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Abstract : 

Stock identification studies are essential to understanding fish population structure and connectivity 
across wide geographical areas, and thus contribute to efficient fisheries management. The blackbelly 
rosefish, Helicolenus dactylopterus, and European hake, Merluccius, are two economically important 
marine fishes, but there are still gaps in knowledge regarding their present stock structure. Our objective 
was to assess the ability of otolith shape to define stock structure for the two species along the 
Northeastern Atlantic Ocean and the Mediterranean Sea, based on samples from eight and seven areas, 
for blackbelly rosefish and European hake, respectively. Shape analysis was obtained through Wavelet 
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analysis. Canonical analysis of principal coordinates provided significant evidence for different population 
units with a clear separation between the Atlantic and Mediterranean populations for both species. 
However, random forest procedures indicated that the discrimination power varied with species and 
locations. For blackbelly rosefish, various Atlantic populations were more evident than for European hake. 
Overall, the usefulness of otolith shape to delineate stock structure of two species with distinct life history 
traits across a broad spatial region from the mid-Atlantic isles to the polar region, as well as the 
Mediterranean was demonstrated. Moving forward, it will be key to align our growing understanding of 
population structure with our increasing knowledge on species’ biological traits to ensure management 
units reflect population structure. 
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Highlights 

► Helicolenus dactylopterus and Merluccius are fishery exploited species. ► We used otolith shape to 
define their stock structure in the Atlantic and Mediterranean. ► Wavelet analysis and canonical analysis 
of principal coordinates revealed diverse population units. ► Random forests showed that the 
discrimination power varied with species and locations. ► Results suggest a higher degree of connectivity 
of M. merluccius in the Atlantic. 
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Abstract 47 

 Stock identification studies are essential to understanding fish population structure 48 

and connectivity across wide geographical areas, and thus contribute to efficient fisheries 49 

management. The blackbelly rosefish, Helicolenus dactylopterus, and European hake, 50 

Merluccius merluccius, are two economically important marine fishes, but there are still 51 

gaps in knowledge regarding their present stock structure. Our objective was to assess the 52 

ability of otolith shape to define stock structure for the two species along the Northeastern 53 

Atlantic Ocean and the Mediterranean Sea, based on samples from eight and seven areas, 54 

for blackbelly rosefish and European hake, respectively. Shape analysis was obtained 55 

through Wavelet analysis. Canonical analysis of principal coordinates provided 56 

significant evidence for different population units with a clear separation between the 57 

Atlantic and Mediterranean populations for both species. However, random forest 58 

procedures indicated that the discrimination power varied with species and locations. For 59 

blackbelly rosefish, various Atlantic populations were more evident than for European 60 

hake. Overall, the usefulness of otolith shape to delineate stock structure of two species 61 

with distinct life history traits across a broad spatial region from the mid-Atlantic isles to 62 

the polar region, as well as the Mediterranean was demonstrated. Moving forward, it will 63 

be key to align our growing understanding of population structure with our increasing 64 

knowledge on species’ biological traits to ensure management units reflect population 65 

structure. 66 

 67 

Keywords: Population structure; blackbelly rosefish; European hake; Atlantic Ocean; 68 

Mediterranean Sea; connectivity. 69 

 70 

 71 

Introduction 72 

 Stocks are described as self-recruiting groups of fish within a species that share 73 

similar growth, natural and non-natural mortality rates, and show relative independent 74 

reactions to harvesting (Cadrin et al., 2013). Due to the increasing pressure induced by 75 

the higher demands for seafood, studies on stock structure are fundamental to support 76 

more sustainable fisheries management strategies (Jackson et al., 2001; Smith et al., 2010; 77 

Taillebois et al., 2017), in particular as accurate stock management relies on 78 

comprehensive knowledge of stock evaluation and configuration (Cadrin et al., 2013). 79 
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Fish stock identification can be achieved using different methods that include 80 

tagging and acoustic telemetry, demography and meristic data, otolith shape analysis, 81 

otolith chemistry and genetics (Hawkins et al., 2016). Otoliths have been among the most 82 

used structures as stock discrimination tools in fisheries science, by analysing their 83 

morphological and chemical properties (Campana and Casselman, 1993; Stransky et al., 84 

2008; Milano et al., 2014; Westgaard et al., 2017; Leone et al., 2019; Morales-Nin et al., 85 

2022). These structures are composed of calcium carbonate and are the first calcified 86 

structures formed in the ontogenic process. The three pairs of otoliths (sagittae, lapilli and 87 

asterisci) are found in the membranous labyrinth of the inner ear in fishes and play a key 88 

role postural equilibrium and hearing of fishes (Popper et al., 2005). The wide use of these 89 

structures is associated with the fact that they are metabolically inert, record fish growth 90 

and the chemical elements of the surrounding water (Campana, 1999). 91 

Otolith shape analysis has been vastly used as a stock identification tool for many 92 

marine fishes (e.g., Sebastes spp (Stransky, 2005); Trachurus trachurus (Stransky et al., 93 

2008); Engraulis encrasicolus (Bacha et al., 2014; Jemaa et al., 2015); Sardina 94 

pilchardus (Jemaa et al., 2015); Clupea harengus (Libungan and Pálson, 2015); 95 

Trachurus picturatus (Vasconcelos et al., 2018); Genidens barbus (Maciel et al., 2021). 96 

The use of this technique is possible given that otolith shape is species-specific and can 97 

be influenced by feeding behavior (Simoneau et al., 2000) and environmental conditions 98 

such as water temperature (Cardinale et al., 2004), depth (Gauldie and Crampton, 2002), 99 

and type of substrate (Mérigot et al., 2007), which can be stock specific (Aguëra and 100 

Brophy, 2011). Additionally, this methodology is economical and time-efficient 101 

compared with others, such as artificial tagging and tracking, genetics, and otolith 102 

chemistry, since in many cases otoliths are readily available from routine data collection 103 

sampling programs requiring no extra acquisition cost and effort. 104 

 The blackbelly rosefish Helicolenus dactylopterus (Delaroche, 1809) and 105 

European hake Merluccius merluccius (Linnaeus, 1758) are two sympatric commercially 106 

important species in European waters. The blackbelly rosefish is a benthopelagic slow-107 

growing and long-lived marine fish species (Kelly et al., 1999; Massutí et al., 2000; 108 

Sequeira et al., 2009) that belongs to the family Sebastidae. It is commonly found at 109 

depths between 200 and 1000 m and presents a wide distribution from the Northeastern 110 

Atlantic to the Mediterranean (Froese and Pauly, 2023). Its slow-growth, late fecundity 111 

and high longevity in combination with a typical sit-and-wait predator behaviour (Uiblein 112 

et al., 2003), make the blackbelly rosefish particularly vulnerable to overfishing (Pirrera 113 
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et al., 2009) even when usually caught as a by-catch (Deval et al., 2018). In the 114 

Northeastern Atlantic Ocean, the blackbelly rosefish stock structure is still unknown 115 

(Neves et al., 2010) and there are currently no specific management measures or landing 116 

regulations in EC waters or in the NEAFC Regulatory Area, although this species is being 117 

assessed and managed among other deep-sea fish to the present (ICES, 2022; NEAFC, 118 

2023). The European hake is a demersal species widely distributed in the Northeastern 119 

Atlantic Ocean and throughout the Mediterranean and Black Sea (Murua, 2010) between 120 

30 and 1075 m depth, with adults found in a wider depth range from the shelf to the upper 121 

slope (Cartes et al., 2009). The European hake is a highly exploited species across 122 

multiple regions of the Northeast Atlantic (FAO, 2020; GFCM, 2012). Since 1978, the 123 

ICES Working Group of Southern Demersal Stocks (WGSSDS) distinguished two 124 

different stocks for the European hake - the northern and southern stocks, divided at the 125 

Cap Breton Canyon (Anon, 2004). Still, most stock identification studies have focused 126 

on the Northeast Atlantic, North Sea, and Baltic, while few have included the entire 127 

geographic range of the species distribution, i.e., including archipelagos in the middle of 128 

the Atlantic Ocean, such as the Azores, Madeira and the Faroe Islands, or the 129 

Mediterranean Sea and transition areas with the Atlantic Ocean (e.g., Neves et al., 2010; 130 

Tanner et al., 2012; 2014; Morales-Nin et al., 2022). As such, the objectives of the present 131 

study were (1) to describe otolith shape variations of blackbelly rosefish and European 132 

hake in several areas of the Northeast Atlantic and Mediterranean, and (2) to assess the 133 

discrimination ability of otolith shape as a tool to delineate stock boundaries of these 134 

species. Here, we tested the hypothesis that differences in population connectivity due to 135 

oceanic boundaries are translated into distinct otolith shape, which allows discrimination 136 

between adjacent population units along the species’ geographical distribution gradients. 137 

 138 

 139 

Materials and Methods 140 

Sampling 141 

Blackbelly rosefish and European hake adult samples were obtained from research 142 

surveys or commercial fisheries. The sampling areas were selected in accordance with 143 

the geographical distribution of each species, habitat, and oceanographic characteristics. 144 

Samples from both species were collected in the Northeastern Atlantic Ocean and 145 

Mediterranean Sea from 2017 to 2020, despite the blackbelly rosefish having a much 146 

more extensive distribution. To minimize possible interannual differences in otolith shape 147 
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and the analysed total length, size ranges were limited (blackbelly rosefish from 10 to 148 

40cm; European hake from 20 to 65cm) to minimize confounding morphometric effects 149 

of largely different otolith shapes between very small and very large fish (Table I, Fig. 150 

1). Collected fish were stored frozen until further analysis. Fish length (cm) was recorded 151 

(Table I), and the sagittal otoliths were removed, air-dried, and stored in Eppendorf vials 152 

until further analysis, as described in the European sampling protocol of otoliths (Vitale 153 

et al., 2019). 154 

 155 

 156 

Figure 1: Map of sampling locations for Helicolenus dactylopterus (circles) and Merluccius merluccius 157 

(triangles) in the Northeastern Atlantic Ocean and Mediterranean Sea. See Table I for area codes. 158 

 159 

Table I: Number of individuals, mean length (cm) and corresponding standard deviation per sampling area 160 

of H. dactylopterus and M. merluccius used for shape analysis. 161 

 162 
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 163 

 164 

Otolith shape analysis 165 

 The first step was to carefully analyse each otolith under a Leica M80 166 

stereomicroscope to ensure that only left otoliths in perfect conditions were used (i.e., 167 

with no cracks and with a good crystallization). Then, images of the otoliths were 168 

captured with Leica LAS X software using a Leica DFC450 color camera with 5-169 

megapixel CCD sensor, connected via Firewire to Windows 10 PC, and converted to 170 

monochrome in Adobe Photoshop. All otoliths were positioned on a microscope slide 171 

with the sulcus down and rostrum to the left in a horizontal line to minimize distortion 172 

errors and obtained high-contrast images with transmitted light, allowing a clear 173 

visualization of the otolith outlines. To ensure a high resolution, the microscope 174 

magnification was adjusted to the otolith size. Through the software package ShapeR 175 

(Libungan and Pálson, 2015) that runs on the R platform (R Core Team; www.r-176 

project.org), the otolith outlines were extracted. The shape of each otolith was recorded 177 

as a matrix of x and y coordinates and the otoliths were subsequently normalized to 178 

remove any possible size-induced bias. Shape coefficients and mean otolith shape for 179 

each population were obtained through a Wavelet analysis, since it is a more powerful 180 

and robustness approach (Libungan and Pálson, 2015), and does not require as much data 181 

as Fourier analysis (Baradad et al., 2005; Libungan and Pálson, 2015).  182 

Helicolenus dactylopterus  Merluccius merluccius 
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 North Sea NoS 61 
57.314.
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North Sea NoS 67 14.63.1 

Cantabrian 

Sea 
CaS 35 20.94.7 

Bay of 

Biscay 
BiB 116 

44.214.
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AzI 36 30.71.8 
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PtC 79 40.77.5 
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Islands 
MaI 44 38.42.4 
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Golf of 

Lion 
GoL 47 32.93.8 

Portuguese 

Coast 
PtC 57 26.53.9 

Adriatic 

Sea 
AdS 48 23.63.8 

M
e
d

it
er

r
a
n

ea
n

 

S
ea

 

Strait of 

Sicily 
StS 40 18.74.9 

Strait of 

Sicily 
StS 49 19.61.4 

Levantine 

Sea 
LeS 26 18.05.1 

Levantine 

Sea 
LeS 24 31.32.6 
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 Otolith rotations were arranged horizontally along the longest axis and the areas 183 

were set equal to one, then, by drawing a polar axis, from the centroid to the 0º angle of 184 

the outline, the coordinates were collected and the radials were retracted with equidistant 185 

angles, from 0º to 360º angle (Libungan and Pálson, 2015). The deviation between the 186 

original outline and the reconstructed Wavelet otolith outline was used to determine the 187 

number of Wavelet coefficients. To visualize differences in the shape among the different 188 

sampling areas, a plot with the mean shape of each population was built through the 189 

reconstructed outlines of the normalized Wavelet coefficients. To estimate which otolith 190 

areas contributed the most to differentiate populations, Wavelet coefficients means, and 191 

respective standard deviation were plotted for all the otoliths in the analysis (Libungan 192 

and Pálson, 2015). 193 

An ANOVA-like permutation test and a Canonical Analysis of Principal 194 

Coordinates (CAP) was performed using the vegan package (Oksanen et al., 2022), and 195 

the capscale function to analyze the shape variation among the different sampling sites 196 

for each species separately (following Libungan and Pálson, 2015). Classification of 197 

individuals to their sampling area based on Wavelet coefficients was performed using 198 

random forest classification (Breiman, 2001) implemented in the randomForest package 199 

(Liaw and Wiener, 2002). Average out-of-bag (OOB) classification error was determined 200 

using 2000 trees and the number of variables tried at each split was 11. 201 

 202 

Results 203 

 The average shape outline reconstruction plot based on all otoliths showed clear 204 

differences among populations for both species (Figure 2A; D), as reflected by the high 205 

degree of variation in the Wavelet coefficients between populations. For better 206 

visualization, a separate analysis was performed for the Atlantic (Fig. 2B; E) and the 207 

Mediterranean populations (Fig. 2C; F). Further analysis showed that for blackbelly 208 

rosefish, the populations from Madeira and Azores differed the most from the other 209 

sampling areas, with the otolith’s outlines moving inwards to the otolith centroid between 210 

180 and 270º at the excisura (Figure 2A). For European hake, the North Sea and 211 

Portuguese populations showed a higher degree of differentiation from the rest, with an 212 

inward shift of the otolith contour at around 270º (Fig. 2D). More detailed examination 213 

with separated Atlantic Ocean and Mediterranean Sea populations showed more subtle 214 

differences within these two areas (Fig. 2E; F). 215 
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Figure 2: Otoliths average shapes obtained by Wavelet descriptors for H. dactylopterus (left panels) and 216 

M. merluccius (right panels) for all sampled populations (A, D), Atlantic Ocean (B, E) and Mediterranean 217 

Sea (C, F). The excisura (EX), rostrum (RO) and postrostrum (PO) are highlighted in each average shape. 218 

 219 

 220 

The ANOVA-like permutations test showed significant differences in the otolith 221 

shape among populations for each species, both in the combined analysis (p<0.001 for 222 

both species), and when separated into Atlantic Ocean (p<0.001 for both species) and 223 

Mediterranean Sea (p<0.004 for blackbelly rosefish; p<0.001 for European hake). The 224 

Canonical Analysis of Principal Coordinates demonstrated differentiation among 225 

sampling areas based on otolith shape for both species (Fig. 3). With all areas pooled 226 

together, the first discriminating axis for the blackbelly rosefish explained 44.1% of the 227 

variance while the second axis explained 35% (Fig. 3A). In this case, despite some 228 

overlap three clusters are visible: Atlantic islands (Madeira and Azores), northern areas 229 

(Faroe, North Sea and Cantabrian Sea) and southern areas (Portuguese coast, Strait of 230 

Sicily and Levantine Sea). Analysing the results separately, the first axis explained 52.1% 231 

and the second 31.4% in the Atlantic CAP (Fig. 3B), while in the Mediterranean 100% 232 
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of the variation was explained by the first axis (Fig. 3C). Hence, the Atlantic cluster 233 

consistently differentiated the more northern areas (Faroe Islands, North Sea, and 234 

Cantabrian Sea), the Portuguese coast, and the Madeira and Azores Islands. There was 235 

also a clear separation between samples from the Strait of Sicily and the Levantine Sea 236 

in the Mediterranean Sea.  237 

 238 

Figure 3: Canonical Analysis of Principal Coordinates of normalized Wavelet descriptors of the otolith 239 

shape of H. dactylopterus (left panels) and M. merluccius (right panels) from all sampled populations (A, 240 

D), Atlantic Ocean (B, E) and Mediterranean Sea (C, F). 241 

 242 

 For European hake, the first axis of the general CAP explained 88% and the 243 

second axis represented 7.7% of the variation. There was a high degree of overlap and 244 
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only the population from the Strait of Sicily was clearly distinguished (Fig. 3D). When 245 

analysing the Atlantic Ocean and Mediterranean Sea populations separately, five clusters 246 

were established: an indistinct Atlantic cluster, composed of North Sea, Bay of Biscay, 247 

and Portuguese samples (Fig. 3E), and each of the four Mediterranean areas: Gulf of Lion, 248 

Strait of Sicily, Adriatic Sea, and Levantine Sea (Fig. 3F). 249 

 For blackbelly rosefish, random forest classification produced an error rate of 250 

36.6%, with the Faroe Islands and Levantine Sea populations showing the highest error 251 

rates (87% and 81%, respectively), and Madeira Islands and North Sea showing the 252 

lowest error rates (16% and 5%, respectively) (Table II). When separating sampling areas 253 

into Atlantic Ocean and Mediterranean Sea, a reduction in classification error was 254 

observed (27.2% and 24.2%, respectively), but both the Faroe Islands and Levantine Sea 255 

remained the areas with the highest classification error (87% and 46%, respectively) 256 

(Table III). For European hake, the overall analysis error was 37.7%, with the highest 257 

misclassification rates in the Levantine Sea (83%), Portugal (64%) and Gulf of Lion 258 

(57%) and the lowest in the Adriatic (8%), Sicily (16%) and Bay of Biscay (18%) (Table 259 

IV). No improvement was observed when only Atlantic Ocean samples were analyzed 260 

together (39.1%), but a clear differentiation within the Mediterranean region was possible 261 

(19.7%) (Table V). 262 

 263 

Table II: Random Forest confusion matrix for all populations in the study of H. dactylopterus. Overall 264 

classification error rate was 36.6% for all populations. The horizontal lines show the number of otoliths 265 

from each population assigned to one or more areas. See Table I for area codes. 266 

 267 

Table III: Random Forest confusion matrix for the Atlantic Ocean and Mediterranean Sea populations of 268 

H. dactylopterus. Overall classification error rate of all populations was 27.2% and 24.2%, respectively.  269 

  Predicted areas 

  
 

FaI NoS CaS PtC AzI MaI StS LeS Total Classification Error 

A
ct
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a
l 

a
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a
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A
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a
n

ti
c 

O
ce
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FaI 2 0 6 5 2 0 0 0 15 87% 

NoS 0 64 2 0 0 0 1 0 67 5% 

CaS 0 6 21 2 2 0 4 0 35 40% 

PtC 0 0 0 39 9 5 4 0 57 32% 

AzI 0 1 1 13 17 4 0 0 36 53% 

MaI 0 0 1 1 5 37 0 0 44 16% 

M
e
d

it
er

r
a
n

ea
n

 

S
ea

 

StS 0 8 3 8 0 1 18 2 40 55% 

LeS 0 4 3 7 0 0 7 5 26 81% 
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The horizontal lines show the number of otoliths from each population assigned to one or more areas. See 270 

Table I for area codes. 271 

 272 

Table IV: Random Forest confusion matrix for all populations in the study of M. merluccius. Overall 273 

classification error rate of all populations was 37.7% for all populations.  The horizontal lines show the 274 

number of otoliths from each population assigned to one or more areas. See Table I for area codes. 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

Table V: Random Forest confusion matrix for the Atlantic Ocean and Mediterranean Sea populations of 293 

M. merluccius. Overall classification error rate of all populations was 39.1% and 19.7%, respectively.  The 294 

horizontal lines show the number of otoliths from each population assigned to one or more areas. See Table 295 

I for area codes. 296 

 297 

 298 

  Predicted areas 

  Atlantic Ocean  Mediterranean Sea 

  FaI NoS CaS PtC AzI MaI Total 
Classification 

Error 
 StS LeS 

Classification 

Error 

A
ct

u
a
l 

a
re

a
s 

FaI 2 0 5 6 2 0 15 87% 

StS 12 14 10% NoS 0 64 2 1 0 0 67 5% 

CaS 0 8 21 4 2 0 35 40% 

PtC 0 0 1 42 9 5 57 26% 

LeS 36 4 46% AzI 0 1 2 12 17 4 36 53% 

MaI 0 0 1 1 3 39 44 11% 

   Predicted areas 

 
 

 NoS BiB PtC GoL AdS StS LeS Total Classification Error 

A
ct

u
a
l 

a
re

a
s 

A
tl

a
n
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c 

O
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 NoS 32 21 3 4 1 0 0 61 48% 

BiB 5 95 12 2 0 2 0 116 18% 

PtC 5 36 28 3 1 5 1 79 64% 

M
e
d

it
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r
a
n
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n

 S
ea

 

GoL 2 16 1 20 6 2 0 47 57% 

AdS 0 0 2 0 44 0 2 48 8% 

StS 0 1 4 3 0 41 0 49 16% 

LeS 0 3 6 0 3 8 4 24 83% 
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 299 

 300 

Discussion 301 

Otolith shape analysis of blackbelly rosefish and European hake successfully 302 

distinguished different populations in the Northeast Atlantic Ocean and Mediterranean 303 

Sea, confirming it is a useful technique in the stock identification toolbox. Using the 304 

Wavelet approach, we detected morphological differences in the otolith outline that 305 

contributed to delineate shape variations among populations. Obtained results indicated 306 

population differentiation for each species, however, separate analyses of Atlantic Ocean 307 

and Mediterranean Sea were necessary for better discrimination at smaller spatial scale, 308 

since a strong separation between these two regions was visualized but more subtle 309 

among them.  310 

The differences in relation to the most variable areas in the otolith shape found 311 

between the large geographical areas (Atlantic Ocean and Mediterranean Sea) can be 312 

explained by genetic factors (Cardinal et al., 2004), since different deposition of the 313 

otolith increments due to different growth rates can affect the otolith structure (Geffen, 314 

1982; Folkvord et al., 2000; Feet et al., 2002; Fox et al., 2003), and may also reflect 315 

different environmental conditions (Campana and Neilson, 1985; Lombarte and Lleonart, 316 

1993; Cardinale et al., 2004; Vignon, 2012). Indeed, the sampling areas in this study 317 

present a latitudinal cline in sea water temperature from the more northern areas (Faroe 318 

Islands for blackbelly rosefish; North Sea for European hake) to the southern ones 319 

(Mediterranean Sea), as well as in salinity (the Mediterranean is characterized by higher 320 

salinity than the Atlantic) and continental shelf and slope dynamics. Distinct otolith 321 

shapes have mostly evolved in association with how species not only process ambient 322 

sound, but also how they balance and manoeuvre (reviewed in Schulz-Mirbach et al., 323 

2018), and are thus related with species life history and habitat use. Overall, the European 324 

hake has longer otoliths, characteristic of fast-swimming species (Tuset et al., 2015), 325 

 Predicted areas  

 Atlantic Ocean  Mediterranean Sea  

  NoS BiB PtC Total 
Classification 

Error 
 GoL AdS StS LeS Total 

Classification 

Error 

A
ct

u
a
l 

a
re

a
s NoS 37 19 5 61 39% GoL 38 5 4 0 47 20% 

BiB 6 88 22 116 24% 
AdS 2 44 0 2 48 8% 

StS 4 0 44 1 49 10% 

PtC 8 40 31 79 61% LeS 2 3 10 9 24 63% 
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when compared to blackbelly rosefish, a sedentary long-lived benthopelagic species 326 

whose otolith shape had more intricate structure. 327 

 328 

Case study: Helicolenus dactylopterus 329 

For the blackbelly rosefish, the excisura presented the highest morphological 330 

differences between populations, especially for Azores and Madeira islands, while the 331 

rostrum and postrostrum presented more subtle differences. Overall, six major groups 332 

were identified: four in the Atlantic Ocean that included Madeira and Azores islands, 333 

Portugal and Northern areas (Faroe, North Sea and Cantabrian Sea), and two in the 334 

Mediterranean Sea: Strait of Sicily and Levantine Sea. A moderate degree of overlap was 335 

found inside the North group, which is in agreement with the misclassification results, 336 

where a relative connectivity among Faroe Island, North Sea and Cantabrian Sea 337 

individuals was found, which could indicate a possible common population for this 338 

species in those three areas, mostly possibly favoured by a continuity in the NE Atlantic 339 

continental shelf and slope. The shape of otoliths from the Portuguese coast is also more 340 

similar to the Mediterranean (more rounded profiles) than to the nearest northern 341 

population in the Cantabrian Sea, which is consistent with previous findings based on 342 

otolith chemistry (Swan et al., 2006) and age and growth studies (Sequeira et al., 2009). 343 

Our results also suggest a clear separation between fish from the Portuguese 344 

islands (Azores and Madeira) and mainland, in agreement with previous stock 345 

identification studies by means of macroparasites (Sequeira et al., 2010), body geometric 346 

morphometrics (Sequeira et al., 2011), genetics (Aboim et al., 2005), otolith shape 347 

analysis (Neves et al., 2010) and otolith chemistry (Swan et al., 2006). In the 348 

Mediterranean Sea, the overall classification error was low (24%) and though there was 349 

a segregation between the two sampling locations (Strait of Sicily and Levantine Sea), 350 

many samples from the Levantine Sea were misclassified. In part, this can be explained 351 

by the low number of samples collected in this area, which may complicate otolith shape 352 

comparisons between adjacent sites, but also by a high degree of connectivity between 353 

these two Mediterranean populations, convergent evolution or even by a relatively 354 

homogenous environment. 355 

The broad scale morphological differences and the number of different units found 356 

for blackbelly rosefish may be related with different environmental conditions (Sequeira 357 

et al., 2012) and consequently different feeding ecology. This species uses a variety of 358 

habitats with different characteristics (e.g., deep coral reefs, in association with burrows 359 
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or anemones) (Rodríguez-Mendoza et al., 2019) and feeds on different food types 360 

depending on the habitat (Serrano et al., 2003), which influence the otolith shape 361 

(Simoneau et al., 2000; Gauldie and Crampton, 2002; Cardinale et al., 2004). The fact 362 

that the blackbelly rosefish is a rockfish with a sedentary nature, attached to the bottom 363 

and mostly inactive (Uiblein et al., 2003; Aboim et al., 2005), with a typical sit-and-wait 364 

predatory strategy (Uiblein et al., 2003) supports our findings. In fact, tagging studies 365 

have recaptured the marked individuals at the exact same place after more than a year 366 

(Aboim et al., 2005), leading to the conclusion that they present a high site fidelity. This 367 

may lead to population isolation, reinforcing the idea that the surrounding habitat and 368 

water circulation may contribute to the retention of larvae (Rogers, 1994), suggesting a 369 

semi-enclosed habitat where each population lives and breeds.  370 

Natural boundaries and oceanic fronts are important factors explaining population 371 

isolation in this species. For instance, for horse mackerel (T. trachurus), the northwestern 372 

tip of the Iberian Peninsula (Cape Finisterre), between the Cantabrian Sea and the 373 

Portuguese coast was evidenced as a geographical boundary between two Atlantic stocks 374 

(Abaunza et al., 2008), and the northern stock also included areas from the Cantabrian 375 

Sea to Faroe Islands. This is consistent with our results, where a clear separation from the 376 

populations north of the Cantabrian Sea (Faroe Islands, North Sea, and Cantabrian Sea) 377 

was found in relation to mainland Portugal. Furthermore, Sequeira et al. (2011) obtained 378 

similar results using geometric morphometric methods, where samples from Galicia 379 

(Spain) and Peniche (Portugal) were distinct despite their relatively close geographical 380 

distance. This can be explained by the existence of distinctive conditions (e.g., predation 381 

risk, food resources, sediment type, water depth and temperature) that can affect fish 382 

growth (Hayes et al., 1996). The Sicilian Channel has also been described as a physical 383 

barrier between the western and eastern Mediterranean (Skliris, 2014), which may also 384 

help explain the population structuring found for this area. The separation between 385 

Atlantic and Mediterranean shape profiles is most probably the result of the Strait of 386 

Gibraltar acting as a barrier to both adult and larval connectivity, as has been 387 

demonstrated for other deep-sea fishes in the region (e.g., Catarino et al., 2017). 388 

 389 

 390 

 391 

 392 

 393 
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Case study: Merluccius merluccius 394 

In the case of European hake, once again, the excisura presented the greatest 395 

morphological variation, but both the postrostrum and rostrum showed some degree of 396 

differentiation, with the North Sea population showing a more elongated shape. A 397 

detailed analysis with Atlantic and Mediterranean Sea separately demonstrated a more 398 

cropped outline at the excisura for the Mediterranean Sea populations. When all the seven 399 

sampled areas were analysed together, otolith shape could only unambiguously identify 400 

fish populations from the Strait of Sicily, with a generally high overlap between the 401 

remaining sites. Separating the Atlantic Ocean and Mediterranean Sea allowed for a better 402 

understanding of the European hake population structure. Yet, there was still a high 403 

overlap between the three areas sampled in the Atlantic (North Sea, Bay of Biscay, and 404 

Portuguese coast), which suggests a high degree of connectivity between them. On the 405 

other hand, all Mediterranean populations were easily distinguished. Only samples from 406 

the Levantine Sea showed elevated error rates (63%), which again may result not only 407 

from the lower number of samples collected, but also from convergent evolution or 408 

relatively homogenous environment that led to similar otolith shapes between 409 

geographically distant populations. Another possible explanation can be related with the 410 

high connectivity with the Strait of Sicily population, since 8 individuals from a total of 411 

24 from the Levantine Sea were misclassified in this population. 412 

Several studies (e.g., Lundy et al., 1999; Castillo et al., 2004; Leone et al., 2019) 413 

suggested a subdivision of the two established hake stocks in the Atlantic, divided at the 414 

Cap Breton Canyon (Anon, 2004). In fact, significant genetic differences between 415 

Norwegian and more southern samples in the Celtic Sea (Lundy et al., 1999) and eastern 416 

Bay of Biscay (Leone et al., 2019) were found, as well as between the Bay of Biscay and 417 

southern Portugal (Lundy et al., 1999), which can also be seen in this study by the weak 418 

separation of North Sea from the Bay of Biscay and Portuguese samples (Fig. 3E). 419 

However, Pita et al. (2011) found systematic grouping of Porcupine Bank (Irish shelf) 420 

and Iberian Atlantic samples, suggesting the occurrence of gene flow, which contradicts 421 

the idea that Cap Breton and ocean dynamics in the Bay of Biscay act as a connectivity 422 

barrier, also reported for horse mackerel T. trachurus (Kasapidis and Magoulas, 2008). 423 

Most recently, Westgaard et al. (2017) and Leone et al. (2019) described a distinction 424 

between the Bay of Biscay and northern samples using SNP markers, which implied a 425 

clear differentiation between the Norwegian Sea and southern Europe waters but not 426 

between Bay of Biscay and northwestern Iberian Peninsula. This suggests that all 427 
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specimens are part of a single population with gene flow between them, which represents 428 

a panmictic scenario. Similarly, our otolith shape analysis results support these findings, 429 

with an overlap between hake samples from the Bay of Biscay and Portugal, and a slight 430 

differentiation in the North Sea. Migration and consistent dynamics throughout its 431 

biogeographical area (Pita et al., 2011) explain high levels of genetic homogeneity of 432 

marine species over large ocean distances (Lessios et al., 1998), as is the case for 433 

European hake in the North Atlantic, suggesting that Cap Breton Canyon may not 434 

represent an effective barrier (Lundy et al., 1999; Pita et al., 2011) for this species. 435 

 The Mediterranean Sea European hake populations appeared as a separated 436 

cluster, being congruent with the genetic distance found between Portuguese and 437 

Mediterranean (Southeast Spain and Ionic Sea) populations in Castillo et al. (2004). 438 

Additionally, this discontinuity between Atlantic and Mediterranean can be explained by 439 

the Almerian-Oran front (Castillo et al., 2004; 2005). A more detailed analysis of the 440 

population structure in the Mediterranean suggests a strong differentiation in three 441 

separated units: Gulf of Lion, Strait of Sicily, and Adriatic Sea, despite the Levantine Sea 442 

appearing as a fourth cluster, whose classification error was substantially high, as 443 

discussed above. These findings are supported by previous studies based on genetic 444 

features (Roldán et al., 1998; Milano et al., 2014), which subdivided the Mediterranean 445 

stock into Western, Central and Eastern units, contrary to the findings of Morales-Nin et 446 

al., (2022). In addition, the outputs of the present study are in general agreement with 447 

Spedicato et al. (2022), who integrated both genetic and otolith shape data for European 448 

hake in the Mediterranean Sea. The main difference was characterized by the unique 449 

population in Adriatic and Strait of Sicily. A possible explanation for these results may 450 

be related to adaptation to local conditions, such as water temperature and salinity 451 

(Milano et al., 2014) and the existence of a physical barrier in the Sicily Channel, with 452 

relatively shallow depth and particular circulation patterns that separates the western and 453 

eastern Mediterranean basins (Skliris, 2014), as well as sample availability. Our results 454 

based on otolith shape do not agree with a recent paper by Morales-Nin et al. (2022) that 455 

suggests the existence of a continuous longitudinal gradient explained by the evolution 456 

of otolith shape from the Western to Eastern parts the Mediterranean. This gradient could 457 

be linked to environmental factors such as water temperature or salinity, which are 458 

important in the Mediterranean Sea (Spedicato et al., 2022), and that could drive distinct 459 

phenotypic responses. Also, the fact that the study by Morales-Nin et al., (2022) sampled 460 
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throughout the Mediterranean Sea, while in the present study we sampled only a few 461 

distinctive points may be the reason for the different results between these two studies. 462 

Some overlap between populations on both species can be explained by several 463 

confounding effects such as sex and age (Simoneau et al.; 2000). However, in this study, 464 

only the fish size was considered, which the Wavelet descriptors were normalized for. 465 

The use of otoliths from fish caught in different sampling years is also a common practice 466 

in these studies, as the year of capture has a negligible effect on otolith shape (e.g., 467 

Campana and Casselman, 1993; Denechaud et al., 2020). In fact, Bergenius et al. (2006) 468 

mentioned the use of multiple cohorts obtained through several years as a good practice 469 

in otolith shape analysis, to minimize possible confounding spatial variations. Also, 470 

samples of European hake from Sicily and blackbelly rosefish from Madeira analysed in 471 

the present study are the smallest and the largest (Table I), respectively, which could 472 

explain their clear separation from the other samples in the CAP analysis (Fig. 3). Thus, 473 

further analysis with complementary techniques such as genetics and otolith chemistry 474 

are strongly suggested since they are less size-dependent. Considering that each method 475 

presents limitations in its resolving power, two (or more) methods should be used together 476 

to evaluate the levels of concordance and/or complement results (Begg and Waldman, 477 

1999; Lleonart and Maynou, 2003; Abaunza et al., 2008; Welch et al., 2009; Tanner et 478 

al., 2014; Welch et al., 2015; Reis-Santos et al., 2018). 479 

 480 

Conclusions 481 

In this paper, we demonstrated the differences in otolith mean shape for the 482 

selected Atlantic and Mediterranean populations of blackbelly rosefish and European 483 

hake, two fish species with high commercial interest. In both species, differentiation 484 

between areas was mostly evident at the excisura, and more limited at the rostrum and 485 

postrostrum. The blackbelly rosefish from the Azores and Madeira islands were 486 

characterized by a more pronounced indentation at the excisura, while those from the 487 

Mediterranean had a rounder shape. For the European hake, otoliths were longer and 488 

narrower in the northernmost Atlantic populations. 489 

Indeed, otolith shape can be regarded as a valid tool to identify population 490 

structure in both species. The high level of overlap between some areas was improved by 491 

dividing the sampling sites into Atlantic and Mediterranean contingents, assuming that 492 

the Strait of Gibraltar is a significant barrier for fish connectivity, enabling a more 493 

streamlined distinction of population units in each separate area. A lower dispersion of 494 
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European hake Atlantic samples when compared with blackbelly rosefish suggests a 495 

higher degree of connectivity between these populations. The use of more samples with 496 

smaller size range is strongly recommended to achieve the highest precision possible in 497 

stock identification of these two species. Future approaches should integrate other 498 

complementary natural markers such as genetics and/or otolith chemistry to further 499 

improve the identification of marine fish populations and to reconcile the discrepancies 500 

between biological and management units. Our results are fundamentally applicable in 501 

fisheries management and contribute to a spatially explicit discrimination of marine fish 502 

stock structure, with important benefits to researchers and stakeholders in the fisheries 503 

sector. 504 

 505 
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Highlights 

• Helicolenus dactylopterus and Merluccius merluccius are fishery exploited species.  

• We used otolith shape to define their stock structure in the Atlantic and Mediterranean.  

• Wavelet analysis and canonical analysis of principal coordinates revealed diverse 

population units.  

• Random forests showed that the discrimination power varied with species and 

locations.  

• Results suggest a higher degree of connectivity of M. merluccius in the Atlantic.  
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