard will facilitate their routine use by a wide com-
unity of ecologists ( https://ifcb-data.whoi.edu/dashboard ).
he separation of their feature-extraction part from their 
lassification part seems like a promising avenue for transfer 

https://ifcb-data.whoi.edu/dashboard
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earning (i.e. using a model initially trained on one, often gen-
ral, dataset to quickly “fine-tune” it on a another dataset,
ere a plankton one; Orenstein and Beijbom, 2017 ), unsuper-
ised classification (Schroeder et al., 2020 ), and active learning
rocedures, whereby only few images representative of the di-
ersity of the dataset are shown to the user (Bochinski et al.,
019 ). 
An important problem in plankton image datasets, like in
any other biological ones, is class imbalance (a few classes
ominate the samples). Among several solutions, generating
ynthetic images in the rare classes using a generative adver-
arial network (GAN) was recently tested (Li et al., 2021 ).
lternatively, quantification approaches, which do not aim to
erfectly classify each individual object but rather to directly
erive concentration estimates for each class, deal intrinsically
ith the distribution among classes (Gonzalez et al., 2019 ). 

dentifying microorganisms from single-cell spectra

low cytometry has been used since the 1990s to study marine
icrobial communities. In flow cytometry, scatter and fluo-

escent properties of individual particles are measured at very
igh rates (i.e. hundreds to thousands of particles per second).
lthough most researchers manually analyse the resulting “cy-

ograms”, automated methods have become available for the
nalysis of such microbial flow cytometry data (Rubbens and
rops, 2021 ). 
Since the 1990s and early 2000s, artificial neural net-

orks (ANNs) have been developed to identify up to
2 lab-grown phytoplankton species using flow cytome-
ry (Boddy et al., 2001 ). Supervised single-cell classifiers
ere then successfully applied for the identification of het-

rotrophic bacteria as well, by combining flow cytometry
ith a nucleic acid stain in most cases. Besides ANNs, sup-
ort vector machines (SVMs), linear discriminant analysis
LDA), and random forests (RFs) have been successfully
pplied in this setup (Rajwa et al., 2008 ; Rubbens et al.,
017 ). These lab-based studies have demonstrated the use-
ulness of the information captured by flow cytometry for
acterial and phytoplankton identification. However, it is
ifficult to transfer this knowledge directly to samples taken
rom the field. As the identity of species present is often un-
nown, labels are not available to train supervised models.
hen analysing field samples, unsupervised clustering ap-

roaches are therefore used to group together cells that have
imilar optical properties. Examples include Gaussian mixture
odels (GMMs), graph-based clustering, and self-organizing
aps (SOMs) (Hyrkas et al., 2016 ; Sgier et al., 2016 ; Bowman

t al., 2017 ). 
In some cases, cell populations do not form distinct patches

hat can be isolated by clustering: when the complexity of mi-
robial communities is high (i.e. many taxa) or the resolution
s limited (e.g. due to the instrumental setup or when study-
ng heterotrophic organisms). Cytometric fingerprinting ap-
roaches do not try to identify cell populations; instead, they
ocus on modelling the multivariate distribution of the cyto-
etric data, by defining informative regions in this distribu-

ion and recording cell counts or densities in those regions.
ften, binning approaches are employed, although more ad-

anced strategies have become available as well, e.g. by over-
lustering the data using a GMM (Rubbens et al., 2021 ) or by
n automated deleting, merging, and shrinking of Gaussian
ixtures (Bruckmann et al., 2022 ). 
A few hybrid approaches have been proposed for freshwa-

er samples, in which information from laboratory cultures is
sed to analyse natural samples. RF classification was used to
ifferentiate noise from signal using lab-grown cultures and
hen used to remove the noise in natural samples (Thomas et
l., 2018 ). Learned representations of lab-grown cultures can
lso be used as proxies to describe the dynamics of a microbial
ommunity in a natural sample (Özel Duygan et al., 2020 ). 

Raman spectroscopy is an alternative, information-rich,
ingle-cell technology for the identification of marine microor-
anisms. Spectra typically contain many more variables than
raditional flow cytometry data; therefore, the use of convolu-
ional neural networks (CNNs) should be beneficial to sum-
arize this information and get to single-particle identifica-

ion. When a CNN was trained on Raman spectroscopy data,
t resulted in high classification accuracy for 13 marine mi-
roorganisms ( ∼95%) but similar to that of SVM and LDA,
robably due to a low sample size (Liu et al., 2020 ). 

escribing ecosystems with acoustics 

ight attenuates faster in water than in air, limiting cameras
o observing a small volume (albeit at high resolution). Sound
ropagates over long distances and is used to monitor the
cean interior. Sound also samples larger volumes of water
han towed nets and can be used in areas that are otherwise
ifficult to reach, such as deep water and rough bathymetry.
oth active sensors, which emit sound and measure the re-

urned echoes, either from organisms in the water column or
rom the seabed, and passive sensors, which just “listen”, are
ommonly used in marine science. The following text is orga-
ized along those categories. 

ctive acoustics for target classification 

ctive acoustics are widely used in fisheries and aquacul-
ure to evaluate the spatial and temporal distributions of or-
anisms, measure their size distribution, and calculate pop-
lation structure, as well as characterize the behaviours of
pecies. In all cases, the analysis starts with the identification
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of the returned echo, also called target classification (Kor- 
neliussen, 2018 ). This process frequently involves manually 
checking, cleaning, processing, and scrutinizing the echogram 

features. Target objects are then delineated and ascribed to 

species using “expert”knowledge gained from biological sam- 
ples. This heavy dependence on manual operations makes 
the process time-consuming and vulnerable to bias; scalable 
and reproducible methods, such as ML-based approaches, are 
therefore needed. 

Early attempts to automate target classification typically 
used deterministic features computed from the data, using 
details in individual echo pulses (Rose and Leggett, 1988 ) 
and/or school-based features like shape or energy, as well as 
auxiliary information like location or depth; this information 

was passed to a range of classifiers. Artificial neural networks 
(ANNs) were used early on (Cabreira et al., 2009 ; Figure 5 ).
Random forests (RFs) were used with school-based features 
and auxiliary information, for fish identification (Fallon et al.,
2016 ). Peña ( 2018 ) recently reviewed clustering techniques for 
acoustic data and concluded that expectation-maximization 

(EM) clustering is the only technique that properly separates 
acoustic signatures (and noise), after a supervised initializa- 
tion. 

Wideband or multi-frequency echosounders added the fre- 
quency dimension to the data, which allowed for improved 

discriminatory power. Using the frequency response usually 
involved averaging over certain ping- or range-bins and com- 
paring the scatter distributions to the properties of known ag- 
gregations. Using the full broadband echo spectrum, an RF 

classifier was successful in classifying individual fishes (Gugele 
et al., 2021 ). 

More recently, convolutional neural networks (CNNs) were 
used to classify the entire echogram and identify the primary 
species on patches of echo (Hirama et al., 2017 ; Figure 5 ).
hang and Li ( 2018 ) used simulated data to compare dif-
erent classifiers using different features and CNNs reached 

he best performance. Regions of interest, identified on real
ata, were more accurately identified by CNNs with various 
rchitectures (ResNet, DenseNet, Inception) than by a sup- 
ort vector machine (SVM) classifier working on traditional 
anual features (Rezvanifar et al., 2019 ). CNNs have also
een used for pixel-level predictions (i.e. segmentation) on 

aw acoustic data, using a U-net architecture (Brautaset et al.,
020 ) or Mask-Regional CNN (Marques et al., 2021 ), trained
n manually labelled data. Such supervised methods require 
arge amounts of training data, while recently developed semi- 
upervised methods allowed only ∼10% of the training data 
o be labelled (Choi et al., 2021 ). 

ctive acoustics for seabed and sediment mapping 
ctive acoustics are also used to map seabed topography 
nd sediment cover, which condition the type of benthic bio-
ogical community that can develop. Various methods reach 

igh spatial resolutions and accuracy, such as single-beam 

chosounders, sidescan sonars, and reflection sismographs,
ut multi-beam echosounders (MBES) are the most cost- 
ffective for mapping large areas (Anderson et al., 2008 ;
rown et al., 2011 ). Bathymetry and backscatter data (and

heir derivatives) are interpreted in order to characterize the 
ype of seabed substrate. For a thorough description of con-
entional sea bottom classification systems, see the extensive 
ork of Hamilton (2001) . 
One major challenge for seabed mapping is that the man-

al interpretation of seabed features from acoustic data is
ery time-consuming and highly subjective. This explains the 
ncreased interest for automated approaches, including in- 
ersion algorithms, image-processing techniques, and, mostly,
L (Brown et al., 2011 ; Stephens and Diesing, 2014 ). 
In the 1990s, the early ML approaches were ANN, e.g.

tewart et al. (1994) , who successfully classified three differ-
nt seafloor types based on sidescan sonar data. Dartnell and
ardner (2004) used hierarchical decision trees (DTs) trained 

n four types of images (backscatter intensity and three vari-
nce images). Using 60 ground truth sediment samples, they 
redicted seafloor types in Santa Monica Bay with an accuracy
f 72%, which was better than other automated classification 

ethods at the time. 
Since then, a variety of ML methods have been scruti-

ized through comparative studies (Ierodiaconou et al., 2011 ; 
tephens and Diesing, 2014 ; Shao et al., 2021 ). The classifica-
ion algorithms were very diverse, covering tree-based meth- 
ds (DT, random forest—RF, Quick Unbiased and Efficient 
tatistical Tree—QUEST, and Classification Rule with Un- 
iased Interaction Selection and Estimation—CRUISE, etc.),
VMs, maximum-likelihood classifiers (MLCs), and ANNs. In 

any cases, ML-based approaches were not significantly dif- 
erent from one another but were vastly superior to the usual
anual interpretation procedures. 
Recently, Cui et al. (2021) demonstrated how a deep belief

etwork (DBN) based on fuzzy ranking feature optimization 

an be used to map sediment distribution over large areas.
uzzy ranking is a technique used to identify the feature com-
ination, derived from the MBES data, that is most appro-
riate for the DBN to correctly classify the seabed sediment
ype. The accuracy of the DBN proved higher than that of five
ther supervised classification models (DT, RF, SVM, MLC,
nd ANN). 
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assive acoustics monitoring 
assive acoustic recordings are a reliable and cost-effective
ethod to monitor habitat use, distribution, density, and be-
aviour of species over space and time. They can be obtained
rom boats, autonomous devices (either fixed or moving ones),
abled stations, and animal tags, making them usable in a
ariety of situations (Kowarski and Moors-Murphy, 2021 ).
owever, because of their relative ease of use, hydrophones
uickly generate large datasets that require automation to ex-
ract information from them (Gibb et al., 2019 ). 

The most common approach to process acoustic data is
o detect and classify specific acoustic events in a super-
ised manner. Sound source classification studies have pri-
arily focused on shipping (Zaugg et al., 2010 ) and mam-
als’ vocalizations (66 out of the 101 references we recorded;
ittle and Duncan, 2013 ). In the latter, detection and classifi-
ation algorithms have been used to identify species (Bermant
t al., 2019 ), specific calls (Bergler et al., 2019 ), or even di-
lects and individuals (Brown et al., 2010 ). ML can also be
sed to localize the position of, or estimate the range to, a cer-
ain source without the need to model the sound propagation
Niu et al., 2017 ), outperforming conventional matched field
rocessing methods. Another application is to relate proper-
ies of the source with characteristics of the sound, through
egression; these properties included the size of male sperm
hales (Beslin et al., 2018 ) or fish abundance (Rowell et
l., 2017 ). In addition, ML can be used for acoustic source
eparation, a problem known as the cocktail party prob-
em (Bermant, 2021 ). Finally, approaches to characterize en-
ire habitats from their soundscape have also been explored
Lin et al., 2019 ). 

A common approach is to extract human-engineered fea-
ures from the sound and use them as input for an ML algo-
ithm. These features can be derived from the time, frequency,
r cepstral domain (transformation of the data to highlight pe-
iodic signals), or based on the full image of the spectrogram,
 visual representation of sound intensity per frequency as a
unction of time (Sharma et al., 2020 ). The algorithms used
or classification include SVMs (Jarvis et al., 2008 ), RFs (Mal-
ante et al., 2018 ), Gaussian mixture models (GMMs; Roch
t al., 2011 ), and k-means (Weilgart and Whitehead, 1997 ),
mong others. More focus has been put on identifying which
eatures are relevant for the classification and characterization
f sound events than on which classifier performs best. Often
hese features or other rule-based signal processing techniques
re also used to first segment the data and then ML is used to
lassify the detected segments. 

Advances in image and speech-recognition algorithms have
een applied to underwater sound, reducing the amount of
reprocessing and improving performance and generaliza-
ions (Schröter et al., 2019 ). In DL approaches, sound is
ften converted into a spectrogram, which is considered as an
mage and input into a convolutional neural network (CNN)
or classification, regression, or feature extraction and clus-
ering (Bermant et al., 2019 ; Thomas et al., 2020 ). However,
ecently some models have been developed that are applied
irectly on the waveform (Roch et al., 2021 ). 
In the marine context, sounds of interest can be very

parsely occurring and datasets can comprise long periods of
ime. This leads to highly imbalanced datasets. This imbal-
nce is usually solved by first detecting and then classifying
he detected sounds, where the detection step is a rule-based
ignal-processing algorithm and the classification step is a DL
pproach (Stowell, 2022 ). However, the biggest limitation for
he application of ML to passive acoustic recordings is the lack
f knowledge regarding which sounds are produced by which
pecies, because visual surveys to associate sound with images
f the species are often impossible. This leads to a lack of data
nnotation and limits the usage of supervised ML approaches.
o compensate for the lack of ground-truth data, unsupervised
lustering algorithms are being developed to acquire general
nformation about the ecology of certain habitats (Ozanich et
l., 2021 ). 

rofiling biological communities with 

nvironmental genomics 

he study of nucleic acids obtained from an environmental
ample is coined as environmental genomics (or meta-omics).
n marine ecology studies, the genetic information usually
omes from a community of organisms rather than from a
ingle specimen, which is our focus here. Metabarcoding (am-
lification by polymerase chain reaction and sequencing of a
axonomically informative gene) allows documenting biologi-
al communities in terms of species presence and proportions.

etagenomics (shotgun sequencing of a complex mixture of
enomic DNA) provides information of random sections of
enomes, allowing us to gain insight into both taxonomy and
unctions. Metatranscriptomics (shotgun sequencing of iso-
ated RNA transcripts) provides similar information for genes
ctive at the time of sampling. 

ML approaches have long been used for genomics data
nalysis. This includes both translating raw signals into nu-
leotides using base-calling algorithms (Wick et al., 2019 ) and
equence data analysis. For instance, hidden Markov models
ave been extensively used for functional annotations, multi-
le sequence alignments (Yoon, 2009 ), and more recently for
iral signatures detections in metagenomic datasets (Ponsero
nd Hurwitz, 2019 ). However, few studies have applied ML
o strictly marine meta-omics data. We therefore provide a
eneral overview of the analysis of metabarcoding data and
ighlight some ML applications to marine data. 
Metabarcoding datasets are usually processed by well-

stablished bioinformatics software, e.g. QIIME 2 (Bolyen et
l., 2019 ), which translates raw sequences into statistically ex-
loitable species-to-sites count matrices. Sequences are often
rouped into operational taxonomic units (OTUs) or ampli-
on sequences variants (ASVs) based on their similarity. These
equence units then serve as a proxy for species/strains to doc-
ment biodiversity changes. Current algorithms to cluster se-
uences into OTUs or ASVs are VSEARCH (Rognes et al.,
016 ), which relies on an arbitrary similarity cutoff to delin-
ate OTUs (e.g. 97%), SWARM (Mahé et al., 2015 ), which
ggregates neighbouring sequences to abundant, supposedly
enuine, seed sequences, or D AD A2 (Callahan et al., 2016 ),
hich uses base calling values to separate spurious from gen-
ine sequences. These two latter methods find more “natu-
al” boundaries of OTUs and, as such, can be considered as
nsupervised approaches. Some OTUs are then assigned a
axonomic name based on similarities with known sequences
rom curated databases (e.g. PR2, Guillou et al., 2013 ; SILVA,
uast et al., 2013 ). To this end, several ML-based methods
ave been developed, including naive Bayes (NB) classifiers
the RDP classifier, Wang et al., 2007 ) and classification trees
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using k-mers distributions across sequences (Murali et al.,
2018 ). More recent work successfully applied convolutional 
neural networks (CNNs) to process and taxonomically anno- 
tate raw metabarcoding data faster, without relying on oper- 
ational OTUs or ASVs (Flück et al., 2022 ). 

Resulting OTU-to-site count matrices are then amenable 
to biodiversity analysis using compositionality-aware mul- 
tivariate statistics (Quinn et al., 2019 ). For example, ML 

allows routine monitoring of the impact of industries on ma- 
rine biodiversity. Based on metabarcoding datasets labelled 

with ecological states obtained by conventional methods, ran- 
dom forest (RF) models can be trained to assess the eco- 
logical status of new samples, based on their metabarcoding 
profiles alone. This is faster and more cost-effective than 

conventional morpho-taxonomy approaches, enabling scal- 
ing up the spatio-temporal scales of biomonitoring programs 
(Cordier et al., 2018 ; Frühe et al., 2021 ). 

Network ecology research has been developed on interac- 
tions between macro-organisms (e.g. plant-pollinator interac- 
tion networks), but many interactions remain difficult to ob- 
serve and validate. This is especially true within microbial 
communities, for which statistical frameworks have been de- 
veloped to detect co-occurrence patterns and include them 

into more holistic ecological studies. ML techniques can be 
used to predict species interactions (Vacher et al., 2016 ; Bo- 
han et al., 2017 ) and can outperform the identification of trait- 
matching combinations compared to generalized linear mod- 
els (Pichler et al., 2020 ). Microbial networks can be inferred 

from genomics data (Faust and Raes, 2012 ; Lima-Mendez et 
al., 2015 ) as a means to predict putative biotic interactions,
which opens new avenues for understanding the links between 

marine microbial communities and the large-scale function- 
ing of marine ecosystems (Guidi et al., 2016 ; Chaffron et al.,
2021 ). Finally, ML is expected to contribute to improve our 
capacity to analyse massive meta-datasets composed of nu- 
merous collated cross-study genomics data, by controlling for 
covariates (Wirbel et al., 2021 ). 

Quantifying and mapping fishing pressure from 

geolocation data 

Fishing and shipping activities are putting important pressure 
on marine ecosystems. They are often tracked using vessel 
monitoring systems (VMSs) or the automatic identification 

system (AIS), which transmits vessel locations at regular inter- 
vals (Thoya et al., 2021 ). VMSs are required by fisheries man- 
agement agencies for many commercial fishing vessels and the 
data are often confidential. AIS is designed for maritime safety,
for any type of vessel, and the data are more broadly acces- 
sible. These data are often extensively processed using ML to 

identify vessel and gear types (Russo et al., 2011 ; Marzuki et 
al., 2018 ; Taconet et al., 2019 ). 

Many studies have classified fishing vs. non-fishing be- 
haviours using artificial neural networks (ANNs; Bertrand 

et al., 2008 ; Russo et al., 2014 ) and random forests (RFs; 
Ducharme-Barth and Ahrens, 2017 ; Behivoke et al., 2021 ). To 

do so, the movement characteristics of vessels across space,
time, and habitats are often studied and summarized before 
being provided to the ML classifier. Kroodsma et al. (2018) 
trained convolutional neural networks (CNNs) with AIS data 
to identify fishing vs. non-fishing behaviours and fishing gear 
types, producing the first map of the global footprint of fish- 
eries (Taconet et al., 2019 ). 
The outputs of these models have been used not only to
ssess fishing pressure but also in ecological studies to esti-
ate noise impacts (Allen et al., 2018 ), assess marine spatial
lanning or monitor conservation areas (Robards et al., 2016 ;
hite et al., 2020 ), identify species distribution (Le Guyader

t al., 2016 ), minimize mammal strike risk (Fournier et al.,
018 ), and mitigate bycatch (Richards et al., 2021 ). 
To integrate fishing activity with the rest of the ecosystem,
L efforts on fishery geolocation data have used an expanded

uite of predictor variables. For example, several studies used 

oosted regression trees (BRTs) to relate fishing locations 
ith environmental information (e.g. sea surface tempera- 

ure) and then predict dynamic maps of fishing activity from
nvironmental data (Soykan et al., 2014 ; Crespo et al., 2018 ).
ther studies added bio-economic considerations into fisher 

ocation-choice frameworks, with ANNs (Dreyfus-Leon and 

leiber, 2001 ; Russo et al., 2019 ). By characterizing fishing
ehaviours using these broader features (e.g. environment,
io-economics), ML approaches provide a valuable foun- 
ation for operational, dynamic, ocean management tools 
hat support ecosystem-based fishery management in near 
eal-time (Hazen et al., 2018 ). 

eriving biogeochemical variables from satellite 

mages and floats profiles 

istorically, most in situ measurements used for the character- 
zation of ocean biogeochemical processes were acquired us- 
ng ships, resulting in critical undersampling at a global scale.
dvances in remote sensing (by ocean colour satellites) and in

itu robots now allow sampling marine bio-optical variables 
t unprecedented spatio-temporal resolution (Claustre et al.,
020 ). 
Yuan et al. (2020) provide a review of applications of DL

o environmental remote sensing for estimating atmospheric,
and, and oceanic physical, chemical, optical, and biogeo- 
hemical variables. One section is dedicated to the use of ML
or remotely sensed ocean colour parameters retrieval, mainly 
ocussed on the estimation of the chlorophyll-a concentration.
owever, ML has also been applied to remote-sensing data 

o derive fields of inherent optical properties of the seawa-
er (Ioannou et al., 2011 , 2013 ), p CO 2 (Landschützer et al.,
015 ), primary production (Mattei et al., 2018 ), phytoplank-
on community composition (Stock and Subramaniam, 2020 ),
articulate organic carbon (Liu et al., 2021 ), dissolved inor-
anic carbon (Roshan and DeVries, 2017 ), and nitrogen fixa-
ion rate (Tang et al., 2019 ), as well as perform atmospheric
orrection (Jamet et al., 2005 ; Brajard et al., 2012 ) ( Figure 6 ).

One remarkable example of using ML for ocean science is
he synergy between satellite observations and in situ profiles,
n particular from the Argo programs ( > 100000 currently).
auzède et al. (2016) used a multi-layer perceptron to ex-
end surface bio-optical properties to depth. This produces 
our-dimensional (i.e. longitude, latitude, depth, and time) 
elds of biogeochemical variables at global or regional scales,
hich fill in situ observational gaps. Such continuous fields 
re particularly valuable for the initialization and validation 

f biogeochemical models. They are now reaching operational 
tatus since four-dimensional fields of chlorophyll-a concen- 
ration and particulate organic carbon generated by these 
ethods have recently been made publicly available on the Eu-

opean online portal Copernicus Marine Environment Moni- 
oring Service. 
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Figure 6. Machine learning methods used with satellite imagery data. 
Artifical neural networks (in blue shades), and, in particular, multi-layer 
perceptrons, dominate the literature that was reviewed. 
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Finally, ML methods are also used to estimate the more
carcely measured biogeochemical variables from the more
ommonly measured physical ones. For example, an ANN
as trained to predict nutrient concentrations and carbon-

te system variables from over 250000 profiles of pressure,
emperature, salinity, and oxygen concentration (Bittig et al.,
018 ). The predictor variables can be measured with very high
ccuracy by autonomous floats and now ANN-based meth-
ds can spatially and temporally populate the fields of nu-
rients and carbon variables, which were previously loosely
esolved. MLPs have also been used to predict the phytoplank-
on community composition from profiles of fluorescence of
hlorophyll-a (Sauzède et al., 2015a ), making it possible to
ather and homogenize tens of thousands of fluorescence pro-
les available from historical databases, which could not be
ntegrated in global analyses before (Sauzède et al., 2015b ). 

achine learning to improve ecological 
nderstanding 

nce ecology-ready tables of data have been extracted from
aw sources (see section “Machine learning to extract infor-
ation from observational data”), they can be analysed to

ain a better understanding of socio-ecological marine sys-
ems (this section). Such studies traditionally use statistics, of-
en multivariate, and modelling to capture relationships be-
ween observed variables; this task is also amenable to ML.
n this section, we highlight how ML techniques are used
o relate species to their environment and, in particular, pre-
ict species distributions, detect dynamic interactions involv-
ng several species, and, finally, inform ecosystem management
y partitioning the environment in easier-to-understand units
hrough regionalization and fueling monitoring and decision-
upport tools. 

This field is even more difficult to map through literature
earches than the more technical studies presented in the pre-
ious section. Some searches with relevant keywords yielded
 10000 results, while others with minor differences yielded
nly hundreds. Therefore, in this section, even more than in
he previous one, we really focus on presenting papers that
howcase different approaches. 

redicting species abundance and distribution 

he ability for ML approaches to capture complex and non-
inear relationships, as well as their ability to work with miss-
ng and heterogeneous data, has driven their popularity for
he analysis of species–environment relationships. 

When data are sparse or heterogeneous, often also lead-
ng to high uncertainty, Bayesian ML methods have proven
seful. Fernandes et al. ( 2010 ) predicted fish recruitment us-
ng a naive Bayes (NB) classifier relying on spawning stock
iomass, climate, and weather data. Fernandes et al. (2013)
sed multi-dimensional Bayesian networks for a similar task
nd found that predicting three species simultaneously dou-
led the chance of being correct, compared to three single-
pecies models. Lehikoinen et al. (2019) used tree-augmented
B models to evaluate the influence of various environmental

actors, all heterogeneous in type and in spatio-temporal res-
lution, on coastal fish abundance. They note that some en-
ironmental factors are not relevant to predict average abun-
ances, but are important for extreme ones. 
Tree-based ensemble models such as random forests (RFs)

nd boosted regression trees (BRTs) have also proven useful
ith ecological data thanks to their versatility and ease of use.
nudby et al. ( 2010 ) found tree-based methods superior to

inear models in predicting species richness, biomass, and di-
ersity in coral reefs based on habitat variables. Suikkanen
t al. (2021) used RF regression to analyse the relationships of
oo- and phytoplankton (particularly cyanobacteria) in multi-
ecadal (but relatively sparse) monitoring data to find whether
elationships found in experiments could also be seen in field
ata. 
Species distribution models (SDMs) are frequently applied

o perform spatially explicit analyses of ecological data. They
uantify the relationship between species occurrence or abun-
ance and their environment and can be then used to predict
heir potential geographical distribution (Guisan and Thuiller,
005 ; Elith and Leathwick, 2009 ). A significant body of lit-
rature compared the performance of ML-based SDMs with
ultivariate linear regression or climate envelope methods,

enerally finding that ML methods yield better predictive per-
ormance but are prone to overfitting (e.g. Derville et al.,
018 ). 
The most widely applied ML method for SDMs is Max-

nt, with over 6000 published papers, which showcases the
ower and broad applicability of ML for ecological inference
Phillips and Dudík, 2008 ; Elith et al., 2011 ). Maxent works
ith records of a species present at given points in space and it-

ratively maximizes the probability of presence at these points,
redicted from functions of environmental variables at the
ame points (Phillips et al., 2006 ). But, many other ML ap-
roaches are also used in species distribution modelling, such
s decision trees (DTs; Hunt et al., 2020 ), BRTs (Elith et al.,
008 ; Cimino et al., 2020 ), RFs (Reiss et al., 2011 ), support
ector machines (SVMs; Knudby, 2010 ; Vestbo et al., 2018 ),
nd artificial (Benkendorf, 2020 ) and convolutional neural
etworks (CNNs; Deneu et al., 2021 ). These models have been
pplied to resolve a diverse range of ecological and conserva-
ion issues, including understanding species ecology (Brodie
t al., 2018 ), responses to current and future environmental
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change (Hindell et al., 2020 ), threat overlap (Welch et al.,
2018 ), and the design and evaluation of spatial management 
scenarios (Stock et al., 2020 ; Smith et al., 2021 ). Across all ap- 
plications, communicating the uncertainty of SDMs to stake- 
holders is critical. In general, estimating uncertainty within 

ML-based SDMs is difficult, and most solutions underestimate 
model uncertainty (Beale and Lennon, 2012 ; Watling et al.,
2015 ; Brodie et al., 2020 ). However, new approaches, such as 
Bayesian additive regression trees, are emerging and improv- 
ing our estimation of uncertainty (Carlson, 2020 ). 

Capturing dynamic ecological relationships 

As climate variability and long-term change drive non- 
stationarity in ecosystems, more research is needed to see how 

ML approaches can improve our ability to predict and fore- 
cast potentially changing species relationships with their en- 
vironment and other species. Latent (hidden) variable mod- 
elling provides one way to detect an underlying systemic 
change, or to approximate an ecosystem component that is 
not represented in the dataset. Trifonova et al. ( 2015 ) mod- 
elled the North Sea ecosystem using dynamic Bayesian net- 
works with hidden variables (DBN-HVs), and concluded that 
a hidden variable in the model managed to learn the zooplank- 
ton biomass variations in all modelled areas. Trifonova et al.
(2017) used this model to predict ecosystem responses under 
different scenarios. Uusitalo et al. (2018) and Maldonado et al.
(2019) created a DBN-HV model for the central Baltic Sea 
food web and found that the hidden variables replicated the 
regime shift, i.e. the drastic change in the ecosystem organiza- 
tion that has been reported by Alheit et al. (2005) and others.
These studies exemplify the ability to combine data analytics 
and domain knowledge through ML to provide explanatory 
models that provide new insight into ecosystem functioning.
Sander et al. (2017) used DBNs to infer ecological relation- 
ships, but note that presence–absence data may not provide 
enough signal for these models. Pichler et al. (2020) evaluated 

the ability of multiple ML methods to infer species interac- 
tions in the terrestrial domain, but similar approaches could 

be applied to marine data. 

Summarizing ecosystems through regionalization 

In recognition that the ocean is spatially and temporally het- 
erogeneous, its division into various types of regions (biore- 
gions, ecoregions, provinces, essential habitats, etc.) provides a 
means of simplifying and summarizing this heterogeneity into 

units amenable to further analysis and management. Pioneer- 
ing this approach was Longhurst et al. (1995) , who defined 

57 biogeochemical provinces mainly using regional variation 

of remotely sensed chlorophyll-a. In more recent years, ML 

techniques have been adopted to provide more objective clas- 
sifications. For example, bioregions have been defined based 

on chlorophyll-a dynamics using k-means clustering (Mayot 
et al., 2016 ) and hierarchical Iso Cluster classification (Welch 

et al., 2016 ). Multiple biophysical variables have been used as 
input to multivariate unsupervised clustering to define pelagic 
habitats (Hobday, 2011 ; Reygondeau et al., 2018 ) or track the 
spatial variability of ocean water masses (Phillips et al., 2020 ).
The concentration of biological organisms derived from sur- 
vey data (Santora, 2012 ), ecosystem models (Sonnewald et al.,
2020 ), and species distribution models (Welch and McHenry,
2018 ) has also been integrated into classifiers to define ecore- 
gions. Such ecoregions can be useful for spatial planning 
urposes since they are quite close to the biological targets
f such management procedures (Douglass et al., 2014 ). 

upporting human decisions on ecosystem 

anagement 

inally, we also need to evaluate human–ecosystem inter- 
ctions and define management strategies that support the 
ealth and sustainable use of marine ecosystems. These strate- 
ies are often defined in intergovernmental texts (e.g. the EU
arine Strategy Framework Directive) that summarize them 

n terms of quantifiable objectives; ML can help assess those
bjectives. For example, the likelihood to reach the goals
et by the European Union’s Water Framework Directive in 

inland was modelled using Bayesian networks (Fernandes 
t al., 2012 ). In another example, the accuracy of the auto-
atic classification of plankton images was assessed by check- 

ng whether it could provide zooplankton indicators for the 
U’s Marine Strategy Framework Directive (Uusitalo et al.,
016 ). 
Early warning regarding specific health indices or poten- 

ially harmful species is another area where the fast through-
ut of ML approaches can improve our practice. A major
ffort has been spent in predicting algal blooms affecting 
ecreational activities, fisheries, and shellfish farming (Camp- 
ell et al., 2013 ; Fernandes-Salvador et al., 2021 ). But, similar
pproaches are used for predicting fish recruitment (Dreyfus- 
eón and Chen, 2007 ; Fernandes et al., 2010 ) or forecast-

ng litter accumulations on beaches (Granado et al., 2019 ;
ernández-González et al., 2019 ). 
An international commitment to protect 10% of the ocean 

y 2020 showcased the importance of spatial planning as a
anagement tool for marine resources (Grorud-Colvert et al.,
019 ). ML methods, such as automated plankton image clas-
ification, are used to monitor and inform the creation of
arine protected areas (Muñoz et al., 2017 ; Benedetti et al.,
019 ). Dedman et al. ( 2017 ) developed a tool to simplify the
se of marine spatial planning tools based on boosted regres-
ion trees. Bayesian networks in combination with geograph- 
cal information systems are being used to analyse conflicting 
ses, e.g. how to reallocate aquaculture and different fishing 
eets with minimal harm (Coccoli et al., 2018 ; Gimpel et al.,
018 ), to plan the locations of new activities such as wind
nergy (Pınarba ̧s ı et al., 2019 ), or to consider social and eco-
omic aspects in addition to environmental ones (Pınarba ̧s ı et 
l., 2017 ; Laurila-Pant et al., 2019 ). 

The efficient management of marine ecosystems would re- 
uire taking decisions that are informed by the current and
uture states of these systems. ML can be used to build such
ecision support tools. For example, fish abundance and re- 
ruitment are good indicators of the status of fish stocks, and
re used to set fishing regulations. But, small pelagic fish re-
ruitment does not follow traditional stock–recruitment rela- 
ionships, which is why environmental conditions were used 

o forecast recruitment using ML-based regression (Chen and 

are, 1999 ; Fernandes et al., 2015 ) and to influence fisheries
dvice (Fernandes et al., 2009 ). The ML-based species dis-
ribution models described above have been integrated into 

perational, dynamic, ocean management tools (Hazen et al.,
018 ; Abrahms et al., 2019 ), in which management and policy
ecommendations update regularly in response to changes in 

iological, environmental, economic, and societal conditions 
Welch et al., 2019 ). 
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Figure 7. Amount of references per time period using one of the four 
most common ML methods in the database. To a v oid being misled by 
the global increase in the number of scientific publications, in any field, 
the amount is expressed as the proportion of the total number of 
references published in marine ecology in each time period (defined as 
the result of the query “WC = (Ecology) AND TS = (marine OR sea OR 

ocean)” on the Web of Science, i.e. Web of Science category is Ecology 
and title, abstract, or k e yw ords contain “marine”, “sea”, or “ocean”). All 
curves increase through time, which means that ML is becoming more 
common within the field of marine ecology. 
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iscussion and perspectives 

eneral trends in machine learning applications: 
ata, methods, and tasks 

he diversity in the sections above shows that ML is now used
n many fields of marine ecology, albeit at different levels of
dvancement. Several factors can account for the success of
he application of ML in a given scientific domain. Based on
he examples above, a major one seems to be the type of data:
pplications of ML were more successful when they could

ely on techniques developed and tested in other fields, which
ould be repurposed to marine ecology because data were of
he same type. This contributes to explaining the dispropor-
ionate number of applications of ML to images and videos
rom cameras, which constitute ∼45% of the references in the
atabase to which ∼15% of references using satellite imagery
an be added ( Figure 3 ). Many of those applications benefited
rom advances in ML motivated by the ubiquity of images in
veryday life. For example, several CNN architectures were
eveloped to classify general-purpose image datasets (often
mageNet; Deng et al., 2009 ), and when they were success-
ul at this task, they also proved relevant for marine appli-
ations; for example, the ResNet architecture alone is used
n at least 60 papers in the database. Beyond architectures,
he weights that result from training CNNs on such large
eneric datasets are freely distributed by companies (to pro-
ote their technology) and can be slightly modified by a short

etraining on a marine dataset to yield domain-specific tools
e.g. detect fishes in recordings from underwater cameras).
his is called fine-tuning and requires much fewer resources

han training from scratch, while yielding very good results.
his general approach, called transfer learning, is ubiquitous

n the applications of CNNs reviewed above. On the other
and, single-cell spectra obtained from cytometry, for exam-
le, constitute a very peculiar type of data and therefore do
ot benefit from ready-made models; applications of ML to
uch data are therefore more difficult and scarcer. While se-
uences of nucleic acids are not common in everyday life, their
nalysis could still benefit from architectures and pre-trained
eights designed for Natural Language Processing, since both
re sequences of tokens (e.g. Quang and Xie, 2016 ). How-
ver, practically, omics often rely on well-established bioinfor-
atics pipelines, which are not specific to questions in marine

cology and in which some steps do not involve ML; this con-
ributes to explaining the relative scarcity of references from
his large field here. 

In terms of methods, the four most used algorithms in
arine ecological research were, in increasing order of pop-
larity, support vector machines (SVMs), random forests
RFs), convolutional neural networks (CNNs), and non-
onvolutional artificial neural networks (ANNs; mostly multi-
ayer perceptrons). ANNs have been used for a long time,
hich partly explains why they top the list of algorithms;

VMs, and then RFs, came after 2000; since 2013, the us-
ge of CNNs has increased steeply and now they are the ML
ethod most commonly found in new publications ( Figure 7 ).
he timing of the usage of those methods in marine ecol-
gy largely reflects their appearance or popularization in gen-
ral: 1995 for SVMs (Cortes and Vapnik, 1995 ), 2001 for
Fs (Breiman, 2001 ), and 2012 for CNNs (Krizhevsky et al.,
012 ); this highlights an early adoption of ML innovations
y the marine ecology community. In addition, after the ini-
ial adoption, the proportion of studies using them among all
tudies in marine ecology has grown steeply ( Figure 7 ), which
s further evidence of a particular interest for ML approaches
n this community. The growth of CNNs, which have pro-
ressed the fastest, is associated with their popularity for sev-
ral data types. Indeed, CNNs take so-called “tensors” as in-
ut: multidimensional arrays of numbers. Any type of data
hat can be made to look like an array within which the prox-
mity between similar numbers is meaningful is amenable to
eing processed by CNNs. For example, while sounds can
e treated as such, most acoustics records can also be repre-
ented as spectrograms (intensity as a function of time and fre-
uency), which are tensors and can be processed with models
nitially designed for images (Stowell, 2022 ). Finally, depend-
ng on the output shape and the loss function used, the same
etwork architecture can be used for regression, classification,
bject detection, etc. (Goodwin et al., 2022 ). 
Among the papers tagged in the database, ML algorithms

re most often used to perform classification ( ∼60% of ref-
rences) or regression ( ∼20%), and, finally, object extraction
detection or segmentation, ∼15%). Yet, the classification of
ignals, at least, first requires their extraction from the origi-
al data (e.g. the detection of an event in a continuous acoustic
ecording, the segmentation of an organism from an image), so
he discrepancy in usage is puzzling. Actually, most automated
ignal extraction is performed using rules deterministically ap-
lied to the raw data. Those rules can be as simple as thresh-
lding (e.g. considering all adjacent dark pixels in an image
s objects of interest) but are often much more complex and
equire both domain expertise to design and signal process-
ng know-how to implement. This hindered the development
f automated solutions and explains why objects of interest
ere (and are still) often extracted manually from underwa-

er videos or acoustics recordings in operational deployments
e.g. Solsona-Berga et al., 2020 ). DL should enable ecologists
o forgo some of the expertise in signal processing and allow
xtracting signals of interest only from labels placed on a sub-
et of the data. The relative scarcity of their application has
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likely several explanations. First, deep models for object de- 
tection/segmentation are newer (Girshick et al., 2014 ) than 

for classification (Lecun et al., 1998 ) and their applications 
lag accordingly. Second, they are a bit more complex to set 
up than classifiers: Drawing bounding boxes or segmentation 

masks is more time-consuming than sorting files into folders,
training classifiers can often start from just this set of sorted 

raw files, while object detectors/segmenters require text files in 

a specific format containing the labels linked to the raw data 
files, etc. However, as labelling tools (e.g. Labelbox), architec- 
tures, and reference datasets (e.g. Katija et al., 2022 ) continue 
to improve, such applications are likely to explode in the fu- 
ture. 

Finally, supervised ML approaches are much more com- 
mon than unsupervised ones. This is partly linked with the 
dominance of classification tasks in the references reviewed.
Supervised classification is the archetype of task where ML 

techniques outperform all others: mimic a simple human ac- 
tion, learn it only from examples generated by humans, and 

be evaluated almost solely on the quality of the prediction. 

Limitations for the application of machine learning 

Machine learning is particularly effective when the primary 
concern of ecologists aligns with the performance metric op- 
timized by the technique (e.g. how many images are classified 

as the correct species?). Conversely, when focus is on both per- 
formance and explainability (e.g. how does yearly recruitment 
intensity depend on environmental variables?), conventional 
statistics are often chosen over ML. Indeed, ML approaches 
are commonly qualified as “black boxes”, while people trust 
models more when they understand the “why” and “how”
of their results (Shin, 2021 ). So, when it comes to decision 

making at least, inherently explainable models are preferred 

(Rudin, 2019 ). However, those black boxes can be studied,
by investigating the importance of each input variable or data 
point independently through randomization, for example (Lu- 
cas, 2020 ). These developments are not unique to ecology and 

“explainable AI” is an active research domain (Barredo Arri- 
eta et al., 2020 ). 

Another limitation, inherent to ecological data, is the long- 
tailed distribution of almost everything in the natural world 

(Preston, 1948 ). Ecosystems are dominated by some species 
and some processes, yet many others are present at low 

abundance/frequency and can be key in the response of the 
system to changes. Such distributions bias the usual loss 
functions or evaluation metrics (e.g. least-square error in 

regression, accuracy in classification) and wide data tables 
(number or variables larger than the number of observa- 
tions) favour overfitting to the training dataset, which many 
ML techniques are already prone to. Dealing with imbal- 
anced datasets is a current research topic in ML: In 2020 

and 2021, dozens of papers targeted long-tailed distribution 

and/or imbalance at the Conference on Computer Vision and 

Pattern Recognition (CVPR), the major conference in the field 

(e.g. https:// openaccess.thecvf.com/ CVPR2021 , searching for 
“long-tail” or “imbalance”). Some of these solutions have 
been implemented for marine applications, such as rebalanc- 
ing the training data using data augmentation (Fincham et 
al., 2020 ) or generative adversarial networks (GANs; Li et 
al., 2021 ), ensembles of several models (Kerr et al., 2020 ),
transfer learning from models trained on balanced data (Lee 
et al., 2016 ), etc., but the problem is not solved in the general 

case. 
A consequence of this imbalance is that some of the, nu-
erous, rare classes can largely change in proportion from 

ne data sample to the next, causing a mismatch between the
lass distribution in the training dataset (usually an average 
f several samples) and in the new data on which the model
ill ultimately be applied. This problem, known as “dataset 

hift”or “concept drift” (Moreno-Torres et al., 2012 ), is a very
ommon pitfall in the application of ML to marine ecology
roblems (e.g. Langenkämper et al., 2020 ) and for the trust-
orthiness of ML models in general (D’Amour et al., 2020 ).

ndeed, it leads to poor predictive performance that is not nec-
ssarily detected when the model is evaluated. Detecting it re-
uires specific validation methods, such as computing eval- 
ation metrics per sample, to capture the inter-sample vari-
bility in distribution (Gonzalez et al., 2017 ). When such a
hift is detected, retraining the model with a new training set
ncorporating more of the natural variability (Langenkämper 
t al., 2020 ) or discarding low confidence predictions (Plonus
t al., 2021 ) can help reduce its effect. For classification-type
roblems, the transition towards quantification approaches,
hich estimate abundance per class directly, rather than clas- 

ifying each object, and use the class distribution, can help alle-
iate it (Gonzalez et al., 2019 ; Orenstein et al., 2020 ). Overall,
he transferability of a model learned on a given dataset to a
ataset with different characteristics is called “domain adap- 
ation” and is also an active field of research (Kouw and Loog,
019 ). 
Finally, ML models are only as good as the datasets they are

rained on. Those training datasets are generated by humans,
ho can make mistakes. For example, in the hard task of dis-

riminating among six dinoflagellate species with large intra- 
pecies morphological variations from images, trained scien- 
ists achieved 67–83% self-consistency and only 43% consen- 
us (Culverhouse et al., 2003 ). For the estimation of benthic
over from quadrat pictures in coral reefs, self-consistency of 
xperts ranged from 50 to 90% depending on the type of cover
Beijbom et al., 2015 ). One upside is that, in both cases, ML
odels trained on a reference dataset reached performance 

imilar to or higher than human labellers when their incon-
istency is taken into account. Another use of ML can be to
esolve ambiguous labels and present such potential mistakes 
o new experts (Schmarje et al., 2022 ). Finally, a way of allevi-
ting the effect of inconsistent labels is to use additional, inde-
endent “ground truth” validation information. For example,
n Lekunberri et al. ( 2022 ), estimations of species abundance
nd size inferred with ML were compared with independent 
amplings and counting at port when fish were landed. While
t is impossible to know which is best between the model-
enerated or on-the-ground estimates, their discrepancies al- 
ow narrowing down on potential biases or difficulties for the
xperts to accurately label the data. 

eneral outlook 

s remarked above, so far, applications of ML in marine ecol-
gy have closely followed the development of techniques in 

omputer sciences ( Figure 7 ). However, innovation in ML is
ccelerating and it may be difficult for marine ecologists to
eep track of it. Current developments include transformer- 
ased architectures and diffusion models. Transformers can 

e seen as an alternative to LSTM recurrent neural networks
 Table 1 ) for sequential inputs, such as language; a well-
nown everyday application is ChatGPT (Chat Generative 

https://openaccess.thecvf.com/CVPR2021
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re-T rained T ransformer). Their extensions to images are
alled vision transformers (ViTs), which can be considered as
lternatives to CNNs; they have been topping the ImageNet
lassification challenge since their release (Dosovitskiy et al.,
021 ). The combination of text and vision models can be used
o learn the relationships between images and their captions.
ew sets of unlabelled images and potential labels can then
e placed in the space created by these relationships to la-
el images without any retraining (i.e. zero-shot learning); an
perational example is CLIP (Contrastive Language–Image
re-training). Diffusion models are improved alternatives to
enerative adversarial networks (GANs) and variational au-
oencoders to create synthetic images. They can be used to
ncrease the resolution of input images or create completely
ew images from text input; a popular example is Stable
iffusion. 
Now, how could these innovations percolate to marine

cology? Some applications are straightforward. For exam-
le, CNNs can simply be swapped for ViTs in image clas-
ification tasks to yield better results (Kyathanahally et al.,
022 ); similarly, GANs could be swapped for diffusion mod-
ls. Other applications would require more testing: There is
o guarantee that the text-to-image relationships learned by
LIP on images from the internet are relevant enough for

pecific tasks, such as fish species classification from under-
ater images, for example. Yet ML models have often been
iscovered to generalize outside their initial domain: Features
xtracted by a CNN trained on generic images (from Ima-
eNet) were found to be effective for plankton image classifi-
ation tasks (Orenstein and Beijbom, 2017 ). Still, the question
hether the potential improvements brought by these new de-
elopments are relevant to solving marine ecology problems
emains. Improved performance comes at the cost of larger
odels (25 M parameters for ResNet and 50632 M param-

ters for the ViT-H vision transformer; https://paperswithco
e.com/sota/image- classification- on- imagenet ), which require
ore data to train (Dosovitskiy et al., 2021 ). Such massive
atasets and the computing power to train on them are often
nly available in large private companies (ChatGPT and CLIP
re from OpenAI, the first ViT is from Google, etc.). While the
erformance benefit is measurable on well-defined challenges
8% increase in accuracy on ImageNet between the two mod-
ls above), the actual gains on the smaller, noisy, imbalanced
atasets of marine ecology, for which global accuracy may not
ven be a relevant metric, remain to be demonstrated; effort
ay turn out to be better spent elsewhere. 
Actually, the relative performance of existing solutions is al-

eady difficult to assess in most subdomains described above
ecause of the lack of standard benchmarks (see also Irisson et
l., 2022 for plankton imaging; and Politikos et al., 2023 for
acrolitter). Such benchmarks depend on the availability of
ublished (and labelled) datasets. The field is progressing on
hat end, with the release of datasets on e.g. plankton (Sosik
t al., 2015 ) and fish (Fisher et al., 2016 ) images, remotely
ensed images (Kikaki et al., 2022 ), or ship noise (Santos-
omínguez et al., 2016 ). However, other datasets, such
s images from electronic monitoring on ships, are gathered
y private companies that aim to use them to develop and
ell electronic monitoring solutions, which are either made
andatory by authorities or desired by fishing companies to

educe costs compared to human observers. For researchers,
he effort of gathering and labelling a dataset consistently is
ften huge and makes some people reluctant to distributing
he result openly, although the availability of referenceable
epositories (e.g. Zenodo) and citation tracking via Digital
bject Identifiers helps. After releasing datasets, the next steps
ould be to define evaluation metrics following guidelines

or proper benchmarking (Weber et al., 2019 ) and to pro-
ide tools to easily track the results of those, now compara-
le, studies. So, overall, releasing high-quality public datasets,
efining benchmarking studies, and centralizing their results
re necessary to assess (i) the current state of ML tools in
arine ecology and (ii) the tradeoff between gains from new

rchitectures and their cost in complexity. 
Transferring innovations from computer sciences to ma-

ine ecology also depends largely on efficient collaboration
cross disciplines. However, establishing interdisciplinary re-
earch teams is difficult and takes a long time (Haapasaari et
l., 2012 ). Once again, public datasets are an efficient first step
or marine ecologists to garner interest from computer sci-
ntists. For example, after the WHOI-Plankton dataset was
eleased (Sosik et al., 2015 ), it was used in many papers on
his topic in computer science conferences. In the assembled
atabase, about 15% of references are from such computer
cience conferences or engineering journals, but very few are
rom high-level ones. This can indicate that marine ecology
uestions have not gained enough interest from the ML re-
earch community to generate significant new developments
hat would be published at high-profile conferences, unlike
ther applications such as face recognition, customer track-
ng, or self-driving cars. It could also simply reflect differences
n overall funding for research in those fields, linked to the
otential commercial applications of some research. On the
ther hand, publishing highly technical ML papers in ecology
ournals can also be challenging, because of the scarcity of ed-
tors and reviewers who can assess both the importance of the
cological questions and the relevance of the methods used to
ddress them. Still, problems such as estimating the stock sizes
f fish species that feed human populations, the distribution
f the litter we create, the composition of plankton that forms
he basis of oceanic food webs, or the global export of the ex-
ess carbon we produce seem no less important than designing
argeted ads; they should generate proportionate interest and
unding (Blair et al., 2019 ). Therefore, ways forward for ML
n marine ecology include (i) long-term digitalization strate-
ies by funding agencies to scale efforts to the stakes we face
nd (ii) raising awareness of those stakes among the public in
eneral and computer scientists in particular. 

Another way to advance the interplay between ML and
arine ecology is to train a new generation of scientists at

he intersection of these fields. Then, long-term changes in the
trategies for funding allocation and career evaluation would
e needed to foster such hybrid profiles. Indeed, garnering the
imultaneous interest, on a common problem, of researchers
urrently specialized in either marine ecology or computer
ciences is difficult. Challenges raised by marine ecologists
an be perceived as not novel or generic enough to consti-
ute research questions for computer scientists. New develop-
ents in computer science are often not immediately action-

ble by marine ecologists, as seen above for large transformers
r image-text encoders. So, computer scientists may feel like
ervice providers for ecologists and ecologists as simple data
roviders for computer scientists, which is satisfactory for nei-
her. Recent reviews and perspectives, in ecology as a whole,
ctually show that the interaction can be beneficial for both
arties. Several also point towards the need to train ecologists

https://paperswithcode.com/sota/image-classification-on-imagenet
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in computer sciences, not the opposite (Olden et al., 2008 for 
an older one; Christin et al., 2019 for a recent one), notably be- 
cause computer science students rarely choose careers in ecol- 
ogy and environment, in part due to differences in financial 
compensation or job security. Overall, we argue that interdis- 
ciplinary training and career paths are potential solutions to 

many of the current shortcomings of ML applications in ma- 
rine ecology. 
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